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Frequency-time decomposition of seismic data
using wavelet-based methods

Avijit Chakraborty* and David Okaya*

ABSTRACT

Spectral analysis is an important signal processing
tool for seismic data. The transformation of a seismo-
gram into the frequency domain is the basis for a
significant number of processing algorithms and interpre-
tive methods. However, for seismograms whose fre-
quency content vary with time, a simple 1-D (Fourier)
frequency transformation is not sufficient. Improved
spectral decomposition in frequency-time (FT) space is
provided by the sliding window (short time) Fourier
transform, although this method suffers from the time-
frequency resolution limitation. Recently developed
transforms based on the new mathematical field of
wavelet analysis bypass this resolution limitation and
offer superior spectral decomposition. The continuous
wavelet transform with its scale-translation plane is
conceptually best understood when contrasted to a
short time Fourier transform. The discrete wavelet
transform and matching pursuit algorithm are alterna-
tive wavelet transforms that map a seismogram into
FT space. Decomposition into FT space of synthetic
and calibrated explosive-source seismic data suggest
that the matching pursuit algorithm provides excellent
spectral localization, and reflections, direct and sur-
face waves, and artifact energy are clearly identifiable.
Wavelet-based transformations offer new opportuni-
ties for improved processing algorithms and spectral
interpretation methods.

INTRODUCTION

The frequency-domain representation of a time series
often illustrates many features that are difficult to visualize in
the time domain. The manner in which the time series is
mapped into the frequency domain determines the amount of
new information that can be obtained. The amplitude and
phase spectra of a whole seismogram represent the fre-

quency behavior averaged over the entire (stationary) time

series. This standard Fourier-based approach (Claerbout,
1976; Bracewell, 1986; Sheriff and Geldhart, 1983) is a tool

for interpretation (Anstey, 1977) and is the basis for seismic

data processing methods such as frequency filtering
(Claerbout, 1976; Yilmaz, 1987), deconvolution (Lackoff and

LeBlanc, 1975; Webster, 1978; Arya and Aggarwal,
1982; Robinson, 1984), and wavelet characteristics (Walden,

1990; Rosa and Ulrych, 1991). Alternatively, instantaneous

frequency and phase are attributes of complex trace analysis
that are used to describe changes in spectral behavior along

the seismogram (Neidell and Poggiagliolmi, 1977; Taner and

Sheriff, 1977; Taner et al., 1979; Robertson and Nogami,
1984; Barnes, 1991). However, these attributes are scalar

parameters and do not describe the complete spectrum at
each time point.

Seismograms whose spectral content vary significantly
with time are considered nonstationary and require non-

standard methods of decomposition. One-dimensional time-

variant, band-pass filtering based on recursive or Hilbert

transform methods are described in Nikolic (1975), Stein and
Bartley (1983), and Scheuer and Oldenburg (1988). A more

complete description of the time-variant frequency content
requires a decomposition into the 2-D frequency-time space.

In such a decomposition, the full spectral bandwidth is

described for each time and can be used to distinguish
between different types of superimposed seismic events. In

the short time Fourier transform (STFT) whose history is

summarized in Nawab and Quatieri (1988), moving windows
of the time domain signal are used to compute their Fourier
spectra. Thus this transform maps a 1-D signal into a 2-D
frequency-time (FT) plane. Events such as low-frequency
surface waves and higher frequency reflections separate in
the F-T plane. For example, Okaya et al. (1992) decompose
uncorrelated vibroseis data to identify sweep fundamental
and harmonic arrivals and also energy that produces corre-
lation artifacts. Because of the invertibility of the STFT,
Okaya et al. were able to suppress the artifact energy by
selective muting in the FT domain. The STFT, however, has
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poor time-frequency localization and suffers from the time-
bandwidth resolution limitation. Detailed interpretation of
the spectral behavior of individual reflections is thus diffi-
cult.

A wavelet transform (WT) is an alternative technique to
decompose a signal to identify its frequency distribution
through time. This technique differs from the STFT in that
while an STFT uses a fixed size time window, a wavelet
transform uses a variable window size. The WT has been
developed since the late 1980s. A large number of contribu-
tions have been made by various researchers in, for exam-
ple, the fields of 1-D signal analysis (Grossmann et al., 1989),
time-scale representation (Flandrin, 1989), filter bank theory
(Vetterli and Cormac, 1992), digital image processing-edge
detection (Mallat and Zhong, 1992; Mallat and Hwang,
1992), numerical analysis (Coifman, 1989; Press, 1992), and
seismic data analysis (Pike, 1994; Saito, 1994). In this paper,
we first provide a conceptual description of a WT. We then
illustrate the improvement in spectral resolution as com-
pared to traditional Fourier-based methods and then discuss
possible seismic applications.

SHORT TIME FOURIER TRANSFORM

For a nonstationary signal such as a seismogram, the
frequency content changes with time. The amplitude spec-
trum of the Fourier transform indicates the presence of
different frequencies but does not show temporal distribu-
tion of these frequencies. If we assume that the signal
through a small window of time is stationary, then its Fourier
transform provides us with the frequency content of the
signal in that time period. By shifting this time window
appropriately, the frequency content of the signal is ex-
tracted and a 2-D representation of frequencies versus time
is produced. This 2-D representation is an STFT. Figures la
and lb illustrate the STFT of a vibroseis source sweep and
an uncorrelated data trace using the sweep, respectively.
The start and end frequencies of the sweep are 8 and 32 Hz.
In Figure lb the sweep associated with the first arrival and
its harmonics can be identified. A detailed discussion about
these events are provided in Okaya et al. (1992).

Mathematically, the STFT at time instant  and frequency
 is defined as

 = f(t)g(t   dt,

where f(t) is the time-domain seismogram, g(t) is the win-
dow function, and e is the Fourier kernel. The seismo-
gram f(t) is segmented by multiplication with the window
function g(t). The Fourier transform of this windowed
seismogram is then computed. This process is then repeated
by shifting the window in time using g(t   Figure lc
illustrates this implementation schematically. Each vertical
rectangle in the FT plane is the Fourier spectrum of the
windowed seismogram. In this diagram, the windows are
touching each other providing what in the digital signal
processing community is considered an optimum coverage
of the FT plane. However, in practice overlapping windows
are often used to achieve a denser coverage.

An STFT can also be implemented by choosing frequency-
domain windows as opposed to the time domain windows.

Instead of sampling the time axis with moving windows, the
frequency axis can be sampled by a set of fixed bandwidth
band-pass filters whose center frequencies are distributed
uniformly along the frequency axis (Figure 1d). Each hori-
zontal rectangle in the FT plane is a band-pass filtered
version of the original seismogram. The frequency response
of the band-pass filters are shown on the left in Figure 1d.

The analysis window function plays an important role in
the STFT. If this function has a long duration in time, it
becomes a narrow bandwidth band-pass filter in the fre-
quency domain; this implies a fine sampling of the frequency
axis. Any subtle variations in the frequency content of the
signal will be well resolved in the resulting 2-D STFT plot.
However, because of the long time duration, small changes
in the time domain become obscured because of averaging.
Figure 2a illustrates this behavior by using a synthetic signal
that is produced by adding three cosine waves of frequencies
30, 40, and 50 Hz. Two spikes are present at approximately
1 s. Figure 2b illustrates an STFT of this synthetic signal.
Because a long time window is used, the three sinusoids are
well resolved (arrows in Figure 2b). The individual spikes,
however, are not well resolved as the length of the time
window is wider than the spacing between the spikes. An
averaged representation of the two spikes is present cen-
tered at 1 s. The reason for the banded appearance of the
spectra of the two spikes is more fully developed in Okaya
(1995).

The opposite is true for a window function of short time
duration that defines short-lived variations in time but fails to
detect rapid frequency changes. Figure 2c represents the
STFT of the above signal using a narrow time-domain
window. The two spikes are now well resolved. However,
the three previously well-localized sinusoids have disap-
peared because the frequency bandwidth of the window is
wide and all three different frequencies are now averaged
together. This tradeoff is called the uncertainty principle or
Heisenberg inequality (Claerbout, 1976). Once a window
function has been chosen for an STFT, the time-frequency
resolution is fixed over the entire time-frequency plain.

Recently developed techniques such as the wavelet trans-
form, wavelet packet decomposition, and matching pursuit
algorithm use variable-width windows and thus do not suffer
from resolution limitations of the STFT.

WAVELET ANALYSIS

Wavelet analysis examines the frequency distribution of a
nonstationary time series using a set of windows that have
compact support in time (i.e., decays to zero quickly) and
are band-limited in the frequency domain. These window
functions resemble tiny waves that grow and decay in short
periods of time and hence have the name “wavelets.”
Techniques such as wavelet shaping or wavelet deconvolu-

tion that are routinely used in seismic data processing should
not be confused with wavelet analysis, which is a newly
established field in mathematics and signal processing. Sim-
ilar to Fourier analysis, wavelet analysis includes transforms
such as the wavelet series expansion, the continuous wave-
let transform, the discrete wavelet transform (Young, 1993;.
Shensa, 1992), and the wavelet packet transform (Coifman
and Wickerhauser, 1992). These transforms are invertible
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and thus suitable for filtering data. Wavelet analysis acts like plotted on the left in Figure 3. At low scale index, the
a mathematical microscope (Hunt et al., 1993). When the bandwidth of the window function is narrow. As a result the
window function has a broad time domain width, a gross three sinusoids are well resolved. However the two spikes
picture of the signal structure under consideration is ob- cannot be identified in the low-frequency region. As the
tained. As the scale changes when the analysis window scale index increases, the bandwidth of the window function
becomes narrow, the detailed properties of the signal be- increases and the time-domain width becomes narrow, thus
come enhanced. the two spikes become well resolved.

The continuous wavelet transform was first introduced in
Morlet et al. (1982) and Goupillaud et al. (1985), but received
full attention of the signal processing community when
Daubechies (1988) and Mallat (1989) established connections
of the WT to discrete signal processing. Different ap-
proaches are taken to implement the continuous wavelet
transform and the discrete wavelet transform, as we will
discuss next.

If we compare the CWT with the STFT, we observe that
both are similar operations. They both decompose a 1-D
signal into a 2-D space:   for the STFT and (a, b) for
CWT, as opposed to a Fourier transform that produces a 1-D
spectrum from a 1-D signal. However, the main advantage of
using a CWT over a STFT is that the CWT has good
frequency resolution for low frequencies and good time
resolution for higher frequencies.

THE CONTINUOUS WAVELET TRANSFORM Choice of Kernel wavelet

In a continuous wavelet transform (CWT), the bandwidth
of the moving band-pass filter (Le., the frequency-domain
window) broadens as the filter center frequency increases. A
CWT of a real signal f(t) with respect to an analyzing
wavelet  is defined as a set of convolutions:

Any function to be used as the kernel wavelet needs to
meet the following admissibility conditions (Shensa, 1992;
Goupillaud et al., 1985):

1)  should be absolutely integrable and square inte-
grable (Le., its energy is finite):

.

The window function  is called the kernel wavelet. The
parameters a and b are called scale and translation, respec-
tively. At each scale (i.e., for each value of a) the kernel
wavelet is scaled by a factor 1/a and translated by b to
produce the wavelet coefficients   In implementation,
a is replaced by where j is the’ scale index. Figure 3
represents a 2-D scale index-translation plot produced by
plotting CWT coefficients of the synthetic signal shown in
Figure 2a. The frequency response of the window function is

FIG. 3. The continuous wavelet transform of the synthetic
signal illustrated in Figure 2a. Scale index is a measure of the
octave or harmonic behavior of the center frequency of the
frequency-domain filter relative to an original low-band
kernel wavelet (filter) function.

I
 dt  

I
   

and

2)  is band limited and has zero mean:

One example of  is a modulated Gaussian as defined in
Morlet et al. (1982) as

  

where

Figure 4 shows a Morlet wavelet and its frequency spectrum.
Note that both  and  are localized in time and
frequency, respectively.

A vibroseis correlated (Klauder) wavelet meets the above
admissibility conditions but is not as desirable as a Morlet
wavelet because of inherent ringiness [i.e., see Goupillaud
(1976) or Edelmann (1966)]. However, use of a cosine-
squared taper on the original pilot sweep in the field will
produce a correlation wavelet very similar to a Morlet
wavelet (Bernhardt and Peacock, 1976). An uncorrelated
linear or nonlinear sweep also meets the above admissibility
conditions. However, Baraniuk and Jones (1993) have deter-
mined that the use of a chirp signal as a kernel wavelet
produces an unusual mapping into the FT plane, and the
usefulness of this decomposition for seismic data still needs
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to be determined. Minimum phase (explosive source) wave-
lets may or may not meet the admissibility conditions. A true
impulsive source is analogous to a delta function and thus is
not bandlimited and does not have zero mean. Minimum
phase sources need to be examined numerically on a case-
by-case basis.

The QMFs are efficient, fast (NlogN operations required
for an N point DWT) and orthogonal. The wavelets used are
also orthogonal, thereby ensuring perfect reconstruction.
The implementation of the DWT using QMFs and other
multirate filter banks are discussed in detail in signal pro-
cessing literature (Daubechies, 1988; Mallat, 1989; Rioul and
Vetterli, 1991; Vaidyanathan, 1993).

DISCRETE WAVELET TRANSFORM
MATCHING PURSUIT DECOMPOSITION

The continuous wavelet transform decomposes a function
by band-pass filtering the original signal at different band-
widths. In a discrete wavelet transform (DWT), the same
transformation into a 2-D scale-translation space is imple-
mented in a different way. Instead of scaling the kernel
wavelet followed by convolution, the DWT is imple-
mented by using quadrature mirror filter (QMF) banks
(Vaidyanathan, 1993; Vetterli and Cormac, 1992). QMF is a
set of two filters, one low pass and one high pass. During a
forward transform, the original signal is filtered by a half-
band low-pass and a half-band high-pass filter followed by a
down sampling by a factor of two. The output of the
high-pass filter is the DWT coefficients for that stage (scale
or level). The output of the low-pass filter is then filtered
again using the two filters mentioned above. This decompo-
sition is continued until the desired level of decomposition is
achieved. Thus at each stage of the transform, the low-pass
output is examined in further details using the high-pass
filter. This is equivalent to a CWT where the scale index of
the kernel wavelet changes by integral values.

Although the wavelet transform has better time-frequency
resolution than an STFT, the resolution is not uniform
across the entire time-frequency plane. The wavelet trans-
form has good time resolution for high frequencies (and
therefore poor frequency resolution) and good frequency
resolution for low frequencies. To get good frequency reso-
lution at intermediate to high frequencies, a wavelet trans-
form alone is not sufficient.

Seismic data are band-limited typically within ranges from
10-15 Hz to 60-70 Hz. This implies that seismograms are
rich in intermediate frequencies. As a result, a time-fre-
quency transform capable of producing high resolution for
all intermediate frequencies is required for processing seis-
mic data.

Recently two different types of transform techniques have
been developed that meet the above mentioned require-
ments. They are known as wavelet packet decomposition
(Coifman and Wickerhauser, 1992) and matching pursuit
decomposition (Mallat and Zhang, 1993). Among the two,

FIG. 4. Morlet wavelet and its frequency spectrum. (a) The time-domain representation at scale index 0.
The corresponding frequency spectrum. (c) The time domain representation at scale index 2, and
its frequency spectrum.
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matching pursuit decomposition provides better resolution
(Mallat and Zhang, 1993). We used this algorithm in the
present work.

In the matching pursuit decomposition (MPD), a set of
basis functions are generated by scaling, translating, and
modulating a single window function as:

1 
 =   

 

where  is the scale,  is the translation, and  is the
frequency modulation. The basis functions are called “time-
frequency” atoms. If  is Gaussian then  (t) are
called Gabor atoms. As shown by Mallat and Zhang (1993),
Gabor atoms provide excellent time-frequency resolution.
These basis functions or atoms have combinations of all
possible time and frequency widths and as a result constitute
a redundant set. Once atoms are defined, a best match
between the signal and these atoms is found by projecting
the atoms onto the signal and then computing the maximum.
A residue is then computed by subtracting from the original
signal the product of the atoms and the cross product of the
selected atom and the signal. This decomposition is contin-
ued until the energy of the residue falls below some thresh-
old. This algorithm is discussed in Mallat and Zhang (1993).

COMPARISON OF THE STFT, THE CWT, AND THE MPD

We use a synthetic seismic signal to study the localization

properties of the STFT, CWT, and MPD methods. Figure 5a

is a synthetic trace produced by the convolution of Ricker

wavelets of different center frequencies with a reflectivity
series. The reflectivity series has a positive spike at 0.2 s (A),

set of three (positive-negative-positive) spikes at 0.5 s (B), a
pair of (plus-minus) spikes at 1.0 s (C), and a single spike at

1.6 s (D). FT decompositions of this trace using an STFT, a
CWT, and an MPD are plotted in Figures 5b through 5d,

respectively.

Reflection A is created using a 40-Hz Ricker wavelet. The
STFT of this reflection produced a rectangular region cen-

tered at 40 Hz and 0.2 s. Although this indicates the
frequency distribution of this reflection, information about

the time-location of this event is obscured. The same event
can also be identified as the unusual pattern in the CWT plot

of Figure 5c, centered at the scale index 3.0 which corre-
sponds to the center frequency of 40 Hz. The CWT failed to

provide a good time resolution because the event does not
have any high-frequency component. However, this reflec-

tion is well resolved both in time and frequency in the FT

energy plot of Figure 5d, produced by the MPD.

FIG. 5. (a) A synthetic seismogram used in the comparison study of the STFT, the CWT, and the MPD. (b) An FT
decomposition produced by an STFT. (c) A scale index-translation plot produced by the CWT. (d) An FT energy distribution
produced by the MPD. A decrease in frequency content is observed in all three plots.
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FIG. 6. Shot gather 19, Siljan Sweden. Reflections A, B, C are caused by dolerite sills of 60 m, layered 30 m, and 20 m,
respectively. Spectral analyses of traces 18 and 56 are shown in Figure 7.
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Event B at 0.5 s is composed of three individual reflec-

tions, mimicking a thin layered sequence. A 30-Hz Ricker

wavelet is used as the source. The Fourier spectrum of three
closely spaced reflections shows banding that is related to

the separation of the individual spikes (Okaya, 1995). These

bandings can be observed in all three FT plots. However,

they are well resolved by the MPD but not the STFT and the
CWT. In addition to the banding, two horizontal streaks are

present in Figure 5d, indicating the presence of the top and

the bottom reflector.
The third event C is composed of two individual reflec-

tions. The source is a 20-Hz Ricker wavelet. The top event

can be identified in all three plots but with better accuracy in

Figure 5d. Information about the top and bottom reflecting

spikes is contained in the two different frequency energies

(Okaya, 1995). The same observation holds for event D

which is a single spike convolved with a 10-Hz Ricker
wavelet. Overall frequency content decreases with travel-
time as is observed in all three FT plots. Comparing these
three methods, it can be concluded that MPD provides the
best localization in both time and frequency. In the next
section, we use the MPD to decompose seismic traces into
their time-frequency components.

INTERPRETATION OF AN F-T DECOMPOSITION
USING THE MPD

Figure 6 is a shot gather from Siljan, Sweden (Juhlin,
1988). Several major reflections can be identified. A 6300 m
borehole penetrated three of these reflections (A, B, and C);
well logs indicate these reflections to be caused by dolerite
sills of 60 m, a layered 30 m, and 20 m thicknesses (Juhlin,
1988). The seismic data were collected with a 2 ms sampling
rate, producing a Nyquist frequency of 250 Hz.

Figures 7a and 7b illustrate the FT energy distribution of
trace 18 and 56 produced using the MPD. Four different
types of atoms can be identified. The first is elliptical and
elongated in the frequency direction, representing events
that are localized in time but possess different frequencies.
Reflection events fall in this category. A second type of
elliptical atom is elongated in the time direction and repre-
sents events that have long time duration but narrow band-
width. Low-frequency surface waves often fall in this cate-
gory. The third type of atom is circular in shape. This
represents events that have only one or two frequencies and
are present for a very short period of time. The fourth type
is a long streak in the time direction. This represents a
monotonic frequency such as 60 Hz noise that occurs over a
long time duration.

In Figure 7a the first arrival is identified at 0.35 s and has
a large spread of frequencies ranging from 25 Hz to approx-
imately 100 Hz. Notice the narrow time localization of this
arrival. Reflected event A can be identified at 0.6 s. This
event is centered at approximately 50 Hz. Event B can be
identified as the elliptical atom at 1.0 s. This event is
obscured in the shot gather by other seismic energy such as
the surface waves. Reflected event C can be identified at
1.75 s. The other circular atoms are caused by random noise
that is present in the data. The vertical streaks are shot-
generated noise.

Figure 7b illustrates the FT plot of trace 56 that is located
near the source. Notice the high-frequency content of the
first arrivals, ranging from 75 to 175 Hz. The low-frequency
surface waves can be identified at approximately 0.25 s. The
dominant frequency of the surface wave is 20 Hz. Reflection
B is represented by the elliptical atom at 1.05 s and 60 Hz.
Reflection C can be identified as the elliptical atoms near
1.75s. The overall frequency content decreases with time, as
observed from the location of these atoms in the FT plane.
The center frequency of the atom representing reflection C is
higher than that of trace 18. This observation agrees with the
fact that the higher frequencies are attenuated as the source
energy propagates to greater depths. The vertical streaks
represent the source generated noise, visible in the near

offset (Figure 6). Because trace 56 is nearer to the source
than trace 18, these source-generated noise atoms are well
pronounced in this plot.

DISCUSSION AND CONCLUSIONS

A simple 1-D Fourier-based amplitude or phase spectrum
provides only an averaged representation of a whole seismo-
gram without information as to local concentrations of
energy. What cannot be determined are the appearance of
similar bandwidth events at distinctly different times nor
superimposed arrivals of different bandwidth. Complex trace
analysis is a method to provide time-varying frequency
information. However, the instantaneous frequency or
phase is a scalar quantity and represents the dominant
portion of the waveform at any given time, but this too is a
limited description of the seismogram’s spectral behavior.

The mapping of a 1-D seismogram, not into a 1-D ampli-
tude spectrum, but to a 2-D frequency-time plane is a major
improvement in spectral characterization. Superimposed
events of different bandwidth will separate in FT space, and
seismic reflections and surface waves with different arrival
times and of finite time duration will segregate. In addition,
energy such as 60 Hz noise will localize in frequency but be
pervasive through time and thus will appear fundamentally
different from seismic events (e.g., Figures 2 and 3). Thus,
interpretations and processing such as filtering or event
suppression are possible in FT space and may be more useful
than when conducted in the 1-D Fourier-based frequency
domain.

The STFT is a Fourier-based approach to map a seismo-
gram into the FT plane. The STFT has time-frequency
resolution limitations as discussed in prior sections. Another
difficulty that decreases its resolving capability is the use of
finite-length time-domain moving windows over which the
1-D Fourier transforms are performed. In practice, the
windows move along the seismogram with a time increment
much smaller than the width of the windows. In doing so, a
more resolved FT transform is created by finer sampling
along the time axis. For example, a 500-ms time window
incremented every 500 ms will sample a 6.00 s seismogram
with 13 windows (including seismogram start and end ef-
fects). Alternatively, the same time window incremented
every 50 ms will sample with 121 windows. The FT plane of
this latter STFT will have the appearance of a more fully
resolved 2-D spectrum. However, this gain in detail is
balanced by averaging caused by the smaller window incre-



1914 Chakraborty and Okaya

ment; an event will appear in more adjacent windows since
it takes longer for the moving window to pass through the
event. The event in FT space may appear broader than its
actual time duration. Careful selection of STFT parameters
such as window length, increment, and window function
(tapering) is needed to create meaningful FT spectra.

The wavelet transform provides improved information on
the complete (time-variant) character of the spectral content
of a seismogram and avoids the difficulties of the STFT.

Although a spectrum in the CWT scale-translation domain
requires a different viewpoint to fully understand its con-
tents, the frequency-time domain of the MPD transform is
easier to comprehend. The appearance of reflections and
other seismic events in the wavelet-based FT plane allows

for more detailed analysis of the spectral behavior of these
events. A better understanding of how to interpret the shape
of Gabor atoms and the perturbations in reflection spectra
can be developed with careful calibration of the FT spectra

FIG. 7. FT energy distribution of the Siljan data using MPD. (a) Trace 18, and (b) Trace 56. The boxes on top of the FT plots
represent the 1-D Fourier spectra of the respective traces.
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of reflections with borehole logs and other geologic informa-
tion as the spectral signatures of a major interface, a thin
layer, and a laminated sequence are different (e.g., Okaya,
1995).

The representation of a seismogram’s spectral behavior in
the FT plane may allow an improved analysis of the attenu-
ation character of the medium through which the seismic
energy has propagated. With a more complete 2-D frequen-
cy-time spectrum, the loss in energy of any particular
frequency can be more completely described. Spectral ratio
methods (Sams and Goldberg, 1990) use isolated time win-
dows to compute attenuation values; however, with a 2-D
FT spectrum any number of window ratios can be made
representing the attenuation between any two traveltimes
(depths). In this manner, an inversion for Q structure may be
possible by taking advantage of the redundancy offered by
analysis of all seismograms for a given CMP point and from
one midpoint to another.

The CWT, DWT, and MPD are invertible. While inversion
of the CWT depends on the fulfillment of the admissibility
conditions as described earlier, exact reconstruction is pos-
sible for the DWT (Shensa, 1992) and MPD (Mallat and
Zhang, 1993). As a result, wavelet-based methods can be
used to filter seismic data. Because of the excellent localiza-
tion behavior of the MPD, reflections can be enhanced and
surface waves and other types of noise can be eliminated
using polygonal (“pie-slice”) filters in the 2-D FT plane.
Because each seismogram is mapped into two dimensions,
and thus a shot or CMP gather into three dimensions,
filtering algorithms need to be constructed to efficiently
handle large volumes of data. Similar filtering can also be
applied to CMP stacked traces to improve stack image
quality.

Spectral balancing is another process where wavelet meth-
ods can be successfully used. An initial estimate of a
seismogram’s or seismic wavelet’s spectral content can be
made from the CWT FT plot. The frequency response of the
basis wavelets of a CWT cover the frequency axis continu-
ously with uniform amplitude (Figure 3). Weighting of the
basis wavelets prior to an inverse CWT is the same as
enhancing or weighting selected frequencies in the Fourier
domain. However, this weighting in the CWT domain allows
for more selective enhancement of specific bands of frequen-
cies due to the number of CWT basis wavelets (filter
operators).

Although certain types of signal processing applications
using wavelet transforms have been established for geophys-
ical data (e.g., data compression of seismic data (Bosman
and Reiter, 1993) and segmentation of well logs (Vermeer
and Alkemade, 1993), the full value of the wavelet-based
FT-plane spectral decomposition of seismograms has yet to
be established. The different wavelet transforms provide
spectral information at a level of detail not available with
Fourier-based methods and offers new domains for process-
ing and interpreting seismic reflection data.

ACKNOWLEDGMENTS

The authors would like to thank S. Mallat and Z. Zhang for
providing their software program to compute the MPD and
for the helpful discussion regarding the implementation

details of the MPD. We also thank Chris Juhlin for providing
the seismic data from Siljan, Sweden. This study was funded
under NSF EAR-9206055.

REFERENCES

Anstey, N. A., 1977, Seismic interpretation: The physical aspects:
Intemat. Human Res. Develop. Corp.

Arya, V. IS., and Aggarwal, J., 1982, Deconvolution of seismic data:
Benchmark papers in electrical engineering and computer sci-
ence: volume 24 Hutchinson Ross Publ. Co.

Baraniuk, R., and Jones, D., 1993, Shear madeness: New orthonor-
mal bases and frames using chirp functions: IEEE Trans. Signal
Proc., 41, 3543-3549.

Barnes, A., 1991, Instantaneous frequency and implitude at the
envelope peak of a constant-phase wavelet: Geophysics, 56,
1058-1060.

Bemhardt, T., and Peacock, J., 1976, Encoding techniques for the
vibroseis system: Geophys. Prosp., 26, 184-193.

Bosman, C., and Reiter, E., 1993, Seismic data compression using
wavelet transforms: 63rd Ann. Intemat. Mtg., Soc. Expl. Geo-
phys., Expanded Abstracts.

Bracewell, R., 1986, The fourier transform and its applications:
McGraw-Hill Publ. Co.

Claerbout, J. F., 1976, Fundamentals of geophysical data process-
ing: Blackwell Scientific Publications.

Coifman, R. R., 1989, Multiresolution analysis in non-homogeneous
media, in Combes, J. M., Grossmann, A., and Tchamitchian, P.,
Eds., Wavelets time-frequency methods and phase space: Spring-
er-Verlag, 259-262.

Coifman, R. R., and Wickerhauser, M. V., 1992, Entropy-based
algorithms for best basis selection: IEEE Trans. Inform. Th., 38,
713-719.

Daubechies, I., 1988, Orthonormal bases of compactly supported
wavelets: Comm. in Pure Applied Math, 41, 909-996.

Edelmann, H . , 1966, New filtering methods with “vibroseis”:
Geophys. Prosp., 14, 455-469.

Flandrin, P., 1989, Some aspects of nonstationary signal processing
with emphasis on time-frequency and time-scale methods, in
Combes, J. M., Grossmann, A., and Tchamitchian, P., Eds.,
Wavelets time-frequency methods and phase space: Springer-
Verlag, 68-98.

Goupillaud, P., 1976, Signal design in the “vibroseis” technique:
Geophysics, 41, 1291-1304.

Goupillaud, P., Grossmann, A., and Morlet, J., 1985, Cycle octave
and related transforms in seismi signal analysis, in Geoexpl.:
Elsevier Science Publ. B.V., 23, 85-102.

Grossmann, A., Martinet, R. K., and Morlet, J., 1989, Reading and
understanding continuous wavelet transforms, in Combes, J. M.,
Grossmann, A., and Tchamitchian, P., Eds., Wavelets time-
frequency methods and phase space: Springer-Verlag, 2-20.

Hunt, J. C. R., Kevlahan, N., Vassilicos, J., ,and Farge, M., 1993,
Wavelets, fractals and Fourier transforms: Detection and analysis
of structure, in Farge, M., Hunt, J. C. R., and Vassilicos, J. C.,
Eds., Wavelets, fractals, and Fourier transforms: Clarendon
Press, l-38.

Juhlin, C., 1988, Interpretation of the seismic reflectors in the
gravberg-1 well, in Boden, A., and Eriksson, K., Eds., Deep
drilling in crystalline bedrock: Springer-Verlag, 113-121.

Lackoff, M., and LeBlanc, L., 1975, Frequency-domain seismic
deconvolution filtering: J. Acoust. Soc. Am., 57, 151-159.

Mallat, S., and Hwang, W., 1992, Singularity detection and process-
ing with wavelets: IEEE Trans. inform. th., 38, 617-643.

Mallat, S., and Zhang, Z., 1993, Matching pursuit with time fre-
quency dictionaries: IEEE Trans. signal prec., 41, 3397-3415.

Mallat, S., and Zhong, S . , 1992, Characterization of signals from
multiscale edges: IEEE Trans. Pattern analysis and machine
intelligence, 14, 710-732.

Mallat, S., 1989, A theory of multi resolution signal decomposition,
the wavelet representation: IEEE Trans. pattern analysis and
machine intelligence, 11, 674493.

Morlet, J., Arens, G., Fourgeau, E., and D., G., 1982, Wave
propagation and sampling theory: Geophysics, 47, 2, 203-236.

Nawab, S., and Quatieri, T., 1988, Short-time Fourier transform, in
Lim, J., and Oppenheim, A., Eds., Advanced topics in signal
processing: Prentice Hall Signal Processing Series, 289-337.

Neidell, N . , and Poggiagliolmi, E . , 1977, Stratigraphic modeling and
interpretation-geophysical principles and techniques, in Payton,
C., Ed., Seismic stratigraphy-Applications to hydrocarbon ex-
ploration: Am. Assoc. Petr. Geol., Memoir 26, 389-416.

Nikolic, Z., 1975, A recursive time-varying band-pass filter: Geo-
physics, 40, 520-526.



1916 Chakraborty and Okaya

Okaya, D. A., 1995, Spectral properties of the earth’s contribution
to seismic resolution: Geophysics, 60, 241-251.

Okaya, D., Karageorgi, E., McEvilly, T., and Malin, P., 1992,
Removing vibrator-induced correlation artifacts by filtering in
frequency-uncorrelated time space: Geophysics, 57, 916-926.

Pike, C., 1994, Analysis of high-resolution marine seismic data using
the wavelet transform, in Georgiou, E., and Kumar, P., Eds.,
Wavelets in geophysics: Academic Press, 183-211.

Press, W., 1992, Numerical recipes for fortran: 2nd. ed: Cambridge
Univ. Press.

Rioul, O., and Vetterli, M., 1991, Wavelets and signal processing:
IEEE Signal Proc. Magazine, no. 11, 14-38.

Robertson, J., and Nogami, H., 1984, Complex seismic trace
analysis of thin beds: Geophysics, 49, 344-352.

Robinson, E., 1984, Seismic inversion and deconvolution: Part A:
Classical methods: Geophys. Press.

Rosa, A., and Ulrych, T., 1991, Processing via spectral modeling:
Geophysics, 56, 1244-1251.

Saito, N., 1994, Simultaneous noise suppression and signal com-
pression using a library of orthonormal bases and the minimum
description length criterion, in Georgiou, E., and Kumar, P.,
Eds., Wavelets in geophysics: Academic Press, 299-324.

Sams, M., and Goldberg, D., 1990, The validity of q estimates from
borehole data using spectral ratios: Geophysics, 55, 97-101.

Scheuer, T., and Oldenburg, D., 1988, Aspects of time-variant
filtering: Geophysics, 53, 1399-1409.

Shensa, M. J., 1992, The discrete wavelet transform: wedding the a
torous and mallat algorithms: IEEE Trans. Signal Proc., 40,
2464-2482.

Sheriff, R., and Geldhart, L., 1983, Exploration seismology, vol. 1
and 2: Cambridge Univ. Press.

Stein, R., and Bartley, N., 1983, Continuously time-variable recur-
sive digital band-pass filters for seismic signal processing: Geo-
physics, 48, 702-712.

Taner, M., Koehler, F., and Sheriff, R., 1979, Complex seismic
trace analysis: Geophysics, 44, 1041-1063.

Taner, M., and Sheriff, R., 1977, Application of amplitude, fre-
quency, and other attributes to stratigraphic and hydrocarbon
determination, in Payton, C., Ed., Seismic stratigraphy-Appli-
cations to hydrocarbon exploration: Am. Assoc. Petr. Geol.,
Memoir 26, 389-416.

Vaidyanathan, P., 1993, Multirate systems and filter banks: Prentice
Hall.

Vermeer, P., and Alkemade, J., 1993, Multiscale segmentation of
well logs, in Farge, M., Hunt, J. C. R., and Vassilicos, J. C., Eds.,
Wavelets, Fractals, and Fourier transforms: Clarendon Press,
143-149.

Vetterli, M., and Cormac, H., 1992, Wavelets and filter banks:
Theory and design: IEEE Trans. Signal Proc., 40, 2207-2231.

Walden, A., 1990, Improved low-frequency decay estimation using
the multitaper spectral analysis method: Geophys. Prosp., 38,
61-86.

Webster, G., 1978, Deconvolution: Geophysics Reprints, Soc. Expl.
Geophys., vol 1.

Yilmaz, O., 1987, Seismic data processing: Soc. Expl. Geophys.
Young, R. K., 1993, Wavelet theory and its applications: Kluwer

Academic Publishers.


