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Frequency-Warped Filter Banks and
Wavelet Transforms: A Discrete-Time

Approach via Laguerre Expansion
Gianpaolo Evangelista,Member, IEEE, and Sergio Cavaliere

Abstract—In this paper, we introduce a new generation of
perfect-reconstruction filter banks that can be obtained from
classical critically sampled filter banks by means of frequency
transformations.

The novel filters are Laguerre type IIR filters that can
be directly derived and designed from ordinary orthogonal
or biorthogonal filter banks. Generalized downsampling and
upsampling operators based on dispersive delay lines are the
building blocks of our structures.

By iterating the filter banks, we construct new orthogonal and
complete sets of wavelets whose passbands are not octave spaced
and may be designed by selecting a single parameter.

I. INTRODUCTION

T HE THEORY and application of multirate filter banks
has received considerable interest in the last decade, and

the relationships with orthogonal and biorthogonal transforms,
such as the wavelet transform, wavelet packets, and lapped
orthogonal transforms have been exploited to provide more
insight in the topic and new applications. The limitations of
the conventional critically sampled filter banks often lie in
the integer or, at best, rational sampling rates achieved at
the outputs of the analysis filters. These rates determine strict
constraints on the passbands, conditioning the tiling of the
time–frequency plane that is obtained.

As suggested in recent papers [6], [7], unitary equivalence
may be exploited in order to design new transforms, leading
to representations that can be adapted to signals. Examples of
these operations are time and frequency warping. However, the
setting of [7] is very general and mostly refers to continuous-
time signal processing.

In this paper, we propose novel discrete-time orthogonal and
biorthogonal filter bank structures based on multirate Laguerre
sequence expansions. These structures are derived by intro-
ducing generalized downsampling and upsampling operations
characterized by frequency-dependent sampling rates. Central
to the implementation of these resamplers are (adopting a
terminology borrowed from wave propagation) the lossless
dispersive delay lines based on allpass filters. In these lines,
different frequency components of the signal travel with
different speed.
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As we will show, the Laguerre expansion can be used to
form new filter bank structures: either parallel or iterated. In
particular, we define new frequency-warped wavelets. Unlike
the ordinary dyadic wavelets, the frequency bands of warped
wavelets are not organized in octaves. Rather, the cutoff
frequencies may be chosen by varying the so-called Laguerre
parameter. In several applications, such as audio coding,
analysis, synthesis, and denoising, the choice of the proper
tiling of the time–frequency plane may dramatically improve
performance. By adapting the frequency bands to the signal,
we can enhance energy compaction and improve the coding
efficiency. The Laguerre parameter in the frequency-warped
filter banks or wavelets provides an additional degree of
freedom in the choice of the frequency bands. For example,
an entire class of nonuniform filter banks may be derived
from uniform filter banks simply by changing the Laguerre
parameter.

The computational complexity of the new class of filter
banks is higher than that of conventional ones, and only
approximated reconstruction is possible in finite time with an
input of finite duration.

A review of Laguerre sequences and related expansions
is presented in Section II. There, the relationships between
frequency warping and Laguerre expansions are pointed out. In
Section III, we combine Laguerre expansions with filter banks,
obtaining frequency-warped filter bank structures. These struc-
tures are based on generalized resampling operators described
in Section IV. In Section V, we apply our concepts to the
wavelet transform via iterated filter banks, defining discrete-
time frequency-warped wavelets, and compare the complexi-
ties of the computational structures. Finally, in Section VI, we
draw our conclusions.

II. L AGUERRE SEQUENCE EXPANSIONS

A. Properties of Laguerre Sequences

The Laguerre sequences [1]

(1)
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Fig. 1. Structure for computing the Laguerre coefficients.

form a complete orthonormal set in the spaceof finite-
energy causal sequences for any fixed value of the parameter

such that . They are obtained by performing
Gram–Schmidt orthogonalization on the sequences

[8]. Since the transform of the order-sequence [9] is

(2)

the Laguerre sequences satisfy the following-transform
recurrence1:

(3)

where

(4)

is the transfer function of a real, stable, and causal first-order
allpass filter. On the unit circle, we have ,
where

(5)

Consider a discrete-time causal signal and its expan-
sion in terms of Laguerre sequences

(6)

where

(7)

In order to simplify our notation, in the expression of the La-
guerre coefficients and in most of the subsequent equations,
we will omit the dependency on unless it is specifically
relevant.

Equation (7) may be interpreted as a time-varying filtering
operation on with impulse response ,
which, according to the time domain counterpart of (3), has
the remarkable property , where

is the impulse response of the allpass section . An
iterative, noncausal scheme to compute the Laguerre coeffi-
cients based on (7) and recurrence (3) is given by the diagram
shown in Fig. 1. There, the input signal is time-reversed and
convolved with the zero-order Laguerre sequence, whose
transform is

(8)

1Throughout this paper, we will denote byf(z)r the rth power off(z).
We prefer this notation to the standardfr(z) both to avoid confusion between
inverse and reciprocal whenr = �1 and to point out the substitution of the
delayz�r with the frequency-dependent delayA(z)r.

(a)

(b)

Fig. 2. (a) Diagram of the switched dispersive delay line needed to compute
the Laguerre coefficients. (b) Its equivalent schematic symbol.

Fig. 3. Structure for reconstructing a signal from its Laguerre coefficients.

(a)

(b)

Fig. 4. (a) Diagram of the tapped dispersive delay line needed to reconstruct
the signal from its Laguerre coefficients. (b) Its equivalent schematic symbol.

with

This filter is lowpass for and highpass for .
The signal is then fed to the dispersive delay-line shown
in Fig. 2(a) and denoted by the symbol shown in Fig. 2(b).
The switches of the network of Fig. 2(a) close at time

, loading, at that instant, the shift register, whose output
provides, at subsequent time intervals, the ordered sequence
of Laguerre coefficients. Since the structure is anticausal and
the filters involved are IIR, the Laguerre coefficients can be
computed in finite time only if the input is time limited. If

only for , we can perform a time-
reversal operation within a finite delay, obtaining the sequence

, which is then fed to the filter and then
input to a network similar to that shown in Fig. 2(a). In this
case, however, the switches are to be closed at time .
Furthermore, it should be clear that only a finite number of
Laguerre coefficients can be computed in finite time.

Since the Laguerre sequences form a complete set, the
signal may be reconstructed from its Laguerre coefficients. The
diagram of the synthesis structure is given in Fig. 3. There,
the “input” sequence forms the weights of the Laguerre
synthesis network detailed in Fig. 4(a) and denoted by the
symbol shown in Fig. 4(b). The output of this network is then
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filtered by , retrieving the original signal. It should be
pointed out that the Laguerre synthesis network is an infinite-
length dispersive tapped delay line excited by the unit pulse
sequence . The sequence is not an input in the classical
sense. Rather, the entire sequence must be available at time

in order to perform the required products. In a noncausal
structure, we may load these coefficients in an infinitely long
shift register. At the time origin, the register is fully loaded,
and the content of its cells will be available to the multipliers.

An alternate synthesis structure may be obtained from
the following remarks. By defining the transposed Laguerre
sequences , (6) may be put in the same
form as (7)

(9)

As can be seen from (1), the indicesand play a symmetric
role, except for the signature factor , and we can
easily verify that . Therefore, Laguerre
synthesis may also be computed by means of the analysis
structure, driven by the expansion coefficients, with
replaced by .

In practice, the synthesis network must be truncated to
a finite number of elements, and only a finite number of
coefficients may be computed. Moreover, we need to assume
that the input has finite duration. In that case, the noncausal
structure may be transformed in a causal structure, computing
the output within a finite delay. The signal is approximated by
a truncated Laguerre expansion, and an estimate of the number
of coefficients required may be given in terms of the group
delay of the filter chain in Figs. 1 and 2. Theth coefficient
is computed by the filter cascaded by allpass
filters. Thus, the total group delay is the sum

where

is the group delay of each allpass filter and

is the group delay of .
Therefore

In the worst case of full bandwidth signals, the minimum
total group delay is attained at if or at
if ; hence

If the duration of the input signal is samples, it is clear
that at the time instant , when the switches of the

Fig. 5. Truncated Laguerre expansion: Reconstructed step sequence and
error with 600 terms, whereb = 0:5.

network in Fig. 2 are closed, the output of the and
subsequent sections will be approximately zero, provided that

, obtaining the following lower bound on
the number of Laguerre coefficients that must be computed

(10)

Notice that the ratio grows with , i.e., when the
filter pole moves toward the unit circle, attaining its minimum
value when , i.e., when the allpass filters revert to unit
delays, in which case, obviously, the bound is exactly met:

. As a numerical example, for ,
about three Laguerre coefficients per input samples must be
computed. The approximation to 600 coefficients of a 200-
sample step sequence is reported in Fig. 5, together with the
truncation error, which turns out to be less than .

In Fig. 6, a plot of the maximum absolute value of the first
2000 Laguerre sequences in an analysis interval of
samples is shown. Each curve corresponding to a distinct value
of has a “knee” centered on the respective value of ,
as estimated by means of (10). The values of the higher order
Laguerre sequences abruptly drop below significant level and
may be disregarded, thereby showing the consistency of (10).

Due to the delay of the Laguerre sequences, the error
obtained by truncating the Laguerre series is larger at the
end of the analysis interval. Since the group delay depends
on frequency, the spectrum of the error depends on the sign
of . For negative values of, the error is larger at lower
frequencies and vice-versa for positive. The error is larger
at higher frequencies.

B. Frequency Warping via Laguerre Expansion

Next, we will show that the Laguerre expansions are related
to a special case of frequency warping [4], [5].transforming
both sides of the Laguerre expansion of the signal [see
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Fig. 6. Diagram of the absolute maximum value of the firstD = 100

samples of Laguerre sequences up to order 2000 for several values of the
parameterb. Dashed lines specifyMmin corresponding to distinct values of
b.

(6)], we obtain

(11)

Substituting in this expression recurrence (3) and factoring
out , we have

(12)

As stated in (4), the transfer function is allpass; therefore,
on the unit circle, and

(13)

where

(14)

with given in (5).
Equation (13) has a straightforward interpretation. The

frequency spectrum of the sequence of Laguerre coefficients
is a frequency-warped version of the original frequency

spectrum weighted by , which is the fre-
quency response of an FIR filter. The warping
of the frequency axis is controlled by the parameterof the
allpass filter (4). A family of curves showing the features of the
frequency map for several values ofis reported in Fig. 7. The

-domain form of this map is , which is a one-to-
one form and maps the unit disc onto itself. It is the unique real
rational map with unitary modulus on the unit circle (allpass)
[4], [5]. It is easy to show by direct substitution that

(15)

where

Fig. 7. Family of frequency warping curves with the Laguerre parameterb

ranging from�0.9 to 0.9 in increments of 0.1.

Thus, the inverse mapping is and the unwarping
map is obtained from (5) by replacingwith
and with .

An alternate expression for may be derived in terms of
the transposed Laguerre sequences , whose

transforms are . transforming (7) and exploiting
recurrence (3) written for yields

(16)

where . Since , by
applying (15), we can show the equivalence of (12) and (16).
The latter shows that is a frequency unwarped version
of weighted by the FIR frequency response .

The frequency warping method illustrated in [5] is obtained
by means of biorthogonal sequences and such
that

are the transforms of the synthesis sequences, and

are the analysis sequences. The relationships between the
biorthogonal frequency warping set and Laguerre sequences,
based on the same allpass transfer function , are easily
found in the -transform domain as

Due to orthogonality, the frequency warping obtained by
means of Laguerre analysis preserves the total energy by
weighting the original frequency spectrum with .
The same is not true for the biorthogonal frequency warping
set, which purely warps the frequency axis.
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Fig. 8. Two-band critically sampled analysis filter bank.

III. L AGUERRE DOMAIN FILTER BANKS

In this section, we combine critically sampled filter banks
with Laguerre expansions. This leads to the definition of filter
banks in the Laguerre domain. As remarked in Section II-
B, the sequence of Laguerre coefficients constitutes a
frequency-warped version of the input signal. This sequence
can be directly fed into a perfect-reconstruction filter bank.
We will show that Laguerre expansion cascaded by a multi-
rate filter bank is equivalent to a filter bank embedding the
frequency warping operation both in the component filters
and the resampling operators. The definition of discrete-time
frequency-warped wavelets is based on this property.

In order to simplify our notation, we shall confine our-
selves to considering the two-band real orthogonal filter bank
shown in Fig. 8, which is characterized by two QMF impulse
responses (lowpass) and (highpass), which satisfy the
aliasing cancellation condition [12], [13]

(17)

where

(18)

is the ac matrix, and is its transpose
evaluated in . Assuming anticausal analysis filters, the
outputs of the downsamplers, respectively, are

(19)

and

(20)

Substituting (7) in the last two equations and exchanging the
order of summation, we obtain

(21)

and

(22)

where

(23)

and

(24)

By defining the time-reversed signal , (21) and
(22) may be put in the form of convolution evaluated at the
origin. Thus, letting

(25)

and

(26)

we have and . Clearly, the
transforms of the sequences (25) and (26), respectively, are

(27)

and

(28)

By transforming both sides of (23) and (24) with respect to
the index and using recurrence (3), we obtain

(29)
and

(30)

where the transfer functions

(31)

and

(32)

are frequency-warped versions of the original quadrature mir-
ror filters. Similar transformations on transfer functions were
introduced by Constantinides [11] for the design of IIR filters.
However, in our case, the signal rather than the filter is
frequency-warped.

From (25)–(30), it may be concluded that and
correspond to the even indexed coefficients of the Laguerre
expansion of the prefiltered signal, respectively, by the transfer
functions (31) and (32). As a result of frequency warping,
the frequency responses of the conventional QMF, which iare
shown in Fig. 9(a), transform to those reported in Fig. 9(b).
Notice that the new responses are still power complementary

Two equivalent structures implementing frequency-warped
filter banks are shown in Fig. 10. In Fig. 10(a), the Laguerre
expansion structure of Fig. 1 is cascaded with an ordinary
analysis filter bank, whereas the diagram in Fig. 10(b) is
obtained from (27) to (32). There, the ordinary downsamplers
are replaced by the same structure as that shown in Fig. 2
with in place of . This concept will be detailed
in the next section. Convolving the warped signal with the
time-reversed version of [see Fig. 10(a)] is equivalent to
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(a) (b)

Fig. 9. Frequency responses of (a) ordinary quadrature mirror filters and (b) frequency-warped filter bank.

(a)

(b)

Fig. 10. Two equivalent structures implementing the frequency warping
analysis filter bank. (a) Laguerre analysis cascaded by ordinary, critically
sampled, analysis filter bank. (b) Embedded frequency warping analysis filter
bank.

convolving the signal with a version of —warped in the
opposite direction—and warping the result [see Fig. 10(b)].
The last operation is embedded in the generalized downsam-
pler block . The passband of is wider
or narrower than that of if, respectively, is negative
or positive. However, as a result of the final warping, the
bandwidth of the output signal is at most the same as that
of . Therefore, the downsampling factor 2, which is
represented by the exponent of , is unchanged with
respect to ordinary sampled filter banks.

Consider the synthesis filter bank shown in Fig. 11. The
input–output relationship is

(33)

Since it is a perfect reconstruction filter bank, the output
recovers the Laguerre expansion coefficientsof the signal

. By substituting (33) in (12) and performing a simple
change of the summation index, we obtain

(34)

Fig. 11. Two-band critically sampled synthesis filter bank.

The last equation combines the inverse filter bank structure
with the Laguerre expansion. Comparing this expression with
(12), we observe that the signal is reconstructed by adding
together the filtered even-order Laguerre components. This
is a form of sampling theorem in the Laguerre domain. In
fact, from (7), (19), (20) and exploiting the identity (15), it is
possible to show that

(35)

and

(36)

where

and

are warped aliasing terms. By substituting (35) and (36) in
(34), we conclude that the aliasing cancellation condition is

(37)

where is a warped version of the ac matrix (18).
Since the map is one-to-one, (37) and (17) are
equivalent.
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(a)

(b)

Fig. 12. Two equivalent structures implementing the frequency warping
synthesis filter bank. (a) Laguerre synthesis cascaded by ordinary, critically
sampled, synthesis filter bank. (b) Embedded frequency warping synthesis
filter bank.

Two equivalent structures implementing the warped syn-
thesis filter bank are shown in Fig. 12. In Fig. 12(a), the
signal is reconstructed by means of a conventional filter bank
cascaded with the Laguerre synthesis structure. The diagram
in Fig. 12(b) is obtained from (34) and involves frequency-
warped filter banks and generalized upsampling operators, as
detailed in the next section.

The two-band orthogonal case is easily extended to-band
filter banks that are orthogonal or biorthogonal. It suffices
to increase the number of filters from 2 to , replacing

with in all the expressions and diagrams. In
biorthogonal structures, we need to consider two distinct pairs
of analysis and synthesis filters. However, a single frequency
warping does not lead to arbitrary bandwidth specification in
the -band case, when . This is due to the fact that the
warping parameter may be tuned in order to satisfy one of
the cut-off requirements. The cut-off frequencies of the other
bands follow the warping law given by the map .

IV. GENERALIZED DOWNSAMPLING AND UPSAMPLING

In this section, we detail structures and properties of the
generalized resampling operators and .
These blocks are included in the frequency-warped filter banks,
as shown in the previous section.

Consider the diagram shown in Fig. 13(a), in which a time-
reversed signal is fed into a delay line composed of

-samples delay elements. At time , the switches
are closed toward the outputs. At this instant, the content
of the delay line is exactly the -fold downsampled causal
part of . Thus, the structure in Fig. 13(a) is a noncausal
implementation of the downsampling operation. Suppose we
replace each unit delay element by a real first-order allpass
filter , obtaining the structure shown in Fig. 13(b). The
output samples

(a)

(b)

(c)

Fig. 13. Noncausal implementation of downsamplers. (a) ClassicalM -fold
downsampler. (b) Generalized downsampler. (c) Its equivalent schematic
symbol.

where is given in (5), will no longer correspond to
the samples of the input signal. Rather, each allpass fil-
ter introduces a frequency-dependent delay and, hence, a
frequency-dependent sampling factor. For this reason, we
denominate this structure as a generalized downsampler, de-
noting it with the symbol shown in Fig. 13(c), which is in
agreement with Fig. 2(b). If the input is the complex sinusoid

, the output of the generalized downsampler will
be the sequence

where is the phase delay of the allpass
filter. Thus, the output is a resampled version of the input,
with sample spacing ). This quantity is frequency-
dependent and may happen to become less than one. In this
case, the generalized downsampler is actually an interpolator,
where the output rate is higher than that of the input. A
necessary condition for that to be true is .

The allpass filter pertaining to the Laguerre domain
filter bank downsampling structure has order one. In the simple
case , the allpass filters revert to unit delay elements,
and the generalized downsampler is equivalent to the classical
downsampler.

Consider now the structure shown in Fig. 14(a), where a
unit pulse sequence is fed to an infinite tapped delay line. The
weights of the line are altogether set by the input sequence

. The output of the line is

i.e., the -fold zero-inserted input sequence, whosetrans-
form is

(38)

By means of the same allpass transformation adopted for the
downsamplers, we can generalize the upsampling operation,
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(a)

(b)

(c)

Fig. 14. Noncausal implementation of upsamplers. (a) ClassicalM -fold
upsampler. (b) Generalized upsampler. (c) Its equivalent schematic symbol.

obtaining the diagram shown in Fig. 14(b). Thetransform
of the output of this structure is

(39)

that is, a frequency-warped version of (38). For this reason,
we define this structure to be a generalized upsampler and
denote it with the symbol shown in Fig. 14(c). Except in trivial
cases, the output of the generalized upsampler is not simply a
zero-inserted version of the input since each input sample is
multiplied by the impulse response of the filter corresponding
to the respective power of .

V. FREQUENCY WARPED WAVELETS

A. Laguerre Wavelets

In the previous section, we showed how the computa-
tional structures associated with the Laguerre expansion and
critically sampled filter banks may be merged, leading to a
filter bank structure with frequency-warped transfer functions
and generalized resampling. It is easy to extend this concept
to iterated filter banks, including the ones associated with
wavelet transform [14]–[16]. In fact, referring to (23) and (24),
define the level 1 Laguerre scaling sequences and wavelets,
respectively, as

(40)

(41)

We can write the single scale level wavelet expansion of the
signal as

(42)

where

(43)

and

(44)

respectively, are the level 1 Laguerre scaling and wavelet co-
efficients [see (21) and (22)]. Iterating the filter bank structure
of Fig. 10 in a way similar to the usual construction of discrete
wavelets [14]–[16], we can define the scaling and wavelet
coefficients at higher scales, respectively, as

(45)

and

(46)

Accordingly, higher scale Laguerre scaling sequences and
wavelets are defined, respectively, by the iterations

(47)

(48)

The -transform counterparts of (47) and (48), respectively,
are

(49)

and

(50)

From (29) and (30), in view of the correspondence between
(40) with (23) and (41) with (24), we have

(51)

and

(52)

From (49)–(52), iterating on the scale index, we obtain

(53)

from which

(54)

Comparing the transforms of ordinary [14], [16] and La-
guerre wavelets, we obtain the fundamental relationships

(55)
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and

(56)

where is the transform of the Laguerre sequence of
order , as given in (2). and , respectively,
denote the transform of ordinary scaling sequences and
wavelets based on the same quadrature mirror filter pair

. This result is to be expected since the Laguerre
wavelets revert to ordinary wavelets when the parameter .
In that case, , and the Laguerre coefficients equal
the input samples.

Notice from (56) that the Laguerre wavelets at lag are
obtained by convolving the lag 0 warped wavelet with the
Laguerre sequence of order . Thus, at any fixed scale,
there is a countable infinity of distinct Laguerre wavelets
sharing the same magnitude frequency spectrum but differing
in phase.

The Laguerre wavelets are frequency-warped and filtered
versions of ordinary wavelets in the sense specified in
Section II-B. This property is useful for building discrete
wavelet transforms with nonoctave-spaced frequency bands.
The Laguerre parameter controls the warping of the
frequency axis: Compared with ordinary wavelets, positive
values of produce narrower bands at high scale levels
(low frequencies), whereas negative values ofresult in
narrower bands at low scale levels (high frequencies).
The cut-off frequencies of dyadic wavelets occurring at
normalized frequencies of are mapped to the frequencies

, which are the roots of the transcendental equation
, where is given in (5) (see

also Fig. 7). Examples of frequency-warped wavelets and
their frequency spectra are reported in Fig. 15, where they
can be compared with ordinary wavelets. Positive values of
the parameter lead to time-scale representations that are
more selective at low frequencies than ordinary wavelets.
This could be useful if it is knowna priori that the signal
energy is mostly concentrated in that region of the spectrum.
On the other hand, negative values oflead to time-scale
representations that are more selective at high frequencies
than ordinary wavelets. This may be useful when the octave-
band resolution is too poor to classify or detect characteristics
of the signal. In coding problems, the parametermay be
determined by optimizing a specific performance measure
such as the coding gain of the transform.

As previously remarked, the filter is needed for
orthogonality and acts as a pre-emphasis filter, accounting
for the peculiar shape of the frequency spectrum of warped
wavelets. When , this filter is lowpass, compensating for
the energy loss due to the narrowing of the passbands at low
frequencies. On the other hand, for , the filter is highpass,
compensating for the energy loss due to the narrowing of the
passbands at high frequencies.

The time-domain expression of the Laguerre scaling se-
quences and wavelets can be obtained either from (40), (41),
(47), (48), and the definition of ordinary wavelets or by

inverting (55) and (56). We have

(57)

and

(58)

Hence, the Laguerre wavelets are obtained in the form of
a Laguerre expansion whose coefficients are the ordinary
wavelets. In other words, the ordinary wavelets are the or-
thogonal projections of the warped wavelets onto the discrete
Laguerre set.

Orthogonality and completeness of the Laguerre wavelets
descend from the same properties of both the discrete Laguerre
and ordinary wavelet sets. The expansion of any finite-energy
signal in terms of the finite-scale frequency-warped wavelet
basis (51) is formally identical to that of the ordinary discrete-
time wavelet transform

(59)

where the expansion coefficients may be computed as in
(43)–(46), and wavelets and scaling functions are given by
(53) or (57) and (58).

The Laguerre wavelets realize an unconventional tiling
of the time–frequency plane, shown in Fig. 16. There, the
frequency-dependent group delay of each wavelet is plotted
against the frequency axis. The horizontal lines correspond
to the warped cut-off frequencies. Each cell of the plane
corresponds to the time–frequency location of the corre-
sponding wavelet. Clearly, the picture is schematic since the
uncertainties of the wavelets may overlap several cells. The
tiling characteristics with positive or negative are different,
as can be seen by comparing Fig. 16(a) with Fig. 16(b). This
is due to the fact that for positive, the group delay decreases
with frequency and, vice versa, for negative, the delay
increases. This behavior should be compared with that of
ordinary wavelets, which are arranged in rectangular cells in
the time–frequency plane.

The Laguerre wavelets have the same number of zero
moments as their unwarped counterpart. It suffices to remark
that to each factor of corresponds the following
factor of

which, again, has the form of a bounded factor times .
The regularity of the warped wavelets may be investigated
with the same methods devised for ordinary wavelets [14],
[17].

Our results, however, directly extend to continuous time,
without any need for frequency renormalization, which is
typical of ordinary wavelets. The recipe for continuous-time
Laguerre wavelets is to expand the signal over a complete set
of Laguerre functions and then to expand the sequence
of Laguerre coefficients onto discrete-time wavelets. In that
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(a) (d)

(b) (e)

(c) (f)

Fig. 15. Frequency warping wavelets and their frequency spectra. (a) Ordinary octave-band wavelets and scaling sequence. (b) frequency-warped wavelets
with b = 0:5. (c) With b = �5. The corresponding frequency spectra are shown in (d)–(f), respectively.

case, the continuous-time Laguerre wavelets are obtained in
the form of a continuous-time Laguerre expansion whose
coefficients are the ordinary discrete wavelets

(60)

In fact, we can show [9] that the Laguerre sequences divided
by the square root of the sampling rate approach the Laguerre
functions as the sampling rate increases without bound, i.e., in
this limit, (58) becomes (60). The continuous-time Laguerre

functions interpolate the discrete ordinary wavelets to yield
the continuous-time warped wavelets.

B. Implementation

The frequency-warped wavelet expansion may be computed
in two formally equivalent ways. One method is to project the
signal onto the Laguerre sequence basis first and then compute
the ordinary wavelet transform of the Laguerre coefficients.
This is achieved by feeding the signal into the iterated structure
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(a) (b)

Fig. 16. Tiling the time–frequency plane with frequency-warped wavelets. (a) Corresponds to the Laguerre parameterb = 0:3. (b) Corresponds tob = �0:3.

(a) (b)

Fig. 17. Structure for computing the Laguerre wavelet transform. Implementation with Laguerre and wavelet transform blocks. (a) Analysis structure.
(b) Synthesis structure.

shown in Figs. 1 and 2 and its output into a critically sampled
iterated filter bank implementing the wavelet transform. The
other method is to pass the signal through the orthogonal
frequency-warped filter bank, including generalized downsam-
pling, which is shown in Fig. 18(a). Similarly, there are two
equivalent synthesis structures: one given by the ordinary
wavelet synthesis filter bank followed by the Laguerre synthe-
sis structure and the other given by the orthogonal frequency-
warped synthesis filter bank shown in Fig. 18(b). This struc-
ture may be directly derived using (59) and recurrences (47)
and (48) or, in the -transform domain, using (53) and the

-transform of (59). From the discussion on generalized up-
sampling (downsampling) operators in Section IV, it follows
that the synthesis (analysis) structure may be obtained by
replacing the unit delay with the allpass filter everywhere
in the ordinary wavelet filter bank, including the upsampling
(downsampling) operators, and prefiltering (postfiltering) with

. It is worth noting that the generalized downsamplers in
the frequency-warped filter bank are all located at the terminal
nodes. Correspondingly, upsampling occurs only at input
nodes of the synthesis structure. This is to be compared with
the ordinary wavelet filter bank, in which downsampling or
upsampling is distributed along the structure. The frequency-
warped filter bank reverts to the ordinary wavelet filter bank
when . This is so by virtue of the “noble” identity
[12] stating that cascaded with twofold downsampling
is equivalent to downsampling cascaded with . Hence, in
this particular case, the terminal power-of-two downsamplers
may be factored out in terms of twofold downsamplers that can
be shifted back in between adjacent sections by repeatedly
applying the “noble” identity. Unfortunately, an equivalent

form of this identity is unavailable in the general frequency-
warped case. In recent papers [18]–[20], one of the authors
exploited allpass transformation in both the design of IIR
wavelets and the construction of new transforms. In these
cases, however, the allpass transformation was constrained to
preserve the form of the ac matrix, requiring that

, where is arbitrary allpass. The first-order
allpass transformation does not satisfy this property.

The complexity of the frequency-warped filter bank is
generally greater compared with the cascade of Laguerre
analysis (synthesis) and ordinary analysis (synthesis) wavelet
filter bank. This is manly due to the generalized downsampling
(upsampling) operators that are implemented by a long disper-
sive delay line. Sampling in the Laguerre domain requires a
cascade of first-order allpass filters , each requiring two
adds and two multiplies. The total number of warped wavelet
coefficients required roughly equals the numberof Laguerre
coefficients needed to achieve the desired approximation of the
signal. This number may be estimated from (10). It depends on
the Laguerre parameterand is never smaller than the number

of signal samples. The number of first-order allpass sections
implementing generalized power-of-two downsampling does
not depend on scale. In fact, at scale, we need to compute
roughly output samples, each requiring allpass
sections, i.e., a total of multiplies per input sample at
any scale level. The complexity of the warped filters grows
with scale and is larger than that of ordinary QMF banks,
even though lattice structures may be devised in which each
unit delay is replaced by the required power of . The total
cost is significantly reduced in special cases, e.g., whenis
a negative power of 2.
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(a)

(b)

Fig. 18. Frequency-warped wavelet transform. (a) Analysis. (b) Synthesis structure with embedded warping.

The cost of the structure in Fig. 17 equals the cost of
Laguerre transform of input samples plus the cost of wavelet
transform of input samples. The former is implemented in a
length- dispersive delay line, requiring multiplies and
adds per input sample, whereas the cost of the orthogonal
wavelet filter bank with degree FIR filters is approximately

multiplies and adds, regardless of the
number of scale levels. The total cost is therefore

multiplies and adds. With current
technologies, this structure is more efficient than the filter
bank with embedded warping. However, the latter has a
great theoretical relevance, showing that the frequency-warped
wavelet transform may be obtained by warping the wavelets
rather than the signal, provided the sampling operators are
generalized.

VI. CONCLUSION

In this paper, we have demonstrated the existence of
discrete-time orthogonal wavelets with nonoctave spaced
frequency bands and frequency-dependent sampling rates. The
construction of the new bases involves Laguerre expansion and
sampling in the Laguerre domain. The discrete-time bases may
be extended to continuous-time via continuous-time Laguerre
expansions.

By varying a single parameter, we can design wavelets with
desired bandwidth at a given scale. Hence, the new bases can
be adapted to signals and allow us to perform higher resolution
analysis in regions of interest of the frequency spectrum.

The computational structures for the warped wavelet trans-
form are more complex than the conventional iterated fil-
ter bank. We have suggested and compared two alternative
schemes. Both of them are noncausal, and we can compute
only a finite number of coefficients pertaining to a finite

duration input. We have shown that the Laguerre transform
cascaded with the ordinary wavelet transform is a more effi-
cient computational structure than filter banks with embedded
warping.

Potential applications of the new bases are in off-line cod-
ing, signal analysis and feature extraction, transient detection,
and system identification and control.
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