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Frequency-Warped Filter Banks and
Wavelet Transforms: A Discrete-Time
Approach via Laguerre Expansion

Gianpaolo Evangelistaylember, IEEE and Sergio Cavaliere

Abstract—In this paper, we introduce a new generation of  As we will show, the Laguerre expansion can be used to
perfect-reconstruction filter banks that can be obtained from form new filter bank structures: either parallel or iterated. In
classical cr!tlcally sampled filter banks by means of frequency particular, we define new frequency-warped wavelets. Unlike
transformations. th di dvadi lets. the f bands of d

The novel filters are Laguerre type IIR filters that can € ordinary dyadic Wavefes'_ € Irequency bands or warpe
be directly derived and designed from ordinary orthogonal Wavelets are not organized in octaves. Rather, the cutoff
or biorthogonal filter banks. Generalized downsampling and frequencies may be chosen by varying the so-called Laguerre
upsampling operators based on dispersive delay lines are the parameter. In several applications, such as audio coding,
building blocks of our structures. analysis, synthesis, and denoising, the choice of the proper

By iterating the filter banks, we construct new orthogonal and .. f the ti f | d tically i
complete sets of wavelets whose passbands are not octave spacdifi"d ©Of the time—frequency plane may dramatically improve

and may be designed by selecting a single parameter. performance. By adapting the frequency bands to the signal,
we can enhance energy compaction and improve the coding
efficiency. The Laguerre parameter in the frequency-warped
filter banks or wavelets provides an additional degree of
HE THEORY and application of multirate filter banksfreedom in the choice of the frequency bands. For example,
has received considerable interest in the last decade, & entire class of nonuniform filter banks may be derived
the relationships with orthogonal and biorthogonal transformggm uniform filter banks simply by changing the Laguerre
such as the wavelet transform, wavelet packets, and lappr@ameter.
orthogonal transforms have been exploited to provide moreThe computational complexity of the new class of filter
insight in the topic and new applications. The limitations ghanks is higher than that of conventional ones, and only
the conventional critically sampled filter banks often lie ipproximated reconstruction is possible in finite time with an
the integer or, at best, rational sampling rates achievedjgbut of finite duration.
the OUtpUtS of the anaIySiS filters. These rates determine StriC]Z\ review of Laguerre sequences and related expansions
constraints on the passbands, conditioning the tiling of the presented in Section Il. There, the relationships between
time—frequency plane that is obtained. frequency warping and Laguerre expansions are pointed out. In
As suggested in recent papers [6], [7], unitary equivalengction I1l, we combine Laguerre expansions with filter banks,
may be exploited in order to design new transforms, leadinytaining frequency-warped filter bank structures. These struc-
to representations that can be adapted to signals. Exampleg,@és are based on generalized resampling operators described
these operations are time and frequency warping. However, fResection IV. In Section V, we apply our concepts to the
setting of [7] is very general and mostly refers to continuougravelet transform via iterated filter banks, defining discrete-
time signal processing. time frequency-warped wavelets, and compare the complexi-

In this paper, we propose novel discrete-time orthogonal afjéls of the computational structures. Finally, in Section VI, we
biorthogonal filter bank structures based on multirate Laguerigaw our conclusions.

sequence expansions. These structures are derived by intro-

ducing generalized downsampling and upsampling operations

characterized by frequency-dependent sampling rates. Central Il. LAGUERRE SEQUENCE EXPANSIONS
to the implementation of these resamplers are (adopting a

terminology borrowed from wave propagation) the losslegs Properties of Laguerre Sequences
dispersive delay lines based on allpass filters. In these linesypq Laguerre sequences [1]

different frequency components of the signal travel with

I. INTRODUCTION

different speed. min(r,k)
B — A/ 2 m+r
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time c(k) A(z) A(2) Az H—------
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3(-k) (k) l =0 l k=0 l k=0 l =0
Fig. 1. Structure for computing the Laguerre coefficients. _4_{ U, | u, | u, I u;

shift register

form a complete orthonormal set in the spdéeof finite-

energy causal sequences for any fixed value of the parameter @)
b such that—1 < b < 1. They are obtained by performing
Gram-Schmidt orthogonalization on the sequenfegs:) = ck) ——f A@) | —— u
k"b* [8]. Since theZ transform of the order-sequence [9] is
_ . (b)
> 1 _ by
A,,(z) =v1- b2(77_1)r+1 (2) Fig. 2. (a) Diagram of the switched dispersive delay line needed to compute
(1 — bz ) the Laguerre coefficients. (b) Its equivalent schematic symbol.
the Laguerre sequences satisfy the followiggtransform
recurrenck s(k)
N A L, ok
Ar1(2) = A)ANZ) = A2 Ag(2), r=0,1,... ”f @1 o) @

3) Fig. 3. Structure for reconstructing a signal from its Laguerre coefficients.

where
A(z) 7 -b (4) 5(")__‘ T i
Z2) = ——F——
10zt up uj u2 -
is the transfer function of a real, stable, and causal first-order———— [ [ "
allpass filter. On the unit circle, we haw{¢’”) = ¢, L4 L. 4 . > (k)
where @)
. bsinw
_ . Jwy — A -1 ¥
f(w) = —arg A(e’*) = w + 2tan <1 — bcosw) (5) " 4G 1 s
Consider a discrete-time causal sigpék) and its expan- (b)
sion in terms of Laguerre sequences Fig. 4. (a) Diagram of the tapped dispersive delay line needed to reconstruct
oo the signal from its Laguerre coefficients. (b) Its equivalent schematic symbol.
y(k) = u (ks ) (6)
r=0 with
where d
- Ao(2)? = d;ﬁlA(z).
Ur = Zy(k))‘"(k?b)' () This filter is lowpass forb > 0 and highpass fob < 0.
k=0

The signal is then fed to the dispersive delay-line shown

In order to simplify our notation, in the expression of the Lain Fig. 2(a) and denoted by the symbol shown in Fig. 2(b).
guerre coefficients,. and in most of the subsequent equationThe switches of the network of Fig. 2(a) close at tife=
we will omit the dependency oh unless it is specifically 0, loading, at that instant, the shift register, whose output
relevant. provides, at subsequent time intervals, the ordered sequence

Equation (7) may be interpreted as a time-varying filteringf Laguerre coefficients. Since the structure is anticausal and
operation ony(k) with impulse responsé(r, k) = A.(k;b), the filters involved are IIR, the Laguerre coefficients can be
which, according to the time domain counterpart of (3), ha®mputed in finite time only if the input is time limited. If
the remarkable property(r + 1,k) = h(r, k) = a(k), where y(k) # 0 only for k = 0,1,..., N, we can perform a time-
«(k) is the impulse response of the allpass sectign). An  reversal operation within a finite delay, obtaining the sequence
iterative, noncausal scheme to compute the Laguerre coeffit) = y(N —k), which is then fed to thé\o(z) filter and then
cients based on (7) and recurrence (3) is given by the diagraiput to a network similar to that shown in Fig. 2(a). In this
shown in Fig. 1. There, the input signal is time-reversed ardse, however, the switches are to be closed at time N.
convolved with the zero-order Laguerre sequence, whioseFurthermore, it should be clear that only a finite number of

transform is Laguerre coefficients can be computed in finite time.
Vi Since the Laguerre sequences form a complete set, the
Ao(z) = 1_ a1 (8 signal may be reconstructed from its Laguerre coefficients. The

diagram of the synthesis structure is given in Fig. 3. There,
1Thl’0ugh0ut this paper, we will denote wl)’ the rth power Off(Z) the “Input” Sequencejlk forms the Welghts of the Laguerre

We prefer this notation to the standaftl(z) both to avoid confusion between . . . .
inverse and reciprocal when= —1 and to point out the substitution of the syntheS|s network detailed in Fig. 4(3-) and denoted by the

delay " with the frequency-dependent delalyz)" . symbol shown in Fig. 4(b). The output of this network is then
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filtered by Ao(2), retrieving the original signal. It should be reconstructed step sequence
pointed out that the Laguerre synthesis network is an infinite- 1.5 " -

length dispersive tapped delay line excited by the unit pulse |
sequencé(k). The sequencey, is not an input in the classical (

sense. Rather, the entire sequence must be available at time%3f
k = 0in order to perform the required products. In a noncausal ¢
structure, we may load these coefficients in an infinitely long
shift register. At the time origin, the register is fully loaded, o 50 100 150 200
and the content of its cells will be available to the multipliers. reconstruction error

An alternate synthesis structure may be obtained from %! ' ;
the following remarks. By defining the transposed Laguerre g.oos|
sequences\{ (r;b) = \.(k;b), (6) may be put in the same
form as (7)

- -0.005|
y(k) =Y w A (r;b). ) -0.01
=0

0 50 100 150 200
samples

As can be seen from (1), the indicesandk play a symmetric _, .

. . Fig. 5. Truncated Laguerre expansion: Reconstructed step sequence and
role, except for the signature factér1)™*", and we can eror with 600 terms, wheré = 0.5.
easily verify that\f (r;b) = \y(r; —b). Therefore, Laguerre
synthesis may also be computed by means of the analysis o
structure, driven by the expansion coefficients, with » Network in Fig. 2 are closed, the output of th¢ + 1 and
replaced by—b. subsequent sections will be approximately zero, provided that

In practice, the synthesis network must be truncated femM-1 2 L — 1, obtaining the following lower bound on
a finite number of elements, and only a finite number dlpe numberM! of Laguerre coefficients that must be computed
coefficients may be computed. Moreover, we need to assume
that the input has finite duration. In that case, the noncausal oM. — (D=1 +b)+1 DA +[b])
structure may be transformed in a causal structure, computing™™ = ~“min = 1— b Tl
the output within a finite delay. The signal is approximated by
a truncated Laguerre expansion, and an estimate of the number ] ) )
of coefficients required may be given in terms of the group Notice that the ratid\.,in/D grows with|b], i.e., when the
delay of the filter chain in Figs. 1 and 2. Théth coefficient ilter pole moves toward the unit circle, attaining its minimum

is computed by the filter\o(») cascaded byM — 1 allpass value whenb = 0, i.e., when the allpass filters revert to unit
filters. Thus, the total group delay is the sum delays, in which case, obviously, the bound is exactly met:

M = My, = D. As a numerical example, fob = 0.5,
T m—1(w) = 1 olw) + (M — )76 1(w) about three Laguerre coefficients per input samples must be
computed. The approximation to 600 coefficients of a 200-

(10)

where sample step sequence is reported in Fig. 5, together with the
_de 1-02 truncation error, which turns out to be less thdn 2.
T6a(w) = do  1—2bcosw + b2 In Fig. 6, a plot of the maximum absolute value of the first

2000 Laguerre sequences in an analysis intervaDet 100
samples is shown. Each curve corresponding to a distinct value
Tai(w)—1 of b has a “knee” centered on the respective valué\ff;,,,
2 as estimated by means of (10). The values of the higher order
Laguerre sequences abruptly drop below significant level and
may be disregarded, thereby showing the consistency of (10).
Due to the delay of the Laguerre sequences, the error
Tam-1(w) = (M —1/2)1g1(w) — 1/2 obtained by truncating the Laguerre series is larger at the
M(1—b%) +beosw — 1 end of the analysis interval. Since the group delay depends
= on frequency, the spectrum of the error depends on the sign
of b. For negative values of, the error is larger at lower
In the worst case of full bandwidth signals, the minimumyequencies and vice-versa for positite The error is larger
total group delay is attained at = = if b > 0 or atw = 0 at higher frequencies.
if & > 0; hence

is the group delay of each allpass filter and

Taolw) =

is the group delay of\q(z).
Therefore

1 —2bcosw + b2

M — o)) - 1. B. Frequency Warping via Laguerre Expansion

L+ 10 Next, we will show that the Laguerre expansions are related
If the duration of the input signal i® samples, it is clear to a special case of frequency warping [4], [B]transforming
that at the time instant = 0, when the switches of the both sides of the Laguerre expansion of the sigy@l) [see

Tmin,M—1 = IYEHTG,A4—1(W) =
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Laguerre sequence order

Fig. 6. Diagram of the absolute maximum value of the fifst= 100

samples of Laguerre sequences up to order 2000 for several values ofRitg 7. Family of frequency warping curves with the Laguerre paranieter
parameteb. Dashed lines specifyf,.,;, corresponding to distinct values of ranging from—0.9 to 0.9 in increments of 0.1.

b.

Thus, the inverse mappingis' — At (z) and the unwarping

(6)], we obtain mapw = #~1(Q) is obtained from (5) by replacingwith —b
oo and w with .
Y(z) = Z upA(2). (11) An alternate expression féf(z) may be derived in terms of
=0 the transposed Laguerre sequentgér; b) = A,.(k; b), whose

Substituting in this expression recurrence (3) and factorirfg transforms areA;’(z). Z thransf_ormmg (7) and exploiting
out Ag(z), we have recurrence (3) written for\;” (z) yields

U(z) = Af ()Y (A% (2)7) (16)

_ - r__ -1
Y (z) = Ao(2) ;)u,,A(z) =M(2)U(A(z)™Y).  (12) where A (=) = Y2 SinceAd(A(=) 1) = Aofz) L, by

, ) ) applying (15), we can show the equivalence of (12) and (16).
As stated in (4), the transfer functiof(2) is allpass; therefore, The |atter shows that'(z) is a frequency unwarped version

A(e?) = ¢79*) on the unit circle, and of U(z) weighted by the FIR frequency responsg(z)—*.

Y (/) = Ao(e?)U () (13) The frequency warping method illustrated in [5] is obtained
by means of biorthogonal sequencgg(n) and ¢, (n) such
where that
U = upe™7) (14) Tu(z) = A k=01
=0 are theZ transforms of the synthesis sequences, and
with 6(w) given in (5). b, k=0
Equation (13) has a straightforward interpretation. The ¢r(n) = {%wk(n), k=12, ...

frequency spectrum of the sequence of Laguerre coefficients

u, is a frequency-warped version of the original frequenc§/® the analysis sequences. The relationships between the
spectrumY () weighted byAg(e’*)~!, which is the fre- biorthogonal frequency warping set and Laguerre sequences,

quency response of an FIR filter. The warpifig= 6(w) based.on the same allpass tra}nsfer functign), are easily
of the frequency axis is controlled by the paramétarf the found in theZ-transform domain as

allpass filter (4). A family of curves showing the features of the Uy (2) = Ay (2)
frequency map for several valuestas reported in Fig. 7. The Ao(z)
Z-domain form of this map is~! — A(z), which is a one-to- Bo(z) = 1 Ao(2)
one form and maps the unit disc onto itself. It is the unique real W% = V1—82 1%
rational map with unitary modulus on the unit circle (allpass) Pry1(2)
[4], [5]. It is easy to show by direct substitution that () V1=0M(2), k=0,1,....
A(AT ()T = AT (AT = 271 (15)  Due to orthogonality, the frequency warping obtained by

means of Laguerre analysis preserves the total energy by
. weighting the original frequency spectrum withy (¢/~)~1.
At (z) = zZ+b . The same is not true for the biorthogonal frequency warping
1406271 set, which purely warps the frequency axis.

where
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By defining the time-reversed signal(l) = y(-1), (21) and
u, h(-r) Vi (22) may be put in the form of convolution evaluated at the
origin. Thus, letting

g(-r) Wi Or(n) = Zx(n —Dage(l;b) (25)

1=0

Fig. 8. Two-band critically sampled analysis filter bank. and

IIl. L AGUERRE DOMAIN FILTER BANKS ir(n) =Y a(n—Dpi(lsb) (26)

=0

In this section, we combine critically sampled filter banks
with Laguerre expansions. This leads to the definition of filtave havev;, = #(0) and w; = @ (0). Clearly, the Z
banks in the Laguerre domain. As remarked in Section liransforms of the sequences (25) and (26), respectively, are
B, the sequence of Laguerre coefficients constitutes a v _x o7
frequency-warped version of the input signal. This sequence k(2) = X(2)Cn(2) (27)
can be directly fed into a perfect-reconstruction filter bank,q
We will show that Laguerre expansion cascaded by a multi- )
rate filter bank is equivalent to a filter bank embedding the Wi(z) = X(2) Pi(2). (28)
frequency warping operation both in Fh.e. compon ent ﬁlt.e'% Z transforming both sides of (23) and (24) with respect to
and the resampling operators. The definition of d|screte-t|rﬂ1 ; . .

. ) e index! and using recurrence (3), we obtain
frequency-warped wavelets is based on this property.

In order to simplify our notation, we shall confine our- ), (z) = Zh(T_ 2k)An(z) = Ao(2)A(2)** H(A(2) 1)
selves to considering the two-band real orthogonal filter bank -

shown in Fig. 8, which is characterized by two QMF impulse (29)
responsesh (lowpass) andg (highpass), which satisfy theand
aliasing cancellation cond|~t|on [12], [13] Pu(z) = AO(Z)A(Z)QkG(A(Z)—l) (30)
T(2)T(z) =21 17
(£)T(z) (A7) where the transfer functions
where .
H(A()™") = >~ h(r)A(=) (31)
1) = | P G (18) :
T |H(-2) G(-=2)
, and
is the ac matrix, andT'(z) = T!(»~!) is its transpose 1 -
evaluated inz—!. Assuming anticausal analysis filters, the G(A(x) ™) = 29(7)A(z) (32)
outputs of the downsamplers, respectively, are "
are frequency-warped versions of the original quadrature mir-
Uk = Z h(r = 2k)u,. (19)  ror filters. Similar transformations on transfer functions were
T introduced by Constantinides [11] for the design of IIR filters.
and However, in our case, the signal rather than the filter is
frequency-warped.
. = T — 2 e 2
Wk 29(7 k) (20) From (25)—(30), it may be concluded that. and wy

. ) ) ) correspond to the even indexed coefficients of the Laguerre
Substituting (7) in the last two equations and exchanging e, nsion of the prefiltered signal, respectively, by the transfer
order of summation, we obtain functions (31) and (32). As a result of frequency warping,
the frequency responses of the conventional QMF, which iare
v =) y(Da(l;b) (21)  shown in Fig. 9(a), transform to those reported in Fig. 9(b).
Notice that the new responses are still power complementary

and . .
() 46 =2

we = y(O)pr(l; ) (22)

Two equivalent structures implementing frequency-warped
filter banks are shown in Fig. 10. In Fig. 10(a), the Laguerre
where expansion structure of Fig. 1 is cascaded with an ordinary
a(l;b) = Zh(r—2k))\,,(l;b) (23) analysis filter bank, whereas the diagram in Fig. 10(b) is

- obtained from (27) to (32). There, the ordinary downsamplers
are replaced by the same structure as that shown in Fig. 2
with A(z)? in place of A(z). This concept will be detailed
pr(l;b) = Zg(T —2B)A(I; ). (24) in the next section. Convolving the warped signal with the
r time-reversed version df(n) [see Fig. 10(a)] is equivalent to

and
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1G]

[H(e)| |G(A™ (@)

0s o (A" (@)

(@) (b)

Fig. 9. Frequency responses of (a) ordinary quadrature mirror filters and (b) frequency-warped filter bank.

x(k) — A2 A@) | o H*(1/z%) Vi v h(r)

— w11 o e
2

@ Fig. 11. Two-band critically sampled synthesis filter bank.
x(k) —— Ay2) H(A(z)") A(z)zl s v The last equation combines the inverse filter bank structure

with the Laguerre expansion. Comparing this expression with
(12), we observe that the signal is reconstructed by adding
together the filtered even-order Laguerre components. This
is a form of sampling theorem in the Laguerre domain. In
(b) fact, from (7), (19), (20) and exploiting the identity (15), it is

G(AG™ A | w

. . . . , r1possible to show that
Fig. 10. Two equivalent structures implementing the frequency warpirlg
analysis filter bank. (a) Laguerre analysis cascaded by ordinary, critically
sampled, analysis filter bank. (b) Embedded frequency warping analysis filter V' ( A(z)™2) = Z UkA(z)Qk
bank.
k

convolving the signal with a version @f(n)—warped in the = EH(A(Z))AO(Z)—ly(z) + EEH(;;) (35)
opposite direction—and warping the result [see Fig. 10(b)]. 2 2
The last operation is embedded in the generalized downsamd
pler block A(z)? |. The passband off (A(z)~!) is wider
or narrower than that off(z) if, respectively,b is negative W(A(2)™?) = Zka(z)Qk
or positive. However, as a result of the final warping, the &
bandwidth of the output signal is at most the same as that
of H(z). Therefore, the downsampling factor 2, which is
represented by the exponent o&f(z), is unchanged with
respect to ordinary sampled filter banks.

Consider the synthesis filter bank shown in Fig. 11. The
input—output relationship is

Up = Z h(r — 2k)v, + Zg(T — 2k)wy,. (33) and
k k

Since it is a perfect reconstruction filter bank, the output Eg(z) = G(—A()AF(—A(z)"HY (AT (—A(z)™H)™)
recovers the Laguerre expansion coefficientsof the signal

y(k). By substituting (33) in (12) and performing a simpleédre warped aliasing terms. By substituting (35) and (36) in
change of the summation index, we obtain (34), we conclude that the aliasing cancellation condition is

= %G(A(z))Ao(z)_lY(z) + %EG(Z) (36)
where

Ep(z) = H(-=A(2))AJ (=A(2) " )Y (AT (-A(2) 7)™

Y(z) = <H(A(z)1) > o A(z) T(A(2) HT(A(2) 1) =21 (37)
k

whereT(A(z)~!) is a warped version of the ac matrix (18).

+ G(A(z)_l)Zka(z)Qk Ao(z). (34) Since the map:—* — A(z) is one-to-one, (37) and (17) are
& equivalent.
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k -M -M ______ v I
v, — A(Z)Z T H(A(Z)l) f( )
k=0 k=0 k=0 k=0

Lo l l

e —— A@2t GlAG)") R foo S L I
(b)
(b)
Fig. 12. Two equivalent structures implementing the frequency warping Aok — A(Z)Ml >
synthesis filter bank. (a) Laguerre synthesis cascaded by ordinary, critically
sampled, synthesis filter bank. (b) Embedded frequency warping synthesis ©
filter bank.

Fig. 13. Noncausal implementation of downsamplers. (a) Classitdbld
downsampler. (b) Generalized downsampler. (c) Its equivalent schematic

Two equivalent structures implementing the warped syfymbol.
thesis filter bank are shown in Fig. 12. In Fig. 12(a), the

signal is reconstructed by means of a conventional filter bajilqere f(w) is given in (5), will no longer correspond to
cascaded with the Laguerre synthesis structure. The diagrgfd samples of the input signal. Rather, each allpass fil-
in Fig. 12(b) is obtained from (34) and involves frequencyer introduces a frequency-dependent delay and, hence, a
warped filter banks and generalized upsampling operators.f@guency-dependent sampling factor. For this reason, we
detailed in the next section. denominate this structure as a generalized downsampler, de-
The two-band orthogonal case is easily extendet/tband noting it with the symbol shown in Fig. 13(c), which is in
filter banks that are orthogonal or biorthogonal. It sufficeggreement with Fig. 2(b). If the input is the complex sinusoid

to increase the number of filters from 2 ®/, replacing f(x) = ¢i«ok, the output of the generalized downsampler will
A(z)? with A(2)™ in all the expressions and diagrams. Ihe the sequence
biorthogonal structures, we need to consider two distinct pairs
of analysis and synthesis filters. However, a single frequency
warping does not lead to arbitrary bandwidth specification in 9(e) -
7 where 7p(w) = Z=+ is the phase delay of the allpass
wsrﬂféban:rgﬁqseetézvzqef b>e2t.u-:—12I§ :i ?)L:Set? t?i;%g;;hg:léhgfﬁlter. Thus, the output is a resampled version of the input,
ping p . y ; with sample spacing//TP(wo). This quantity is frequency-
the cut-off requirements. The cut-off frequencies of the other .
. . 1 ependent and may happen to become less than one. In this
bands follow the warping law given by the map* — A(z).

case, the generalized downsampler is actually an interpolator,
where the output rate is higher than that of the input. A
necessary condition for that to be truebis< 0.

The allpass filterA(z) pertaining to the Laguerre domain

In this section, we detail structures and properties of thger bank downsampling structure has order one. In the simple
generalized resampling operatorgz)™ | and A(z)™ 1. caseb = 0, the allpass filters revert to unit delay elements,
These blocks are included in the frequency-warped filter bankgyq the generalized downsampler is equivalent to the classical
as shown in the previous section. downsampler.

Consider the diagram shown in Fig. 13(a), in which a time- consider now the structure shown in Fig. 14(a), where a
reversed signalf(—k) is fed into a delay line composed ofynit pulse sequence is fed to an infinite tapped delay line. The

M-samples delay elements. At time = 0, the switches yeights of the line are altogether set by the input sequence
are closed toward the outputs. At this instant, the contept The output of the line is

of the delay line is exactly thé/-fold downsampled causal

part of f(k). Thus, the structure in Fig. 13(a) is a noncausal y(k) = Zﬁﬁ(k —rM)

implementation of the downsampling operation. Suppose we r

replace each unit delay element by a real first-order allpgss,, the A/-fold zero-inserted input sequence, whdéérans-
filter A(z), obtaining the structure shown in Fig. 13(b). Thgorm is

output samples

fk — engkl\l‘rp(wg)

IV. GENERALIZED DOWNSAMPLING AND UPSAMPLING

Y(z) = F(2M). (38)

fr = i/ dw F () edM MO () By means of the same allpass transformation adopted for the
21 ) downsamplers, we can generalize the upsampling operation,
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M M M and
) ——— DD Do
1 )7 5 ya wige =Yy (44)
T e T SO N 7
""""" - respectively, are the level 1 Laguerre scaling and wavelet co-
@) efficients [see (21) and (22)]. Iterating the filter bank structure
7 M m of Fig. 10 in a way similar to the usual construction of discrete
o) A2 AM_ _Naem. ...
wavelets [14]-[16], we can define the scaling and wavelet
P 2 hod Ao S B coefficients at higher scales, respectively, as
.......... k)
) Upgrge = h(r = 2k)vp . (45)
2 0 and
(c) Wn+1,k = 29(7 - 2k)vn,r- (46)

Fig. 14. Noncausal implementation of upsamplers. (a) Classi¢afold

upsampler. (b) Generalized upsampler. (c) Its equivalent schematic symbaq]. . . .
psampler. (b) psampler. (c) a y )\ccordmgly, higher scale Laguerre scaling sequences and

wavelets are defined, respectively, by the iterations
obtaining the diagram shown in Fig. 14(b). Thetransform
of the output of this structure is b1 p(D) = D h(r = 28)pn (D) (47)
_ —-M !
Y(#) = F(A(=)™7) (39) YrripD) =D g(r = 28) b (). (48)
that is, a frequency-warped version of (38). For this reason, "
we define this structure to be a generalized upsampler ahge Z-transform counterparts of (47) and (48), respectively,
denote it with the symbol shown in Fig. 14(c). Except in triviafire

cases, the output of the generalized upsampler is not simply a
zero-inserted version of the input since each input sample is L1, Zh L pran(2) (49)
multiplied by the impulse response of the filter corresponding
to the respective power ofi(»)M. and
V. FREQUENCY WARPED WAVELETS P Z 9(P) 8 pr2n(7)- (50)
A. Laguerre Wavelets From (29) and (30), in view of the correspondence between
In the previous section, we showed how the comput&ﬂ'o) with (23) and (41) with (24), we have
tional structures associated with the Laguerre expansion an@ = Ao(2)A(2) R H(A(2)™Y) = A(2)%®, o(2) (51)

critically sampled filter banks may be merged, leading to a
filter bank structure with frequency-warped transfer functiorsnd

and generalized resampling. It is easy to extend this concept ‘ ‘

to iterated filter banks, including the ones associated with?1,x(2) = Ao(2)A(2)** G(A(2)™H) IA(Z)%‘I/LO(Z)- (52)
wavelet transform [14]-[16]. In fact, referring to (23) and (24)

define the level 1 Laguerre scaling sequences and wavelets om (49)~(52), iterating on the scale indexwe obtain

respectively, as D, 1(2) = A(2)¥ %, o(2)
b1 Z h(r — 26\ (L; b) (40) Uy (2) = A(2)* W, 0(2) (53)
(I>7,+170(Z) = H(A(Z)_2 )(I)np z
1 x( Z g(r — 2k)\.(1; ). (41) Uot10(2) = G(A(2)72") @, 0(2)
We can write the single scale level wavelet expansion of tﬁre(:)m which
signal y(1) as n—l .
©p0(2) = Ao(2) [[ H(A) ). (54)
y(l) = Z(Ul,k¢1,k(1) + w1 k1 () (42) r=
k Comparing theZ transforms of ordinary [14], [16] and La-
where guerre wavelets, we obtain the fundamental relationships
vk =3 y0pirl) @3)  Lur(2) = Do(2)@nk(A(2) ) = Aanr(2) @i o(A(x) )
! (55)
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and inverting (55) and (56). We have
W k(2) = Ao(2) W k(A(2)7H) = Agei(2) T o(A(2) ™) Pn () = 3 dnn(r)An(m) (57)
r=0
(56)
and
whereA;:.(z) is the Z transform of the Laguerre sequence of P p(m) = ZW () An(m). (58)
order27k, as given in (2)d,, x(z) and¥,, x(z), respectively, ’ -

denote theZ transform of ordinary scaling sequences anp' . .
. ; ence, the Laguerre wavelets are obtained in the form of
wavelets based on the same quadrature mirror filter pair . o .
) . . a Laguerre expansion whose coefficients are the ordinary
{H,G}. This result is to be expected since the Laguerre .
- ; . wavelets. In other words, the ordinary wavelets are the or-
wavelets revert to ordinary wavelets when the paranietef).
In that caseA(z) = 1, and the Laguerre coefficients equa
the input samples.
Notice from (56) that the Laguerre wavelets at l#g: are

obtained by convolving the lag 0 warped wavelet with th

hogonal projections of the warped wavelets onto the discrete
aguerre set.

Orthogonality and completeness of the Laguerre wavelets
descend from the same properties of both the discrete Laguerre
Laguerre sequence of ordefk. Thus, at any fixed scale,g.nd or(_jinary wavelet Se.ts.' The expansion of any finite-energy

signal in terms of the finite-scale frequency-warped wavelet

therg is a countable mﬂmty of distinct Laguerre Wa\./ele.tsasis (51) is formally identical to that of the ordinary discrete-
sharing the same magnitude frequency spectrum but dlffen{i]Ig]e wavelet transform

in phase. )

The Laguerre wavelets are frequency-warped and filtered a
versions of ordinary wavelets in the sense specified in y(k>zz <Z w":"”/’":m(k)+U1\’:"’¢N:m(k)> (59)
Section 1I-B. This property is useful for building discrete oA=L
wavelet transforms with nonoctave-spaced frequency bandéere the expansion coefficients may be computed as in
The Laguerre parameteb controls the warping of the (43)-(46), and wavelets and scaling functions are given by
frequency axis: Compared with ordinary wavelets, positiu®3) or (57) and (58).
values of b produce narrower bands at high scale levels The Laguerre wavelets realize an unconventional tiling
(low frequencies), whereas negative values bofesult in of the time—frequency plane, shown in Fig. 16. There, the
narrower bands at low scale levels (high frequenciedjequency-dependent group delay of each wavelet is plotted
The cut-off frequencies of dyadic wavelets occurring @dainst the frequency axis. The horizontal lines correspond
normalized frequencies of- are mapped to the frequenciedo the warped cut-off frequencies. Each cell of the plane

wn, Which are the roots of the transcendental equatié®rresponds to the time-frequency location of the corre-
6(wn) = &,n = 1,2,..., whered(w) is given in (5) (see sponding wavelet. Clearly, the picture is schematic since the
also Fig. 7). Examples of frequency-warped wavelets at¢icertainties of the wavelets may overlap several cells. The
their frequency spectra are reported in Fig. 15, where th#ijng characteristics wittb positive or negative are different,
can be compared with ordinary wavelets. Positive values @$ can be seen by comparing Fig. 16(a) with Fig. 16(b). This
the parameten lead to time-scale representations that aié due to the fact that for positive the group delay decreases
more selective at low frequencies than ordinary wavelewith frequency and, vice versa, for negative the delay
This could be useful if it is knowra priori that the signal increases. This behavior should be compared with that of
energy is mostly concentrated in that region of the spectrugtdinary wavelets, which are arranged in rectangular cells in
On the other hand, negative values lofead to time-scale the time—frequency plane.
representations that are more selective at high frequenciedhe Laguerre wavelets have the same number of zero
than ordinary wavelets. This may be useful when the octav@oments as their unwarped counterpart. It suffices to remark
band resolution is too poor to classify or detect characteristidt to each factofl+~~") of H(z) corresponds the following
of the signal. In coding problems, the parameiemay be factor of H(A(z)™!)
determined by optimizing a specific performance measure (1—b)(1+ 21 -
such as the coding gain of the transform. 1+ A(z) = T ol =4/ 1 bAO(z)(l +27h)

As previously remarked, the filteAy(z) is needed for - *
orthogonality and acts as a pre-emphasis filter, accountiwgich, again, has the form of a bounded factor tifies »—1).
for the peculiar shape of the frequency spectrum of warpé@the regularity of the warped wavelets may be investigated
wavelets. Wher > 0, this filter is lowpass, compensating forwith the same methods devised for ordinary wavelets [14],
the energy loss due to the narrowing of the passbands at Ifhv].
frequencies. On the other hand, tox 0, the filter is highpass,  Our results, however, directly extend to continuous time,
compensating for the energy loss due to the narrowing of théthout any need for frequency renormalization, which is
passbands at high frequencies. typical of ordinary wavelets. The recipe for continuous-time

The time-domain expression of the Laguerre scaling skaguerre wavelets is to expand the signal over a complete set
qguences and wavelets can be obtained either from (40), (4df)Laguerre functiong!,.(¢)} and then to expand the sequence
(47), (48), and the definition of ordinary wavelets or byf Laguerre coefficients onto discrete-time wavelets. In that
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Fig. 15. Frequency warping wavelets and their frequency spectra. (a) Ordinary octave-band wavelets and scaling sequence. (b) frequencyeletsped wav
with b = 0.5. (c) With b = —5. The corresponding frequency spectra are shown in (d)—(f), respectively.

case, the continuous-time Laguerre wavelets are obtainedfunctions interpolate the discrete ordinary wavelets to yield
the form of a continuous-time Laguerre expansion whoskee continuous-time warped wavelets.
coefficients are the ordinary discrete wavelets

P k() = Z"‘/;n,k(T)lr(t)- (60) B. Implementation
r=0 The frequency-warped wavelet expansion may be computed
In fact, we can show [9] that the Laguerre sequences dividedtwo formally equivalent ways. One method is to project the
by the square root of the sampling rate approach the Laguesignal onto the Laguerre sequence basis first and then compute
functions as the sampling rate increases without bound, i.e.tlie ordinary wavelet transform of the Laguerre coefficients.
this limit, (58) becomes (60). The continuous-time LaguerrEhis is achieved by feeding the signal into the iterated structure
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Fig. 17. Structure for computing the Laguerre wavelet transform. Implementation with Laguerre and wavelet transform blocks. (a) Analysss structur
(b) Synthesis structure.

shown in Figs. 1 and 2 and its output into a critically samplefdrm of this identity is unavailable in the general frequency-
iterated filter bank implementing the wavelet transform. Thearped case. In recent papers [18]-[20], one of the authors
other method is to pass the signal through the orthogoredploited allpass transformation in both the design of IIR
frequency-warped filter bank, including generalized downsamwavelets and the construction of new transforms. In these
pling, which is shown in Fig. 18(a). Similarly, there are twaases, however, the allpass transformation was constrained to
equivalent synthesis structures: one given by the ordingmyeserve the form of the ac matrix, requiring thafz) =
wavelet synthesis filter bank followed by the Laguerre synthe=* B(>?), where B(z) is arbitrary allpass. The first-order
sis structure and the other given by the orthogonal frequen@flpass transformation does not satisfy this property.

warped synthesis filter bank shown in Fig. 18(b). This struc- The complexity of the frequency-warped filter bank is
ture may be directly derived using (59) and recurrences (4@@nerally greater compared with the cascade of Laguerre
and (48) or, in theZ-transform domain, using (53) and theanalysis (synthesis) and ordinary analysis (synthesis) wavelet
Z-transform of (59). From the discussion on generalized ufiter bank. This is manly due to the generalized downsampling
sampling (downsampling) operators in Section IV, it followgupsampling) operators that are implemented by a long disper-
that the synthesis (analysis) structure may be obtained $iye delay line. Sampling in the Laguerre domain requires a
replacing the unit delay with the allpass filtd(z) everywhere cascade of first-order allpass filteds =), each requiring two

in the ordinary wavelet filter bank, including the upsamplingdds and two multiplies. The total number of warped wavelet
(downsampling) operators, and prefiltering (postfiltering) witboefficients required roughly equals the numbéiof Laguerre
Ao(z). Itis worth noting that the generalized downsamplers icoefficients needed to achieve the desired approximation of the
the frequency-warped filter bank are all located at the termirgignal. This number may be estimated from (10). It depends on
nodes. Correspondingly, upsampling occurs only at inptite Laguerre parametérand is never smaller than the number
nodes of the synthesis structure. This is to be compared withof signal samples. The number of first-order allpass sections
the ordinary wavelet filter bank, in which downsampling oimplementing generalized power-of-two downsampling does
upsampling is distributed along the structure. The frequenayet depend on scale. In fact, at scalewe need to compute
warped filter bank reverts to the ordinary wavelet filter banfoughly 2=2A/ output samples, each requiringl* allpass
when A(z) = z~1. This is so by virtue of the “noble” identity sections, i.e., a total oM multiplies per input sample at
[12] stating thatH (»?) cascaded with twofold downsamplingany scale level. The complexity of the warped filters grows
is equivalent to downsampling cascaded wiikiz). Hence, in with scale and is larger than that of ordinary QMF banks,
this particular case, the terminal power-of-two downsampleesen though lattice structures may be devised in which each
may be factored out in terms of twofold downsamplers that camit delay is replaced by the required power4sfz). The total

be shifted back in between adjacent sections by repeatedbst is significantly reduced in special cases, e.g., when
applying the “noble” identity. Unfortunately, an equivalent negative power of 2.
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Fig. 18. Frequency-warped wavelet transform. (a) Analysis. (b) Synthesis structure with embedded warping.

The cost of the structure in Fig. 17 equals the cost duration input. We have shown that the Laguerre transform
Laguerre transform ol input samples plus the cost of waveletascaded with the ordinary wavelet transform is a more effi-
transform ofd/ input samples. The former is implemented in @ient computational structure than filter banks with embedded
length4 dispersive delay line, requiringA/ multiplies and warping.
adds per input sample, whereas the cost of the orthogonaPotential applications of the new bases are in off-line cod-
wavelet filter bank with degreé FIR filters is approximately ing, signal analysis and feature extraction, transient detection,
2(L + 3)M multiplies and2(L + 1)M adds, regardless of theand system identification and control.
number of scale levels. The total cost is therefdid (N +
L + 3) multiplies and2M (N + L + 1) adds. With current REFERENCES
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