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Abstract—This work focuses on an ultrasonic guided wave advantages of this technique include fast scanning capedil
structural health monitoring (SHM) system development for |ow cost, long-range inspection, and testing inaccessible
aircraft wing inspection. The performed work simulate small, complex components.

low-cost and light-weight piezoelectric discs bonded to various . . .

parts of the aircraft wing, in a form of relatively sparse arrays, Recently, small and Confqrmal piezoelectric ceramics and
for cracks and corrosion monitoring. The piezoelectric discs take Wafer transducers, either being surface mounted or embedde
turns generating and receiving ultrasonic guided waves. The leave-in-place on the structures, have been widely stuldied
development of an in situ health monitoring system that can generating and receiving guided waves for structural hitieg
inspect large areas and communicate remotely to the inspector monitoring. In fact, an impact at high speed produces de-
is highly computational demanding due to both the huge number tectabl fi ’ d ult . ided the st

of Piezoelectric sensors needed and the high sampling frequency. €ctable acoustic and uftrasonic guided waves on the struc-
To address this problem, a general approach for low rate tural component. These waves can be used to compute the
sampling is developed. Compressive Sensing (CS) has emergedocation of the impact and eventually to assess the damage. |
as a potentially viable technique for the efficient acquisition that general, GW based technologies for SHM exploit a network
exploits the sparse representation of dispersive ultrasonic guide of piezoelectric transducers positioned on the structere t

waves in the frequency warped basis. The framework is applied to .

lower the sampling frequency and to enhance defect localization !nSpeCt' The minimization of the number of array elements

performances of Lamb wave inspection systems. The approach IS fundamental to reduce not only the hardware complexity
is based on the inverse Warped Frequency Transform (WFT) associated with transducer wiring and multiplexing cingui

as the sparsifying basis for the Compressive Sensing acquisitionpyt also the intensive signal processing of the large ansount

and to compensate the dispersive behaviour of Lamb waves. AS aot racorded data. For this reason, there is growing interest
result, an automatic detection procedure to locate defect-indwed . . o .
in minimizing the number of sensors by optimizing their

reflections was demonstrated and successfully tested on simuldte S ] i i .
Lamb waves propagating in an aluminum wing specimen using POsitioning, as well as by increasing the resolution of iotpa
PZFlex software. The proposed method is suitable for defect localization procedures [1].
detection and can be easily implemented for real application to  Another current trend in the SHM field is to create wireless
St”éd“ra: dhs‘fl'_tgmr%ow:\’/ggg'v\/ar ed freauency transform. Com.  SENSO" networks with low power consumption or even energet-
presi)a'/vg sensing, Defect d'etecti%n, Airgruaft W);ng_ ' ically autonomous [2], [3]. One promisjng solution Would'zbe
SHM system that could be embedded into the structure, ihspec
the structural hot spots and download data or diagnostidtses
wirelessly to a remote station [4], [5], [6].

Damages to aircraft and high-speed vehicles caused by th@ lot of literature has been produced on the use of sensor-
impact of debris and flying objects is a critical concern foarray-based methods for high-speed acquisition and data pr
automotive and aeronautic systems. Such damages, in faessing. However, generally such approaches use a large
if not detected and repaired at an early stage might growmber of individual sensors that usually are bulky, heavy
leading to the failure of the systems. Traditionally, visuaand require wiring back to a central location. Moreover when
inspection, accompanied by ultrasound bulk wave or edthrge-scale deployment are implied, the power consumption
current technology, is often used to obtain general infoiona of the system is hardly sustainable by the ordinary gerwrati
on the structural health conditions. However, the inspecis system present on board. Recent works in the area of time-
limited to a point-by-point manner and is very time consugnin frequency representations (TFRs) [7] [8] show great premis
In most cases, erection of scaffolding or disassembly of tfi@r applications in nondestructive evaluation and makehar-
structure is needed to inspect the interior and inaccessiblcterization, in particular to interpret ultrasonic GWs tlaesy
components, being very labour intensive and possibly tiegul represent a class of complicated ultrasonic signals, @iidb
in maintenance-induced damages. In this context, Straictudispersion and containing multiple modes. Nevertheldss, t
health monitoring (SHM) technologies can allow for an autadentification of Lamb modes is a challenging step in the
matic detection of defects due to impacts. Among the numbaiocess of damage detection.
of SHM approaches, the one based on guided waves (GW) isThis work proposes a time-frequency (TF) energy density
considered as the most promising and versatile. Some mdjanction approach that makes use of known dispersion charac

I. INTRODUCTION



teristics for a propagating wave mode in order to locateadsfew. Given a generic signak(t) whose continuous Fourier

in aircraft wing structures. transform isFs(t) = S(f), the continuous warping operator
Compressive Sensing (CS) [9] is an alternate framework W is defined as

the traditional Shannon-Nyquist framework of digital sajn

and image acquisition. CS can be viewed as a scheme for

simultaneous sensing and compression; instead of being pro

portional to the Fourier bandwidth, the rate of data actjaisi
The warping operator results in a unitary transformatiofictvh
need only be proportional to the sparsity of the signal, the

number of nonzero coefficients of a signal representatl(l.?reserves orthogonality [13]. For discrete-time signlinite

dn ration N, the warping operator is defined as a matrix whose
in some basis. Many methods for signal compression arﬂtrles are

commonly based on the transform coding approach. In suc
methods, the assumption is that a signale RY can be
represented as a sparse linear combination of elements from
a fixed, known basist € RY*N_ This has given rise to
the design and development of sophisticated compression ™ € Zy, n€Zy
algorithms that operate on a given signalaccording to
structured sparsity models [10], [11].
In this work the compressive acquisition of Lamb wave
signal for damage detection is studied; this new framewsrk i F(k,n) = e—j?wnﬁ k,n € Zy
based on the Warped Frequency Transform to achieve a sparse
representation of the signal. In particular an acquisitoal and the nonuniform discrete Fourier transform of sidex
reconstruction stage is developed to obtain the sparsetiefle v, scaled along rows according to the orthogonalizing factor
due to the damage in the warped domain. ; (ﬁ)
The rest of the paper is organized as follows: Section M
provides a brief review of the Warped Frequency Transform;
in Section Il we provide an overview of the Compressive A V
Sensing Framework and the proposed framework to recovei,, (k,n) = (M>e—12”"“’($1), k€Zy, ncly
the reflectivity function due to the damage in the warped
domain. Finally in Section V we show the validation of the @
proposed framework and the effectiveness of the obtamg}? discrete warping operator in (1) can be factorized as
results.

(FWs)(f) = Vi (f)(Fs) - (w(f))

Wm,n) = 3 32,001 \Jab () ed>rmdi e,

By considering the discrete Fourier transform of siZex M,

Il. FREQUENCYWARPING SIGNAL PROCESSING W(m,n) = F~'F,

A. Frequency Warping Transform A fast computation of the discrete warping operator is actde
The first step is related to the design of a proper basis 8y means of this decomposition. In fad; ! is computed with

the Lamb waves in order to obtain a sparse representatigie Fast Fourier transform (FFT) anfl, can be efficiently

such sparsifying dictionary can be obtained by using uitafactorized with the nonuniform-FFT algorithm [14]. In orde

transformations. Lamb waves are mechanical-stress way§sompensate the signal with respect to a particular guided

which propagate along solid surface of finite dimension. iode,w(f) can be defined through its functional inverse, as:

a given waveguide (e.g., a plate, rod, or rail) one or more

GWs can exist at a given frequency. In general, each GW dw=t(f) 1

has a frequency-dependent propagation speed so a digpersiv ¢ a  c,(f) )

behaviour. The representation of the wave velocity versus

frequency is generally referred to as its dispersion cubis: where (f) is the nominal dispersive slowness relation of

persion generates nonstationary signals when the waveguife wave we want to consider, being( f) its group velocity

is excited by a broadband pulse. curve andC is a normalization parameter selected so that
The unitary operators based on frequency warping can-1(0.5) = w(0.5) = 0.5. Equivalently, the inverse warping

be used for the analysis of GWs. These operators defofiap «~! can be defined with respect to the wave phase

the frequency axis with a warping function(f) [12]. To yelocity cpn(f) or wavenumbet(f).

guarantee invertibility of this process;(f) must be chosen The group velocity curves of the Lamb modes fo6.803

so that m thick aluminium wing as in Figure 4 with Young modulus
p E = 69 GPa, Poisson’s coefficient = 0.33 and material
L)(f) =uw(f)>0 = Jw L wl(w(f)="f density p = 2700 _kg -m~3 are represented in Fig. 1. The
df curves were obtained by using PZFlez software. A sample

where w represents the first derivative of the mapwith warping map is depicted in Fig. 2 along with its functional
respect to frequency ang~! is the functional inverse of inverse.
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Fig. 2. Warping mapw(f) for Ap wave dispersion compensation and it

functional inversew=1!(f) designed according to Eq. 2.

B. Dispersion Compensation

In active monitoring techniques the time instant in whickhe measurement vectgy = ¢’z = (¢;,x), i = 1,..., M.
an acoustic emission starts is known. Beif®()(f,0) the Consequently, the CS linearly compressed data vectoR

Fourier Transform of the excited wave (incipient pulse cefs described byy =

where the distortion results from the nonlinear phase term.
Consider now that the generated dispersive wayg is
acquired after having travelled the distance of propagatio
D;. The warped Fourier transforms of the recorded signals
s(t, Dy) is given by:

(FWs(t, D1)(f) = /i () (Fso) (w(f), 0)-e~ 271D (6)

where the right hand terms can be distinguished only for
the underlined distance-dependent linear phase shiftishwh
causes simple translations of the warped signals on theagarp
time axis.

I1l. FREQUENCYWARPING COMPRESSEDSENSING
A. General Framework

The main idea behind CS is now quite well known but, for
the sake of completeness, the main concepts are summarized.
Letz = Va be a real-valuedV-dimensional discrete signal
vector ¢ € RY) that is compressible in some orthonor-
mal basis¥ = [¢1]Ys]...|¢n], Wwhere each column is a
vector ¢;, and o represents theV-dimensional coefficient
vector. In our framework the orthonormal basis is rep-
resented by the discrete warping operam,n) defined
in Section Il. By compressible we mean that the entries of
a = [oq,ae,...,ay], when sorted in decreasing order of
magnitude, decay rapidly to zero; any such a signal is well
approximated using & -term approximation, consisting of the
K largest entries ofv and setting all other terms to zero

K
T~ Zawk, with K < N.

k=1
In essence, compressible signals are well approximated by
sparse signals. Conventionally, one would collect sigaat-s
ples at the Nyquist rate forming: and then compress it
using nonlinear digital compression techniques. CS oféers
striking alternative by showing that if is compressible, one
Lan recover to aK-term approximation by only collecting
roughly M ~ K samples using simple analog measurement
waveforms, thus sensing and compressing at the same time.
More precisely,M = O(Klog N/K) samples are collected
by projecting on sensing waveforms; }, -, ,, thus forming

®x, where & denotes theM x N

tered int = 0), an undamped guided wave at a distana@easurement or sensing matrix with the veciofs ..., ¢4}
D from the source points(t, D), can be modeled in the as rows. It is important to notice that the sensing mad®ix
frequency domain as a dispersive system whose responsedses not depend on the signal: CS proposes a simple linear

(Fs)(f, D) = (Fso)(f,0) - e 327/ (1:D)df

sampling strategy that is only marginally off the optimak bu
complex best adaptive strategy. To guarantee the robust and

being 7(f, D) the group delay of the wave component ogfficient recovery of anyS-sparse signal, the sensing matrix
frequencyf which can be assumed equal to:

D . .dw_l(f)
o P g

7(f, D) =

By substituting Eq. 4 into Eg. 3:

(Fs)(f, D) = (Fso)(f,0) - e~32mw ' (HCD

® must obey the key restricted isometry property (RIP)
(1=ds)llafl3 < |2Ta3 < (1+ds)[lall3

for all S-sparse vectora. The isometry constaris of matrix
® must not be too close to one. This property is difficult to

(5) verify in practice and it is often replaced by the requiretnen



that the sensing matrix and sparsity basisgk must be It is now clear that an expression for each elemgnt, € ©

incoherent, i.e., their coherence can be separated out for raw and columnn
P$,¥)=+VN- ; +oo
(e, ¥) KIQ%NK%%H

enhn ¢n(T)pc(T)h(ﬂlﬂ4-4'T)dT
is small enough. A universal good choice for the sensing e

matrix ® are random matrixes, such as random matrixes The CS acquisition scheme is shown in Figure 3
with independent identically distributed entries formed b
sampling: 1) a Gaussian distribution; 2) a symmetric Bellhou

distribution. If the RIP holds, then accurate reconstarctan t & @
x(t) A l
thinf

be accomplished by solving the following convex optimiaati
problem:

min ||al; subject by ||®¥a -yl <o pe(t) t fint
acRN

where s bounds the amount of noise unavoidably corruptin

the data. Many algorithms were introduced to solve this ﬁ‘;ﬁiﬁ’; ................... 4
norm reconstruction problem; our results are based on t fe .
orthogonal matching pursuit algorithm [15]. ~Pi---- @

IV. ANALOG COMPRESSIVESAMPLING ACQUISITION fox

Suppose our analog signal has finite information rate _ o _
i.e., the signal can be represented usikigparameters per i':n'?e'g?étiofompressed Sensing acquisition scheme: random mineiufare-

unit time in some continuous basis. More concretely, let the
analog signalz(t) be composed of a discrete, finite humber

of weighted continuous basis or dictionary components V. VERIFICATION
N A. Smulations
wfi) =) antnli] @) Finite element analysis of an aircraft wing was performed
n=1

_ by PZFlex (Weidlinger Assoc. Inc. CA) and, as a case study,
with ¢, o, € R. In cases where there are a small numbeke proposed framework was exploited to locate defects in an
of nonzero entries inv, we may again say that the signaljyminum 1050A wing1000 x 1000 mm and3 mm thick.

x is sparse. Although each of the dictionary elemeqts Four piezoelectric discs (PIC181, diameter 10 mm, thicknes
may have high bandwidth, the signal itself has few degrees pfym) were bonded to the wing. The simulated setup designed
freedom. Our signal acquisition system consists of thre@ m&yith Solidworks (Dassault Systmes ,USA)is shown in Fig. 4

components; demodulation, filtering, and uniform samplingnq the position of the transducers is defined in Table 1.
As seen in Figure 3, the signal is modulated by a psuedo-

random maximal-length PN sequence bf. This chipping
sequence.(t) must alternate between values at or faster th:
the Nyquist frequency of the input signal. The purpose of tt
demodulation is to spread the frequency content of the kigt
so that it is not destroyed by the second stage of the systen
low-pass filter with impulse respong&t). Finally, the signal
is sampled at ratéd/ using a traditional ADC. Although our
system involves the sampling of continuous-time signdis, t
discrete measurement vectpcan be characterized as a linea L’
transformation of the discrete coefficient vectar As in the T~
discrete CS framework, we can express this transformason

an M x N matrix ® = ®W¥ that combines two operators:

W, which maps the discrete coefficient vectoto an analog

signalz, and®, which maps the analog signato the discrete i,
set of measurementg. To find the matrix® we start by N
looking at the outputy[m], which is a result of convolution

and der_nOdU|ajt|0n f_OHOWEd.by sampling at rdz!é: Since Qur Fig. 4. Simplified aircraft wing model used in the simulationsn@ated set
analog input signal in Eq. 7 is composed of a finite and discreatp used to validate the defect location procedure with PZ&te Solidworks
number of components of, we can write CAD importing

N 400
yiml = an / b (P)pe(rYh(mM — )dr



TABLE |

ACTUATOR AND RECEIVERS TOPOLOGY rithm was applied to recover the sparse signal in the warped
Coordinates Actuator Receivers domain. Fig. 6 shows the sparse estimated signal relatdubto t
z (M) 010 1010 090 090 defect located in: = 0.20 m andy = 0.55 m and the passive
y (M) 0.10 | 070 0.10 0.70 sensor 2 a0.6 m from the active sensor. The local maxima of

the reconstructed sparse signal are close to the real déstdn
] ] ) the incident wave (blue) and the distance due to the reftectio
The sampling frequency chose for the simulations Wag the defect (green). The warped distance can be detected an
fs = 500 kHz, sufficiently high to avoid aliasing effects, agpe corresponding coordinates provide the distance ey

the frequency content of the acquired signals vanisheseab@ye incigent wave and the total distance of the wave reflected
60 kHz. The active monitoring was performed by simulating By the defect.

chirp as voltage input ifi0.1,0.1) m on the top of the surface
(active piezoelectric discs) and recording the wave prapag

by two sensors on the top surface. In PZFlex simulation tl ! , _ :
structural damage was emulated as a cubic magé aim on | . P SR SRR
the top of the wing surface [16]. For example, the waveforn ; ; :
detected by the 3 receivers, after having placed the mass O8p e
the coordinatess = 0.20 m andy = 0.55 m, are shown in nal. L S SR || S R o L |
Fig. 5. : : . : :
02 ........ s AR ..... J‘ .J ....... n .......
Signal at sensor 1 o : : mh A le i
‘ ‘ ‘ ‘ ‘ ‘ ‘ D4 045 05 055 0B D66 DY D075 0B
0.5 : p Warped Distance (m)
0 HHi ‘
-0.5f i i
. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Fig. 6. Sparse signal after the CS recovery
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
‘ ‘ ‘ Signgl at sensor 2 ‘ ‘ ‘
0.5t : : B. Results
0 1 | k0 R To asses the feasibility of the proposed technique, a study
"o_i ‘ ‘ ‘ ‘ " ‘ " ‘ on the dependence of the localization error with the number o
0 01 02 03 04 05 06 07 08 bit used in the quantization stage was performed. In Table I
Signal at sensor 3 the localization error and the mean absolute error (%) which
0.5¢ | | is defined as the between the localization error and the lactua
ogf M L L Lk defect position are shown.
0 01 02 03 04 05 06 07 08 TABLE Il
. LOCALIZATION ERROR DEPENDENCY ON THE QUANTIZATION
Time (ms) _ _
Number of Bits | Localization Error (mm)| Mean absolute erro
. . . . . 8 19.3 2.9%
Fig. 5. Simulated signals acquired by the 3 sensors whosalicabes are 16 87 1.3%
ted in Table I. : :
reported In lable >4 31 0.5%

As can be seen from the time waveforms, it is difficult
estimating the time of arrival of echoes due to the massit is possible to see how using few bits, for example 8 bits,
(emulated defect) among the other interfering waves causée error tends to rise reaching 2 cm. The choice of the number
by edge reflections and multimodal propagation. of bits depends on the specific control and application; algoo

The acquired signals were processed through the randesmpromise can be between 16-24 bits.
modulator pre-integrator implemented in Matlab (Mathvgrk It is important to notice how the obtained results with the
Inc., MA) with the frequency specifications are the follogin CS framework are very close to the localization error adtdev
chipping frequency equal to 500 kHz and the informatioapplying only the compensation operator without lowering t
frequencyf;,s = 50 kHz. sampling frequency using the random modulator as acaisiti

In order to compensate for dispersion, first the WFT operarodule.
tor must be defined. In th@® —300] kHz frequency range, only  In Fig. 7 the localization error comparison between com-
the two fundamentald, and S, Lamb waves can propagatepensation with and without Compressed Sensing acquisition
through this plate. The group velocity curve of tHg mode is presented. It is possible to underline that the perfooaan
was used to shape the warping operator according to Eqof2the CS proposed algorithm was very close with the simple
because the energy in thé, mode is considerably greaterdispersion compensation warping procedure.
than that retained by th&, mode for out-of-plane excitation.

In the recovery stage the orthogonal matching pursuit algo-
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VI. CONCLUSION
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In this work, a signal processing strategy to locate defedig!
in aircraft wings by analysing actuated and received Lamb

waves by piezoelectric sensors was proposed. The methoghi$

suitable for chirped pulse actuations, and it is based on a
two-step procedure using the Compressed Sensing acquisim]
method. The signal processing reveals directly the distanc

traveled by the dispersive waves thus overcoming the diffi-
culties associated to arrival time detection. In particuly
exploiting the dispersion compensation properties of thefTWF

a suitable sparse representation of Lamb wave is obtained.
The actuated frequency modulated chirp is compressed in a
subsequent processing step. A mean absolute error on slefect
localization equal t®.5% is obtained simulating the dispersive

propagation on a simplified aircraft wing through PZFlexsIt
worth noticing that the robustness of the distance estonati

allows to achieve such performances with sparse arrays of
conventional transducers. Thanks to its unique poterttia,
WEFT joint with CS acquisition could pave a new class of
procedures to locate defects in waveguides. Optimizatimh a
adaptive selection of the array shape and size are under

investigation to further improve the accuracy of the praubs

approach.
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