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Abstract

White-nose syndrome (WNS), an emerging infectious disease that has killed over 5.5 million hibernating bats, is named for
the causative agent, a white fungus (Geomyces destructans (Gd)) that invades the skin of torpid bats. During hibernation,
arousals to warm (euthermic) body temperatures are normal but deplete fat stores. Temperature-sensitive dataloggers were
attached to the backs of 504 free-ranging little brown bats (Myotis lucifugus) in hibernacula located throughout the
northeastern USA. Dataloggers were retrieved at the end of the hibernation season and complete profiles of skin
temperature data were available from 83 bats, which were categorized as: (1) unaffected, (2) WNS-affected but alive at time
of datalogger removal, or (3) WNS-affected but found dead at time of datalogger removal. Histological confirmation of WNS
severity (as indexed by degree of fungal infection) as well as confirmation of presence/absence of DNA from Gd by PCR was
determined for 26 animals. We demonstrated that WNS-affected bats aroused to euthermic body temperatures more
frequently than unaffected bats, likely contributing to subsequent mortality. Within the subset of WNS-affected bats that
were found dead at the time of datalogger removal, the number of arousal bouts since datalogger attachment significantly
predicted date of death. Additionally, the severity of cutaneous Gd infection correlated with the number of arousal episodes
from torpor during hibernation. Thus, increased frequency of arousal from torpor likely contributes to WNS-associated
mortality, but the question of how Gd infection induces increased arousals remains unanswered.
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Introduction

White-nose syndrome (WNS) is estimated to be responsible for

the deaths of at least 5.7 to 6.7 million hibernating bats in the

eastern United States and Canada [1,2]. Clinical signs of WNS

were first observed at a single cave in New York State during the

winter of 2006–2007 and as of April 2012, WNS has spread to

over 200 hibernacula in 19 U.S. states and four Canadian

provinces (Fig. 1 [2,3]). Bats with WNS display a number of

aberrant behaviors, and in many instances they have depleted fat

stores. Thus far, WNS affects at least six (and possibly nine) species

of hibernating insectivorous bats [2], including some classified as

endangered or threatened. The little brown bat (or, little brown

myotis, Myotis lucifugus), which was once the most common

hibernating bat in the American Northeast (NE), has incurred

an average of 91% mortality in sites that have been affected for at

least two years [2] and mathematical models indicate that this

species may go extinct in the NE within 16 years [4]. A white

fungus identified as Geomyces destructans (Gd) grows on the muzzle,

wings, and ears of bats suffering from WNS starting in late

January/early February [3,5,6]. Recent laboratory experiments

have demonstrated that cutaneous infection with this fungus is the

cause of WNS, but it is not fully understood how such an infection

produces mortality during hibernation [7]. It is hypothesized that

infection by Gd disrupts normal physiological functions, such as

water balance [8] or other aspects of hibernation physiology,

including use of torpor [9].

For insectivorous bats that live in northern temperate zones,

such as those affected by WNS, food is primarily available from

late spring to early autumn and absent during winter. Bats survive
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this winter energetic bottleneck by building stores of body fat

(depot fat) in late summer and early autumn and by conserving

metabolic energy through hibernation. In little brown bats, body

fat increases from approximately 7% of total mass (,6 g) during

summer to 27% of total mass (,9 g) prior to hibernation, an

increase of 3 g or more in body mass [10,11]. This depot fat is the

sole energy source during the hibernating period, when body

temperature (Tb) and metabolic rate are both greatly reduced.

Because their energetic costs in the subsequent spring are greater

than those of males, female little brown bats enter hibernation with

higher body mass indexes (BMI) and manage their energy stores

during hibernation more efficiently than males [12]. Minimum

metabolic rates during mammalian torpor can be ,5% of basal

metabolic rate with Tb close to ambient temperature (2u to 8u for

bats) [13,14]. However, hibernators do not remain torpid

throughout hibernation; instead bouts of torpor last from days to

weeks, interrupted by brief arousal episodes involving periods of

high metabolic rate and euthermic Tb [15]. Earlier studies

demonstrated that healthy, free-ranging little brown bats hiber-

nating at ambient temperatures of 5–6uC have torpor bouts lasting

between 12.4 and 19.7 days [16,17], with arousal episodes lasting

1–2 hours.

Although euthermic periods account for approximately 1% of

the total time budget during winter, about 80–90% of the energy

(depot fat) used during hibernation is consumed during these

periodic arousals from torpor, because metabolic rate greatly

increases with increased Tb [13,18]. The amount of depot fat

expended during each arousal episode (not including flight) for

hibernating little brown bats is about 107.9 mg [18]. While the

function of arousal episodes in hibernators is poorly understood

and likely multifactorial [19], the fact that every mammalian

Figure 1. Distribution and spread of WNS throughout North America. Spread of WNS by hibernation season through the winter of 2010–
2011 is shown along with locations of study sites, indicated by stars (see also Table 1). Confirmed sites have been officially reported by each state or
province based upon histological confirmation of infection with the fungal pathogen Geomyces destructans (Gd); bats from suspect sites have clinical
signs of WNS but lack laboratory confirmation. The inset shows a little brown bat infected with Gd from site #1 in Vermont. This site was WNS
confirmed in 2008–2009, when bats were studied. Bats from site # 2 in Pennsylvania were studied in 2008–2009 (for 8 weeks only in the spring),
when no signs of WNS were present, in 2009–2010, when a single bat from this site showed infection with Gd without mass mortality and in 2010–
2011, when bats in this site were heavily infected. Bats from site #3 in Pennsylvania were studied in 2008–2009 (no WNS), 2009–2010 (when Gd was
noted but without mass mortality) and in 2010–2011, when bats in this site were heavily infected. Bats from site #4 in Pennsylvania were studied in
2009–2010 (for 8 weeks only in the spring), when bats were heavily infected. Bats from site #5 in West Virginia were studied in 2008–2009, when
there was no evidence of Gd presence – which was also the case for bats from site #6 in Michigan, which were studied all three years.
doi:10.1371/journal.pone.0038920.g001
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hibernator periodically arouses from torpor at great energetic cost

indicates the benefits must be significant.

We tested the hypothesis that WNS reduces the length of torpor

bouts during hibernation in free-ranging little brown bats. We

predicted that a primary cause of the increased mortality/disease

state associated with WNS is abnormally shortened torpor bouts,

due to more frequent arousal episodes, as was shown previously for

one affected free-ranging bat in late hibernation [20] and recently

for a group of experimentally infected bats held in captivity [21].

We also predicted that greater body fat stores at the beginning of

hibernation, as estimated by BMI, would mediate the negative

effects of frequent arousals. These predictions were tested in field

studies on free-ranging little brown bats conducted at multiple sites

(Fig. 1) over three hibernation seasons. Skin temperature (Tsk),

which correlates well with Tb in small insectivorous bats, and

which has been used extensively to study mammalian hibernation

[22], was measured with temperature-sensitive dataloggers

attached to the backs of WNS-affected and unaffected bats.

Hibernation patterns in relation to the stage of infection by Gd

were also analyzed for a small sample of bats for which data were

available on fungal presence (PCR) and degree of infection

(histopathology).

Materials and Methods

Permits and Permissions
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use

Committee at Bucknell University (protocol number DMR-02). In

the states of VT and WV, research was conducted by state wildlife

officials (SRD with Vermont Fish and Wildlife Department and

CWS with WV Department of Natural Resources) on non-

endangered bats; thus numbered permits were not required or

issued. In Michigan, research was conducted each year under MI

Scientific Collector’s Permit SC620 from the Michigan De-

partment of Natural Resources to AK. In PA, research was

conducted each year under PA Game Commission permits to

DMR (84-2008; 70-2009; 183-2010), in collaboration with GGT,

a wildlife biologist for the state of PA. In accordance with the

permits and with state wildlife policies, research was either

conducted on state land or on private property, with the explicit

permission of private landowners.

Temperature Tracking
Temperature-sensitive dataloggers were programmed to read

skin temperature (Tsk) every 30 min and were attached to 504 bats

over the course of three winters at six different hibernacula using

standard methods [22]. Temperature readings could not be

collected more frequently due to constraints on datalogger

memory and the need to record continuous data for up to five

months. To maximize recapture rates, bats with loggers were

recaptured in March of each year, several weeks prior to the

‘normal’ time of emergence from hibernation. Loggers weighted

about 1.1 g and were either purchased commercially (iBBat or

WeeTagLites, AlphaMach, Inc., British Columbia, Canada) or

were constructed by the authors (DMR and GGT). Appendix S1

describes and illustrates the methods for making these dataloggers

from Thermochron DS1922L iButtons (Maxim Integrated Prod-

ucts, Inc., California, USA), modified from the techniques of

Lovegrove [23]. Table 1 provides a summary of loggers deployed,

retrieved, and downloaded successfully, by site, year, and sex.T
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Study sites were widely distributed and located in Vermont,

West Virginia, Pennsylvania, and the Upper Peninsula of

Michigan (Fig. 1). Among loggers retrieved, success rates varied.

WeeTagLites failed at a rate of up to 90% whereas loggers

constructed by the authors failed about 20% of the time. Overall

111 of 190 loggers retrieved yielded usable data, an average of

58.4%. We expected to recover less than half the loggers placed in

the field and expected datalogger failure as well, which is why so

many loggers were deployed. Of the 190 bats from which loggers

were retrieved, 17 were found dead (four of which were in suitable

post-mortem condition to perform histology analysis). For the 173

live bats recaptured in the spring, loggers were removed, and the

animal was either released (N= 126) or euthanized for measure-

ment of immune function and other physiological parameters for

a separate study (N=25) or for histology analysis (N= 22), as

described below.

PCR and Histology
Wing skin samples (approximately 3 mm X 3 mm each) were

collected from a subset of freshly euthanized animals (N=26).

Nucleic acid was extracted from each skin sample using the Gentra

Puregene genomic DNA purification kit (Qiagen Inc., Valencia,

CA) per the manufacturer’s instructions (solid tissues protocol),

with the following modifications: proteinase K was added to a final

concentration of 0.5 mg/ml during the cell lysis procedure and no

RNase treatment was performed. To determine presence/absence

of DNA from Gd on each sample of wing skin (within the defined

sensitivity limitations of the technique used), extracted nucleic acid

was analyzed by PCR as previously described by Lorch et al. [24].

Wing membrane from these same animals was also analyzed by

histology [5] to determine WNS infection status. The entire wing

membrane was stripped from the right forearm and digits, rolled

onto 2 dowels 2.5 cm in length, trimmed into three approximately

0.8 cm-wide sections, placed on trimmed edge, sectioned at

0.4 mm-thickness, and stained with Periodic Acid Schiff [5]. This

preparation technique yields six whorls of wing membrane on

each slide. White-nose-syndrome was diagnosed based on pre-

viously published microscopic criteria [5]. A histologic scoring

system was developed to classify severity of WNS on a scale of 0 to

4 as described and illustrated in Appendix S2. Briefly, a score of

0 indicates the sample is negative for WNS, and there are no

diagnostic cupping erosions in the tissues. A score of 1 indicates the

tissues are positive for WNS with cupping erosions diagnostic for

WNS but erosions are mild, occasional, and are limited in both

depth and extent of wing membrane involved. The presence of

even one characteristic WNS erosion is sufficient for a diagnosis of

WNS. A severity score of 2 indicates moderate WNS with more

frequent and deeper fungal cupping erosions diagnostic of WNS,

but distribution over wing membrane is still limited. A WNS

severity score of 3 indicates moderately severe fungal infection

with deeper and coalescing cupping erosions that are deep enough

to be considered ulcers, and the extent of the wing membrane with

fungal invasion is greater. A severity score of 4 indicates a severe

fungal infection with deep tissue invasion and coalescing of

cupping erosions; as many as 100 or more erosions/ulcers can be

present in one roll of wing membrane. Scores ranging from 1 to 4

were identified as WNS.

Analyses
Calculations and initial statistics. Usable data for our

analyses were recovered from 99 of the 504 loggers deployed (see

Table 1). Although data downloaded from 111 loggers, data from

12 of these bats were removed from final analyses for a variety of

reasons, including having temperature data recorded for too short

of a time period to be comparable to other groups and missing

body mass data. Prior to datalogger attachment, each bat was

weighed using a portable battery-operated scale (accuracy to

0.1 g), and the length of their right forearm was measured (in

triplicate) to the nearest mm using calipers; from these data BMI

(weight in g/length of right forearm in mm) [10] was calculated.

As most analyses included BMI as a covariate, only bats for which

we were able to calculate BMI at the beginning of hibernation

(November) were included in the final analysis (N= 83). Data from

an additional 16 bats for which we had recordings from only

January through March (see Table 1) are also described in the

results.

Torpor was defined as when a bat’s Tsk was 10uC or more

below its highest temperature (Tmax). Duration of an arousal

episode (when Tsk was within 10uC of Tmax) was calculated to the

nearest 30 min. Although recording Tsk every 30 min was

sufficient to detect arousal episodes, it did not provide sufficient

resolution to describe precisely the true length of an arousal bout,

as arousal episodes averaged less than 90 min in length (see

results). Thus, we did not attempt to determine if there were

significant differences in arousal episode length by WNS status.

Torpor bout length (TBL, in days) was defined as the period

between two arousal episodes. For both arousal bout length and

TBL, values were first averaged for each bat and then averaged

across all bats. Data on TBL were log(10) transformed to achieve

normality and homogeneity of variance, as determined by

Shapiro-Wilk’s test for normality and examination of skew and

kurtosis and by Levene’s test for equality of variances. BMI data

were normally distributed. TBL data from multiple years are

combined in our analysis, which is supported by the lack of a year-

to-year difference in TBL in bats from a given hibernaculum when

the WNS status did not change between years (e.g., from site 6

(Table 1; Figure 1): 10.5261.62 days (2008–2009) vs.

12.4763.09 days (2009–2010); F(1,16)=3.091, p = 0.098; partial

eta squared = 0.162, power = 0.380). For all analyses, power and

effect size are reported for non-significant results. All data are

presented as the mean 6 standard deviation (SD).

WNS status and TBL. For the initial analysis, bats for which

we had data on TBL, BMI, and sex were grouped into three

‘WNS status’ categories: (1) unaffected [N=57], (2) WNS-affected

(as determined by histology and/or visible fungus) and alive at

time of datalogger removal [N=14], and (3) WNS-affected and

found dead at time of datalogger removal [N= 12]. Bats were

assigned to the ‘unaffected’ category either when the presence of

fungal infection with Gd was not detected with PCR or histology

[N= 10] or when they were from a hibernaculum presumed to be

unaffected and not located in the WNS zone at the time of study

[N= 47] (Fig. 1). Combining the two groups of ‘unaffected’ bats

for further analyses is supported by the lack of a difference in TBL

between them (17.5564.56 days (PCR/histology) vs.

16.0667.03 days (presumed unaffected);

F(1,55)=1.111, p= 0.297; partial eta squared = 0.020, power

= 0.179). Effects of WNS status on TBL were tested with

ANCOVA, with BMI (random), site identity (fixed), and sex

(fixed) as covariates. Post-hoc examination of sex differences in

BMI was conducted using a Student’s t-test (with df and p values

adjusted for unequal variance).

TBL and date of death. Within the WNS-affected bats that

were found dead at the time of datalogger removal, the

relationships between TBL and BMI and date of death were

analyzed using Pearson Product Moment Correlations (PPMC)

(after confirming normality and homoscedasticity for each vari-

able). Date of death was measured as the date on which Tsk ,0uC

for the first time, since the Tsk of little brown bats always remains

Altered Hibernation Patterns in WNS-Affected Bats

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e38920



above 0uC during torpor [17,18]. P values were adjusted for

multiple comparisons using sequential Bonferroni correction [25],

and the coefficient of determination (r2) was calculated by squaring

significant correlations.

TBL and WNS severity score. Using a subset of animals for

which a ‘WNS severity score’ could be calculated and for which

BMI at the start of hibernation was available (N= 26), the effects

of severity score, BMI, and site on TBL were examined with

ANCOVA. A significant relationship between severity score and

TBL was examined using the Gamma Correlation Statistic, which

allows for multiple ‘tied rankings’ [26]. Of these 26 bats, 10 were

classified in the first analysis as ‘‘unaffected’’ 13 were classified in

the first analysis as ‘‘WNS-affected and alive at time of datalogger

removal’’ (of these three bats received a severity score of 1, four

bats a severity score of 2, two bats a severity score of 3, and four

bats a severity score of 4), and three were classified in the first

analysis as ‘‘WNS-affected and found dead at time of datalogger

removal’’ (of these two bats received a severity score of 2 and one

bat a severity score of 3).

Results

Arousing to Euthermic Temperatures
During the course of this study, when bats aroused from torpor,

they remained at euthermic temperatures for a short period,

averaging 78.3627.3 min. The range of average arousal bout

length per bat was from 38.18 to 180 min (N= 83 bats), while the

shortest recorded arousal bout lasted 30 min (the shortest period

that could be discerned by our methods) and the longest 330 min.

We were unable to test for differences in arousal bout length in

relation to WNS status (or severity score) due to the limited data

storage capacity of our dataloggers (and thus insufficient resolution

for precisely quantifying arousal bout length).

WNS Status and TBL
Although female bats were in significantly greater body

condition than males at the start of hibernation (BMI:

0.228460.0283 g/mm (N=32) vs. 0.207360.0210 g/mm

(N=51); t =23.633, adjusted df = 52.2, p= 0.001), there were

no detectable influences of sex on TBL (F(1,76)=0.031, p = 0.861;

partial eta squared = 0.000, power = 0.053). Likewise, we did not

detect a relationship between BMI at the start of hibernation and

TBL (F(1,76)=0.140, p = 0.710; partial eta squared = 0.000,

power = 0.066). Our BMI analyses were not biased by recapture

dynamics as there was no significant difference in BMI at the time

of datalogger attachment between bats for which loggers were

retrieved and bats that were not recovered (Mann-Whitney

U=3.339, Z= 1.259, p = 0.208). However, both WNS-status

and site identity significantly influenced TBL. Site identity heavily

influenced the model (F(1,78)=25.027, p,0.001) as two of the sites

contained only one category of bat (site 1 had only ‘WNS dead at

time of datalogger removal’ bat, and site 6 had only ‘unaffected’

bats). Despite the strong influence of site identity, a significant

WNS status main effect was still apparent (F(1,78)=7.569,

p = 0.007).

Unaffected bats had a mean TBL of 16.3266.65 days (Fig. 2).

Limited data collected from an additional 12 unaffected bats from

field sites where dataloggers were deployed for only eight weeks

late in the hibernation season in 2009 are similar with a mean

TBL of 15.6268.07 days (sites 2 and 5, Fig. 1). As predicted,

having WNS was associated with decreased TBL (Fig. 2). Bats that

were affected by WNS but still alive at the collection of dataloggers

(March) had shorter TBLs than unaffected bats, although the

difference was small and not statistically significant

(13.9664.30 days vs. 16.3266.65 days; F(1,69)=1.491, p = 0.226,

partial eta squared = 0.021, power = 0.226). However, these

affected but alive bats had significantly longer TBLs than WNS-

affected bats that were found dead at the time of datalogger

collection (7.9362.49 days; F(1,24)=17.191, p,0.0001). Limited

data collected from an additional four WNS-affected bats found

dead from a field site where dataloggers were deployed for only

eight weeks late in the hibernation season in 2010 are similar with

a mean TBL of 6.1761.79 days (site 4, Fig. 1).

TBL and Date of Death
Within the 12 WNS-affected bats found dead at the time of

datalogger collection, there was a very strong positive relationship

between TBL and the number of days that a bat lived (Fig. 3;

PPMC, r = 0.763, corrected p= 0.012). Based upon the calculated

coefficient of determination (r2=0.582), TBL significantly pre-

dicted the date of death, explaining 58% of the variance. Similar

to the findings of our full ANCOVA, we did not detect

a relationship between BMI at the start of hibernation and TBL

(PPMC, r = 0.178, p = 0.580) or between BMI at the start of

hibernation and date of death (PPMC, r =20.026, p = 0.936).

While the power to detect significant differences at these low effect

sizes (correlation coefficients of 0.178 and 0.026) is extremely low

(,0.05), even if they were statistically significant, they are not

biologically significant. In each bat, mortality was observed

immediately after the last arousal to euthermic temperatures.

While several bats (Fig. 2C) displayed frequent arousals just before

death, most did not, and arousals were spread throughout their

hibernation period.

TBL and WNS Severity Score
In the subset of animals for which the WNS severity score could

be calculated (N= 26), TBL was not related to BMI

(F(1,21)=0.111, p = 0.743, partial eta squared = 0.005, power

= 0.062) or site identity (F(2,22)=2.515, p = 0.104, partial eta

squared = 0.186, power = 0.045), but was related to severity score

(F(1,24)=6.509, p = 0.018). Bats with more severe fungal infections

had significantly shorter torpor bouts (gamma correlation statistic

=20.383, p= 0.022; Fig. 4).

Discussion

Our results support the hypothesis that WNS causes alterations

in bat torpor patterns that likely contribute to death. Our

prediction that increased mortality/disease state is associated with

abnormally short torpor bouts due to frequent arousal episodes

was supported by our larger dataset, in which bats were placed

into the WNS status categories of ‘unaffected,’ ‘WNS-affected and

alive at time of datalogger collection at the end of hibernation,’

and ‘WNS-affected and dead at the time of datalogger collection.’

While our ‘unaffected’ bats had an average TBL that falls within

the previously documented range for this species (16.32 days)

[16,17], TBL was shortened (at the low end of previously

described TBLs) in WNS-affected bats (13.96 days), and signifi-

cantly reduced in WNS-affected bats that died between mid-

December and late-February (7.93 days). An average torpor bout

length of 7.93 days is presumably not sustainable. In fact, within

those WNS-affected bats found dead at the time of datalogger

removal, TBL was a very strong predictor of the date of death,

explaining 58% of the variance in timing of mortality. The

distribution of death dates for these bats (Fig. 3) is earlier than that

reported in the USA [7] and earlier than seasonal changes in Gd

prevalence reported for Europe [27,28]. However, this was at least

the second year of infection at this site, which might shift the
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Figure 2. Torpor bout length (TBL) in days by WNS status. WNS was associated with decreased TBL: bats that were affected by WNS but still
alive at the collection of dataloggers (March) had shorter TBLs than unaffected bats (but this difference was not significant). Significantly shorter TBLs
were seen in WNS-affected bats that were found dead at the time of datalogger collection compared to affected but alive bats (2A). Bats were
categorized as: unaffected, WNS-affected and alive at time of datalogger removal (‘WNS-alive’), and WNS-affected and dead when loggers were
removed in the spring (‘WNS-dead’). Numbers in brackets indicate sample size and boxes sharing the same letter are not significantly different from
each other. Boxes depict the 25th and 75th percentiles, lines within boxes mark the median, and whiskers represent 95th and the 5th percentiles.
Outliers are indicated with open circles. Additional panels illustrate sample temperature profile of an unaffected (B) and an affected (C) bat, during
the winter of 2009. The bat illustrated in C displayed daily arousals at the end of its life, which was seen in several of these animals. Each of the ‘WNS-
dead’ bats died at the end of their last arousal.
doi:10.1371/journal.pone.0038920.g002
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Figure 3. Torpor bout length (TBL) as a function of date of death and BMI. For the 12 bats that died from WNS, BMI at the beginning of
hibernation was not related to TBL (3A), nor was BMI predictive of the date of death (3B). However, TBL significantly predicted date of death in WNS-
affected bats that were found dead at the time of datalogger retrieval (3C) (r2=0.58). Bats that died sooner were arousing to euthermic temperatures
much more frequently than those that lived longer.
doi:10.1371/journal.pone.0038920.g003
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distribution of death dates earlier relative to compiled data from

multiple sites [7,27,28]. Recapture of bats for datalogger removal

in March of each year (Table 1), the time when peak mortality has

been noted in the field [7], may have prevented us from detecting

other mortality events within our study animals.

Our analysis of WNS severity based upon histological confir-

mation of the degree of fungal invasion and infection further

supported and strengthened our conclusion – as the severity of

infection increased, so did the frequency of arousals from torpor.

Our data mirror the independently derived mathematical model

of Boyles and Willis [9], for which an estimated shift in TBL to

every 8.33 days resulted in a prediction of 81.9% mortality.

Relative to this model, our finding of a TBL of 7.93 days for

WNS-affected bats found dead, and field observations of 91%

mortality support the linkage between TBL and death, as

significant body fat is lost with each arousal [13,18]. Boyles and

Willis [9] also proposed that significant changes in arousal bout

duration in WNS-affected bats could lead to mortality. Bats are

unlike other hibernators [13,18] in that their arousal bouts are

typically measured in minutes rather than hours (or even days).

Thus, an increase in the duration of euthermy would incur

significant energetic costs. Although we were unable to statistically

validate differences in arousal bout length in bats of variable WNS

status, our finding of an average arousal bout of 78.3627.3 min-

utes for all bats tested indicate that biologically important shifts in

arousal bout length do not occur in WNS-affected animals.

We also predicted that relationships between WNS and torpor

patterns would be influenced by the amount of energy stores

available to the bat. In a previous study of little brown bats, BMI

significantly influenced hibernation energetics such that bats with

lower body masses at the beginning of hibernation selected colder

roosting sites, which allows for decreased metabolic rates and thus

lower energy expenditure [29]. Other studies have demonstrated

that bats roosting at colder temperatures arouse from torpor less

often, allowing them to conserve even more energy [19,30,31].

Thus, it is reasonable to expect that bats with lower BMIs would

display greater TBL and expend less energy.

These energetic arguments underlay the model of Boyles and

Willis [9] that our data so closely match. However, contrary to our

predictions, we did not find a relationship between BMI and TBL

or BMI and ‘WNS status’, death date, or ‘severity score’. As the

power for BMI effects in our models was low (driven by the strong

site effects), BMI may still play a role in hibernation patterns and

in a bat’s ability to withstand Gd infection. However, even within

a site (WNS-affected bats that were found dead at the time of

datalogger attachment from site 1 in Vermont), we failed to find

a relationship between BMI and WNS. If a higher BMI could

‘buffer’ a bat from the effects of WNS by allowing it to withstand

more arousals to euthermy, then we should have detected

a relationship between BMI and the number of arousals prior to

death – but we did not.

Although statistical analyses confirmed the significance of our

findings, studies of behavior and physiology in free-ranging

animals are often fraught with unknowns and potential biases,

which likely underlie the significant site effects in our statistical

models. One potential source of bias in our dataset is BMI at the

start of the hibernation season. While one could predict that bats

in poorer body condition would find datalogger attachment more

physiologically stressful than bats in greater body condition (and

thus be less likely to be recaptured), there was no difference in

starting BMI between bats that were recaptured and those that

were not. Another source of bias in our WNS-affected bats could

have been ambient temperature of hibernacula, because TBL

generally decreases with increased ambient temperature [30].

Although the exact ambient temperature at the exact roosting site

of each individual studied during hibernation was unknown, our

WNS-affected field sites were generally colder than our unaffected

sites (e.g., 7.29uC vs. 9.77uC). This would presumably bias bats

with WNS toward longer TBLs, but we observed the opposite

pattern. Within our unaffected bats, TBLs varied greatly (Fig. 2A),

likely due to a number of site-, individual-, and population-specific

factors. However, these factors appear to be overridden in the

WNS affected bats, especially those found dead at the time of

datalogger removal – as variability decreased and all bats

exhibited shortened TBLs.

Collectively, our data indicate that one proximate mechanism of

the mortality associated with WNS is decreased TBL. Warnecke

et al. [21], in a study of captive bats experimentally infected with

Gd during the third year of our field study, found a similar TBL

shift. The challenge that lies before us is to determine how

infection by Gd induces altered torpor patterns and why

significant variation in TBL between affected bats occurs. While

too-frequent arousal is clearly associated with WNS, not all bats

that died displayed the severely shortened TBL characteristic of

some that died, and some bats that displayed very short TBL did

not die.

In other mammalian hibernators, mechanisms associated with

immunity are reduced during hibernation, when the conservation

of energy is critical [32,33], and the periodic arousals from

hibernation may activate the dormant immune system. Thus,

immunological responses to fungal infection may be triggering

arousals more frequently than normal [34]. Additionally, physical

damage to wing skin caused by fungal infection may disrupt other

physiological functions, such water balance, resulting in de-

hydration, another trigger for arousal from torpor in hibernating

animals [8]. Equally important to understanding how Gd infection

leads to altered torpor patterns is the need to understand how

Figure 4. Torpor bout length (TBL) as a function of WNS
severity score. Wing tissue was assigned a disease severity score (SS0
to SS4) based upon histology, as follows: SS0 = no fungi suggestive of
WNS; SS1 = occasional but limited superficial fungal infection; SS2 =
more extensive superficial fungal infection with limited invasion; SS3 =
more extensive fungal infection with frequent cupping erosions; and
SS4 = severe fungal infection with deep tissue invasion. Details of the
scoring system can be found in Appendix S2 and scores 1 through 4
were identified as WNS. Individual data points are shown as open
circles, the median is indicated by a line. As severity of infection
increased, torpor bout length significantly decreased (bats aroused
more frequently from torpor.
doi:10.1371/journal.pone.0038920.g004
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these too-frequent arousals to euthermy may be contributing to

death – in ways that are not clearly related to energy balance, but

are potentially related to the disruption of other homeostatic

mechanisms [8].

A detailed understanding of the mechanism(s) by which

infection with Gd causes mortality in hibernating bats may

provide insights to develop interventional strategies to mitigate this

unprecedented wildlife disease. Insectivorous bats perform signif-

icant ecosystem services because they are primary predators of

nocturnal insects [35–37]. As such, we believe that the loss of cave-

dwelling hibernating bats in North America will be ecologically

significant.
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