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Introduction

Frequent Patterns (FP) are small patterns that repeatedly occur in a database, specially 

high in bio-sequences. The challenging task in pattern finding of bio-sequences is to find 

FP [1]. Data Mining has recently increased its popularity in classifying the biological 

sequences and structures based on their critical features and functions [2].
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To survive, all living being need proteins, either in muscles or in cell membrane. Pro-

tein is one among the important factors and acts as constituents of all living organisms 

[2]. Protein is building blocks of hundreds of Amino acids  joined together by peptide 

bonds. To be functionally active, amino acids chain folds up in complex way to give each 

protein a unique 3D shape. Protein folding is crucial for living organism as it affects gene 

skeleton. A small error in the folding process results in a misfolded structure, which can 

sometimes be lethal [3]. Protein misfolding is believed to be one of the primary causes 

of genetic disorder diseases such as Alzheimer’s disease, Parkinson’s disease, Hunting-

ton’s disease, Sickle cell anemia, Cystic fibrosis, Cancer and many other degenerative 

and neurodegenerative disorders [4]. Protein misfolding may occur due to an unwanted 

mutation in their amino acids or because of an error in the folding process. Thus, the 

relationship between these amino acids is very vital in case of protein misfolded diseases.

Frequent pattern mining is helpful to find the recurring relationships, association and 

correlation in a given data set [1]. Patterns can be represented as association rules and 

association rules are said to be strong if it satisfies both a minimum support threshold 

and a minimum confidence threshold. Therefore, frequent pattern mining can provide 

the solution for association rules formation among the most dominating amino acids for 

different protein misfolded diseases. To the best of our knowledge, three studies [2, 5, 6] 

have been identified on this issue. But all these were focused to predict pattern and asso-

ciation rules of the most dominating amino acids which cause the Chromaffin Tumor 

disease only. However, predicting the pattern and associations between more complex 

diseases are yet to be attempted in literature. Moreover, association rules obtained by 

these studies were not verified by usefulness measures.

The aim of this paper was to analyze protein sequences associated with complex pro-

tein misfolded diseases (i.e. Sickle Cell Anemia, Breast Cancer, Cystic Fibrosis, Nephro-

genic Diabetes Insipidus and Retinitis Pigmentosa-4) and identify frequent patterns 

among their amino acids. Here, association rule mining was used to predict patterns. 

Association rules were considered to be strong if it had satisfied a minimum support 

and a confidence threshold. Then only useful rules were finally sorted out with the use 

of interestingness measures (i.e. Lift, Bi-lift, Bi-improve and Bi-confidence). Adopt-

ing quantitative experimental method, this work forms more reliable and strong asso-

ciation rules among the most dominating amino acids of corresponding proteins and 

identify the dominating patterns of amino acid of complex protein misfolded diseases. 

Identification/reporting of such variant of amino acids for those particular five genetic 

diseases may have versatile implications. An improved capacity in identifying the rela-

tions among the most dominating amino acids in protein sequences related to disease 

will have an immediate impact on the diagnosis, treatment, and prevention of genetic 

disorders and thus may open up new opportunities in medical science to handle the con-

cerned genetic disorder diseases.

This paper is organized as follows. “Theoretical framework” section presents theoreti-

cal background of related issues. “Literature review” section highlights an overview of 

the related works. The experimental design is presented in “Methodology” section and 

“Experimental results” sectionrepresents the data analysis and results. In “Comparison 

with previous studies” section some comparative analysis with previous studies has been 

made. Potential implications of the finding of this work are focused in “Implication of 
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the findings” section. The concluding remarks and the future work are presented in the 

final section.

Theoretical framework

Some of the concepts and issues such as protein structure, protein associated diseases, 

association rule mining and their interestingness measures which have been considered 

in this paper are discussed below.

Amino acid and protein

To survive, all living being needs proteins. The biological activity of the protein is deter-

mined by the chemical properties of the amino acids. Amino acids are made from 

carbon, hydrogen, nitrogen and oxygen. Though more than 50 amino acids have been 

discovered; only 20 are used to make proteins in human body. These 20 amino acids 

convey a vast array of chemical versatility within proteins [7]. Proteins are complex mol-

ecules, made up of hundreds of amino acids that are attached to one another by peptide 

bonds (Fig. 1), forming a long chain [8]. Amino acids sequences contain the necessary 

information, basing on which, protein determine how that protein will fold into a 3D 

structure and the stability of the resulting structure.

Protein misfolding

A protein can be functionally active when it acquires a unique 3D conformation through 

the complicated folding of the polypeptide chain coded from the nuclear genome 

(Fig. 2). Protein may have adverse effect on its functionality if not folded properly. Pro-

teins that are not able to achieve native state, due either to an unwanted mutation in 

their amino acid sequence or simply because of an error in folding process, are recog-

nized as misfolded.

Protein misfolding diseases

For the last couple of years, protein misfolding and its effects have become a matter of 

great concern. According to the prion researcher Susan Lindquist, ‘protein misfold-

ing could be involved in up to half of all human diseases’ [9]. Many cancers and other 

Peptide Bond

Fig. 1 Amino Acids joined together through Peptide Bonds 
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protein-misfolding disorders are caused by mutations in proteins. Protein misfolding is 

believed to be the primary cause of genetic disorder diseases such as Alzheimer, Par-

kinson, Huntington, Sickle cell anemia, Cystic fibrosis, Cancer and many other degenera-

tive and neurodegenerative disorders [4]. Over last two decades, protein misfolding and 

its pathogenic effect have become a significant area of human bio-molecular research. 

In this work, five protein misfolded diseases (i.e. Sickle Cell Anemia [10], Breast Cancer 

[11], Cystic Fibrosis [12], Nephrogenic Diabetes Insipidus [13] and Retinitis Pigmentosa 4 

[14]) have been experimented.

Frequent pattern mining in bioinformatics

Frequent patterns are either itemsets or subsequences or substructures which appear in 

a data set with a frequency that is equal to or higher than a threshold specified by the 

user. Data mining can be the most active technique to infer structure and principles of 

biological datasets and to solve biological problems. Pattern mining is useful in bioinfor-

matics for predicting rules of certain elements in genes, for protein function prediction, 

for gene expression analysis, for protein fold recognition and for motif discovery in DNA 

sequences [13]. Thus, frequent pattern mining can be used to find recurring relation-

ships, association and correlation between amino acids for protein misfolded diseases.

Association rule mining

Association rule mining is one sorts of pattern mining which is built from frequent item-

set mining. In data mining, association rule learning is a popular and well researched 

method for discovering interesting relations between variables in large databases [15]. 

Patterns can be represented as association rules and the association rules are said to 

be strong if it satisfies both a minimum support threshold and a minimum confidence 

threshold. Therefore, frequent pattern mining can provide solution for association 

rules formation among the most dominating amino acids for different protein mis-

folded diseases. To analyse, predict and manage bulk biological data, numerous com-

puter algorithms and methods are developed which help to compare and align biological 

sequences and predict bio-sequence patterns [1]. In this work, as tools of association 

Fig. 2 Quaternary/final protein structure
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rule mining, Apriori algorithm was used to analyse, predict and identify desired pattern 

of dominating amino acids in the protein sequences.

Interestingness measures for association rules mining

Association rules mining algorithm can generate a lot of association rules or patters 

or knowledge, but most of them have redundant information and limited resources. 

Therefore, it is essential to evaluate the interestingness (or usefulness) of the asso-

ciation rules before their practical use. In this work objective measures were used for 

evaluating the interestingness of the rules. Benefit of using objective measures is that 

they mainly use statistical methods and a quantitative value to determine the interest-

ingness of rules which is reliable, easy to operate and convincing. Objective measures 

are Support, Confidence, Lift, Improve, Validity, Influence, Conviction and Bi-lift, Bi-

improve and Bi-confidence for Lift, Improve and Confidence, respectively etc. [16].

Objective measures support, confidence, lift and improve [17] were used by Islam 

et al. [18] to generate and detect strong and interesting association rules.

1. Support: The support of an itemset X, supp (X) is defined as proportion of transac-

tion in data set in which the item X appears. It indicates popularity of an itemset.

2. Confidence: The confidence of a rule is defined as:

3. Lift: The lift of a rule is defined as:

The rule (X → Y) will be considered as positively correlated rule if its Lift value is 

greater than 1. Thus, those rules are useful only whose Lift value is greater than 1.

4. Improve: Improve is a relatively new interestingness measure method of association 

rules based on the description of the defects of the traditional interestingness meas-

urement method and defined as:

However, Support, Confidence, Lift and Improve have their own limitation.

1. Limitation of support and confidence Due to subjectively selected support thresh-

old value, many infrequent itemsets which have been discarded may have potential 

value. The rules are called strong association rules if the Support and Confidence are 

larger than the respective minimum support and minimum confidence threshold. But 

strong association rules are not always effective, some are not what users are inter-

ested in, and some are even misleading [19].

(1)supp(X) =

No. of transactions inwhich itemset X appeared

Total no. of transactions

(2)conf (X → Y ) =
supp(X ∪ Y )

supp(X)

(3)lift(X → Y ) =
supp(X ∪ Y )

supp(Y ) ∗ supp(X)

(4)Improve(X → Y ) = [P(Y |X) − P(Y )]
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2. Limitation of lift Lift takes events A and B in equivalence position. According to 

the Lift, (A → B) and (B → A) are the same; that means, if we accept rule (A → B), 

(B → A) should also be accepted, but fact is not like this [19].

3. Limitation of improve [20] Firstly, how much improvement of probability can be 

called improvement? Secondly, the probability of former pieces’ occurrence will seri-

ously affect Improve evaluation in such a way that when it is high, the improve value 

will be very small all the time.

To overcome the shortcomings of Lift, Improve and Confidence, literature [19] suggests 

following corrections to the measures:

1. Bi-lift [19] The correction of Bi-lift measure method, lift
(

A → B
)

 as denominator, 

and lif(A → B) as numerator, namely, ratio of lift(A → B) to lift(A → B); Bi-lift formula 

is as follows:

Its value range is [0, ∞]. The higher the Bi-lift (A → B), the better the rule A → B is.

2. Bi-improve Because of the defects of improve, the paper [19] put forward Bi-improve. 

In order to eliminate the influence, correction was given by multiplying the ratio of 

the occurrence possibility of antecedent to the no occurrence probability of anteced-

ent. Bi-improve formula is as follows:

The higher the Bi-improve (A → B), the better the rule A → B is.

3. Bi-confidence [19] The confidence of association rules only thinks about the occur-

rence possibility of “B” when “A” occurs, but not consider the relationship between 

“A” and “B” when “A” does not occur. So, it makes a lot of association rules mining 

invalid. For the above problems, concept of Bi-confidence is defined as follows:

The value range of Bi-confidence is [− 1, 1]. If the value of Bi-confidence is greater 

than 0, then A and B have positive correlation. If the Bi-confidence is equal to 1, then 

(5)

Bi − lift(A → B) =

lift(A → B)

lift
(

A → B
)

=

P(AB)/P(A)P(B)

P
(

AB
)

/P
(

A
)

P(B)

=

P(AB)/P
(

A
)

P
(

AB
)

/P(A)

(6)

Bi − improve(A → B) = [P(B|A) − P(B)] ∗
P(A)

P
(

A
)

=
P(AB) − P(A)P(B)

P
(

A
)

(7)

Bi − confidence(A → B) =

P(AB)

P(A)
−

P
(

AB
)

P
(

A
)

=

P(AB) − P(A)P(B)

P(A) ∗ [1 − P(A)]
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it shows that “A” and “B” in record set appear together or not. If the Bi-confidence is 

equal to 0, then “A” has no relation with “B”. If the Bi-confidence is less than 0, then 

it shows that “A” and “B” have the negative correlation. The higher the Bi-confidence 

(A → B), the better the rule A → B is.

Literature review

Frequent Contiguous Patterns (FCP) are small patterns that repeatedly occurs in a data-

base, specially high in bio-sequences. Biological sequences such as DNA and protein 

sequences consist of long linear chain of chemical components and typically contain a 

large number of items [21]. Frequent pattern mining is helpful to find the recurring rela-

tionships, association and correlation in a given data set [1]. In data mining, associa-

tion rule learning is a popular and well researched method for discovering interesting 

relations between variables in large databases [15]. The challenging task in pattern find-

ing of biological sequences is to find frequent contiguous patterns [1]. Data Mining has 

increased popularity in classifying biological sequences and structures based on their 

critical features and functions [2].

Protein is one among the important factors and acts as the constituents of all living 

organisms [2]. Protein misfolding is believed to be the primary cause of genetic disorder 

diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Sickle 

cell anemia, Cystic fibrosis, Cancer and many other degenerative and neurodegenerative 

disorders [4]. Proteins are made up of smaller building blocks called amino acids, joined 

together in chains [22]. The chains of amino acids fold up in complex ways, giving each 

protein a unique 3D shape. Thus, relationship between these amino acids is very vital in 

case of protein misfolded diseases. Frequent pattern mining can provide the solution for 

association rules formation among the most dominating amino acids for different pro-

tein misfolded diseases. To the best of our knowledge, three studies [2, 5, 6] have been 

identified on this issue.

Lakshmi and Hariharan [5] aimed to predict patterns applying strong association 

rules over the frequent itemsets of the protein sequence named Succinate dehydro-

genase which is involved in chromaffin tumor disease. The system generated frequent 

itemsets from the protein sequence and constructs a frequent pattern tree. Thereafter 

strong association rules were generated based on 90% confidence threshold to identify 

the dominating amino acids.

Lakshmi and Hariharan [2] conducted another similar research in finding the most 

dominating amino acids (in Succinate dehydrogenase protein) which causes the disease 

chromaffin tumor. Here, Apriori algorithm was used in finding frequent items using can-

didate generation and then generating association rules from those frequent itemsets. 

In predicting the pattern, this work considered 5 as minimum Support count and 90% 

Confidence threshold.

Dhumale carried out similar work [6] to find dominating amino acids responsible to 

cause five diseases, i.e. Epilepsy, Hartnup, Cystinuria, Alzheimer and Chromaffin Tumor. 

As deduction, the author claimed five amino acid patterns (association rules), each to 

be responsible for an individual diseases. This work suffers serious limitations. Firstly, 
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the experimented protein sequence is anonymous. Secondly, all the mentioned diseases 

might not be associated with a single protein. The author did not provide any credibility 

of the information. Moreover, no authentic literature was found in this regard. It is to 

mention that all diseases are not associated with the protein changes. Some are multi-

factorial diseases; some are infectious diseases and so on. Thirdly, the author arbitrar-

ily increased the minimum Support count from 2 to 5, generated association rules with 

confidence threshold 90% and declared set of amino acid pattern (association rule) as 

responsible for each of the disease. But on what basis this deduction was arrived was not 

at all cleared.

The above three works were focused to predict the pattern and association rules of 

amino acids which causes the Chromaffin Tumor disease only. However, finding patterns 

of other protein associated diseases or more complex protein misfolded diseases ate yet 

to be attempted in the literature. Moreover, it is also important to predict interesting 

association rules for practical use. But association rules obtained by these studies were 

not verified by usefulness measures.

Methodology

In this study, five protein misfolded diseases were taken in consideration. The protein 

sequences associated with each of the diseases were collected from a well-recognised 

protein data bank. Then the associative patterns among the amino acids were identified 

using a data mining technique. To generate the strong association rules from the amino 

acids of the protein associated diseases, support count were raged between 3 to 5 and 

minimum confidence as 90%. Based on the strong association rules, this proposed sys-

tem was focused on predicting the most dominating amino acids than the other amino 

acids that cause the disease from the protein data sets.

General work flow

The proposed system works in five steps. General work flow of the proposed system is 

shown in Fig. 3.

(1) Selection of protein sequence As stated earlier, in this work, five misfolded 

diseases (i.e. Sickle Cell Anemia, Breast Cancer, Cystic Fibrosis, Nephrogenic Diabetes 

Insipidus and Retinitis Pigmentosa 4) were taken in consideration. Protein sequences 
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(amino acid chain) associated with these diseases were collected from protein data 

bank named Universal Protein Resource (www. unipr ot. org/) in FASTA form. It is to 

note that the UniProt is a comprehensive resource for protein sequence and anno-

tation data. The mission of  UniProt  is to provide the scientific community with a 

comprehensive, high-quality and freely accessible resource of protein sequence and 

functional information. Due to its world-wide acceptance and high degree of reliabil-

ity, protein sequences for this work were collected from UniProt protein knowledge-

base. Table 1 shows the experimented human diseases, their associated proteins and 

their lengths.

(2) Partitioning data set Each of the protein sequences (amino acid chain) were 

subdivided into amino acid sub sequences of length 10. For example, Hemoglobin 

Subunit Beta protein sequence (associated with Sickle Cell Anemia disease) contained 

amino acids of 147 length which was partitioned into 15 sub sequences of length 10 

each as shown in Table 2.

(3) Association rule mining The sub sequences of amino acids were then used for 

associative pattern identification through Apriori Algorithm data mining technique. 

Table 1 Different human diseases and involved proteins

Source: http:// www. unipr ot. org/

Disease Protein name Lengths

Sickle cell anemia Hemoglobin Subunit Beta 147

Entry Code: P68871

Breast cancer Breast Cancer Type 1 Susceptibility Protein 1863

Entry Code: P38398

Cystic fibrosis Cystic Fibrosis Transmembrane Conductance Regu-
lator (CFTR)

1480

Entry Code: P13569

Nephrogenic diabetes insipidus (NDI) Vasopressin V2 Receptor (V2R) 371

Entry Code: P30518

Retinitis Pigmentosa 4 (RP4) Rhodopsin (Opsin-2) 348

Entry Code: P08100

Table 2 Sub sequences of hemoglobin subunit beta protein sequence

Source: http:// www. unipr ot. org/ unipr ot/ P68871

10 20 30

MVHLTPEEKS AVTALWGKVN VDEVGGEALG

40 50 60

RLLVVYPWTQ RFFESFGDLS TPDAVMGNPK

70 80 90

VKAHGKKVLG AFSDGLAHLD NLKGTFATLS

100 110 120

ELHCDKLHVD PENFRLLGNV LVCVLAHHFG

130 140 147

KEFTPPVQAA YQKVVAGVAN ALAHKYH

http://www.uniprot.org/
http://www.uniprot.org/
http://www.uniprot.org/uniprot/P68871
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Association rules were generated based on minimum support count threshold and 

minimum 90% confidence level. It is to mention that the value of the minimum sup-

port count is usually subjectively decided by the researchers. Higher the minimum 

support count, smaller and stronger the association rules for a particular confidence 

level. However, if the support count is too high then many interesting association 

rules may be discarded. In this work, the lengths of protein sequences were not uni-

form and thus to generate and analyse a significant number of association rules, the 

minimum support count was subjectively selected 3 for Hemoglobin Subunit Beta 

protein, 5 for Breast Cancer Type 1 susceptibility and Cystic Fibrosis Transmembrane 

Conductance Regulator proteins and 4 for Vasopressin V2 Receptor and Rhodopsin 

proteins.

(4) Measuring interestingness of association rules In the previous steps, association 

rule algorithm would generate a significant number of rules. However, all these asso-

ciation rules may not be practically useful. Therefore, the interestingness of these rules 

were measured and evaluated. This evaluation would be conducted by objective or sub-

jective measures. Considering the effectiveness and stability in results, improved objec-

tive measuring tools (i.e. Bi-lift, Bi-improve and Bi-confidence) were used to evaluate the 

association rules comprehensively. As such, Bi-lift, Bi-improve and Bi-confidence value 

of each of the association rules were calculated to finally prune the useful association 

rules.

(5) Identification of patterns Based on the strong and useful association rules, this 

proposed system focused on predicting the most dominating amino acids, and thus the 

associative patterns among the amino acids were identified for each protein misfolded 

disease.

Combining Support and Confidence with Lift, Bi-lift, Bi-improve and Bi-confidence, a 

reasonable framework for identifying strong and interesting association rules was devel-

oped. In this work, the associative patterns among the amino acids were generated and 

measured by using following sequences:

1. Firstly, Support and Confidence threshold was used to filter out frequent itemsets and 

strong association rules

2. Secondly, Lift, Bi-lift, Bi-improve, and Bi-confidence value were calculated

3. Then, according to the Bi-lift, Bi-improve and the Bi-confidence value, useful associa-

tion rules were sorted out

Actually, the final evaluation results of these three kinds of measure methods are very 

close and give perfect results.

Algorithm

In this work, the algorithm used takes four inputs: (i) the protein sequence of a particu-

lar protein misfolded disease, (ii) minimum support count (iii) the threshold confidence 

level and (iv) usefulness measuring parameter. Then the algorithm returns the strong 

and useful association rules of the most dominating amino acids for the concerned pro-

tein misfolded disease. Pseudocode as follows:
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Input: Protein sequence, Support Count, Confidence, Usefulness measuring parameter (Lift, Bi-lift, Bi-

improve, and Bi-confidence)

Output: Useful Strong Association Rules

Procedure:

generate_association_rules() 

1: Dataset= gen_subseq_dataset(Protein_Seq); 

2: L1= find_frequent_itemset_of_length_1(Dataset); 

3: for( i= 2; Li-1 ≠ Ø; i++) do: 

4:    Li←find_frequent_itemset(Dataset, Li-1); 

5:    Rules← Ø ;

6: for( i = 2; Li ≠ Ø; i++ ) do:

7:    Rules← find_association_rules(Li);

8:    M_Rules←find_association_measures(Rules);

9: return M_Rules;

gen_subseq_dataset(Protein_Seq)

1: Dataset←Ø; 

2: len= length(Protein_Seq); 

3: for(i = 1; i<= len; i+=10 ) do: 

4:   if (i+9 <= len) then   

5:      Dataset← Protein_Seq.subsequence(i, i+9); 

6:   else

7:      Dataset← Protein_Seq.subsequence(i, len); 

8: return Dataset;

find_frequent_itemset(Dataset, A)

1: B←Ø; 

2: for( i = 1; i<length(A); i++ ) do: 

3:    for( j = i+1; j<= length(A); j++ ) do: 
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4:      k=length(A[i]); 

5:      if(A[i][1]=A[j][1]^A[i][2]=A[j][2]^…^A[i][k1]=A[j][k-1])then 

6:         Temporary =A[i] A[j]; 

7:         if(is_frequent(Dataset, Temporary) ) then 

8:           B← Temporary;

9: return B; 

is_frequent(Dataset, Temporary)

1: count= Ø; 

2: for( i = 1; i<= length(Dataset); i++ ) do: 

3:    if(Temporary Dataset[i]) then 

4:      count=count + 1; 

5: if( count>= Sup_count ) then 

6:   return true;

7: else

8:   return false;

find_association_rules(L) 

1: R←Ø; 

2: for( i = 1; i<= length(L); i++ ) do: 

3:    for(j = 1; j <length(L[i]);j++) do: 

4:       left=L[i].subset(1, j); 

5:       right=L[i].subset(j+1, length(L[i])); 

6:       var= (sup_count(L[i])/sup_count(left))*100; 

7: if(var>= Confidence ) then 

8:   R←make_rules(left, right); 

9: return R;

find_association_measures(Rules)

1: R← Ø ;
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2: for( i = 1; i <= length(Rules); i++ ) do:

3:   T.left=A =Pairs[i].left;

4:   T.right =B = Pairs[i].right;

5:   T.bi_lift =(p(AB)*p(A´))/(p(A´B)*p(A));

6:   T.bi_confidence = (p(AB)-(p(A)*p(B)))/(p(A)*(1-p(A)));

7:   T.bi_improve = (p(AB)-(p(A)*p(B)))/p(A´);

8: R←T;

9: return R;

The procedure starts with the method generate_association_rules().

Step-1 In this step, the Dataset is generated by calling gen_subseq_dataset(Protein_

Seq). This method splits the protein sequence after each 10 elements of the given 

misfolded protein sequence and insert them into the Dataset and return it.

Step-2 In this step, L1 is generated which denotes the frequent itemset of length 1 by 

calling the method named find_frequent_itemset_of_length_1 (Dataset).

Steps-3, 4 In this step, a loop runs until Li−1 becomes empty. Here, Li denotes the ith 

frequent itemset. Li is generated by calling find_frequent_itemset(Dataset, Li−1). This 

procedure generates the ith frequent itemset from the (i − 1)th frequent itemset. It 

runs a nested loop where it takes each two item from (i − 1)th frequent itemset and if 

it matches all the protein except the last one between that two itemset, then it joins 

that two itemset and check if the itemset is frequent or not. If the itemset is frequent, 

then it insert that itemset into the ith frequent itemset. After completing this proce-

dure, it returns the ith frequent itemset.

Steps-6, 7 In this step, a loop runs until Li−1 becomes empty starting from L2 and find 

the association rules by calling find_association_rules(L). In each iteration of the loop 

it takes an item from the ith frequent itemset and splits it into two parts from first to 

last. Then it calculates the confidence and inserts the rules having confidence above 

the given confidence and returns the set of rules. Finally, the association rules are 

stored in Rules.

Step-8 In this step, a loop runs over all items of Rules by calling find_association_

measures (Rules). Then it calculates bi_lift, bi_confidence and bi_improve for each of 

the items of Rules. Finally, the rules with metrics for association rules measuring are 

stored in R.

Experimental results

The algorithm of the experiment had been implemented using C +  + in a laptop com-

puter with an Intel Core i5-7200U CPU (clock frequency 2.7  GHz and 4  GB RAM). 

Experimental results were obtained from each of the protein sequences. During the 
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computation, the number of iterations was not fixed. The algorithm was continued till 

no further successful extensions were found. The work thus followed three basic actions:

a. Frequent itemsets generation

b. Generation of strong association rules

c. Identifying interesting/useful association rules

In doing so, following considerations were made:

a. Support count threshold 3, 4 and 5 for frequent itemset generation.

b. Minimum 90% confidence level to obtain strong association rules.

c. Using Lift, Bi-lift, Bi-improve and Bi-confidence as measuring instrument to find use-

ful strong association rules.

Frequent itemsets generation

Frequent itemsets generation means the frequent amino acid sets generation from the 

transactional protein datasets (sub sequences). For every protein sequences, frequent 

itemsets were generated. The algorithm maintains list of frequent amino acid sets to fur-

ther generate strong association rules.

(1) Disease-1: sickle cell anemia For Sickle Cell Anemia, protein sequence Hemo-

globin Subunit Beta was loaded as input file. Here, 3 was considered as minimum sup-

port count. The process continued up to 5th iteration and garnered total 135 itemsets 

(comprising 1-itemsets to 5-itemsets) of amino acids. A few of the generated frequent 

itemsets for Sickle Cell Anemia is graphically represented in Fig. 4.

(2) (Disease-2: Breast cancer For Breast Cancer disease, protein chain sequence 

Breast Cancer Type 1 Susceptibility Protein was loaded in the process as the input file. 

This protein chain sequence was consisted of total 1863 amino acids. Here, due to the 

long length, 5 was considered as the minimum support count. The process satisfied the 
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Fig. 4 A few frequent 4-itemsets and 5-itemsets obtained from protein sequence for Sickle Cell Anemia 
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threshold support count unto 6th iteration and generated total 1806 itemsets (compris-

ing 1-itemsets to 6-itemsets) of amino acids. Among this, frequent 1-itemsets were 20 in 

number, frequent 2-itemsets were 176, frequent 3-itemsets were 669, frequent 4-item-

sets were 744, frequent 5-itemsets were 191 and frequent 6-itemsets were 6. A concise 

list of frequent itemsets generated for this disease is shown in Fig. 5.

(3) Disease-3: Cystic fibrosis For Cystic Fibrosis disease, protein chain sequence Cystic 

Fibrosis Transmembrane Conductance Regulator (CFTR) (length 1480 amino acids) was 

loaded in the process as the input file. Here, due to long length, minimum support count 

5 was considered. The process continued up to 6th iteration and garnered total 1464 

itemsets (comprising 1-itemsets to 6-itemsets) of amino acids. Among this, frequent 

1-itemsets were 20 in number, frequent 2-itemsets were 178, frequent 3-itemsets were 

607, frequent 4-itemsets were 563, frequent 5-itemsets were 95 and frequent 6-itemsets 

were only 1. A concise list of frequent itemsets generated for this disease is shown in 

Fig. 6.
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Fig. 5 A few frequent 3 to 6-itemsets obtained from protein sequence for Breast Cancer 
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(4) Disease-4: Nephrogenic diabetes insipidus For Nephrogenic Diabetes Insipidus 

(NDI)disease, protein sequence Vasopressin V2 Receptor was loaded as the input file. 

Here, due to moderate length (371), minimum support count 4 was considered. The pro-

cess continued up to 5th iteration and generated total 234 itemsets. A few of generated 

frequent itemsets for Nephrogenic Diabetes Insipidus is shown in Fig. 7.

(5) Disease-5: Retinitis pigmentosa 4 Protein sequence Rhodopsin  (Opsin-2) was 

loaded in the process as input for Retinitis Pigmentosa 4 (RP4) disease. Here, 4 was con-

sidered as the minimum support count. The process continued up to 5th iteration and 

generated total 268 itemsets. Few generated frequent itemsets for Retinitis Pigmentosa 4 

is graphically represented in Fig. 8.

Strong association rules generation

The algorithm maintains list of frequent itemsets (amino acid sets) for each protein 

sequence and from this list corresponding strong association rules are generated consid-

ering 90% confidence threshold in each case.
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(1) Disease-1: Sickle cell anemia: The process generated 698 association rules from 

135 frequent itemsets. Among these rules, only 95 rules satisfied the minimum confi-

dence level (90%) and were considered as accepted strong association rules and rest 603 

rules were rejected. Examples of few association rules in this phase are shown in Table 3.

(2) Disease-2: Breast cancer In case of Breast Cancer, the algorithm handled the pro-

tein sequence of Breast Cancer Type 1 Susceptibility protein and generated total 1806 

frequent itemsets of amino acids considering minimum support count 5. Here, total 

20,884 association rules were generated from 1806 frequent itemsets. Among these, only 

80 rules satisfied the minimum confidence level (90%) and were considered as accepted 

strong association rules and rest rules were rejected. Few of these accepted rules are 

shown in Table 4.

(3) Disease-3: Cystic fibrosis Here, the algorithm handled the protein sequence of 

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein and gener-

ated total 1464 frequent itemsets of amino acids considering minimum support count 

5. Total 14,792 association rules were generated from 1464 frequent item sets. Among 

these, only 96 rules satisfied the minimum confidence level (90%). Hence, these rules 

Table 3 Generation of association rules for sickle cell anemia 

Ser Assoc rule Conf Result Ser Assoc rule Conf Result

1 A → D 20% Rejected 492 G → AKT 23% Rejected

2 D → A 43% Rejected 493 GK → AT 60% Rejected

· · · · 494 GKT → A 100% Accepted

· · · · 495 GT → AK 100% Accepted

146 G → AK 39% Rejected · · · ·

147 GK → A 100% Accepted 694 KNV → AG 100% Accepted

148 K → AG 46% Rejected 695 KV → AGN 43% Rejected

· · · · 696 N → AGKV 50% Rejected

461 FL → GS 60% Rejected 697 NV → AGK 75% Rejected

462 FLS → G 100% Accepted 698 V → AGKN 16% Rejected

Table 4 Accepted strong association rules for breast cancer (not full list)

Ser Assoc rule Conf Ser Assoc rule Conf

1 AD → E 100% 56 GKLN → P 100%

2 DH → E 90% · · ·

3 MS → E 93% · · ·

· · · 62 GQRS → L 100%

· · · 63 NQRS → L 100%

25 DRS → E 91% 64 LRSV → E 100%

26 DSV → E 100% 65 EKQV → L 100%

27 DNV → E 100% · · ·

28 FLN → P 100% · · ·

· · · · · ·

· · · 78 LNQST → P 100%

40 IKR → S 100% 79 GLQV → S 100%

41 FKV → S 90% 80 KQSV → L 100%
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were considered as accepted strong association rules and rest rules were rejected. Few of 

these accepted rules are shown in Table 5.

(4) Disease-4: Nephrogenic diabetes insipidus Here, total 1152 association rules 

were generated from 234 frequent itemsets. Among these, only 54 rules satisfied the 

Table 5 Accepted strong association rules for cystic fibrosis (not full list)

Ser Assoc rule Conf Ser Assoc rule Conf

1 AG → L 90% 70 EKPQ → L 100%

2 DT → L 92% 71 LPQR → K 100%

3 HV → L 91% 72 ALQR → S 100%

4 NW → L 100% · · ·

5 TW → L 90% · · ·

6 AM → L 93% 82 HIKV → S 100%

7 PY → L 100% 83 HISV → K 100%

8 QY → L 92% 84 AGIS → L 100%

· · · · · ·

· · · · · ·

24 DTV → L 100% 94 APSV → L 100%

25 HTV → L 100% 95 LPST → V 100%

26 AIM → L 100% 96 IKLTV → S 100%

Table 6 Accepted strong association rules for nephrogenic diabetes insipidus (not full list)

Ser Assoc rule Conf Ser Assoc rule Conf

1 K → A 100% 32 AFG → P 100%

2 N → S 100% 33 FG → AP 100%

3 FW → A 100% · · ·

· · · · · ·

16 CV → A 100% 40 FPV → A 100%

17 FV → A 100% 41 GPV → A 100%

· · · · · ·

28 DE → P 100% 52 DLP → E 100%

29 FG → P 100% 53 AMT → L 100%

30 GI → V 100% 54 FLPV → A 100%

Table 7 Accepted strong association rules for retinitis pigmentosa 4 (not full list)

Ser Assoc rule Conf Ser Assoc rule Conf

1 W → A 100% 26 GIT → F 100%

2 W → L 100% 27 FTV → G 100%

· · · 31 GPT → F 100%

12 GM → F 100% · · ·

13 NY → P 100% 46 ALY → I 100%

· · · 47 AVY → I 100%

22 CY → V 100% 48 FNPT → G 100%

23 AFT → G 100% 49 GNPT → F 100%
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minimum confidence level (90%) and were considered as accepted strong association 

rules and rest rules were rejected. Few of the accepted rules are shown in Table 6.

(5)  Disease-5: Retinitis pigmentosa 4 Here, total 1252 association rules were gener-

ated from 268 frequent itemsets where only 49 satisfied minimum confidence level (90%) 

and were considered as accepted strong association rules and rest rules are rejected. A 

few of the accepted rules are shown in Table 7.

Useful association rules identification

The strong association rules obtained by the previous process were required to be evalu-

ated by some measuring tools to identify useful strong association rules. Objective meas-

uring tools Lift and Improve were used for this purpose [18]. However, Lift and Improve 

have some limitation as discussed in para II(F). Thus considering the effectiveness and 

stability in results, in this work (as mentioned earlier) improved objective measuring 

tools (i. e. Bi-lift, Bi-improve and Bi-confidence) were used to evaluate the association 

rules comprehensively.

Lift, Bi-lift, Bi-improve and Bi-confidence value of each of the association rules were 

calculated and finally only useful rules were sorted out based on the following criteria:

• The rule (A → B) will be considered as positively correlated rule (emergence of “A” 

promotes the emergence of “B,”) if its Lift value is greater than 1. Thus, those rules 

are useful only whose Lift value is greater than 1. The higher the lift(A → B) value, the 

better the rule (A → B) is, while the higher the (Ā → B) is, the worse the rule (A → B) 

is.

• The higher the Bi-lift(A → B) value, the better the rule (A → B) is.

• The higher the Bi-improve(A → B) value, the better the rule (A → B) is.

• If the Bi-confidence value is greater than 0, then P(AB) > P(A)P(B), which shows that 

“A” and “B” have the positive correlation. Thus, those rules are useful only whose 

Bi-confidence value is greater than 0. The higher the Bi-confidence (A → B) value, the 

better the rule A → B is.

Disease-1: Sickle cell anemia In case of Sickle Cell Anemia, 95 rules were considered 

as accepted strong association rules (as per previous step) which were further evalu-

ated to determine their usefulness. In doing so, Lift, Bi-lift, Bi-improve and Bi-confidence 

values of each of these association rules were calculated and shorted out based on the 

criteria stated in the earlier paragraph. Finally 59 rules were selected as useful strong 

association rules (Table 6) and rest 36 rules were redundant or might be misleading and 

thus not effective (Table 8).

In this case, the first accepted useful association rule is GT → AN as it satisfies the 

required criteria as shown below:

Criteria-1: Lift value should be greater than 1.

Test: Here, lift (GT → AN) = 3.75, which is greater than 1. So, criteria-1 is satisfied.

Criteria-2: The higher the Bi-lift(A → B) value, the better the rule (A → B) is.

Test: Here, Bi-lift(GT → AN) = 12, which is a positive higher value. So, criteria-2 is 

satisfied.
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Criteria-3: The higher the Bi-improv(A → B) value, the better the rule (A → B) is.

Test: Here, Bi-improve(GT → AN) = 0.183,which is a positive value. So, criteria-3 is 

satisfied.

Criteria-4: Bi-confidence value is greater than 0.

Test: Here, Bi-confidence(GT → AN) = 0.917, which is greater than 0. So, criteria-4 is 

satisfied.

(2)  Disease-2: Breast cancer Similarly, in case of Breast Cancer, Lift, Bi-lift, Bi-

improve and Bi-confidence values of 80 accepted rules were calculated and evaluated. 

Finally 19 rules were selected as useful strong association rules and rest 61 rules were 

redundant or might be misleading and thus not effective (Table 9).

(3) Disease-3: Cystic fibrosis In case of Cystic Fibrosis, the algorithm handled the cor-

responding protein sequence and generated 96 accepted strong association rules. Basing 

on Lift, Bi-lift, Bi-improve and Bi-confidence values of these rules, finally 35 rules were 

sorted out as useful strong association rules and rest 61 rules were redundant or might 

be misleading and thus not effective (Table 10).

Table 8 Usefulness measures of association rules for sickle cell anemia 

Ser Rules Lift Bi-lift Bi-Improve Bi-confidence

Useful strong association rules

1 GT → AN 3.75 12 0.183 0.917

2 GT → KN 3.75 12 0.183 0.917

3 AGT → KN 3.75 12 0.183 0.917

4 GKT → AN 3.75 12 0.183 0.917

5 GT → AKN 3.75 12 0.183 0.917

6 AN → GK 3 11 0.242 0.909

7 GS → FL 3 6 0.167 0.833

· · · · · ·

· · · · · ·

41 AGNV → K 1.364 1.5 0.067 0.333

42 FL → G 1.154 1.25 0.067 0.2

43 AN → G 1.154 1.222 0.048 0.182

44 KN → G 1.154 1.222 0.048 0.182

· · · · · ·

· · · · · ·

58 AKNT → G 1.154 1.2 0.033 0.167

59 AKNV → G 1.154 1.2 0.033 0.167

Redundant rules

60 GH → A 1 1 0 0

61 GK → A 1 1 0 0

62 KN → A 1 1 0 0

· · · · · ·

· · · · · ·

94 PT → V 0.833 0.786  − 0.073  − 0.273

95 FG → L 0.833 0.769  − 0.1  − 0.3
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(4) Disease-4: Nephrogenic diabetes insipidus Similarly, Lift, Bi-lift, Bi-improve and 

Bi-confidence values of 54 accepted rules were calculated and evaluated. Finally 14 rules 

were selected as useful strong association rules (Table 11).

(5) Disease-5: Retinitis pigmentosa 4 In case of Retinitis Pigmentosa 4, the algorithm 

handled the protein sequence of Rhodopsin (Opsin-2) protein and generated 49 strong 

association rules. Here, basing on Lift, Bi-lift, Bi-improve and Bi-confidence values, all 49 

rules were selected as useful strong association rules (Table 12).

Summary of the result

Considering the limitation of earlier studies, this work designed a uniform method to 

predict the patterns and association rules of the most dominating amino acids for differ-

ent protein misfolded diseases. The support thresholds were kept relatively low to exam-

ine large amount of frequent patterns and their association rules. And the rules were 

then tested using improved objective measuring tools (Bi-lift, Bi-improve and Bi-confi-

dence) to evaluate the association rules comprehensively. Finally following patterns and 

useful strong association rules of the most dominating amino acids for experimented 

protein misfolded diseases were found as outcome:

Table 9 Usefulness measures of association rules for breast cancer 

Ser Rules Lift Bi-lift Bi-Improve Bi-confidence

Useful strong association rules

1 ANPT → G 2.149 2.235 0.018 0.552

2 NQST → P 1.948 2.011 0.016 0.503

3 FLN → P 1.948 2.0 0.013 0.5

4 GKLN → P 1.948 2.0 0.013 0.5

5 GLNT → P 1.948 2.0 0.013 0.5

6 LNQST → P 1.948 2.0 0.013 0.5

7 ILQS → N 1.545 1.569 0.01 0.363

8 IPSV → K 1.365 1.379 0.007 0.275

9 EKQV → L 1.199 1.208 0.006 0.172

10 DHP → L 1.199 1.207 0.005 0.171

11 QRT → L 1.199 1.207 0.005 0.171

12 GPST → L 1.199 1.207 0.005 0.171

13 GQRS → L 1.199 1.207 0.005 0.171

14 NQRS → L 1.199 1.207 0.005 0.171

15 DPY → L 1.199 1.205 0.005 0.17

16 DEHP → L 1.199 1.205 0.005 0.17

17 FPST → L 1.199 1.205 0.005 0.17

18 EKQSV → L 1.199 1.205 0.005 0.17

19 NQR → L 1.079 1.084 0.004 0.069

Redundant rules

20 ADR → E 0.944 0.943  − 0.002  − 0.06

· · · · · ·

· · · · · ·

78 EGKV → S 0.835 0.829  − 0.008  − 0.206

79 EQR → S 0.751 0.741  − 0.017  − 0.315

80 FKV → S 0.751 0.741  − 0.017  − 0.315



Page 22 of 28Islam et al. BMC Bioinformatics          (2021) 22:435 

Table 10 Usefulness measures of association rules for cystic fibrosis 

Ser Rules Lift Bi-lift Bi-Improve Bi-confidence

Useful strong association rules

1 EKLP → Q 2.209 2.328 0.023 0.57

2 PVW → A 1.783 1.833 0.015 0.455

3 CLR → A 1.783 1.833 0.015 0.455

4 HILV → T 1.783 1.833 0.015 0.455

5 HILS → T 1.783 1.833 0.015 0.455

6 FPR → V 1.644 1.707 0.022 0.414

7 FIPR → V 1.644 1.69 0.017 0.408

· · · · · ·

· · · · · ·

· · · · · ·

32 HKLV → S 1.203 1.212 0.006 0.175

33 IKLTV → S 1.203 1.212 0.006 0.175

34 IKLV → S 1.094 1.102 0.006 0.084

35 DIR → S 1.083 1.089 0.005 0.074

Redundant rules

36 ANW → L 0.809 0.803  − 0.008  − 0.245

37 DET → L 0.809 0.803  − 0.008  − 0.245

· · · · · ·

· · · · · ·

94 EQR → L 0.728 0.714  − 0.024  − 0.361

95 APS → L 0.728 0.714  − 0.024  − 0.361

96 AG → L 0.728 0.698  − 0.053  − 0.389

Table 11 Usefulness measures of association rules for nephrogenic diabetes insipidus 

Ser Rules Lift Bi-lift Bi-Improve Bi-confidence

Useful strong association rules

1 DLP → E 3.455 4.857 0.084 0.794

2 FG → AP 2.375 2.833 0.068 0.647

3 GI → AV 2.235 2.615 0.065 0.618

4 CV → AL 1.9 2.125 0.056 0.529

5 AE → P 1.462 1.6 0.059 0.375

· · · · · ·

· · · · · ·

11 GI → V 1.267 1.308 0.025 0.235

12 AGI → V 1.267 1.308 0.025 0.235

13 N → S 1.086 1.103 0.015 0.094

14 AN → S 1.086 1.097 0.009 0.088

Redundant rules

15 K → A 0.809 0.791  − 0.028  − 0.265

16 FG → A 0.809 0.791  − 0.028  − 0.265

· · · · · ·

· · · · · ·

53 PQ → L 0.776 0.75  − 0.044  − 0.333

54 MT → L 0.776 0.75  − 0.044  − 0.333



Page 23 of 28Islam et al. BMC Bioinformatics          (2021) 22:435  

Disease-1: Sickle cell anemia

GT → AN GT → KN AGT → KN GKT → AN GT → AKN

AN → GK GS → FL NT → GK KP → TV ANT → GK

NT → AGK ANV → GK GT → N AGT → N GKT → N

AGKT → N KP → T GH → AL GT → AK NT → AK

KPV → T GNT → AK KN → AG GS → F FS → GL

GLS → F NT → AG KNT → AG KNV → AG AN → K

AT → K AGN → K GT → K NT → K AGT → K

ANT → K GNT → K ANV → K ATV → K AGNT → K

AGNV → K FL → G AN → G KN → G NV → G

AKN → G ALV → G AD → G LN → G FS → G

NT → G AFL → G FLS → G ANT → G KNT → G

ANV → G KNV → G AKNT → G AKNV → G

Disease-2: Breast cancer

ANPT → G NQST → P QRT → L GKLN → P LNQST → P

IPSV → K EKQV → L NQR → L GPST → L EKQSV → L

DPY → L DEHP → L FPST → L ILQS → N NQRS → L

FLN → P DHP → L GLNT → P GQRS → L

Disease-3: Cystic fibrosis

EKLP → Q HISV → K HIKV → S HKLS → V HKR → S

APW → V ALQR → S HILV → T DKSV → I IKLV → S

LPQR → K HIKT → S FILP → V DIM → S FIPR → V

ADKS → I CLR → A AFLV → I IKLTV → S FIN → K

Table 12 Usefulness measures of association rules for retinitis pigmentosa 4 

Ser Rules Lift Bi-lift Bi-Improve Bi-confidence

Useful strong association rules

1 ALS → W 7 31 0.111 0.968

2 W → AL 3.5 6 0.119 0.833

3 PW → AL 3.5 5.167 0.092 0.806

4 SW → AL 3.5 5.167 0.092 0.806

5 QS → E 2.188 2.727 0.09 0.633

6 AFP → S 2.059 2.385 0.066 0.581

· · · · · ·

21 AVY → I 1.458 1.55 0.041 0.355

22 W → L 1.207 1.25 0.029 0.2

23 AW → L 1.207 1.25 0.029 0.2

24 CI → L 1.207 1.24 0.022 0.194

· · · · · ·

34 GPT → F 1.167 1.2 0.024 0.167

35 EM → F 1.167 1.192 0.018 0.161

36 MS → F 1.167 1.192 0.018 0.161

· · · · · ·

48 LSW → A 1.094 1.107 0.011 0.097

49 ILV → A 1.094 1.107 0.011 0.097
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Disease-3: Cystic fibrosis

AIKN → S PRT → V DIKV → S FPR → V FGQ → I

PVW → A DLRS → I HKLV → S LPST → V ADN → S

AQW → V HKV → S HILS → T FMR → I DIR → S

Disease-4: Nephrogenic diabetes insipidus

DLP → E GI → AV FG → P AE → P DE → P GI → V DEL → P

AFG → P AGI → V AE → P CV → AL N → S AN → S FG → AP

Disease-5: Retinitis pigmentosa 4

ALS → W W → AL NY → P GT → F LSW → A APW → L

FTV → G EM → F QV → T AFT → G AFS → P ASW → L

ALY → I FH → T AW → L FGI → T FGY → T GNPT → F

PW → L SW → L GM → F FNP → G GNT → F GMN → F

GTY → F LW → A QS → E ILV → A SW → AL

GPT → F W → A AY → I AGT → F PW → AL

FNP → G KV → T W → L SW → A LPW → A

AVY → I MS → F H → T GIT → F GTV → F

AFP → S PW → A CY → V CI → L MNT → F

This work initially generated 135, 1806, 1464, 234 and 268 itemsets from the correspond-

ing protein sequences of Sickle Cell Anemia, Breast Cancer, Cystic Fibrosis, Nephrogenic 

Diabetes Insipidus (NDI), and Retinitis Pigmentosa 4 (RP4), respectively. Then the algo-

rithm generated association rules from those itemsets. The association rules which fall 

below the threshold Confidence (90%) were pruned as strong association rules. After 

using objective measuring tools over these strong association rules, the final useful 

rules were found to be only 59, 19, 35, 14 and 49. These final rules indicate the most 
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Page 25 of 28Islam et al. BMC Bioinformatics          (2021) 22:435  

dominating amino acids and their patterns for Sickle Cell Anemia, Breast Cancer, Cystic 

Fibrosis, Nephrogenic Diabetes Insipidus (NDI), and Retinitis Pigmentosa 4 (RP4) disease 

(Fig. 9).

Comparison with previous studies

It has been already mentioned that all the previous studies, in this aspect, were focused 

to predict the pattern and association rules of the most dominating amino acids which 

were associated with Chromaffin Tumor disease only. As per the literature [2, 5, 6], fol-

lowing are the accepted strong association rules as generated for Chromaffin Tumor 

disease:

• PN → L [2]

• PI → K [2, 6]

• I → K [5]

• V → L [5]

In this work, the same protein sequence (involved with Chromaffin Tumor disease) 

was tested and the result is shown in Table 13.

From this table is evident that PN → L and PI → K rules as generated by the litera-

ture [2, 5, 6] are useful strong association rules and I → K and V → L are redundant and 

should be thus rejected. On the other hand F → D, DN → L and KLY → P are useful 

strong association rules which were discarded by the literature.

Implication of the findings

Patterns in protein sequences possess multifarious importance. Pattern identification 

can be used for predicting protein functions, protein fold (structure) recognitions, pro-

tein family detection, multiple sequence alignment, etc. Moreover, protein patterns 

can be used to predict the functions of newly discovered or unknown proteins or to 

screen genomic databases for other proteins with similar functionality [23]. This work is 

focused to predict the pattern and association rules of the most dominating amino acids 

in the protein sequences associated with particular protein misfolded diseases.

Thus identification/reporting of such variant of amino acids for those particular five 

genetic diseases may have versatile implications. Some implication of such findings are 

related to medical science, some are concerned to Genetics, Bioinformatics and Biotech-

nology or some are of Protein Sequencing Research as highlighted below:

Table 13 Useful strong association rules for chromaffin tumor disease (min support count = 5)

Ser Rules Confidence Lift Bi-lift Bi-improve Bi-confidence

1 F → D 100% 1.75 2.091 0.093 0.522

2 DN → L 100% 1.12 1.15 0.023 0.130

3 PN → L 100% 1.12 1.15 0.023 0.130

4 PI → K 100% 1.12 1.15 0.023 0.130

5 KLY → P 100% 2.00 2.556 0.109 0.609
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• It can be applied for gene study through DNA sequencing, thus particular mutation 

can be edited through research.

• With the information of such data mining, prenatal diseases can be identified,

• An improved capacity in identifying the relations among the most dominating amino 

acids in protein sequences related to disease will have an immediate impact on the 

diagnosis, treatment, and prevention of genetic disorders. As more population-based 

data are accumulated, amino acids based diagnosis will become more common and 

the potential for somatic cell gene therapy will increase. Furthermore, the availabil-

ity of molecular probes for specific gene loci will permit detection of the carriers of 

disease-associated genes. (G. N. N. Sultana, personal communication, Jun 23, 2019)

• Overall, in addition to the treatment action, such data gives the physicians to take the 

necessary genetic counselling. Thereby this work may open up new opportunities in 

medical science to handle genetic disorder diseases.

• Disease susceptibility can be predicted through most dominating amino acid 

changes.

• Understanding the complex interplay between genes and proteins requires integra-

tion of data from a wide variety of sources, i.e. gene expression, genetic linkage, pro-

tein interaction, and protein structure among others. Thus, this database can become 

critical for the integration, representation and visualization of heterogeneous bio-

medical data. (G. N. N. Sultana, personal communication, Jun 23, 2019)

• Biotechnologically, such data might allow development of new drugs for treatment 

and tools/biomarker for disease diagnosis.

• Identifying the relations among the most dominating amino acids in protein 

sequences can be implemented by focusing on how a protein leads to the heritable 

form of the respective disease. So research on understanding the normal function 

of genetically associated proteins in such diseases can be marginalized the complex 

roles of these proteins play in their respective disorders.

• In our work, we partitioned the whole amino acids sequence into sub sequences of 

length ten to find association rules. This type of consideration has the shortcoming 

of losing the support count of association rules in the border of window. However, 

for making the computational tasks easier we have considered the partitioning of 

length ten. This type of partitioning problem can be solved using windows overlap-

ping. Another approach can be the used of random partition windows. In this case, 

for each rule, the bias in the border of window will be averaged via the average sup-

port count of many times of partition, so that the bias can be ignored approximately. 

Due to computational costs in this paper, we do not consider these two solutions. In 

fact, there is a trade-off between the fixed length partitioning and other two ways of 

partitioning. In future, we plan to test the performance considering two other above 

mentioned scenarios.

Conclusion and future work

Conclusion

Protein, being an integral part of every living organism, if not folded properly may cause 

critical genetic diseases. As amino acids are the building blocks of protein, relationship 
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among the dominating amino acids and identification of their patterns is an important 

issue. This work focused to recognize frequent patterns among five complex protein mis-

folded genetic disorder human diseases and the relationship of the dominating amino 

acids using association rule mining. In doing so, itemsets and association rules were 

generated from the protein sequences. These rules were further evaluated and sorted 

out with objective measuring tools so that the only strong and interesting patterns are 

obtained. However, the proposed algorithm may be used to identify pattern of amino 

acids from associated proteins of other diseases also.

Patterns in protein sequences usually have functional, structural or family classifica-

tion importance. Pattern identification can be used for predicting protein functions, 

protein fold (structure) recognitions, protein family detection, multiple sequence align-

ment, etc. The patterns acquired from this work are quite impressive. In addition to the 

above usual applications, an improved capacity in identifying the relations among the 

most dominating amino acids in protein sequences related to disease will have an imme-

diate impact on the diagnosis, treatment, and prevention of protein misfolded diseases. 

And thereby this work may open up new opportunities in medical science to handle 

genetic disorder diseases.

Future work

In this work, only five protein misfolded diseases were experimented. Again, pro-

tein sequence length of some of the diseases was relatively small. However, in future, 

more complex protein misfolded diseases and associated with larger length of protein 

sequences may be considered for experimentation. On the other hand, in this work 

Apriori algorithm was used as a pattern mining technique for association rule mining. 

However, as a newer method, Fuzzy Association rule mining technique may be adopted 

to generate more reliable association rules and test accordingly. In this work, the pro-

tein sequences were partitioned into subsequences of length 10. If the length of the sub-

sequences is changed, the generated rules may also be changed. As such, rules can be 

generated considering the length as 10, 15, 20,.... and thereafter only the common rules 

between each list can be sorted out. Generating rules in this way may have better poten-

tiality and validity.
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