
Frequent Itemset Mining for Clustering Near

Duplicate Web Documents

Dmitry I. Ignatov and Sergei O. Kuznetsov

Higher School of Economics, Department of Applied Mathematics
Kirpichnaya 33/5, Moscow 105679, Russia

{skuznetsov,dignatov}@hse.ru

Abstract. A vast amount of documents in the Web have duplicates,
which is a challenge for developing efficient methods that would compute
clusters of similar documents. In this paper we use an approach based
on computing (closed) sets of attributes having large support (large ex-
tent) as clusters of similar documents. The method is tested in a series
of computer experiments on large public collections of web documents
and compared to other established methods and software, such as biclus-
tering, on same datasets. Practical efficiency of different algorithms for
computing frequent closed sets of attributes is compared.

1 Introduction

Around 30% of documents in Internet have duplicates, which necessitates cre-
ation of efficient methods for computing clusters of duplicates
[5,6,7,9,10,14,15,17,24,23]. The origin of duplicates can be different: from in-
tended duplicating information on several severs by companies (legal mirrors)
to cheating indexing programs of websites, illegal copying and almost identical
spammer messages. Usually duplicates are defined in terms of similarity rela-
tion on pairs of documents: two documents are similar if a numerical measure
of their similarity exceeds a certain threshold (e.g., see [5,6,7]). The situation is
represented then by a graph where vertices are documents and edges correspond
to pairs of the similarity relation. Clusters of similar documents are computed
then as cliques or as connected components of such similarity graphs [7]. The
main stages in finding clusters of duplicates are as follows (see, e.g., [7]): rep-
resenting documents by sets of attributes, making concise document images by
choosing subsets of images, defining similarity relation on document images, and
computing clusters of similar documents. At the first stage of processing, after
removing HTML-markup and punctuation marks, documents are turned into
strings of words, which are, in turn, represented by sets of attributes. We have
there two main different approaches, called syntactical and lexical. The syntacti-
cal approach consists in defining binary attributes that correspond to each fixed
length substring of words (or characters). Such substrings are called shingles.
Usually a shingle corresponds to a sequence of words and there are two param-
eters of shingling: the length of a shingle (the number of words in a shingle)
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and offset, the distance between the beginnings of two shingles. Each shingle is
coded by a hash code (equal shingles have equal codes and it is unlikely that
different shingles have same codes). Then, by means of a randomization scheme,
a subset of shingles is chosen for a concise image of the document [5,6,7]. Such
an approach is used in AltaVista search engine and (judging by patent [23]),
in Google too. There are several principles for choosing number of shingles in
an image: A fixed number, a logarithmic (as in Yandex mail service) number,
linear number (each kth shingle), etc. In lexical methods representative words
are chosen according to their significance of these words. Usually indices of sig-
nificance are based on frequencies: those words whose frequencies lie in a certain
interval (except for stop-words from a special list of about 30 stop-words with
including articles, prepositions and pronouns) are taken: high frequency words
can be noninformative and low frequency words can be either haphazard words
that could have not appeared in a text or misprints.

In lexical methods such as I-Match [10] a large text corpus is used for gener-
ating lexicon, i.e., a set of representative words. A document is represented by
the words that occur in the lexicon. In generation of the lexicon the words with
lowest and highest frequencies are deleted, I-Match generates signature of a doc-
ument (set of terms) and hash code of the document, where two documents get
the same hash code with the probability equal to their similarity measure (ac-
cording to the so-called cosine measure). As shown in [17], I-Match is sometimes
instable to changes in texts, e.g., to marginal randomization of actually identical
spammer messages. To avoid this drawback, besides one standard signature, one
uses K more signatures, each of which is obtained by random deletion of certain
amount of terms from the initial signature (i.e., all new signatures are subsets of
the initial one). Two documents are considered to be almost duplicates if their
images from K+1 signatures have large intersection in at least one of signature.
In [17] the authors noted the similarity of this approach to the approach based on
supershingles (concatenation of supershingles). In lexical method [15] the focus
is towards the construction of a lexicon, a set of descriptive words, which should
be concise, but cover well the collection. The occurrence of a word in a document
image is robust with respect to small changes in the document. When document
images are defined, one defines similarity relation on documents starting from a
similarity measure which takes two documents to a number in the [0,1] interval
depending on the amount of their common description units (shingles or words,
in syntactical or lexical approaches, respectively). Then one chooses a thresh-
old, exceeding which means large similarity of documents (the documents are
near-duplicates). This metrics and a threshold define (symmetric and reflexive)
similarity relation on document pairs. The similarity relation on document pairs
determine clusters of near-duplicates. Definition of a cluster may also vary. A
possible definition often used in practice, e.g., in Altavista search engine [7], is
as follows: Consider the graph where Internet documents correspond to vertices
and similarity relation corresponds to edges. Then a cluster of near duplicates
is a connected component of such a graph. An advantage of such definition is
efficiency of computation: a connected component may be computed in time
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linear in the number of edges. An obvious drawback here is that the relation to
be near duplicates is not transitive, therefore absolutely different documents can
occur in a cluster. The strongest definition of a cluster arising from a similarity
relation is that based on a graph clique. This definition is more adequate than
that based on the connected component, but is much harder computationally,
since generation of maximal cliques is a classical intractable problem. These two
extreme definitions of a cluster admit for a broad scope of intermediate formu-
lations that realize trade-off between precision and complexity of computing the
clusters. Other methods of cluster definition are based on variations of standard
methods of cluster analysis, e.g., when clustering a new object uses the distance
to the mass center of clusters. Methods of this type essentially depend on the
sequence in which objects to be clustered arrive. As applied to the problem of
clustering duplicates, this means that documents that occurred earlier determine
stronger the structure of cluster than documents that occurred later.

In this paper we consider similarity not as a relation on the set of documents,
but as an operation taking each two documents to the set of all common ele-
ments of their concise descriptions. Here description elements are either syntac-
tical units (shingles) or lexical units (representative words). A cluster of similar
documents is defined as a set of all documents with a certain set of common
description units. A cluster of duplicates is defined as a set of documents where
the number of common description units exceeds a certain threshold. In this pa-
per we compare results of its application (for various values of thresholds) with
the list of duplicates obtained by applying other methods to the same collection
of documents. We studied the impact of the following model parameters on the
result:

– The use of the syntactical or lexical methods for representing documents,
– the use of method “n minimal elements in a permutation” or “minimal ele-

ments in n permutations”[5,6,7] (the second method, having better
probability-theoretical properties, has worse computational complexity.)

– shingling parameter,
– threshold value of similarity of document images.

One of our goals was to relate computation of pairwise similarity with gener-
ation of clusters so that, on the one hand, the obtained clusters are independent
of the order of document occurrence (in contrast to methods of cluster analy-
sis) and, on the other hand, they would guarantee real pairwise similarity of all
document images in the cluster. To this end we employed an approach based on
formal concepts: Clusters of documents are given by formal concepts of the con-
text where objects correspond to description units (units of a language describing
documents: shingles, lexical units, etc.) and attributes are document names. A
cluster of very similar documents corresponds then to a formal concept such that
the size of extent (the number of common description units of documents) ex-
ceeds a threshold given by parameter. Thus, generating very similar documents
is reduced to the problem of Data Mining [21] known as generating frequent
closed itemsets.
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The rest of the paper is organized as follows. In the second section we con-
sider briefly a mathematical model underlying methods of composing document
images and methods for finding clusters of similar documents. In the third sec-
tion we give a short description of software tools and experiments with a large
collection of web documents. In the fourth section we discuss results of computer
experiment and set further problems.

2 Computational Model

2.1 Document Image

For creating document images we used standard syntactical and lexical ap-
proaches with different parameters. Within syntactical approach we realized the
shingling scheme and computing document image (sketch) with the method “n
minimal elements in a permutation” and the method “minimal elements in n
permutations” detailed description of which can be found in [5,6,7]. For each text
the program shingle with two parameters (length and offset) generate contigu-
ous subsequences of size length such that the distance between the beginnings
of two subsequent substrings is offset. The set of sequences obtained in this way
is hashed so that each sequence receives its own hash code. From the set of hash
codes that corresponds to the document a fixed size (given by parameter) subset
is chosen by means of random permutations described in [5,6,7]. The probability
of the fact that minimal elements in permutations on hash code sets of shingles
of documents A and B (these sets are denoted by FA and FB, respectively)
coincide, equals to the similarity measure of these documents sim(A, B):

sim(A, B) = P [min{π(FA)} = min{π(FB)}] =
|FA ∩ FB|
|FA ∪ FB|

Permutations (that can be represented by renumbering of shingles) are re-
alized by multiplying of binary vectors that represent document images (each
component of such a vector corresponds to the hash code of a particular shingle
from the image) on random binary matrices. For each hash code from the set
of hash codes of a documents its number in each random permutation is com-
puted as a product of the hash code given in the form of binary vector on the
randomly generated binary matrix that corresponds to the permutation. The
number of permutations is also a parameter. For each permutation (given by a
binary matrix) the minimal element (i.e., hash code of a shingle that became the
first after the permutation) is chosen. The image of a document in the method
“n minimal elements in a permutation” is the set of n minimal (first) hash codes
in a permutation. The image of a document in the method “minimal elements
in n permutations” is the set consisting of minimal (first) hash codes in n inde-
pendent permutations. In both methods the images of all documents have fixed
length n. The second approach has better randomization properties (see [5,6,7]
for details), however needs more time for computations (n times more than in
the first approach).
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2.2 Definition of Similarity and Similarity Clusters by Means of
Frequent Concepts

First, we briefly recall the main definitions of Formal Concept Analysis (FCA) [11].
Let G and M be sets, called the set of objects and the set of attributes, re-
spectively. Let I be a relation I ⊆ G × M between objects and attributes: for
g ∈ G, m ∈ M , gIm holds iff the object g has the attribute m. The triple
K = (G, M, I) is called a (formal) context. Formal contexts are naturally given
by cross tables, where a cross for a pair (g, m) means that this pair belongs to
the relation I. If A ⊆ G, B ⊆ M are arbitrary subsets, then derivation operators
are given as follows:

A′ := {m ∈ M | gIm for all g ∈ A},
B′ := {g ∈ G | gIm for all m ∈ B}.

The pair (A, B), where A ⊆ G, B ⊆ M , A′ = B, and B′ = A is called a (formal)
concept (of the context K) with extent A and intent B.

The operation (·)′′ is a closure operator, i.e., it is idempotent (X ′′′′ = X ′′),
extensive (X ⊆ X ′′), and monotone (X ⊆ Y ⇒ X ′′ ⊆ Y ′′). Sets A ⊆ G, B ⊆ M
are called closed if A′′ = A and B′′ = B. Obviously, extents and intents are closed
sets. Formal concepts of context are ordered as follows: (A1, B1) ≤ (A2, B2) iff
A1 ⊆ A2(⇔ B1 ⊇ B2). With respect to this order the set of all formal concepts
of the context K makes a lattice, called a concept lattice B(K) [11].

Now we recall some definitions related to association rules in Data Mining.
For B ⊆ M the value |B′| = |{g ∈ G | ∀m ∈ B(gIm)}| is called support of
B and denoted by sup(B). It is easily seen that the set B is closed if and only
if for any D ⊃ B one has sup(D) < sup(B). This property is used for the
definition of a closed itemset in Data Mining. A set B ∈ M is called k-frequent
if |B′| ≤ k (i.e., the set of attributes B occurs in more than k objects), where k
is parameter. Computing frequent closed sets of attributes (or itemsets) became
important in Data Mining since these sets give the set of all association rules [21].
For our implementation where contexts are given by set G of description units
(e.g., shingles), set M of documents and incidence (occurrence) relation I on
them, we define a cluster of k-similar documents as intent B of a concept (A, B)
where |A| ≥ k. Although the set of all closed sets of attributes (intents) may
be exponential with respect to the number of attributes, in practice contexts
are sparse (i.e., the average number of attributes per object is fairly small).
For such cases there are efficient algorithms for constructing all most frequent
closed sets of attributes (see also survey [18] on algorithms for constructing all
concepts). Recently, a competitions in time efficiency for such algorithms were
organized in series of workshops on Frequent Itemset Mining Implementations
(FIMI). By now, a leader in time efficiency is the algorithm FPmax* [13]. We
used this algorithm for finding similarities of documents and generating clusters
of very similar documents. As mentioned before, objects are description units
(shingles or words) and attributes are documents. For representation of this
type frequent closed itemsets are closed sets of documents, for which the number
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of common description units in document images exceeds a given threshold.
Actually, FPmax* generates frequent itemsets (which are not necessarily closed)
and maximal frequent itemsets, i.e., frequent itemsets that are maximal by set
inclusion. Obviously, maximal frequent sets of attributes are closed.

3 Program Implementation

Software for experiments with syntactical representation comprise the units that
perform the following operations:

1. XML Parser (provided by Yandex): it parses XML packed collections of web
documents

2. Removing html-markup of the documents
3. Generating shingles with given parameters length-of-shingle, offset
4. Hashing shingles
5. Composition of document image by selecting subsets (of hash codes) of shin-

gles by means of methods n minimal elements in a permutation and minimal
elements in n permutations.

6. Composition of the inverted table the list of identifiers of documents shingle
thus preparing data to the format of programs for computing closed itemsets.

7. Computation of clusters of k-similar documents with FPmax* algorithm:
the output consists of strings, where the first elements are names (ids) of
documents and the last element is the number of common shingles for these
documents.

8. Comparing results with the existing list of duplicates (in our experiments
with the ROMIP collection of web documents, we were supplied by a pre-
computed list of duplicate pairs).

This unit outputs five values: 1) the number of duplicate pairs in the ROMIP
collection, 2) the number of duplicate pairs for our realization, 3) the number
of unique duplicate pairs in the ROMIP collection, 4) the number of unique
duplicate pairs in our results, 5) the number of common pairs for the ROMIP
collection and our results. For the lexical method, the description units are words
(not occurring in the stop list) the frequencies of which lie in a certain interval.
The amount of words in the dictionary is controlled by making closer the extreme
points of the interval.

4 Experiments with ROMIP Data

As experimental data we used ROMIP collection of URLs (see www.romip.ru)
consisting of 52 files of general size 4.04 GB. These files contained 530 000
web pages from narod.ru domain. Each document from the collection has size
greater or equal to 10 words. For experiments the collection was partitioned into
several parts consisting of three to 24 such files (from 5% to 50% percent of the
whole collection). Shingling parameters used in experiments were as follows: the
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number of words in shingles was 10 and 20, the offset was always taken to be
1 (which means that the initial set of shingles contained all possible contiguous
word sequences of a given length). Two methods of composing document image
described in Section 2.1 were studied: n minimal elements in a permutation and
minimal elements in n permutations. The sizes of resulting document images
were taken in the interval 100 to 200 shingles. In case of lexical representation
described in Section 2.1, only words from the resulting dictionary were taken
in the document image (the set of descriptive words). As frequency thresholds
defining frequent closed sets (i.e., the numbers of common shingles in document
images from one cluster) we experimentally studied different values in intervals,
where the maximal value is equal to the number of shingles in the document
image, e.g., [85, 100] for document images with 100 shingles, the interval [135,
150] for document images of size 150, etc. Obviously, choosing the maximal value
of an interval, we obtain clusters where document images coincide completely.

For parameters taking values in these intervals we studied the relation between
resulting clusters of duplicates and ROMIP collection of duplicates, which con-
sists of pairs of web documents that are considered to be near duplicates. Simi-
larity of each pair of documents in this list is based on Edit Distance measure,
two documents were taken to be duplicates by authors of this testbed if the
value of the Edit Distance measure exceeds threshold 0.85 [27]. As we show be-
low, this definition of a duplicate is prone to errors, however making a testbed
by manual marking duplication in a large web document collection is hardly
feasible. Unfortunately, standard lists of near-duplicates are missing even for
standard corpora such as TREC or Reuters collection [22]. For validating their
methods, researchers create ad-hoc lists of duplicates using slightly transformed
documents from standard collections.

In our study for each such pair we sought an intent that contains both el-
ements of the pair, and vice versa, for each cluster of very similar documents
(i.e., for each corresponding closed set of documents with more than k common
description units) we take each pair of documents in the cluster and looked for
the corresponding pair in the ROMIP collection. As result we obtain the ta-
ble with the number of common number of near duplicate pairs found by our
method (denoted by HSE) and those in the ROMIP collection, and the number
of unique pairs of HSE duplicates (document pairs occurring in a cluster of “very
similar documents” and not occurring in the ROMIP collection). The results of
our experiments showed that the ROMIP collection of duplicates, considered to
be a benchmark, is far from being perfect. First, we detected that a large number
of false duplicate pairs in this collection due to similar framing of documents.
For example the pages with the following information in table 1 about historical
personalities 1 and 2 were declared to be near duplicates.

However these pages, as well as many other analogous false duplicate pairs in
ROMIP collection do not belong to concept-based (maximal frequent) clusters
generated in our approach.

In our study we also looked for false duplicate clusters in the ROMIP collec-
tion, caused by transitive closure of the binary relation “X is a duplicate of Y ”
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Table 1. Information about historical personalities

1. Garibald II, Duke of Bavaria
Short information:
Full Name: Garibald
Date of birth: unknown
Place of birth: unknown
Date of death: 610
Place of death: unknown
Father: Tassilo I Duke of Bavaria

Mother: uknown

2. Giovanni, Duke of Milan
Short information:
Full Name: Giovanni Visconti
Date of birth: unknown
Place of birth: unknown
Date of death: 1354
Place of death: unknown
Father: Visconti Matteo I,
the Great Lord of Milan
Mother: uknown

(as in the typical definition of a document cluster in [7]). Since the similarity
relation is generally not transitive, the clusters formed by transitive closure of
the relation may contain absolutely nonsimilar documents. Note that if clusters
are defined via maximal frequent itemsets (subsets of attributes) there cannot
be effects like this, because documents in these clusters share necessarily large
itemsets (common subsets of attributes).

We analyzed about 10000 duplicate document pairs and found four false dupli-
cate clusters. An example is a cluster of 58 documents containing the webpages

aadobr.narod.ru/Foto/fotofr.html
avut.narod.ru/pages/page02.htm
azer.narod.ru/index.html
b-tour.narod.ru/index.html
barents.narod.ru/foto nov.html
. . .
There is no cluster like this generated in our approach. Instead, we have

several clusters of similar documents that have a certain amount (depending on
the parameter) of common features.

4.1 Performance of Algorithms and Their Comparison

We measured time elapsed on the stages of shingling, composing document im-
ages and generating clusters of similar documents (by algorithms for computing
frequent maximal itemsets). On the last stage we used and compared various
algorithms: several well-known algorithms from Data Mining [12] and AddIn-
tent, an algorithm which proved to be one of the most efficient algorithms for
constructing the set of all formal concept and concept lattices [20].

Experiments were carried out on a PC P-IV HT with 3.0 MHz frequency,
1024 MB RAM under Windows XP Professional. Experimental results and time
elapsed are partially represented in Tables 2-6.

Results of the method “n minimal elements in a permutation”. For the
dataset narod.1-6.xml, which contained 53 539 documents, the following shin-
gling parameters were taken: size of document image 150 shingles, length of
shingle 20, offset 1 character.
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Table 2. Results of the method “n minimal elements in a permutation”

FPmax All Pairs of Du-
plicates

Unique pairs of
duplicates

Common
pairs

Input Threshold ROMIP HSE ROMIP HSE

b 1 20 s 100 n1-12.txt 100 105570 15072 97055 6557 8515
b 1 20 s 100 n1-12.txt 95 105570 20434 93982 8846 11588
b 1 20 s 100 n1-12.txt 90 105570 30858 87863 13151 17707
b 1 20 s 100 n1-12.txt 85 105570 41158 83150 18738 22420

b 1 20 s 100 n1-24.txt 100 191834 41938 175876 25980 15958
b 1 20 s 100 n1-24.txt 95 191834 55643 169024 32833 22810
b 1 20 s 100 n1-24.txt 90 191834 84012 155138 47316 36696
b 1 20 s 100 n1-24.txt 85 191834 113100 136534 57800 55300

b 1 10 s 150 n1-6.txt 150 33267 6905 28813 2451 4454
b 1 10 s 150 n1-6.txt 145 33267 9543 27153 3429 6114
b 1 10 s 150 n1-6.txt 140 33267 13827 24579 5139 8688
b 1 10 s 150 n1-6.txt 135 33267 17958 21744 6435 11523
b 1 10 s 150 n1-6.txt 130 33267 21384 19927 8044 13340
b 1 10 s 150 n1-6.txt 125 33267 24490 19236 10459 14031

Table 3.

Time elapsed, s Precision Recall Threshold F1

1,2 0,4 0,2 100 0,24
2,0 0,4 0,2 95 0,31
3,1 0,5 0,4 90 0,42
5,3 0,5 0,4 85 0,44
7,2 0,4 0,5 80 0,46

For evaluating we used a popular measure that combines Precision and Recall:
the weighted harmonic mean of precision and recall, or F -measure = 2·(precision·
recall)/(precision+recall). This is also known as the F1-measure, because recall
and precision are evenly weighted. The results obtained are given in Table 3,
Fig. 1 and Fig. 2.

For the dataset narod.1.xml, which contained 6941 documents, the following
shingling parameters were taken: size of document image 100 shingles, length of
shingle 10, offset 1 character. The results were obtained are given in Fig. 3 and
Table 4.

Comparing results of FPmax with results obtained with Cluto. In
our experiments with Cluto we chose the repeated-bisecting algorithm that uses
the cosine similarity function with a 10-way partitioning (ClusterRB), which is
mostly scalable according to its author [16]. The number of clusters is a param-
eter, documents are given by sets of attributes, fingerprints in our case. The
algorithm outputs a set of disjoint clusters. Algorithms from FIMI repository
can process very large datasets, however, to compare with Cluto (which is much
more time consuming as we show below) we took collection narod.1.xml that
contains 6941 documents.
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Fig. 1. Results of FPmax* on narod1-6.xml collection

Fig. 2. F-measure vs shingle length

Table 4.

Time elapsed,s Precision Recall Threshold F1

0,098 0,76 0,25 150 0,38
0,128 0,74 0,29 145 0,42
0,187 0,70 0,39 140 0,50
0,276 0,67 0,50 135 0,57
0,383 0,63 0,57 130 0,60
0,455 0,58 0,64 125 0,61
0,559 0,47 0,64 120 0,54
0,669 0,37 0,67 115 0,48
0,873 0,29 0,70 110 0,41
1,045 0,23 0,73 105 0,35
1,294 0,18 0,69 100 0,29

Graphs and tables show that for 5000 clusters the output of ClusterRB has al-
most the same value of F-measure (0.63) as FPmax* for threshold 150 (F1=0,61).
However, computations took 4 hours for ClusterRB and half a second for
FPmax*.
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Fig. 3. Results of FPmax* on narod1.xml collection

Table 5.

Time, s Precision Recall Number of clusters F1

11 0,02 0,90 100 0,04
766 0,09 0,78 1000 0,16
3125 0,19 0,74 2000 0,30
6402 0,28 0,71 3000 0,40
14484 0,64 0,61 5000 0,63
19127 0,90 0,35 6000 0,51

Fig. 4. Results of Cluto on narod1.xml collection

For same data collection narod.1.xml we made comparison to D-miner algo-
rithm [3] and biclustering algorithms from BicAT system [2]. D-miner takes input
in FIMI format, but computations were not completed due to lack of memory.
Same effect was observed for biclustering algorithms from BicAT, which cannot
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Table 6. Results for the method “minimal elements in n permutations”

FPmax All Pairs of Du-
plicates

Unique pairs of
duplicates

Common
pairs

Input Threshold ROMIP HSE ROMIP HSE

m 1 20 s 100 n1-3.txt 100 16666 4409 14616 2359 2050
m 1 20 s 100 n1-3.txt 95 16666 5764 13887 2985 2779
m 1 20 s 100 n1-3.txt 90 16666 7601 12790 3725 3876
m 1 20 s 100 n1-3.txt 85 16666 9802 11763 4899 4903

m 1 20 s 100 n1-6.txt 100 33267 13266 28089 8088 5178
m 1 20 s 100 n1-6.txt 95 33267 15439 26802 8974 6465
m 1 20 s 100 n1-6.txt 90 33267 19393 24216 10342 9051

m 1 20 s 100 n1-12.txt 100 105570 21866 95223 11519 10347
m 1 20 s 100 n1-12.txt 95 105570 25457 93000 12887 12570

Fig. 5. Time spent by FPmax* for the method “n minimal elements in a permutation”

work with condensed representation and required inputting datatable of size 1.9
Gb in case of our document collection narod.1.xml.

FPmax* algorithm for the method “minimal elements in n permutations”.
For large collections of documents and lower thresholds FPmax* did not com-
plete computation due to insufficient memory.

In our experiments the best performance is attained by FPmax* algorithm,
followed by the AFOPT algorithm [19]. These two algorithms proved to be the
fastest in FIMI competitions [12]. AddIntent* (AddIntent modified for maximal
frequent itemsets) lags behind these two, however, performs much better than
MAFIA [8]. Optimized implementations of APRIORI and ECLAT [4] failed to
compute the output even in the case of small subcollections of documents (about
4000 documents or 1% of the whole collection). These relative behaviour of
algorithms is similar to that observed in [12] in experiments with low support.
In the following Table we present running times in a typical experiment with
different algorithms on a subcollection of about 10% of the whole collection.
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Fig. 6. Time spent by FPmax* for the method “minimal elements in n permutations”

Fig. 7. Comparing efficiency of algorithms that compute maximal closed sets

In the contexts corresponding to these subcollections the number of objects is
relatively large as compared to the minsup threshold value defined by parameters
in the definition of duplicates. Thus, these are typical problems of generating
frequent itemsets in low-support data and relative performance of data mining
algorithms in our experiments is similar to that in survey [12].

5 Conclusion and Future Research

Analyzing results of our experiments with concept-based definition of clusters
of similar documents with ROMIP data collection we can draw the following
conclusions:

– The approach proposed in this paper allows for detecting false duplicates,
as shown in experiments with ROMIP near-duplicate collection.
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– Approaches based on closed sets of attributes propose adequate and efficient
techniques for both determining similarity of document images and generat-
ing clusters of very similar documents. They can be efficiently used on the
stage of outputting documents relevant to a query, when the number of all
found relevant documents does not exceed several thousands (around 10000
documents). However, these algorithms may encounter major difficulties in
treating larger collections of documents due to intrinsic exponential worst-
case complexity of the problem of computing maximal frequent itemsets.

– For our datasets (which are very “column-sparse”) the best Data Mining
algorithms for computing frequent closed itemsets, FPmax* and Afopt, out-
perform AddIntent, one of the best algorithm for constructing concept lat-
tice, adapted for computing maximal frequent itemset.

– Results of syntactical methods essentially depend on the parameter shingle
length. Thus, in our experiments, for the shingle length 10 the results (pairs
of duplicates) were much closer to those in the ROMIP collection as for the
lengths of shingles equal to 20, 15, and 5.

– In our experiments the results obtained by different methods of document
representation – n minimal elements in a permutation and minimal elements
in n permutations – did not differ much, which testifies in favor of the first,
faster method.

– Further work on generating clusters of web duplicates as formal concepts will
be related to efficiency issues: more efficient algorithms and new definitions
of suitable subsets of all clusters covering a collection of documents.
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