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Frequent lucid dreaming associated 
with increased functional 
connectivity between frontopolar 
cortex and temporoparietal 
association areas
Benjamin Baird1, Anna Castelnovo1,2, Olivia Gosseries1,3 & Giulio Tononi1

Humans typically lack awareness that they are dreaming while dreaming. However, at times a 

remarkable exception occurs and reflective consciousness can be regained while dreaming, referred to 
as lucid dreaming. While most individuals experience lucid dreams rarely there is substantial variance 

in lucid dream frequency. The neurobiological basis of lucid dreaming is unknown, but evidence 

points to involvement of anterior prefrontal cortex (aPFC) and parietal cortex. This study evaluated 

the neuroanatomical/neurofunctional correlates of frequent lucid dreams and specifically whether 
functional connectivity of aPFC is associated with frequent lucid dreams. We analyzed structural 

and functional magnetic resonance imaging from an exceptional sample of fourteen individuals 

who reported ≥3 lucid dreams/week and a control group matched on age, gender and dream recall 
that reported ≤1 lucid dream/year. Compared to controls, the frequent lucid dream group showed 
significantly increased resting-state functional connectivity between left aPFC and bilateral angular 
gyrus, bilateral middle temporal gyrus and right inferior frontal gyrus, and higher node degree and 

strength in left aPFC. In contrast, no significant differences in brain structure were observed. Our results 
suggest that frequent lucid dreaming is associated with increased functional connectivity between aPFC 

and temporoparietal association areas, regions normally deactivated during sleep.

For reasons not currently understood, humans are typically unaware that they are dreaming while dreaming. 
At times, however, a remarkable exception occurs and we can become aware of the fact that we are dreaming, a 
state referred to as lucid dreaming1. During lucid dreams, one becomes aware that one is dreaming while remain-
ing physiologically asleep and immersed within a dream environment that o�en appears strikingly realistic. In 
addition to the metacognitive awareness of one’s state of consciousness, during lucid dreams it is also common 
to regain episodic memory for waking life as well as the ability to volitionally control actions within the dream 
(e.g.2,3). Despite initial skepticism from some scientists and philosophers, lucid dreaming has been demonstrated 
to be objectively veri�able through volitional eye movement signals which can be recorded in the electrooculo-
gram during polysomnography-veri�ed REM sleep4 (for replications and extensions see, e.g., refs.5–7; for recent 
implementations see, e.g., refs.8–10). For most individuals lucid dreams spontaneously occur infrequently, however 
there is substantial variation in lucid dream frequency, ranging, by current estimates, from never (approximately 
40–50%) to monthly (approximately 20%) to a small percentage of people that experience lucid dreams several 
times per week or in some cases every night11,12. �is variation invites the question of whether the frequency of 
lucid dreams is related to individual di�erences in anatomical or functional properties of the brain.

�e prefrontal cortex (particularly the lateral and rostrolateral regions), parietal cortex and lateral middle 
temporal cortex show low regional cerebral blow �ow (rCBF) throughout sleep, including during REM sleep13–15, 
the stage of sleep most strongly associated with dreaming. Hypoactivity of these regions has been postulated 
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to underlie the diminished self-awareness and volitional control during dreaming15,16. Consistent with this, a 
functional magnetic resonance imaging (fMRI) case study found increased BOLD signal in many of these same 
regions during lucid compared to non-lucid REM sleep, including the anterior prefrontal cortex (aPFC), bilat-
eral inferior parietal lobule (IPL), precuneus and inferior/middle temporal gyrus (ITG/MTG)9. However, these 
results should be interpreted cautiously given that they are derived from a single subject, and no group-level fMRI 
study of lucid REM sleep has yet been undertaken. EEG studies have also reported increased activity in the beta 
band over parietal regions17 or gamma band in frontal regions18 during lucid compared to baseline REM sleep. 
However, overall EEG studies of lucid dreaming show considerable discrepancies and at the current time these 
results should be interpreted cautiously given methodological issues such as low statistical power19,20.

Despite these caveats, evidence linking frontopolar and parietal regions to lucid dreaming is consistent with 
the role of these regions in metacognitive functions. Across the literature, a convergence of evidence indicates 
that aPFC in particular is a critical part of the neuroanatomical basis of metacognitive processes. For example, 
research has found that aPFC shows increased activation during self-re�ection on internal states, such as the eval-
uation of one’s own thoughts and feelings21,22. Individuals can also learn to voluntarily modulate activity in aPFC 
through a metacognitive awareness strategy21. Furthermore, inter-individual variance in metacognitive ability 
has also been linked to aPFC gray matter volume23,24 and aPFC functional connectivity24. Finally, patients with 
damage to this region frequently display metacognitive de�cits such as an inability to monitor disease symptoms 
or accurately appraise their cognitive functioning25,26, similar to the lack of metacognitive insight into the global 
state of consciousness characteristic of non-lucid REM sleep dreams27.

As the initiation of lucid dreaming requires one to achieve metacognitive awareness of the state of conscious-
ness one is in, these �ndings motivate the hypothesis that individual di�erences in the anatomy or functional 
connectivity of aPFC could be associated with the frequency of lucid dreams. Indeed, lucid dreaming presents 
a unique experimental paradigm to further explore the link between aPFC and metacognitive awareness28,29. 
In further support of a connection between the metacognitive functions of aPFC and lucid dreaming, a recent 
study found increased gray matter volume in two regions of the frontal pole in individuals who scored higher 
on a scale assessing the frequency of lucid dreams and/or dream content hypothesized to be related to lucidity30. 
Additionally, these same regions also showed increased BOLD activation in the monitoring component of a 
metacognitive thought-monitoring task. However, a limitation of the study was a lack of speci�c assessment of 
lucid dream frequency in the “high lucidity” and “low lucidity” groups (lucid dream frequency for the two groups 
was not reported). Furthermore, the groups were distinguished based on a median split on scores to a composite 
measure that also included elements that may have varied with dream recall frequency, making it unclear whether 
the results could have been partly in�uenced by di�erences in dream recall. In summary, research points to the 
possibility that frontoparietal cortex, and aPFC in particular, could be associated with lucid dream frequency. 
However, an analysis of brain structure and function in individuals who experience frequent lucid dreams, while 
also controlling for dream recall frequency, is needed.

In the current research we evaluated an exceptional sample of individuals who reported lucid dreams spon-
taneously in the range of approximately every other night to multiple times per night compared to a control 
group matched on age, gender and dream recall frequency but who reported lucid dreams once per year or less. 
�e primary aim of the study was to test whether di�erences in brain structure and/or functional connectiv-
ity are associated with frequent lucid dreams while also controlling for dream recall frequency. Based on the 
research reviewed above, our primary analysis investigated whether individuals who have frequent lucid dreams 
would show increased gray matter density and/or resting-state functional connectivity of aPFC. For analysis 
of structural data, we �rst employed a whole-brain voxel-based morphometry (VBM) analysis31, followed by 
a region-of-interest (ROI) analysis of the aPFC regions reported to be associated with lucid dream frequency 
in a previous study30. For resting-state functional connectivity (rsfcMRI) analysis, we employed seed-based 
whole-brain functional connectivity analysis of aPFC, based on the aPFC activation peak reported in the fMRI 
case study of lucid REM sleep9, which allowed us to explore di�erences in aPFC functional connectivity with all 
other brain regions between groups. We additionally employed a follow-up whole-brain graph-theoretic analysis 
to examine di�erences in functional network properties across all brain areas between groups in a data-driven 
approach, as well as evaluated di�erences in within-network and between-network connectivity in large-scale 
resting-state networks (LSNs)32. Finally, we evaluated several additional cognitive variables which have been 
hypothesized to be associated with lucid dreaming and have been linked to PFC function, including working 
memory capacity, trait mindfulness and prospective memory (e.g., refs.2,33,34), in order to test for between-group 
di�erences and, if necessary, to be able to control for these variables in our MRI analysis.

Results
Demographic and behavioral results. The mean age for both groups was 22.6 ± 5.4 [M ± SD] 
(range = 18–34) and both groups were composed of 5 males and 9 females. �ere was no signi�cant di�erence in 
dream recall between the control group (median = 5–6 per week; IQR = 2) and lucid dream group (median = 7 
per week; IQR = 1) [Z = 1.70, p = 0.11, Mann-Whitney U-test; see Methods for details on dream recall case-con-
trol matching]. All 28 participants reported high dream recall (≥3–4 per week). �e frequent lucid dream group 
reported signi�cantly more lucid dreams (median = 5–6 per week; IQR = 1) compared to the control group 
(median = 0 per week; IQR = 0) [Z = 4.68, p < 10−6, Mann-Whitney U-test]. �e frequent lucid dream group 
reported a median of 75 lucid dreams in the last 6 months, a median of 90 lucid dreams for the highest number of 
lucid dreams in any 6-month period, and reported experiencing lucid dreams on average for 9.5 ± 5.8 [M ± SD] 
years. No signi�cant di�erences between groups were observed for working memory capacity (OSpan, RotSpan, 
SymSpan), or questionnaire assessments of mind-wandering frequency, prospective or retrospective memory or 
trait mindfulness (all p ≥ 0.25, two-tailed independent samples t-test; Table 1).
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Voxel-based morphometry (VBM). No suprathreshold clusters were observed for either the frequent 
lucid dream group contrasted with the control group or the control group contrasted with the frequent lucid 
dream group at the whole brain level either for raw gray matter density values or a�er proportional scaling gray 
matter values by total intracranial volume (all p > 0.05, two-tailed independent samples t-test, corrected for mul-
tiple comparisons at the cluster level). No signi�cant di�erences in gray matter density were observed for ROIs 
in le� prefrontal cortex (t(26) = −0.47, p = 0.65, two-tailed independent samples t-test), right prefrontal cortex 
(t(26) = −0.36, p = 0.72, two-tailed independent samples t-test), or the le� (t(26) = −0.40, p = 0.69, two-tailed 
independent samples t-test) or right (t(26) = −1.31, p = 0.20, two-tailed independent samples t-test) hippocam-
pus based on the regions reported in ref.30. Total hippocampal volume (extracted from FreeSurfer segmentation) 
also showed no signi�cant di�erences between groups for either le� (t(26) = 0.14, p = 0.89, two-tailed independ-
ent samples t-test) or right (t(26) = 0.32, p = 0.75, two-tailed independent samples t-test) hippocampus.

Seed-based whole-brain resting-state functional connectivity. There were no significant dif-
ferences in in-scanner head motion (mean framewise displacement) between the frequent lucid dream group 
(M = 0.07, SD = 0.03) and control group (M = 0.07, SD = 0.04) (t(26) = 0.72, p = 0.48, two-tailed independent 
samples t-test). As shown in Fig. 1 and Table 2, compared to the control group, the frequent lucid dream group 
showed signi�cantly increased functional connectivity between le� aPFC and �ve clusters: the le� and right infe-
rior parietal lobule (IPL), le� and right middle temporal gyrus (MTG) and right inferior frontal gyrus (IFG) (all 
p < 0.05, two-tailed independent samples t-test, corrected for multiple comparisons at the cluster level; Table 2). 
�e frequent lucid dream group also displayed reduced functional connectivity between le� aPFC and the bilat-
eral insula (all p < 0.05, two-tailed independent samples t-test, corrected for multiple comparisons at the clus-
ter level; Table 2). No signi�cant di�erences in functional connectivity were observed between groups for right 
aPFC (all p ≥ 0.22, two-tailed independent samples t-test corrected for multiple comparisons at the cluster level). 
Although aPFC connectivity was the main target of investigation in the current study, we also performed a sup-
plementary seed-based functional connectivity analysis on other regions identi�ed in ref. 9 to increase BOLD 
signal during lucid REM sleep, including le�/right IPL, MTG and precuneus. �e frequent lucid dream group 
showed increased connectivity between le� IPL and le� MTG, right lingual gyrus; right IPL and le� aPFC, right 
PCC; right MTG and le� aPFC, le� MFG, and decreased connectivity between right IPL and right MFG, le� 
insula, le� precentral gyrus and le� SMC (all p < 0.05, two-tailed independent samples t-test, corrected for mul-
tiple comparisons at the cluster level; Supplementary Table 1). No other suprathreshold clusters were identi�ed.

IPL/IPS subdivision analysis. We performed a follow-up analysis on the clusters in le� and right IPL in 
order to characterize the overlap between these clusters and anatomical subdivisions of the angular gyrus (PGa/
PGp) and intra-parietal sulcus (hlP1, hlP2 and hlP3) (see Methods: Angular gyrus (AG)/intra-parietal sulcus (IPS) 
subdivision analysis). �e cluster peak for right parietal cortex was in the anterior AG (PGa) and the overlap 
between the functional cluster and the cytoarchitectonic maps was 47.3% for PGa, 24.7% for PGp, 4.2% for hlP1 
and 0.6% for hlP3. �e cluster peak for le� parietal cortex was also in PGa and the overlap between the func-
tional cluster and the cytoarchitectonic maps was 34.3% for PGa, 19.7% for PGp, 6.7% for hlP1 and 0.2% for 
hlP3 (Fig. 2). Frequent lucid dreamers showed signi�cantly increased mean functional connectivity between le� 
aPFC and le� PGa (t(26)3.20, p = 0.004, two-tailed independent samples t-test), right PGa (t(26) = 2.46, p = 0.02, 

Lucid dream 
group Control group

Z p(N = 14) (N = 14)

Dream recall

Dream recall (median) 7 per week 5–6 per week 1.70 0.11

Lucid dreams (median) 5–6 per week
0 (no lucid 
dreams)

4.68 <10−6

Lucid dreams last 6 mo (median) 75

Lucid dreams most 6 mo (median) 90

M (SD) M (SD) t (26) p

Demographic data
Gender (Female|Male) 9|5 9|5

Age 22.64 (5.46) 22.66 (5.47) −0.01 0.99

Working memory

OSpan 32.00 (9.57) 33.21 (12.15) −0.29 0.77

RotSpan 12.29 (6.37) 14.14 (5.96) −0.80 0.43

SymSpan 16.07 (7.78) 12.93 (6.22) 1.18 0.25

Questionnaires

IPI Mind-wandering 3.36 (0.85) 3.32 (0.95) 0.12 0.90

PRMQ Retrospective 3.46 (0.69) 3.71 (0.65) −0.98 0.34

PRMQ Prospective 3.02 (0.61) 3.36 (0.77) −1.32 0.19

TMS Decentering 13.36 (3.50) 11.93 (3.36) 1.10 0.28

TMS Curiosity 18.50 (4.26) 15.36 (4.41) 1.92 0.07

Table 1. Demographic, behavioral and questionnaire data for the frequent lucid dream group and control group. 
Note. OSpan = Operation Span, SymSpan = Symmetry Span, RotSpan = Rotation Span, IPI = Imaginal Process 
Inventory, PRMQ = Prospective and retrospective memory questionnaire, TMS = Toronto Mindfulness Scale.
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two-tailed independent samples t-test) and right hlP1 (t(26) = 2.59, p = 0.02, two-tailed independent samples 
t-test). No other anatomical subdivisions of AG/IPS showed signi�cant di�erences between groups (all p ≥ 0.06, 
two-tailed independent samples t-test).

Large-scale functional resting-state networks analysis. We next tested whether connectivity 
within and between established LSNs di�ered between groups. We �rst computed the average connectivity 
(Fisher-transformed correlation coe�cients) within and between all pairs of nodes within 7 distinct systems 

Figure 1. Seed-based resting-state functional connectivity di�erences between frequent lucid dream and 
control groups. Top panel: (a) Seed region of le� aPFC with signi�cant di�erences between groups. To estimate 
connectivity, spherical ROIs of 6 mm radius were de�ned in aPFC based on the peak voxel reported in Dresler et 
al.9 which had increased fMRI BOLD signal response during signal-veri�ed lucid REM sleep dreaming. (b) �e 
frequent lucid dream group showed increased resting-state functional connectivity between le� aPFC and the 
bilateral angular gyrus (AG), bilateral middle temporal gyrus (MTG) and right inferior frontal gyrus (IFG). All 
clusters are signi�cant at p < 0.05, corrected for multiple comparisons at the cluster level. Middle panel: Volume 
slices illustrating bilateral MTG and IFG results. Bottom panel: Volume slices illustrating bilateral AG results.

Volume (mm3) Peak t-value p (cluster FDR)

Peak MNI

X Y Z

Frequent lucid dream group > Control group

   L IPL (AG) 500 4.74 0.005 −36 −68 46

   R IPL (AG) 671 4.56 0.001 48 −62 50

   L MTG 258 4.25 0.04 −68 −24 −12

   R MTG 262 4.08 0.04 64 −38 −6

   R IFG 396 4.46 0.01 42 34 −14

Frequent lucid dream group < Control group

   L insula 1108 4.59 <0.001 −34 −20 6

   R insula 696 4.40 0.001 32 −24 0

Table 2. Whole-brain seed-based resting-state functional connectivity for le� aPFC between groups. Note. 
IPL = Inferior parietal lobule; AG = angular gyrus; MTG = middle temporal gyrus, IFG = inferior frontal gyrus. 
All clusters signi�cant at p < 0.05, cluster corrected. L: le�, R: right.
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identi�ed in a meta-analysis32 (see Methods: Large-scale networks analysis). No signi�cant di�erences in con-
nectivity were observed between groups within any LSN (all p ≥ 0.29, two-tailed independent samples t-test) 
(Supplementary Fig. 1a). �ere were also no di�erences in between-network connectivity between groups (all 
p ≥ 0.16, two-tailed independent samples t-test). Next, we evaluated the overlap between our seed-based func-
tional connectivity results and a 17-network parcellation of human brain connectivity35. �e regions identi�ed 
in our functional connectivity analysis overlapped with both default mode network (DMN) and frontoparietal 
control networks (FPCN), with the strongest overlap occurring within a subsystem of the FPCN (Supplementary 
Fig. 1b). We followed up this spatial overlap analysis by evaluating the connectivity within the FPCN subsystem 
that showed the largest overlap with the functional connectivity results, based on a 400 node parcellation of the 17 
networks36. However, no signi�cant di�erence in average network connectivity (average across all FPCN subsys-
tem nodes) was observed within this network between groups (t(26) = −1.08, p = 0.29, two-tailed independent 
samples t-test). �us, while the frequent lucid dream group showed increased functional connectivity of le� aPFC 
with regions of IPL and MTG that overlapped with this FPCN subsystem, there was no di�erence in the average 
connectivity of this subsystem between groups.

Whole-brain graph-theoretic analysis. To evaluate whole-brain di�erences in network and topological 
properties, we next parcellated the brain into 1015 regions according to the Lausanne 2008 atlas37,38 and per-
formed graph-theoretic analysis. Graphs were thresholded over a range of connection densities (0.05 ≤ δ ≤ 0.35) 
for which the area under the curve (AUC) was computed for each node. Multiple comparisons were corrected 
against a max t distribution across all nodes in the network (see Methods: Graph-theoretic network analysis). 
Node degree and strength showed signi�cant di�erences between groups in le� aPFC a�er correcting for multi-
ple comparisons, with higher node degree (tobs = 4.58, pobs = 0.0003, pcorr = 0.03, two-tailed independent samples 
t-test, max t corrected) and node strength (tobs = 4.40, pobs = 0.0003, pcorr = 0.04, two-tailed independent samples 
t-test, max t corrected) in the frequent lucid dream group compared to the control group (Fig. 3). No di�erences 
in betweenness centrality or eigenvector centrality were observed between groups for any node (all p > 0.05, 
two-tailed independent samples t-test, max t corrected).

Discussion
Summary of main findings. To the best of our knowledge, the current study is the �rst to evaluate dif-
ferences in brain structure and functional connectivity of individuals who experience lucid dreams with high 
frequency. We found that compared to a control group matched on age, gender and dream recall frequency, 
individuals who reported lucid dreams spontaneously approximately every other night or more had increased 
resting-state functional connectivity between the le� anterior prefrontal cortex (aPFC) and the bilateral angular 
gyrus (AG), bilateral middle temporal gyrus (MTG) and right inferior frontal gyrus (IFG). �e frequent lucid 
dream group also showed decreased functional connectivity between le� aPFC and bilateral insula. Whole-brain 
graph-theoretic analysis revealed that le� aPFC had increased node degree and strength in the frequent lucid 
dream group compared to the control group. In contrast to these functional changes, we did not observe any 
di�erences in brain structure (gray matter density) in any brain area between groups (c.f. ref.30). Furthermore, 
no di�erences were observed between frequent lucid dream and control groups in behavioral or questionnaire 
measures of working memory capacity, prospective memory, mind-wandering frequency or trait mindfulness.

Figure 2. Clusters in lateral parietal cortex showing increased resting-state functional connectivity with aPFC 
in the frequent lucid dream group overlaid with cytoarchitectonic subdivisions of IPL/IPS. �e angular gyrus 
can be subdivided into anterior (PGa; blue outline) and posterior (PGp; white outline) subdivisions based on 
cytoarchitecture. IPS can be divided into three subdivisions (hlP1 on the posterior lateral bank- yellow outline, 
hlP2 which is anterior to hIP1- purple outline, and hlP3 which is posterior and medial to both subdivisions- 
green outline). �e cluster peak as well as maximal cluster extent localized bilaterally to a dorsal segment of the 
anterior angular gyrus (PGa). Region-of-interest (ROI) analysis revealed increased connectivity between le� 
aPFC and bilateral PGa (blue outline) [all p < 0.05].
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Our results converge with a recent fMRI case study of lucid dreaming, which found that a highly similar 
network of brain areas increased fMRI BOLD signal during lucid compared to baseline REM sleep, including 
bilateral aPFC, bilateral ITG/MTG, and bilateral medial/lateral parietal cortex (including AG)9. �ese same 
brain areas, particularly aPFC and IPL/AG, show reduced regional cerebral blood �ow (rCBF)13,14,39 during 
REM sleep compared to waking (see ref.15 for a review). Hypoactivity of these regions coupled with preserved 
or increased activity in limbic/paralimbic structures and extrastriate cortices has been postulated to facilitate a 
mode of brain function conducive to hallucinatory dream mentation but diminished higher-order conscious-
ness/self-awareness40,41. The current results suggest that increased functional integrity during wakefulness 
between aPFC and temporoparietal association areas—all regions that show suppressed activity in REM sleep 
and increased activity during lucid REM sleep—is associated with the tendency to have frequent lucid dreams.

Lucid dreaming and brain connectivity. Becoming lucid during REM sleep dreaming involves making 
an accurate metacognitive judgment about the state of consciousness one is in, o�en by recognizing that the 
correct explanation for an anomaly in the dream is that one is dreaming1,2. �e �nding that changes in the func-
tional connectivity of aPFC is associated with lucid dream frequency is therefore consistent with a large literature 
linking this region to metacognitive functions, including the evaluation of one’s thoughts and feelings21,42 and 
variance in the capacity to make accurate metacognitive judgments23,24.

Given the link to metacognition, it has been speculated that lucid dreaming is linked to neural systems that 
regulate executive control processes, in particular the frontoparietal control network (FPCN)27,29. �e FPCN is a 
large-scale brain network that is interconnected with both the default mode network (DMN), which is linked to 
internal aspects of cognition, such as autobiographical memory43,44, spontaneous thought45,46, and self-referential 
processing47, and the dorsal attention network (DAN), which is involved in visuospatial perceptual attention48,49. 
Being spatially interposed between these two systems, the FPCN is postulated to integrate information coming 
from the opposing DMN and DAN systems by switching between competing internally and externally directed 
processes49.

Figure 3. Whole-brain graph-theoretic network di�erences between frequent lucid dream and control groups. 
(a) aPFC node (red sphere) with signi�cantly higher degree (k) and strength (s) in the frequent lucid dream 
group from axial (top panel) and le� sagittal (bottom panel) views. (b) Le� panel: Mean node degree (top row) 
and strength (bottom row) over density (cost factor) thresholds 0.05 ≤ δ ≤ 0.35 (step size 0.01) for frequent lucid 
dream (blue triangles) and control groups (red circles) for signi�cant node shown in panel a. Shaded regions 
show 95% con�dence intervals for each δ. Right panel: boxplots of area under the curve (AUC) for frequent 
lucid dream and control groups. �e bottoms and tops of the boxes show the 25th and 75th percentiles (the 
lower and upper quartiles), respectively; the inner white band shows the median; and the whiskers show the 
most extreme data points not considered outliers (outliers are plotted separately with red squares). Asterisks 
indicate signi�cant di�erences (p < 0.05) between conditions with a nonparametric bootstrap test a�er 
correcting for multiple comparisons against a surrogate max t distribution across all nodes.
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Based on a parcellation of 17 resting-state networks in the human brain, which distinguished potentially sep-
arable FPCN networks35, a recent study found that the FPCN could be fractionated using hierarchical clustering 
and machine learning classi�cation into two distinct subsystems: FPCNa, which is more strongly connected to 
the DMN than the DAN and is linked to introspective processes, and FPCNb, which is more strongly connected 
to the DAN than the DMN and is linked to regulation of perceptual attention50. �e current results show that 
frequent lucid dreams are associated with increased functional connectivity between aPFC and a network of 
regions that showed substantial overlap with the FPCN sub-network corresponding most closely to FPCNa35,50. 
However, neither connectivity within FPCN broadly de�ned through meta-analysis nor connectivity within 
FPCN sub-networks as de�ned through parcellation of resting-state networks was signi�cantly associated with 
frequent lucid dreaming in the current study. �is may be attributed to both the partial overlap of the regions that 
showed increased aPFC connectivity in lucid dreamers with FPCN networks, as well as the fact that lucid dream 
frequency was associated with increased connectivity between these regions and aPFC in the le� hemisphere, but 
not to increased connectivity between these regions and right aPFC, or broadly increased connectivity between 
other regions of FPCN to each other (outside of aPFC).

�e strongest increase in functional connectivity in the frequent lucid dream group was observed between 
le� aPFC and IPL, which localized to a dorsal segment of the anterior subdivision of the angular gyrus (PGa) 
bilaterally, as measured by overlap with cytoachitectonic probability maps. While many neuroimaging studies 
have treated the regions that comprise IPL as a homogenous region, cytoarchitectonic mapping studies have 
shown that these regions can be subdivided51,52, and these subdivisions show distinct patterns of structural and 
functional connectivity53. Speci�cally, PGa shows increased functional connectivity with the caudate, anterior 
cingulate, and bilateral frontal poles compared to PGp, whereas PGp shows increased connectivity with regions 
of the DMN, including precuneus, medial prefrontal cortex and parahippocampal and hippocampal gyri53. 
Cognitive or clinical correlates of altered functional connectivity between the frontal pole and this speci�c sub-
division of AG (PGa) have to our knowledge not yet been identi�ed, since much of the cognitive neuroscience 
literature on this region lacks anatomical speci�city. However, a meta-analysis of 120 neuroimaging studies of 
language and semantic processes found that the le� AG had the densest concentration of activation foci across 
studies, with a signi�cant clustering of activation foci also in MTG54. �e authors also note that these regions are 
greatly expanded in humans compared to non-human primates, suggesting a role in the development of language. 
Moreover, PGa is more closely linked to the semantic system that PGp, and analysis of the connectivity and cog-
nitive functions associated with this region suggests that it is positioned at the top of a processing hierarchy for 
concept retrieval and conceptual integration53.

In line with these observations, we would like to o�er a speculative hypothesis regarding our �ndings, which 
relates these results and the overlap with semantic/conceptual systems to the difference between lucid and 
non-lucid dreaming in terms of consciousness. Speci�cally, non-lucid dreams exhibit reduced working memory 
function, reduced ability to engage in behavioral control and planning, and reduced re�ective consciousness55–57. 
�us, while dreams are rich in primary consciousness of perception and emotion, consciousness during dreams 
typically lacks important aspects of what Edelman referred to as secondary or higher-order consciousness, which 
enables a creature to escape the “remembered present” of primary consciousness and to be conscious of being 
conscious58,59. In contrast, gaining lucidity during dreaming sleep involves regaining cognitive abilities associ-
ated with higher-order consciousness, including the ability to be explicitly aware of oneself and one’s state55. �e 
distinction between primary and higher-order consciousness is thought to depend on the linguistic abilities that 
separate humans from other species58. While language processes also occur during non-lucid dreams60,61, they 
are nevertheless linked to the remembered present and apparently lack the conceptual structure that allows for 
full self-awareness. We speculatively propose that the aPFC-AG-MTG network identi�ed here may be part of the 
neural circuitry enabling the integration between heteromodal metacognitive and linguistic/conceptual systems 
(in particular, the availability of AG-MTG semantic/conceptual content to anterior prefrontal regions) that allows 
one to be aware of oneself and one’s current state (i.e., “I am dreaming!”)55.

Limitations, methodological considerations and future directions. �e measurement of individ-
ual di�erences in lucid dream frequency has been done in inconsistent ways and could be improved in future 
research. In the current research we used a scale with a range of response categories, from “none” to “multiple 
times per night”62 (see Supplementary Methods: Dream and lucid dream frequency questionnaire). While this ques-
tionnaire provides a straightforward coarse assessment of lucid dream frequency, a limitation of this measure is 
that it does not measure variation in the length or “degree of awareness” of lucid dreams. Indeed, lucid dreams 
can range from a realization about the fact that one is dreaming followed by a loss of lucidity shortly therea�er 
to more extended lucid dreams in which an individual can maintain lucidity for prolonged periods of time63. 
Likewise, lucid dreams can be characterized by varying degrees of clarity of thought. Evaluating the duration 
of lucid dreams as well as the degree of awareness during lucid dreams will be valuable to relating brain struc-
tural and functional measures to lucid dream frequency in future studies. An extended discussion of this issue is 
beyond the scope of the present article; however, overall these remarks emphasize the need for the development of 
standardized measures that can be used to assess individual di�erences in frequency of lucid dreams that simul-
taneously measure the duration and degree of lucidity during dreams.

Another limitation of the current study is that our measurement of lucid dream frequency relied on ques-
tionnaire responses and participant interviews. �ere are established methods for the objective validation of 
individual lucid dreams in a sleep laboratory setting using volitional eye-movement signals4, but there are no 
protocols for physiologically validating the frequency of lucid dreams. While questionnaire measures of lucid 
dream frequency have shown high test-retest reliability64, one way to further validate participant questionnaire 
responses would be to attempt to physiologically validate at least one lucid dream in the sleep laboratory for 
each participant. We think that additional validations such as this would potentially be valuable to incorporate 
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in future studies. Nevertheless, it is important to note that the estimated frequency of lucid dreaming would still 
depend on questionnaire assessment. �us, approaches such as this do not obviate the reliance on questionnaire 
assessment as used in the current study. An intriguing, though ambitious, method for deriving a measure of lucid 
dream frequency not dependent on questionnaire assessment would be to utilize home-based EEG recording 
systems to collect longitudinal sleep polysomnography data, from which estimates of lucid dreaming frequency 
could be derived from the frequency of signal-veri�ed lucid dreams collected over many nights. However, this 
approach would only measure the frequency of signal-veri�ed lucid dreams, and instances in which participants 
achieved lucidity but did not make the eye signal due to factors such as awakening or forgetting the intention 
would be missed by this procedure.

In contrast to the observed di�erences in functional connectivity described above, in the current study we 
did not observe any signi�cant di�erences in brain structure (gray matter density) between groups. �is result 
contrasts with a study that found that two regions of aPFC had increased gray matter density in a “high-lucidity” 
group compared to a “low-lucidity” group30. As noted in the introduction, a limitation of that study is that the 
high-lucidity group was not a sample of frequent lucid dreamers, but rather individuals from a database that 
scored above the group median on a composite measure of dreaming, which measured not only frequency of 
lucid dreams but also di�erent dimensions of dream content. While several of these content dimensions have 
been found to be higher in lucid dreams57, it is likely that several of these dimensions also co-vary more generally 
with dream recall and/or cognitive content in dreams unrelated to lucidity. As a consequence, as the authors note, 
some of the results could have been partly in�uenced by di�erences in dreaming “styles”, content or dream recall. 
However, the fact that the study found that these aPFC regions also showed increased BOLD activity during 
the monitoring component of a thought-monitoring task lends additional plausibility to the results. It is impor-
tant to note that issues of statistical power could also account for the discrepant �ndings of these two studies. 
Unfortunately, no statistics or estimates of e�ect size have been reported for this e�ect and as a result we were 
unable to perform a power analysis to determine the adequate sample size for testing this e�ect. However, a single 
study that fails to reject the null hypothesis does not provide good evidence for the absence of an e�ect, especially 
with relatively small sample sizes. Overall, therefore, more research addressing this question using larger sample 
sizes will be needed before �rm conclusions can be drawn.

Here we studied individuals who reported spontaneous lucid dreaming with high frequency without engag-
ing in training to have lucid dreams. In our questionnaire samples, the proportion of individuals who reported 
spontaneous lucid dreams on close to a nightly basis constituted approximately 1 in 1,000 respondents. While 
frequent spontaneous lucid dreams are uncommon, evidence indicates that lucid dreaming is a learnable skill that 
can be developed by training in strategies such as metacognitive monitoring (i.e., “reality testing”) and, especially, 
prospective memory65,66. While it is plausible that the neurophysiological correlates of spontaneous frequent lucid 
dreaming are the same as frequent lucid dreaming that occurs as a result of training, this has not yet been stud-
ied. Future longitudinal training studies would be valuable in order to evaluate within-subject changes in brain 
connectivity as a result of training to have lucid dreams and to compare how such changes relate to the functional 
network associated with frequent lucid dreaming identi�ed here.

No signi�cant di�erences were observed between groups in working memory capacity, or questionnaire 
assessments of prospective memory or trait mindfulness. It has been suggested that a su�cient level of working 
memory is required in order to become lucid during dreaming sleep2 and thus it might be predicted that frequent 
lucid dreams could be associated with a higher baseline level of working memory capacity. Likewise, an e�ective 
method of lucid dream induction, the Mnemonic Induction of Lucid Dreams (MILD) technique63, relies on the 
use of prospective memory to become lucid, and thus it might be predicted that frequent lucid dreams could be 
associated with increased prospective memory ability. While we did not �nd evidence in support of a relationship 
between these variables and spontaneous frequent lucid dreams, it is worth noting that the relation between lucid 
dreaming and working memory has been discussed primarily in the context of successfully being able to “acti-
vate the pre-sleep intention to recognize that one is dreaming” during a dream2, and the relation to prospective 
memory is mostly considered in the context of learning to have lucid dreams by remembering to recognize that 
one is dreaming. However, spontaneous frequent lucid dreamers neither necessarily need to activate a pre-sleep 
intention nor use prospective memory to remember to recognize that they are dreaming; instead, their lucid 
dreams tend to occur spontaneously without engaging in speci�c methods for inducing them. �us, it remains 
plausible that there could be a relationship between working memory and prospective memory and (successful) 
training in lucid dreaming despite a lack of a relationship between these variables and spontaneous frequent 
lucid dreams. In future work it would be interesting to explore whether individuals with higher baseline scores 
on these measures show increased propensity in successfully training to have lucid dreams, as well as to quantify 
the association between potential improvements in these skills and lucid dream frequency as a result of training. 
Finally, the �nding that there was no signi�cant di�erence in mindfulness in frequent lucid dreamers is consist-
ent with other research, which has found that outside of meditators, there does not appear to be an association 
between trait mindfulness and lucid dream frequency in the facets of mindfulness studied here (decentering and 
curiosity)34,67,68.

In future work it would be intriguing to build on these �ndings to evaluate whether high frequency lucid 
dreamers show increased functional connectivity and/or higher metabolism or BOLD signal in these regions 
during REM sleep. If so, this would suggest that it may be possible to bias these networks toward increased 
metacognitive awareness of dreaming during REM sleep, for example through techniques to increase activa-
tion of these regions. Notably, a recent double blind, placebo-controlled study found that cholinergic enhance-
ment with galantamine, an acetylcholinesterease inhibitor (AChEI), increased the frequency of lucid dreams in 
a dose-related manner when taken late in the sleep cycle and combined with training in the mental set for lucid 
dream induction62. While the relationship between cholinergic modulation and frontoparietal activation is com-
plex and depends on the task context and population under study (see ref.69 for a review), pro-cholinergic drugs 
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in general tend to increase frontoparietal activity in conditions in which these areas show low baseline activation, 
which is thought to re�ect increased attentional-executive functions69. Given that frontoparietal activity is typi-
cally suppressed during REM sleep, an intriguing follow-up to these �ndings based on the current results would 
be to examine whether AChEIs, and galantamine in particular, may facilitate lucid dreaming through increasing 
activation within the network of fronto-temporo-parietal areas observed here.

In line with the above ideas, several studies have attempted to induce lucid dreams through electrical stimu-
lation of the frontal cortex during REM sleep. One study tested whether transcranial direct current stimulation 
(tDCS) applied to the frontal cortex would increase lucid dreaming70. While tDCS resulted in a small numerical 
increase in self-ratings of the unreality of dream objects, it did not signi�cantly increase the number of lucid 
dreams as rated by judges or con�rmed through the eye-signaling method. Another study tested whether apply-
ing transcranial alternating current stimulation (tACS) in the low gamma band (25 Hz and 40 Hz) to frontal 
regions would induce lucid dreams71. While it was reported that lucid dreams could be induced with a high 
success rate (58% with 25 Hz stimulation and 77% with 40 Hz stimulation), there are concerns about how lucid 
dreams were de�ned. Speci�cally, lucid dreams were not dreams that participants self-reported as lucid, nor 
dreams that were objectively veri�ed to be lucid through the eye-movement signaling method. Instead, dreams 
were inferred to be lucid based on higher scores to questionnaire items measuring the amount of insight or 
dissociation57. Given that dissociation (i.e. “seeing oneself from the outside” or a “3rd person perspective”) has 
never been considered a de�ning feature of lucid dreams (e.g., refs 1,72,73), it is controversial to classify dreams as 
lucid based on higher ratings of dissociation. Furthermore, mean ratings in the insight subscale increased from 
approximately 0.1–0.2 in the sham stimulation to 0.5–0.6 in the 25 Hz or 40 Hz stimulation conditions. However, 
the scale anchors ranged from 0 (strongly disagree) to 5 (strongly agree), indicating that, on average, in the 25 Hz 
and 40 Hz stimulation conditions, participants disagreed that their dreams had increased insight. In summary, it 
remains unclear whether electrical brain stimulation techniques could be e�ective for inducing lucid dreams (see 
refs19,62 for further discussion). Nevertheless, given the current �ndings, stimulation of aPFC and temporoparietal 
association areas appears to be a worthwhile direction for future research attempting to induce lucid dreaming. 
Future studies might consider testing a wider range of stimulation parameters, particularly applied to aPFC, as 
well as combining stimulation with training in the appropriate attentional set for lucid dream induction.

Methods
Participants. In total, 28 right-handed participants (18 females, age = 22.6 ± 5.4 (mean ± SD), range 18–34) 
participated in the study. Participants were recruited via mass emails sent to University of Wisconsin-Madison 
faculty, sta� and students. �e study was described broadly as a study on brain structure and dreaming. Exclusion 
criteria for all participants included pregnancy, severe mental illness or any contraindications for MRI (e.g., metal 
implants or pacemakers). To determine study eligibility, participants completed a questionnaire that measured 
their dream recall and lucid dreaming frequency (described below). For the frequent lucid dream group, we 
recruited individuals who reported a minimum of 3–4 lucid dreams per week, or approximately one lucid dream 
every other night without engaging in training to have lucid dreams. We recruited control participants who were 
1-to-1 matched to participants in the frequent lucid dream group on age, gender and dream recall frequency 
variables but who reported lucid dreams never or rarely. Speci�cally, for each participant in the frequent lucid 
dream group, we recruited a matched control participant that was the same age (date of birth <12 months apart), 
the same gender, a similar level of dream recall (see below) and lucid dream frequency of 1 per year or less. Signed 
informed consent was obtained from all participants before the experiment, and ethical approval for the study 
was obtained from the University of Wisconsin–Madison Institutional Review Board. �e study protocol was 
conducted in accordance with the Declaration of Helsinki.

Individual differences in lucid dreaming and dream recall frequency. Participants completed a 
questionnaire that measured their dream recall and lucid dreaming frequency (Supplementary Methods: Dream 
and lucid dream frequency questionnaire). Dream recall was measured with a 15-pt scale ranging from 0 (never) to 
15 (more than one dream per night). Lucid dream frequency was measured with a 15-pt scale ranging from 0 (no 
lucid dreams) to 15 (multiple lucid dreams per night). To help ensure clear understanding of the meaning of lucid 
dreaming, participants were provided with a written de�nition along with the scale as follows: “Lucid dreaming is 
a special sort of dream in which you know that you are dreaming while still in the dream. Typically, you tell your-
self ‘I’m dreaming!’ or ‘�is is a dream!’” (See Snyder & Gackenbach12 for the importance of providing a de�nition 
in the assessment of individual di�erences in lucid dreaming frequency). Participants were also provided with a 
short excerpt of a written report of a lucid dream (see Supplementary Methods for full text of the de�nition and 
example of lucid dreaming provided on the questionnaire measure).

Several additional checks were made to ensure that participants had a clear understanding of the meaning of 
lucid dreaming. First, participants were asked to provide a written example of one of their lucid dreams, including 
how they knew they were dreaming. Second, participants were interviewed by the experimenters before being 
enrolled in the study to ensure that they had a clear understanding of the meaning of lucid dreaming. During the 
interview participants described several recent lucid dreams and con�rmed the frequency with which they expe-
rienced lucid dreams through follow-up questions. Only participants who demonstrated unambiguous under-
standing of lucidity and met the frequency criteria as con�rmed by both written and oral responses were enrolled 
in the frequent lucid dream group. �e frequent lucid dream group also reported several additional variables 
related to their experiences with lucid dreaming, including the number of lucid dreams they had in the last six 
months, the most lucid dreams they had ever had in a six-month period, whether they had engaged in training to 
have lucid dreams and their general interest in the topic.

As noted above, we aimed to match dream recall between the frequent lucid dream group and control group 
as closely as possible in order to control for this potentially confounding variable. However, it was not always 
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possible to recruit a matched control participant that was exactly matched on age, gender and dream recall. For 
each participant in the frequent lucid dream group, we therefore sought to recruit the closet matched pair control 
participant of the same age and gender, with the constraint that dream recall had to be within at least 3 rank order 
values on the questionnaire measure. In 7 cases, we were able to obtain an exact match between control partic-
ipants and frequent lucid dream participants on dream recall, in 5 cases within 1 rank value, in 1 case within 2 
rank values and in 1 case within 3 rank values. In 4 out of the 5 cases that were within 1 rank value, the di�erence 
in reported dream recall frequency was between 7 dreams recalled per week and 5–6 dreams recalled per week, 
and in the remaining case the di�erence was between 3–4 dreams recalled per week and 5–6 dreams recalled per 
week. Overall this method ensured that the frequent lucid dream group and control group were closely matched 
on dream recall frequency.

Behavioral and questionnaire assessment. Participants completed several additional assessments that 
measured cognitive variables which have been hypothesized to be associated with lucid dreaming and have been 
linked to PFC function, including working memory capacity (WMC), trait mindfulness and prospective mem-
ory (e.g., refs2,33,34). To measure WMC, participants completed automated versions of the operation span task 
(OSpan), rotation span task (RotSpan) and symmetry span task (SymSpan)74. �ese tasks have been validated 
to yield a reliable measure of WMC75,76. In brief, each task presents to-be-remembered stimuli in alternation 
with an unrelated processing task. In the OSpan the to-be-remembered stimuli are letters and the unrelated 
task is verifying the accuracy of an equation; in the SymSpan the to-be-remembered stimuli are locations of 
red squares in a 4 × 4 grid and the unrelated task is verifying the vertical symmetry of an image; in the RotSpan 
the to-be-remembered stimuli are arrows pointing in one of eight di�erent directions and the unrelated task is 
whether a rotated letter is presented correctly. Participants completed two blocks of each task, which together 
provide a reliable measure of an individual’s WMC75. Following standard scoring procedures, span scores were 
calculated as the total number of items recalled in correct serial order across all trials76.

Participants also completed a questionnaire battery that assessed several additional variables of interest: their 
mind-wandering frequency, memory function in everyday life and trait mindfulness. Mind-wandering frequency 
was assessed with the Daydreaming Frequency subscale of the Imaginal Process Inventory (IPI)77. Memory func-
tion was assessed with the Prospective and Retrospective Memory Questionnaire (PRMQ)78, which measures 
self-report scores of the frequency of both prospective and retrospective memory errors in everyday life (see ref.79 
for normative data). Trait mindfulness was measured with the Toronto Mindfulness Scale (TMS)80. �e TMS 
measures two factor-analytically derived components of mindfulness: Curiosity and Decentering. �e Curiosity 
factor corresponds to an “an attitude of wanting to learn more about one’s experiences”, whereas the Decentering 
factor corresponds to “awareness of one’s experience with some distance and dis-identi�cation rather than being 
carried away by one’s thoughts and feelings”80.

MRI acquisition. Resting-state functional MRI scans were collected on a 3.0 Tesla GE MRI scanner at 
the Wisconsin Institute for Sleep and Consciousness/HealthEmotions Research Institute (Department of 
Psychiatry) at the University of Wisconsin - Madison. A T2*-weighted echo-planar imaging (EPI) sequence 
was used (TR = 2000 ms; TE = 25 ms; �ip angle = 60°; acquisition matrix = 64 × 64; FOV = 204 mm; acquisi-
tion voxel size = 3.75 × 3.75 × 4.00 mm; 40 interleaved slices, number of volumes = 300, duration = 10 minutes). 
During the resting-state scan, participants were instructed to stay awake and relax, to hold as still as possible, 
and to keep their eyes open. Before the functional scan, high-resolution T1-weighted anatomical scans were 
acquired (BRAVO, TR = 9180 ms; TE = 3.68 ms; TI = 600 ms; �ip angle = 10°; FOV = 256 mm; acquisition voxel 
size = 1 × 1 × 1 mm).

Structural (T1) data processing. T1 anatomical scans were segmented into gray matter (GM), white mat-
ter (WM), and cerebrospinal �uid (CSF) using SPM12 (Statistical Parametric Mapping, Wellcome Trust Centre 
for Neuroimaging, London). A di�eomorphic non-linear registration algorithm (di�eomorphic anatomical regis-
tration through exponentiated lie algebra; DARTEL)81 was used to iteratively register the images to their average. 
�e resulting �ow �elds were combined with an a�ne spatial transformation to generate Montreal Neurological 
Institute (MNI) template spatially normalized and smoothed Jacobian-scaled gray matter images. Spatially nor-
malized images were smoothed using an 8 mm full width at half maximum (FWHM) Gaussian kernel. We addi-
tionally evaluated average gray matter density between groups in the two regions of prefrontal cortex and bilateral 
hippocampus observed by ref.30 to show increases in a “high lucidity” group. We de�ned spherical ROIs of 4 mm 
radius in MNI152 space centered on the peak voxels reported in ref.30: right prefrontal (MNI: 4, 57, 31), le� pre-
frontal (MNI: −30, 51, 6), le� hippocampus (MNI: −21, 31, 3) and right hippocampus (MNI: 21, 31, 3). Total 
hippocampal volume was also extracted from an updated routine for automated segmentation of the hippocam-
pal sub�elds implemented in FreeSurfer version 6.082.

Resting-state fMRI (EPI) data processing. Resting-state fMRI data were processed based on a work�ow 
described previously24. To remove potential scanner instability e�ects, the �rst four volumes of each EPI sequence 
were removed. �is was followed by slice timing and rigid-body motion correction to the mean EPI image in 
AFNI83. To compare head motion between groups, head motion was calculated by mean framewise displacement 
(FD) using Jenkinson’s relative root mean square (RMS) algorithm84. A�ne transformation from mean EPI image 
to T1 volume was calculated using BBRegister85 and nonlinear transformation from T1 to the 2 mm MNI152 tem-
plate was calculated using Advanced Normalization Tools (ANTs)86. Brain mask, cerebrospinal �uid (CSF) mask 
and white matter (WM) mask were parcellated using FreeSurfer87–90 and transformed into EPI space and eroded 
by 2 voxels in each direction to reduce partial volume e�ects. Realigned timeseries were masked using the brain 
mask. Di�erences in global mean intensity between functional sessions were removed by normalizing the mean 
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of all voxels across each run to 100. Simultaneous surface and volume smoothing was applied using FreeSurfer: 
Cortical voxels were sampled to the surface and smoothed in surface space with a 10 mm FWHM Gaussian 
kernel while subcortical voxels were smoothed separately in volume space with a 5 mm FWHM Gaussian ker-
nel. Outliers in the EPI sequence were discovered based on intensity and motion parameters using ArtDetect 
(http://www.nitrc.org/projects/artifact_detect). �is was followed by nuisance regression of motion-related arti-
facts using a GLM with six rigid-body motion registration parameters and outlier scans as regressors. Principal 
components of physiological noise were estimated using the CompCor method91. Joined WM and CSF mask and 
voxels of highest variance were used to extract two sets of principal components (aCompCor and tCompCor). 
Timeseries were then denoised using a GLM model with 10 CompCor components as simultaneous nuisance 
regressors. Note that global signal regression was not performed because this processing step can induce nega-
tive correlations in group-level results92. Finally, timeseries data were temporally �ltered (high-pass = 0.01 Hz, 
low-pass = 0.1 Hz).

Seed-based whole-brain functional connectivity. To estimate connectivity, spherical regions of inter-
est (ROIs) of 6 mm radius were de�ned in the MNI152 space (Fig. 1a) based on the peak voxel (MNI: −26, 62, 10; 
and homologous (x-�ipped) coordinate) in aPFC reported in ref.9 to show increased BOLD signal during lucid 
compared to non-lucid REM sleep. In order to ensure that the spheres were contained within the pial surface 
of the cortex, spheres were shi�ed by two voxels in the x and y dimensions yielding a �nal MNI coordinate of 
x =  ± 24, y = 64, z = 10. Although aPFC functional connectivity was the main target of the current investigation, 
we also performed supplementary seed-based functional connectivity analysis on other regions identi�ed in ref.9 
to increase BOLD signal during lucid REM sleep, based on the peak voxel coordinates in le� inferior parietal 
lobule (IPL) (MNI: −50, −52, 52), right IPL (MNI: 38, −62, 52), le� inferior temporal gyrus/middle temporal 
gyrus (ITG/MTG) (MNI: −54, −60, −16), right ITG/MTG (MNI: 64, −38, −14), le� precuneus (MNI: −10, 
−68, 42) and right precuneus (MNI: 8, −78, 48). ROI masks were transformed back to each subject EPI space 
using inverse nonlinear MNI152 to T1 transform and a�ne T1 to EPI (thresholded a�er interpolation at 0.5). 
Translated ROIs were restricted within the cortical ribbon mask. ROI timeseries were estimated by averaging 
voxels within each ROI. Full brain connectivity (correlation) maps were calculated using AFNI83. Connectivity 
maps were z-transformed using Fisher’s r-to-z transform and then spatially transformed into MNI152 space. 
Group-level analysis was conducted using the general linear model (GLM) framework implemented in SPM12 
(Wellcome Trust Department of Imaging Neuroscience, University College London, UK). Voxelwise independent 
samples t-tests were performed between groups. Whole-brain analyses were conducted, correcting for multiple 
comparisons using topological FDR93 at the cluster level. Cluster forming threshold was set at p < 0.0075 and 
cluster size threshold was set at p < 0.05 (cluster corrected). Surface rendering was performed using FreeSurfer 
and Surf Ice (https://www.nitrc.org/projects/sur�ce/).

Angular gyrus (AG)/intra-parietal sulcus (IPS) subdivision analysis. Cytoarchitectonic mapping 
studies have shown that AG can be divided into anterior (PGa) and posterior (PGp) subdivisions and IPS can 
be divided into three distinct subdivisions (hlP1 on the posterior lateral bank, hlP2 which is anterior to hIP1, 
and hlP3 which is posterior and medial to both subdivisions)51,52. �e subdivisions of AG and IPS have been 
shown to have distinct structural and functional connectivity patterns53. We performed a follow-up analysis on 
the functional clusters identi�ed in our seed based functional connectivity analysis in order to characterize the 
overlap between these clusters and the anatomical subdivisions of these regions. Five regions of interest (ROIs) 
were constructed using maximum probability maps (MPMs) with the atlas probability maps from the Anatomy 
Toolbox v1.8 in SPM94. MPMs create non-overlapping regions of interest from the inherently overlapping cytoar-
chitectonic probability maps94,95. �e anatomical boundaries of these maps are described in detail in previous 
publications51,52,95. Mean connectivity values from each binarized mask were exacted using the MarsBar toolbox96.

Large-scale networks (LSNs) analysis. In order to compare whether connectivity within and between 
established large scale resting-state brain networks showed di�erences between groups, we extracted timecourses 
from a set of 166 nodes from a meta-analysis by Power, et al.32 corresponding to 7 di�erent systems: the default 
mode network (DMN; 58 nodes), the cingulo-opercular network (CO; 14 nodes), the frontoparietal control net-
work (FPCN; 25 nodes), the salience network (SN; 18 nodes), the ventral attention network (VAN; 9 nodes), the 
dorsal attention network (DAN; 11 nodes) and the visual system (VIS; 31 nodes). For each network, we calculated 
the mean correlation between all nodes within the network (within-network connectivity) as well as the mean 
correlation between all nodes of a given network and all the nodes of each other network (between-network 
connectivity). Correlation values were z-transformed using Fisher’s r-to-z transform. We also evaluated the 
overlap between our seed-based functional connectivity results and a 17-network parcellation of human brain 
connectivity networks35. �e 17-network parcellation in MNI space was down-sampled from 1 mm isotropic to 
2 mm isotropic to match the space of the functional connectivity results and the spatial overlap of all functional 
connectivity clusters with each network was calculated as the percentage of signi�cant (cluster corrected) voxels 
within each network. We followed up this network overlap analysis by evaluating the connectivity between all 
nodes within the frontoparietal control subsystem that showed the largest overlap with the functional connectiv-
ity results, based on a 400 node parcellation of the 17 functional networks36.

Graph-theoretic network analysis. To construct functional networks for graph-theoretic analysis, ana-
tomical scans were segmented using FreeSurfer and parcellated into 1015 regions according to the Lausanne 2008 
atlas included in the connectome mapping toolkit37,38. Parcellation masks were transformed back to each subject 
EPI space using the BBRegister a�ne T1 to EPI transform. Voxel-level fMRI timeseries in each subject’s native 
space within each mask were averaged and correlated to all other regions, yielding an adjacency matrix A whose 
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entries Aij re�ect the functional connectivity between region i and region j for each subject. Resting-state fMRI 
data pre-processing was identical to the procedures described above (see Resting-state fMRI data processing) with 
the exception that no spatial smoothing was applied, as spatial smoothing can distort network measures derived 
from average timeseries within parcellated regions (e.g., ref.97). All network metrics were computed in Matlab v 
9.1 (�e MathWorks Inc., Natick, MA, 2008) using the Brain Connectivity Toolbox98. For each node in the net-
work we analyzed the degree (k), strength (s), betweenness centrality (BC) and eigenvector centrality (EC). �ese 
metrics are described in detail elsewhere (see refs98,99 for reviews). In brief, k quanti�es the total number of con-
nections of a node, while s quanti�es the sum of the weights of all connections to a node. BC and EC are di�erent 
measures of centrality of nodes: BC is the fraction of all shortest paths in the network that contain a given node 
and EC quanti�es nodes connected to other densely connected nodes as having high centrality.

In order to compare network and topological properties between groups it is important to ensure that graphs 
contain the same number of edges99. �is can be achieved by thresholding A by the connection density (δ), also 
known as cost factor, of the network, which is the number of existing connections over the total number of pos-
sible connections100,101. Following recommended practice99, rather than apply a single threshold to graphs, which 
would limit any �ndings to a single arbitrary connection density, we thresholded graphs over a range of connec-
tion densities (0.05 ≤ δ ≤ 0.35) in steps of 0.01. For all measures except node strength, for which we computed 
undirected weighted matrices, network metrics were calculated on binarized thresholded matrices for each value 
of δ by setting all connections ≥δ to 1 and all connections <δ to 0. In order to compare groups over the range of 
thresholds, we calculated the area under the curve (AUC) of the δ-thresholded data by integrating the curve over 
the speci�ed density range for each graph metric, as has been applied in previous studies (e.g., refs101,102). To test 
the null hypothesis of no di�erence in AUC between groups, we used a nonparametric bootstrapping procedure 
in which we randomly reassigned groups with replacement 10,000 times and computed a bootstrapped t-value 
for each node. To correct for multiple comparisons, the maximum t-value across all nodes for each surrogate dis-
tribution was recorded to obtain a maximum t distribution and the level of statistical signi�cance was set against 
the maximum distribution at α = 0.05. �is statistical approach has been used in previous studies and allows for 
strong control over type I error103,104.

Data Availability
�e data that support the �ndings of this study are available from the corresponding author on reasonable re-
quest.

References
 1. LaBerge, S. Lucid dreaming: �e power of being awake and aware in your dreams (Jeremy P. Tarcher, 1985).
 2. LaBerge, S. Lucid dreaming: Psychophysiological studies of consciousness during REM sleep in Sleep and Cognition (eds Bootzin, 

R. R. Kihlstrom, J. F. & Schacter, D. L.) 109–126 (American Psychological Association, 1990).
 3. LaBerge, S. Lucid dreaming: Metaconsciousness during paradoxical sleep in Dream research: Contributions to clinical practice (ed. 

Kramer, M. & Glucksman, M.) 198–214 (Routledge, 2015).
 4. LaBerge, S. P., Nagel, L. E., Dement, W. C. & Zarcone, V. P. Lucid dreaming veri�ed by volitional communication during REMsleep. 

Percept. Motor Skills 52, 727–732 (1981).
 5. Erlacher, D., Schredl, M. & LaBerge, S. Motor area activation during dreamed hand clenching: A pilot study on EEG alpha band. 

Sleep Hypnosis 5, 182–187 (2003).
 6. LaBerge, S. & Dement, W. C. Voluntary control of respiration during REM sleep. Sleep Res. 11, 107 (1982).
 7. LaBerge, S., Nagel, L., Taylor, W., Dement, W. & Zarcone, V. Psychophysiological correlates of the initiation of lucid dreaming. Sleep 

Res. 10, 149 (1981).
 8. Dresler, M. et al. Dreamed movement elicits activation in the sensorimotor cortex. Curr. Biol. 21, 1833–1837 (2011).
 9. Dresler, M. et al. Neural correlates of dream lucidity obtained from contrasting lucid versus non-lucid REM sleep: A combined 

EEG/fMRI case study. Sleep 35, 1017–1020 (2012).
 10. LaBerge, S., Baird, B. & Zimbardo, P. G. Smooth tracking of visual targets distinguishes lucid REM sleep dreaming and waking 

perception from imagination. Nat. Comm. 9, 3298 (2018).
 11. Saunders, D. T., Roe, C. A., Smith, G. & Clegg, H. Lucid dreaming incidence: A quality e�ects meta-analysis of 50 years of research. 

Conscious. Cogn. 43, 197–215 (2016).
 12. Snyder, T. J. & Gackenbach, J. Individual di�erences associated with lucid dreaming in Conscious mind, sleeping brain (eds LaBerge, 

S. & Gackenbach, J.) 221–259 (Plenum, 1988).
 13. Braun, A. et al. Regional cerebral blood �ow throughout the sleep-wake cycle. An H2 (15) O PET study. Brain 120, 1173–1197 

(1997).
 14. Maquet, P. et al. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383, 163–166 (1996).
 15. Nir, Y. & Tononi, G. Dreaming and the brain: From phenomenology to neurophysiology. Trends Cog. Sci. 14, 88–100 (2010).
 16. Hobson, J. A. & Pace-Schott, E. F. �e cognitive neuroscience of sleep: Neuronal systems, consciousness and learning. Nat. Rev. 

Neurosci. 3, 679–693 (2002).
 17. Holzinger, B., LaBerge, S. & Levitan, L. Psychophysiological correlates of lucid dreaming. Dreaming 16, 88–95 (2006).
 18. Voss, U., Holzmann, R., Tuin, I. & Hobson, J. A. Lucid dreaming: A state of consciousness with features of both waking and non-

lucid dreaming. Sleep 32, 1191–1200 (2009).
 19. Baird, B., Erlacher, D., Czisch, M., Spoormaker, V. I. & Dresler, M. Consciousness and meta-consciousness during sleep in Elsevier 

handbook of sleep research (in press).
 20. LaBerge, S. Signal-ver�ed lucid dreaming proves that REM sleep can support re�ective consciousness. Int. J. Dream Res. 3, 26–27 

(2010).
 21. McCaig, R. G., Dixon, M., Keramatian, K., Liu, I. & Christo�, K. Improved modulation of rostrolateral prefrontal cortex using real-

time fMRI training and meta-cognitive awareness. NeuroImage 55, 1298–1305 (2011).
 22. Christo�, K., Ream, J. M., Geddes, L. & Gabrieli, J. D. Evaluating self-generated information: Anterior prefrontal contributions to 

human cognition. Behav. Neurosci. 117, 1161–1168 (2003).
 23. Fleming, S. M., Weil, R. S., Nagy, Z., Dolan, R. J. & Rees, G. Relating introspective accuracy to individual di�erences in brain 

structure. Science 329, 1541–1543 (2010).
 24. Baird, B., Smallwood, J., Gorgolewski, K. J. & Margulies, D. S. Medial and lateral networks in anterior prefrontal cortex support 

metacognitive ability for memory and perception. J. Neurosci. 33, 16657–16665 (2013).



www.nature.com/scientificreports/

13SCIENTIFIC REPORTS |         (2018) 8:17798  | DOI:10.1038/s41598-018-36190-w

 25. Joseph, R. Frontal lobe psychopathology: Mania, depression, confabulation, catatonia, perseveration, obsessive compulsions, and 
schizophrenia. Psychiatry 62, 138–172 (1999).

 26. Schmitz, T. W., Rowley, H. A., Kawahara, T. N. & Johnson, S. C. Neural correlates of self-evaluative accuracy a�er traumatic brain 
injury. Neuropsychologia 44, 762–773 (2006).

 27. Dresler, M. et al. Neural correlates of insight in dreaming and psychosis. Sleep Med. Rev. 20, 92–99 (2015).
 28. Dresler, M. et al. Volitional components of consciousness vary across wakefulness, dreaming and lucid dreaming. Front. Psychol. 4, 

987 (2014).
 29. Spoormaker, V. I., Czisch, M. & Dresler, M. Lucid and non-lucid dreaming: �inking in networks. Int. J. Dream Res. 3, 49–51 

(2010).
 30. Filevich, E., Dresler, M., Brick, T. R. & Kühn, S. Metacognitive mechanisms underlying lucid dreaming. J. Neurosci. 35, 1082–1088 

(2015).
 31. Ashburner, J. & Friston, K. J. Voxel-based morphometry—the methods. NeuroImage 11, 805–821 (2000).
 32. Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).
 33. Neider, M., Pace-Schott, E. F., Forselius, E., Pittman, B. & Morgan, P. T. Lucid dreaming and ventromedial versus dorsolateral 

prefrontal task performance. Conscious. Cogn. 20, 234–244 (2011).
 34. Stumbrys, T., Erlacher, D. & Malinowski, P. Meta-awareness during day and night: �e relationship between mindfulness and lucid 

dreaming. Imagin. Cogn. Pers. 34, 415–433 (2015).
 35. Yeo, B. et al. �e organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 

1125–1165 (2011).
 36. Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex, 

1–20 (2017).
 37. Daducci, A. et al. �e connectome mapper: An open-source processing pipeline to map connectomes with MRI. PloS ONE 7, 

e48121 (2012).
 38. Hagmann, P. et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 6, e159 (2008).
 39. Braun, A. R. et al. Dissociated pattern of activity in visual cortices and their projections during human rapid eye movement sleep. 

Science 279, 91–95 (1998).
 40. Maquet, P. Functional neuroimaging of normal human sleep by positron emission tomography. J. Sleep Res. 9, 207–232 (2000).
 41. Hobson, J. A. Dreaming as delirium: How the brain goes out of its mind. (MIT Press, 1999).
 42. Christo�, K. & Gabrieli, J. D. E. �e frontopolar cortex and human cognition: Evidence for a rostrocaudal hierarchical organization 

within the human prefrontal cortex. Psychobiology 20, 168–186 (2000).
 43. Andrews-Hanna, J. R., Saxe, R. & Yarkoni, T. Contributions of episodic retrieval and mentalizing to autobiographical thought: 

Evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses. NeuroImage 91, 324–335 (2014).
 44. Spreng, R. N., Mar, R. A. & Kim, A. S. �e common neural basis of autobiographical memory, prospection, navigation, theory of 

mind, and the default mode: A quantitative meta-analysis. J. Cogn. Neurosci. 21, 489–510 (2009).
 45. Mason, M. F. et al. Wandering minds: �e default network and stimulus-independent thought. Science 315, 393–395 (2007).
 46. Christo�, K., Irving, Z. C., Fox, K. C., Spreng, R. N. & Andrews-Hanna, J. R. Mind-wandering as spontaneous thought: A dynamic 

framework. Nat. Rev. Neurosci. 17, 718–731 (2016).
 47. Denny, B. T., Kober, H., Wager, T. D. & Ochsner, K. N. A meta-analysis of functional neuroimaging studies of self-and other 

judgments reveals a spatial gradient for mentalizing in medial prefrontal cortex. J. Cogn. Neurosci. 24, 1742–1752 (2012).
 48. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 

(2002).
 49. Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E. & Buckner, R. L. Evidence for a frontoparietal control system revealed by 

intrinsic functional connectivity. J. Neurophysiol. 100, 3328–3342 (2008).
 50. Dixon, M. L. et al. Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention 

networks. Proc. Natl. Acad. Sci., E1598–E1607 (2018).
 51. Caspers, S. et al. �e human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability. NeuroImage 33, 

430–448 (2006).
 52. Choi, H. J. et al. Cytoarchitectonic identi�cation and probabilistic mapping of two distinct areas within the anterior ventral bank 

of the human intraparietal sulcus. J. Comp. Neurol. 495, 53–69 (2006).
 53. Uddin, L. Q. et al. Dissociable connectivity within human angular gyrus and intraparietal sulcus: Evidence from functional and 

structural connectivity. Cereb. Cortex 20, 2636–2646 (2010).
 54. Binder, J. R., Desai, R. H., Graves, W. W. & Conant, L. L. Where is the semantic system? A critical review and meta-analysis of 120 

functional neuroimaging studies. Cereb. Cortex 19, 2767–2796 (2009).
 55. Windt, J. M. & Metzinger, T. �e philosophy of dreaming and self-consciousness: What happens to the experiential subject during 

the dream state? In �e new science of dreaming: Cultural and theoretical perspectives (eds Barrett, D. & McNamara, P.) 193–247 
(Praeger, 2007).

 56. Rechtscha�en, A. �e single-mindedness and isolation of dreams. Sleep 1, 97–109 (1978).
 57. Voss, U., Schermelleh-Engel, K., Windt, J., Frenzel, C. & Hobson, A. Measuring consciousness in dreams: The lucidity and 

consciousness in dreams scale. Conscious. Cogn. 22, 8–21 (2013).
 58. Edelman, G. M. �e remembered present: A biological theory of consciousness (Basic Books, 1989).
 59. Edelman, G. M. Wider than the sky: �e phenomenal gi� of consciousness (Yale University Press, 2004).
 60. Kahan, T. L., LaBerge, S., Levitan, L. & Zimbardo, P. Similarities and di�erences between dreaming and waking cognition: An 

exploratory study. Conscious. Cogn. 6, 132–147 (1997).
 61. Kahan, T. L. & LaBerge, S. P. Dreaming and waking: Similarities and di�erences revisited. Conscious. Cogn. 20, 494–514 (2011).
 62. LaBerge, S., LaMarca, K. & Baird, B. Pre-sleep treatment with galantamine stimulates lucid dreaming: A double-blind, placebo-

controlled, crossover study. PLoS ONE 13, e0201246 (2018).
 63. LaBerge, S. & Rheingold, H. Exploring the world of lucid dreaming (Ballantine Books 1990).
 64. Stumbrys, T., Erlacher, D. & Schredl, M. Reliability and stability of lucid dream and nightmare frequency scales. Int. J. Dream Res. 

6, 123–126 (2013).
 65. LaBerge, S. Lucid dreaming as a learnable skill: A case study. Percept. Motor Skills 51, 1039–1042 (1980).
 66. Aspy, D. J., Delfabbro, P., Proeve, M. & Mohr, P. Reality testing and the Mnemonic Induction of Lucid Dreams: Findings from the 

national Australian lucid dream induction study. Dreaming 27, 206–231 (2017).
 67. Rider, R. L. Exploring the relationship between mindfulness in waking and lucidity in dreams Doctor of Philosophy thesis, Drexel 

University (2012).
 68. Baird, B., Riedner, B. A., Boly, M., Davidson, R. J. & Tononi, G. Increased lucid dream frequency in long-term meditators but not 

following mindfulness-based stress reduction training. Psychology of Consciousness: �eory, Research and Practice (in press).
 69. Bentley, P., Driver, J. & Dolan, R. J. Cholinergic modulation of cognition: Insights from human pharmacological functional 

neuroimaging. Prog. Neurobiol. 94, 360–388 (2011).
 70. Stumbrys, T., Erlacher, D. & Schredl, M. Testing the involvement of the prefrontal cortex in lucid dreaming: A tDCS study. 

Conscious. Cogn. 22, 1214–1222 (2013).



www.nature.com/scientificreports/

1 4SCIENTIFIC REPORTS |         (2018) 8:17798  | DOI:10.1038/s41598-018-36190-w

 71. Voss, U. et al. Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nat. Neurosci. 17, 
810–812 (2014).

 72. Green, C. E. Lucid dreams (Hamilton, 1968).
 73. Gackenbach, J. & LaBerge, S. Conscious mind, sleeping brain: Perspectives on lucid dreaming (Plenum Press, 1988).
 74. Unsworth, N., Heitz, R. P., Schrock, J. C. & Engle, R. W. An automated version of the operation span task. Behav. Res. Methods 37, 

498–505 (2005).
 75. Foster, J. L. et al. Shortened complex span tasks can reliably measure working memory capacity. Mem. Cognit. 43, 226–236 (2015).
 76. Conway, A. R. et al. Working memory span tasks: A methodological review and user’s guide. Psychon. Bull. Rev. 12, 769–786 (2005).
 77. Singer, J. L. & Antrobus, J. S. Daydreaming, imaginal processes, and personality: A normative study in �e function and nature of 

imagery (ed. Sheehan, P. W.) 175–202 (Academic Press, Inc, 1972).
 78. Smith, G., Del Sala, S., Logie, R. H. & Maylor, E. A. Prospective and retrospective memory in normal ageing and dementia: A 

questionnaire study. Memory 8, 311–321 (2000).
 79. Crawford, J., Smith, G., Maylor, E., Della Sala, S. & Logie, R. �e Prospective and Retrospective Memory Questionnaire (PRMQ): 

Normative data and latent structure in a large non-clinical sample. Memory 11, 261–275 (2003).
 80. Lau, M. A. et al. �e Toronto mindfulness scale: Development and validation. J. Clin. Psychol. 62, 1445–1467 (2006).
 81. Ashburner, J. A fast di�eomorphic image registration algorithm. NeuroImage 38, 95–113 (2007).
 82. Iglesias, J. E. et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to 

adaptive segmentation of in vivo MRI. NeuroImage 115, 117–137 (2015).
 83. Cox, R. W. AFNI: What a long strange trip it’s been. NeuroImage 62, 743–747 (2012).
 84. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and 

motion correction of brain images. NeuroImage 17, 825–841 (2002).
 85. Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage 48, 63–72 

(2009).
 86. Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54, 

2033–2044 (2011).
 87. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9, 

179–194 (1999).
 88. Dale, A. M. et al. Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical 

activity. Neuron 26, 55–67 (2000).
 89. Fischl, B. FreeSurfer. NeuroImage 62, 774–781 (2012).
 90. Fischl, B. et al. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 33, 

341–355 (2002).
 91. Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise correction method (CompCor) for BOLD and perfusion 

based fMRI. NeuroImage 37, 90–101 (2007).
 92. Saad, Z. S. et al. Trouble at rest: How correlation patterns and group di�erences become distorted a�er global signal regression. 

Brain Connect. 2, 25–32 (2012).
 93. Chumbley, J., Worsley, K., Flandin, G. & Friston, K. Topological FDR for neuroimaging. NeuroImage 49, 3057–3064 (2010).
 94. Eickhoff, S. B. et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. 

NeuroImage 25, 1325–1335 (2005).
 95. Caspers, S. et al. �e human inferior parietal lobule in stereotaxic space. Brain Struct. Funct. 212, 481–495 (2008).
 96. Brett, M., Anton, J.-L., Valabregue, R. & Poline, J.-B. Region of interest analysis using the MarsBar toolbox for SPM 99. NeuroImage 

16, S497 (2002).
 97. Alakörkkö, T., Saarimäki, H., Glerean, E., Saramäki, J. & Korhonen, O. E�ects of spatial smoothing on functional brain networks. 

Eur. J. Neurosci. 46, 2471–2480 (2017).
 98. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 52, 1059–1069 

(2010).
 99. Bullmore, E. T. & Bassett, D. S. Brain graphs: Graphical models of the human brain connectome. Ann. Rev. Clin. Psych. 7, 113–140 

(2011).
 100. Latora, V. & Marchiori, M. E�cient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001).
 101. Achard, S. & Bullmore, E. E�ciency and cost of economical brain functional networks. PLoS Comp. Biol. 3, e17 (2007).
 102. Crone, J. S. et al. Altered network properties of the fronto-parietal network and the thalamus in impaired consciousness. 

NeuroImage: Clinical 4, 240–248 (2014).
 103. Nichols, T. E. & Holmes, A. P. Nonparametric permutation tests for functional neuroimaging: A primer with examples. Hum. Brain 

Mapp. 15, 1–25 (2002).
 104. Westfall, P. H. On using the bootstrap for multiple comparisons. J. Biopharm. Stat. 21, 1187–1205 (2011).

Acknowledgements
We thank Stephen LaBerge for helpful discussion. �is work was supported by NIH/NCCAM P01AT004952 
and the Tiny Blue Dot Foundation (to G.T.). B.B. was supported by the National Institutes of Health under 
Ruth L. Kirschstein National Research Service Award F32NS089348 from the NINDS. �e content is solely the 
responsibility of the authors and does not necessarily represent the o�cial views of the National Institutes of 
Health. OG is post-doctoral researcher at the Belgian National Funds for Scienti�c Research (FRS-FNRS) and 
is supported by the Belgian National Funds for Scienti�c Research (FRS-FNRS), the European Union’s Horizon 
2020 Framework Programme for Research and Innovation under the Speci�c Grant Agreement No. 785907 
(Human Brain Project SGA2), and the Luminous project (EU-H2020-fetopen-ga686764).

Author Contributions
B.B. and G.T. designed research; B.B., A.C. and O.G. collected data; B.B. analyzed data; B.B., A.C., O.G. and G.T. 
wrote the paper.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-36190-w.

Competing Interests: �e authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

http://dx.doi.org/10.1038/s41598-018-36190-w


www.nature.com/scientificreports/

1 5SCIENTIFIC REPORTS |         (2018) 8:17798  | DOI:10.1038/s41598-018-36190-w

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© �e Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Frequent lucid dreaming associated with increased functional connectivity between frontopolar cortex and temporoparietal as ...
	Results
	Demographic and behavioral results. 
	Voxel-based morphometry (VBM). 
	Seed-based whole-brain resting-state functional connectivity. 
	IPL/IPS subdivision analysis. 
	Large-scale functional resting-state networks analysis. 
	Whole-brain graph-theoretic analysis. 

	Discussion
	Summary of main findings. 
	Lucid dreaming and brain connectivity. 
	Limitations, methodological considerations and future directions. 

	Methods
	Participants. 
	Individual differences in lucid dreaming and dream recall frequency. 
	Behavioral and questionnaire assessment. 
	MRI acquisition. 
	Structural (T1) data processing. 
	Resting-state fMRI (EPI) data processing. 
	Seed-based whole-brain functional connectivity. 
	Angular gyrus (AG)/intra-parietal sulcus (IPS) subdivision analysis. 
	Large-scale networks (LSNs) analysis. 
	Graph-theoretic network analysis. 

	Acknowledgements
	Figure 1 Seed-based resting-state functional connectivity differences between frequent lucid dream and control groups.
	Figure 2 Clusters in lateral parietal cortex showing increased resting-state functional connectivity with aPFC in the frequent lucid dream group overlaid with cytoarchitectonic subdivisions of IPL/IPS.
	Figure 3 Whole-brain graph-theoretic network differences between frequent lucid dream and control groups.
	Table 1 Demographic, behavioral and questionnaire data for the frequent lucid dream group and control group.
	Table 2 Whole-brain seed-based resting-state functional connectivity for left aPFC between groups.


