
Frequent-Pattern based Iterative Projected Clustering �

Man Lung Yiu and Nikos Mamoulis
Department of Computer Science and Information Systems

University of Hong Kong
Pokfulam Road, Hong Kong
�mlyiu2,nikos�@csis.hku.hk

Abstract

Irrelevant attributes add noise to high dimensional clusters
and make traditional clustering techniques inappropriate.
Projected clustering algorithms have been proposed to find
the clusters in hidden subspaces. We realize the analogy be-
tween mining frequent itemsets and discovering the relevant
subspace for a given cluster. We propose a methodology for
finding projected clusters by mining frequent itemsets and
present heuristics that improve its quality. Our techniques
are evaluated with synthetic and real data; they are scalable
and discover projected clusters accurately.

1. Introduction

Clustering is typically used to partition a collection of data
samples into a set of clusters (i.e., groups) such that the sim-
ilarity between objects within a cluster is large and the ob-
jects from different clusters are dissimilar. Typical appli-
cations include customer segmentation, image processing,
biology, document classification, indexing, etc.

It was shown in [5] that the distance of any two records is
almost the same in high dimensional spaces for a large class
of common distributions. Thus, the widely used distance
measures are more meaningful in subsets (i.e., projections)
of the high dimensional space. It is more likely for the data
to form dense, meaningful clusters in a dimensional sub-
space, especially in real datasets, where irrelevant, noise at-
tributes exist. The effects of dimensionality can be reduced
by a dimensionality reduction technique [7] but information
from all dimensions is uniformly transformed and relevant
information for some clusters may be reduced. Also, clus-
ters in the transformed space may be hard to interpret.

Therefore, projected clustering methods have been de-
veloped to find the clusters together with their associated

�This research was supported by grant HKU 7380/02E from Hong
Kong RGC.

subspaces. These methods disregard the noise induced
by irrelevant dimensions and also provide interpretable de-
scriptions for the clusters. CLIQUE [3], one of the first pro-
jected clustering algorithms, finds the dense regions (clus-
ters) in a level-wise manner, based on the Apriori principle.
However, this algorithm does not scale well with data di-
mensionality. In addition, the formed clusters have large
overlap, and this may not be acceptable for some applica-
tions (e.g., classification) which require disjoint partitions.

PROCLUS [1] and ORCLUS [2] employ alternative
techniques. They are much faster than CLIQUE and they
can discover disjoint clusters. In PROCLUS, the dimen-
sions relevant to each cluster are selected from the original
set of attributes. ORCLUS is more general and can select
relevant attributes from the set of arbitrary directed orthog-
onal vectors. PROCLUS fails to identify clusters with large
difference in size and requires their dimensionality to be in
a predefined range. ORCLUS may discover clusters that are
hard to interpret.

DOC [10] is a simple, density-based, projected cluster-
ing algorithm. A projected cluster� is defined by (i) the set
of points in � (also denoted by �), (ii) a set � of relevant
dimensions. In addition, three parameters �,�, and � are
defined. � controls the extent of the clusters; the distances
between records in the same cluster in each relevant dimen-
sion are bounded by �. � � ��� �� is the minimum density
of the discovered clusters; each cluster should have at least
� � ��� points, where ��� is the database size. � � ��� ��
reflects the importance of the size of the subspace over the
size of the cluster. DOC discovers one cluster at a time.
At each step, it picks a random point � from the database �
and attempts to discover the cluster centered at �. For this, it
runs an inner loop that selects a set of samples� � �. A set
of dimensions �, where all points in � are within distance
� from � is selected. Then, a cluster � for � is approxi-
mated by a bounding box of width �� around � in the rel-
evant dimensions. � is defined by the set of points from �

in this box. The process is repeated for a number of random
points � and samples � for each �. Among all discovered

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03) 
0-7695-1978-4/03 $ 17.00 © 2003 IEEE 



�, the cluster with the highest quality is finally selected.
The quality of a cluster � is defined by ���� �� � � �������,
where � is the number of points in � and � is the dimen-
sionality of �. After one cluster has been discovered, the
records in it are removed from the sample and the process
is iteratively applied to the rest of the points. With this ap-
proach the number of clusters � can be automatically found.
Moreover, small clusters can be identified. However, DOC
only produces approximate results and requires a lot of time
to discover clusters of high accuracy.

In this paper, we propose an algorithm that improves
DOC in several ways. First, we draw some analogues be-
tween mining frequent itemsets and discovering the relevant
subspace for a given cluster. Then, we adapt a data mining
technique [9] to systematically find the optimal cluster. Sec-
ond, we propose techniques that improve the quality of the
clusters. The resulting algorithm is much faster than DOC,
while producing clusters of high quality.

The outline of the paper is as follows. Our methodology
is presented in Section 2. Section 3 presents experimental
comparisons between projected clustering techniques. Fi-
nally, Section 4 concludes the paper and discusses issues
for future work.

2. Projected Clustering

2.1. Mining relevant dimensions

Given a random medoid � � 	, we can transform the prob-
lem of finding the best projected cluster that contains �,
to the problem of mining frequent itemsets in transactional
databases as shown in Figure 1. The original dataset 	 is
shown in Figure 1a. We consider each dimension 
 as one
attribute ��. Assume that the record marked in bold is the
medoid �. We replace each point � � 	 by an itemset as fol-
lows. If and only if the value of � in dimension 
 is bounded
by � with respect to width � (here, �=2), we include �� in
the corresponding itemset, as shown in Figure 1b. Observe
that all frequent itemsets (i.e., combinations of dimensions)
with respect to 
� ��� � � � �	� are candidate clusters for
medoid �.

�� �� �� ��

1 2 4 8
2 1 9 6
3 2 7 3
4 8 1 2
9 6 2 1
7 3 3 2

Itemset
���� ���
���� ���

���� ��� ��� ���
���� ���
����

���� ���
(a) Original table (b) Corresponding itemsets

Figure 1. Transforming dataset to itemsets

/* Table header entries (hl) are in descending order of support */
Algorithm ��������� �������������
1 if � has a single path then
2 � := �����;
3 for 	:=� to � 
�	
	����

4 � := � � �� 
�	�	�
�����; ������ := � 
�	�	�
�������;
5 update ����� if ���� � ��������;
6 else
7 � := ����� � �� 
�	�1�
�����; ������ := � 
�	�1�
�������;
8 update ����� if ���� � ��������;
9 for 	:=� 
�	
	���� down to 2
10 � := ����� � �� 
�	�	�
�����;
11 if ��� 
�	�	�
������������������ � 	� � �������� then
12 construct �’s conditional pattern base;
13 create �’s conditional FP-Tree �� ;
14 if ��� �� �� then ���������� ���;

Figure 2. The ������� algorithm

Therefore, the problem of finding the best projected clus-
ter for a random medoid � can be transformed to the prob-
lem of finding the best itemset in a transformation of 	 (like
the one of Figure 1b), where goodness is defined by the �
function. Instead of discovering it in an non-deterministic
way [10], we apply a systematic data mining algorithm on
	. The frequent itemset mining problem was first proposed
in [4]. Recently, there is an more efficient algorithm, the
FP-growth method [9]. We adopt it for subspace cluster-
ing. However, our objective is to find the frequent itemset
with maximum � value, rather than finding all frequent sub-
spaces with respect to �.

Assume that ����� is the itemset with the maximum �
value found so far and let �
������� and ���������� be its
dimensionality and support, respectively. Let ����� be the
current conditional pattern of the FP-growth process. Its
support ���������� gives an upper bound for the supports
of all patterns containing it. Moreover, the dimensionality
of the itemsets that contain ����� is at most �
�������� �,
where � is the number of items above the items in ����� in
the header table. Therefore if:

������������� �
������� � �� � ��������� (1)

we can avoid constructing the conditional FP-tree for �����,
since that tree cannot generate a better pattern than �����.
This bound can help prune the search space of the original
mining process, effectively.

The ������� process is shown in Figure 2. It can re-
place the randomized inner loop of DOC to systematically
discover the best subspace for a given medoid �. Moreover,
it can accelerate a given phase of DOC. The best � found
so far is kept, allowing further pruning in subsequent itera-
tions. In other words, if a good � is found in early iterations,
it can help prune FP-trees for other medoids in subsequent
iterations. With this modification, DOC can converge to a
good solution fast.

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03) 
0-7695-1978-4/03 $ 17.00 © 2003 IEEE 



2.2. The MineClus algorithm

Our clustering algorithm (MineClus) has four phases. In
the iterative phase, the process described in Section 2.1 is
applied to generate iteratively one cluster at a time. It is pos-
sible that the resulting cluster may be part of a large cluster
that spreads outside the bounding rectangle. By using the
Manhattan segmental distance [1], we also assign records
having distance at most��� ���� from the cluster centroid.
��� ���� is defined by the distance of the farthest point
from the centroid, currently in the cluster. In the pruning
phase, clusters having � values significantly lower than the
rest are pruned. First, we sort the clusters according to their
� values in descending order. Then, we find the position �	�
such that ����
������ � ��
���� ��. This position divides
the clusters into a set of strong clusters �� �� � �	��, and
a set of weak clusters �� �� � �	��. The weak clusters are
pruned and their records are added back to . The merging
phase is applied only when the user wants at most � clusters
in the result. In this case, the strong clusters are merged in
an agglomerative way until � clusters remain. Given clus-
ters �� and ��, the merged cluster is �� � ��, its sub-
space is �� � ��, its spread1 is ���� � ��� �� � ���
and its � value is ����� � ���� ��� �����. A good cluster
should have small spread and large � value (i.e., large sub-
space), so we use both measures to determine the next pair
to merge. We consider two rankings of the cluster pairs; one
with respect to spread and one with respect to � value. Then
the pair with the highest sum of ranks in both orderings is
merged. In the refinement phase, we further improve the
clusters by assigning the remaining records in the dataset
(considered as outliers so far) to clusters. We use a similar
algorithm to the refinement phase of PROCLUS [1].

3. Experimental Evaluation

In this section, we experimentally evaluate the effectiveness
and efficiency of MineClus by comparing it with DOC2 and
PROCLUS, under various settings, for synthetic and real
data. The performance measures are accuracy, percentage
of outliers, and running time. Clustering accuracy corre-
sponds to the number of correctly classified samples as a
percentage of the total number of clustered data (exclud-
ing outliers). Outlier percentage is defined by the num-
ber of records assigned to no clusters as a percentage of
the database size. First, we compare the performance of
the methods on synthetic data and study their scalability on
large datasets. Then, we compare them on real datasets.

1the spread ������ of a cluster � is defined by the mean squared
distance between its points and its centroid, considering only the relevant
dimensions � [2].

2We also implemented FastDOC [10], a faster variant of DOC, but
found that the clusters generated failed to satisfy the � constraint most
of the cases and it was sensitive to outliers.

We have implemented a synthetic data generator similar
to the one in [1]. The outlier percentage is 5%. The gener-
ated datasets contain � � � clusters with random subspaces
comprising from 5 to 10 dimensions. The smallest cluster
size is ��� � ��, where �� is the size of the database . In
the experiments that involve synthetic data, the results are
averaged over 5 runs in order to smoothen the effects of
randomness in the algorithms. All algorithms were imple-
mented in Java. The experiments were run on a PC with a
Pentium 4 CPU of 2.3GHz and 512MB RAM.

First, we compare the accuracy of MineClus, DOC, and
PROCLUS, for various types of synthetic data. The input
parameters for MineClus and DOC are � � ����� � �
����� � � ���. For PROCLUS, we set � � � and the av-
erage subspace dimensionality � � �. The running time of
DOC is too high when the number of inner iterations � is
high. We set � � ��� for DOC because it has quite high
accuracy with this value, and its running time is in the same
order as MineClus and PROCLUS.

Figure 3 shows accuracy as a function of � and �, on the
same synthetic dataset. Entries in the tables are of the form
�
� , where � is the accuracy percentage and � is the out-
lier percentage. In general, both MineClus and DOC have
high accuracy. When � � ����, the accuracy of MineClus
decreases as the smallest cluster with ��� � �� records was
missed. MineClus is not sensitive to � because of the de-
terministic behavior of the ���	��� algorithm. The ac-
curacy of DOC decreases significantly as � increases, be-
cause DOC picks a larger discriminating set and smaller
subspaces are likely to be discovered. Observe that DOC
misclassifies many points as outliers in both experiments.
Figure 4 compares the accuracy of all three algorithms as a
function of data dimensionality. Observe that the accuracy
of MineClus (and PROCLUS) is insensitive to dimensional-
ity. On the other hand, the accuracy of DOC decreases when
the dimensionality increases. This is explained by the fact
that DOC applies a fixed number � of inner iterations and
the chance to select an appropriate sample in each iteration
decreases with dimensionality.

Next, we compare the scalability of the algorithms on
various dataset sizes. Figure 5 shows their running time in
seconds. They are all scalable to the database size. How-
ever, DOC is very expensive compared to the other meth-
ods, even for the smallest value of �, where its accuracy is
low. MineClus is the fastest technique due to the efficiency
of the ���	��� algorithm.

Finally, we compare the effectiveness of the three al-
gorithms on real datasets from the UCI Machine Learn-
ing Repository [6]. The Iris dataset has only numerical
attributes and the rest have only categorical attributes so
we set � � ��� for Iris dataset and � � � for the rest
in both DOC and MineClus. These datasets have no out-
liers so we turned off the outlier removal mechanism. The

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03) 
0-7695-1978-4/03 $ 17.00 © 2003 IEEE 



number of clusters � is set to the number of classes, except
from the mushroom dataset where � is set to 20 (as sug-
gested in [8]). For PROCLUS, we set the average subspace
dimensionality � to be the average subspace size of the ac-
tual clusters. For DOC and MineClus, we set � � ����

and � � ���� ���� ���� ���� for the Iris, Soybean, Votes, and
Mushroom datasets respectively. DOC becomes too slow
for the Mushroom dataset, so no result is given. In gen-
eral, MineClus and DOC have high accuracy but DOC de-
clares too many points as outliers. In summary, MineClus
is highly accurate and robust.

� MineClus DOC,� � �
��

0.04 95.57/0.60 99.05/16.00
0.06 95.76/0.80 100.00/15.04
0.08 95.12/1.60 99.72/26.40
0.10 95.38/0.40 99.54/12.40
0.12 89.88/1.2 99.53/15.00

� MineClus DOC,� � �
��

0.1 95.84/0.87 100.00/50.80
0.2 96.04/1.08 100.00/24.80
0.3 94.53/3.32 88.70/13.00
0.4 95.68/0.72 50.60/6.00

(a) Dependency on � (b) Dependency on �

Figure 3. Accuracy and outlier percentage

80

82

84

86

88

90

92

94

96

98

100

20 30 40 50 60 70 80

A
cc
u
ra
cy
 %

Dim ensionality ofthe dataset

M ineClus
DOC,m =2 1̂0
PROCLUS

Figure 4. Accuracy w.r.t. dimensionality

1

10

100

1000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

ti
m
e
 (
se
c)

database size

M ineClus
DOC,m =2 9̂
DOC,m =2 1̂0
DOC,m =2 1̂1
PROCLUS

Figure 5. Scalability w.r.t. database size

4. Conclusions

In this paper, we presented an efficient and effective pro-
jected clustering algorithm. First, we identifed the similar-

Dataset MineClus DOC,� � �
�� PROCLUS

Iris 92.66/0.00 94.80/22.00 87.87/0.00
Soybean 97.87/0.00 81.30/8.50 84.97/0.00

Votes 86.67/0.00 99.60/28.00 84.41/0.00
Mushroom 96.41/0.59 -/- 97.68/0.00

Figure 6. Performance on real datasets

ity between mining frequent itemsets and discovering the
best projected cluster for a pivot point �. Then, we proposed
an adaptation of FP-growth that exploits the properties of
the � function and employs branch-and-bound techniques
to reduce the search space significantly. We extended the
cluster definition of [10] to consider more appropriate dis-
tance and quality measures for projected clustering. The
quality of the results was further improved by (i) pruning
small clusters of low quality, (ii) merging clusters close to
each other with similar subspaces, and (iii) assigning points
close to some cluster, else considered as outliers. We eval-
uated the efficiency and effectiveness of MineClus by com-
paring it with DOC [10] and PROCLUS [1] using synthetic
and real data, under various conditions. It was shown that
MineClus is more efficient, robust and scalable. In the fu-
ture, we hope to devise additional heuristics for improving
the discovered clusters.

References

[1] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S.
Park. Fast algorithms for projected clustering. In ACM SIG-
MOD, 1999.

[2] C. C. Aggarwal and P. S. Yu. Finding generalized projected
clusters in high dimensional spaces. In ACM SIGMOD,
2000.

[3] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.
Automatic subspace clustering of high dimensional data for
data mining applications. In ACM SIGMOD, 1998.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules in large databases. In VLDB, 1994.

[5] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft.
When is “nearest neighbor” meaningful? In ICDT, 1999.

[6] C. Blake and C. Merz. UCI repository of machine learn-
ing databases, www.ics.uci.edu/�mlearn/mlrepository.html,
1998.

[7] C. Faloutsos and K.-I. Lin. Fastmap: A fast algorithm for
indexing, data-mining and visualization of traditional and
multimedia datasets. In ACM SIGMOD, 1995.

[8] S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering
algorithm for categorical attributes. In IEEE ICDE, 1999.

[9] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In ACM SIGMOD, 2000.

[10] C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M. Murali.
A monte carlo algorithm for fast projective clustering. In
ACM SIGMOD, 2002.

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03) 
0-7695-1978-4/03 $ 17.00 © 2003 IEEE 


