
Technical Report 1500, Computer Sciences Dept., UW-Madison, April 2004

y

.

,

-

)

2

a

e

s-

x

speed

e effec-

singly

reviously

effective

tions of

hemes

onary,

com-

vides a
Frequent Pattern Compression: A Significance-Based
Compression Scheme for L2 Caches

Alaa R. Alameldeen and David A. Wood
Computer Sciences Department, University of Wisconsin-Madison

{alaa, david}@cs.wisc.edu

Abstract

With the widening gap between processor and memory speeds, memory system designers ma

find cache compression beneficial to increase cache capacity and reduce off-chip bandwidth

Most hardware compression algorithms fall into the dictionary-based category, which depend

on building a dictionary and using its entries to encode repeated data values. Such algorithms

are effective in compressing large data blocks and files. Cache lines, however, are typically

short (32-256 bytes), and a per-line dictionary places a significant overhead that limits the

compressibility and increases decompression latency of such algorithms. For such short lines

significance-based compression is an appealing alternative.

We propose and evaluate a simple significance-based compression scheme that has a low com

pression and decompression overhead. This scheme, Frequent Pattern Compression (FPC

compresses individual cache lines on a word-by-word basis by storing common word patterns

in a compressed format accompanied with an appropriate prefix. For a 64-byte cache line,

compression can be completed in three cycles and decompression in five cycles, assuming 1

FO4 gate delays per cycle. We propose a compressed cache design in which data is stored in

compressed form in the L2 caches, but are uncompressed in the L1 caches. L2 cache lines ar

compressed to predetermined sizes that never exceed their original size to reduce decompre

sion overhead. This simple scheme provides comparable compression ratios to more comple

schemes that have higher cache hit latencies.

1  Introduction

As semiconductor technology continues to improve, the rising disparity between processor and memory

increasingly dominates performance. Modern processors use two or more levels of cache memories to reduc

tive memory latency and bandwidth. Effectively using the limited on-chip cache resources becomes increa

important as memory latencies continue to increase relative to processor speeds. Cache compression has p

been proposed to improve performance, since compressing data stored in on-chip caches increases their

capacity, potentially reducing misses.

Most previous proposals in hardware cache or memory compression (Section 2) are hardware implementa

dictionary-based software compression algorithms (e.g., LZ77 [32]). Such hardware dictionary-based sc

depend mainly on maintaining a per-block dictionary and encoding words (or bytes) that match in the dicti

while keeping words (bytes) that do not match in their original form with an appropriate prefix.

Schemes such as the Block-Referential Compression with Lookahead (BRCL) used in the IBM MXT memory

pression depend on having long enough lines / pages to increase the overall compression ratio [14]. BRCL pro
1



Technical Report 1500, Computer Sciences Dept., UW-Madison, April 2004

BRCL

menta-

The X-

hes of

lines by

ance of

es are fre-

compres-

be stored

ented

in the

ssion [9,

lines.

g. How-

ibility for

). This

ch word,

s it in a

pipeline

ith other

dress and

on

imple-

gn of a

MXT

using a

rallel

cks

arallel

ntents
good compression ratio for 1K-byte or longer blocks. However, cache lines are typically much shorter and

does not perform as well for shorter lines. In addition, decompression latency is high, since the parallel imple

tion of BRCL decompresses data at a speed of 8 bytes per cycle [26], or 8 cycles for a 64-byte cache line.

Match compression scheme [18] tries to compress more data with a small dictionary by allowing partial matc

data words to dictionary entries. Frequent-value cache designs [29, 31] achieve better compression for cache

constructing a single dictionary (the Frequent-Value Cache, FVC) for the whole cache, which increases the ch

a single word to be found and compressed. These designs are based on the observation that a few cache valu

quent and thus can be compressed to a fewer number of bits. However, a large FVC requires an increased de

sion latency due to the increased FVC access time.

Significance-based compression is based on the observation that most data types (e.g., 32-bit integers) can

in a fewer number of bits than the maximum allowed. For example, sign-bit extension is a commonly implem

technique to store small integers (e.g., 8-bit) into 32-bit words, while all the information in the word is stored

least-significant few bits. In contrast with dictionary-based compression schemes, significance-based compre

11, 12] does not incur a per-line dictionary overhead, which makes it more suitable for the typically-short cache

In addition, compression and decompression hardware is faster than dictionary-based encoding and decodin

ever, compressibility can be significantly impaired for long cache lines.

In this document, we propose a significance-based compression scheme that provides reasonable compress

the typically short cache lines with a relatively fast hardware compression and decompression (Section 3

scheme, the Frequent Pattern Compression (FPC) compresses a cache line on a word-by-word basis. For ea

FPC detects whether it falls into one of the patterns that can be stored in a smaller number of bits, and store

compressed form with an appropriate prefix. We discuss the implementation of a hardware decompression

that decompresses a 64-byte cache line in five cycles (Section 4). We evaluate this scheme and compare it w

hardware compression schemes in Section 5.

2  Related Work
Several researchers used hardware-based compression to increase effective memory size, reduce memory ad

data bandwidth, and increase effective cache size.

IBM’s Memory Compression. IBM’s MXT technology [26] employs real-time main-memory content compressi

that can be used to effectively double the main memory capacity without a significant added cost. It was first

mented in the Pinnacle chip [25], a single-chip memory controller. Franaszek, et al. [13], described the desi

compressed random access memory (C-RAM), which formed the basis for the memory organization for the

technology, and studied the optimal line size for such an organization. Data in main memory is compressed

hardware parallelized derivative of the Lempel-Ziv (LZ77) sequential algorithm [32]. This parallel algorithm, Pa

Block-Referential Compression with Directory Sharing, divides the input data block (1 KB in MXT) into sub-blo

(four 256-byte sub-blocks), and cooperatively constructs dictionaries while compressing all sub-blocks in p

[14]. MXT is shown to have a negligible performance penalty compared to standard memory, and memory co

for many applications and web servers can be compressed by a factor of two to one [1].
2



Technical Report 1500, Computer Sciences Dept., UW-Madison, April 2004

ry

tains a

se of a

em-

cheme to

nd com-

used a

in the

narrow-

-bit enti-

tions to

odel

r selec-

[18], a

ques to

that can

es in par-

on val-

fferent

direc-

ch-

ocality

eir com-

sed to at

e design

quent

che can

trans-

rtions.

ll regis-

11] store

er bits

nd instruc-
Other Hardware Memory Compression Designs.Kjelso, et al. [18], demonstrated that hardware main memo

compression is feasible and worthwhile. They used the X-Match hardware compression algorithm that main

dictionary and replaces each input data element (whose size is fixed at four bytes) with a shorter code in ca

total or partial match with a dictionary entry. Communication bandwidth is reduced by “compacting” cache-to-m

ory address streams [12] or data streams [11]. Benini, et al. [8], propose a data compression/decompression s

reduce memory traffic in general purpose processor systems. Data is stored uncompressed in the cache, a

pressed on the fly when transferred to memory. Memory-to-cache traffic is also decompressed on the fly. They

differential compression scheme described in [7] that is based on the assumption that it is likely for data words

same cache line to have some bits in common. Zhang and Gupta [30] introduce a class of common-prefix and

data transformations for general-purpose programs that compress 32-bit addresses and integer words into 15

ties. They implemented these transformations by augmenting six data compression extension (DCX) instruc

the MIPS instruction set.

Cache Compression and Related Designs.Lee, et al. [21, 19, 20], propose a compressed memory hierarchy m

that selectively compresses L2 cache and memory blocks if they can be reduced to half their original size. Thei

tive compressed memory system (SCMS) use a hardware implementation of the X-RL compression algorithm

variant of the X-Match algorithm that gives a special treatment for runs of zeros. They propose several techni

hide decompression overhead, including parallel decompression, selective adaptive compression for blocks

be compressed to below a certain threshold, and the use of a decompression buffer to be accessed on L1 miss

allel with L2 access. Ahn, et al. [2], propose several improvements on the X-RL technique that capture comm

ues. Chen, et al. [10], propose a scheme that dynamically partitions the cache into sections of di

compressibility, and they use a variant of the LZ compression algorithm. Pomerene, et al. [22], used a shadow

tory scheme with more address tags than data blocks to improve upon LRU replacement.

Frequent-Value-Based Compression.Yang and Gupta [28] found out from an analysis of the SPECint95 ben

marks that a small number of distinct values occupy a large fraction of memory access values. This value l

phenomenon enabled them to design energy-efficient caches [27] and data compressed caches [29]. In th

pressed cache design, each line in the L1 cache can be either one uncompressed line or two lines compres

least half their original sizes based on frequent values [29]. Zhang, et al., designed a value-centric data cach

called the frequent value cache (FVC) [31], which is a small direct-mapped cache dedicated to holding fre

benchmark values. They showed that augmenting a direct mapped cache with a small frequent value ca

greatly reduce the cache miss rate.

Significance-Based Compression.Farrens and Park [12] make use of the fact that many address references

ferred between processor and memory have redundant information in their high-order (most significant) po

They cached these high order bits in a group of dynamically allocated base registers and only transferred sma

ter indexes rather than the high-order address bits between the processor and memory. Citron and Rudolph [

common high-order bits in address and data words in a table and transfer only an index plus the low ord

between the processor and memory. Canal, et al. [9], proposed a scheme that compresses data, addresses a
3



Technical Report 1500, Computer Sciences Dept., UW-Madison, April 2004

tions.

ied the

der bits

lso based

example,

its for

re com-

they are

o get

he line is

data.

ix rows

rd zero

o byte-

can be

er and

at. All

ression.

sed lines

e address
tions into their significant bytes while maintaining a two or three extension bits to maintain significant byte posi

They use this method to reduce dynamic power consumption in a processor pipeline. Kant and Iyer [16] stud

compressibility properties of address and data transfers in commercial workloads, and report that the high-or

can be predicted with high accuracy in address transfers but with less accuracy for data transfers.

3  Frequent Pattern Compression (FPC)

We propose a compression scheme that builds on significance-based compression schemes [9, 11, 12]. It is a

on the observation that some data patterns are frequent and also compressible to a fewer number of bits. For

many small-value integers can be stored in 4, 8 or 16 bits, but are normally stored in a full 32-bit word (or 64-b

64-bit architectures). These values are frequent enough to merit special treatment, and storing them in a mo

pact form can increase the cache capacity. In addition, special treatment is also given to runs of zeros since

very frequent, which is similar to the special treatment in X-RL [18]. The insight behind FPC is that we want t

most of the benefits of dictionary-based schemes, while keeping the per-line overhead at a minimum.

The Frequent Pattern Compression (FPC) compresses / decompresses on a cache line basis. Each cac

divided into 32-bit words (e.g., 16 words for a 64-byte line). Each 32-bit word is encoded as a 3-bit prefix plus

Table 1 shows the different patterns corresponding to each prefix.

Each word in the cache line is encoded into a compressed format if it matches any of the patterns in the first s

of Table 1. These patterns are: a zero run (one or more all-zero words), 4-bit sign-extended (including one-wo

runs), one byte sign-extended, one halfword sign-extended, one halfword padded with a zero halfword, tw

sign-extended halfwords, and a word consisting of repeated bytes (e.g. “0x20202020”, or similar patterns that

used for data initialization). These patterns are selected based on their high frequency in many of our integ

commercial benchmarks. A word that doesn’t match any of these categories is stored in its original 32-bit form

prefix values as well as the zero-run length data bits are stored at the beginning of the line to speed up decomp

3.1  Segmented Frequent Pattern Compression (S-FPC)

To exploit compression, the L2 cache must be able to pack more compressed cache lines than uncompres

into the same space. One approach is to decouple the cache access, adding a level of indirection between th

Table 1. Frequent Pattern Encoding

Prefix Pattern Encoded Data Size

000 Zero Run 3 bits (for runs up to 8 zeros)

001 4-bit sign-extended 4 bits

010 One byte sign-extended 8 bits

011 halfword sign-extended 16 bits

100 halfword padded with a zero halfword The nonzero halfword (16 bits)

101 Two halfwords, each a byte sign-extended The two bytes (16 bits)

110 word consisting of repeated bytes 8 bits

111 Uncompressed word Original Word (32 bits)
4



Technical Report 1500, Computer Sciences Dept., UW-Madison, April 2004

on of sec-

cache,

com-

e uncom-

e data.

coupled

t. In our

of one or

d with

tags) are

e lines

pressed in

ile not

pressing

e func-

line is

atches

ompact

,

the data

this can

L1-to-

ine). A

hide the

equent

ce it is

ll words

ponding

s a sche-
tag and the data storage. Seznec’s decoupled sector cache does this on a per-set basis to improve the utilizati

tor (or sub-block) caches [23]. Hallnor and Reinhardt’s Indirect-Index Cache (IIC) does this across the whole

allowing fully-associative placement and a software managed replacement policy [15]. Lee, et al.’s selective

pressed caches use this technique to allow two compressed cache blocks to occupy the space required for on

pressed block [21, 19, 20]. Decoupled access is simpler if we serially access the cache tags before th

Fortunately, this is increasingly necessary to limit power dissipation [17].

In theory, a cache line can be compressed into any number of bits. This can be achieved in a completely de

design across the whole cache (e.g., IIC). However, such design adds more complexity to cache managemen

compressed cache design, the decoupled variable segment cache [5], each cache line is stored as a group

more 8-bytesegments. For example, a 64-byte line can be stored in 1-8 segments. A compressed line is padde

zeros till its size becomes a multiple of the segment size, and these extra zeros (that do not correspond to any

ignored during decompression. While this approach doesn’t permit high compression ratios for some cach

(e.g., all zero lines), it allows for a more practical and faster implementation of cache accesses.

4  Compression and Decompression

We propose a compressed cache design in which data is stored uncompressed in the level-1 caches and com

the level-2 caches [5]. This helps reduce many of the costly L2 cache misses that hinder performance, wh

affecting the common case of an L1 hit. However, such a design adds the overhead of compressing or decom

cache lines when moved between the two levels. FPC allows a relatively fast implementations of both of thes

tions.

Compression.Cache line compression occurs when data is written back from the L1 to the L2 cache. A cache

compressed easily using a simple circuit that checks each word (in parallel) for pattern matches. If a word m

any of the seven compressible patterns, a simple encoder circuit is used to encode the word into its most c

form. If no match was found, the whole word is stored with the prefix‘111’ . This can be performed in one cycle

assuming 12 FO4 delays. For zero runs, we need to detect such runs of consecutive zeros, and increment

value of the first occurrence to represent their count. Since zero runs are limited in our design to eight zeros,

be implemented in a single cycle using a simple multiplexer/adder circuit.

Cache line compression can be implemented in a memory pipeline, by allocating three pipeline stages on the

L2 write path (one for pattern matching, one for zero run encoding, and one for gathering the compressed l

small victim cache that contains a few entries in both compressed and uncompressed form can be used to

compression latency on L1 writebacks.

Decompression.Cache line decompression occurs when data is read from the L2 to the L1 caches. This is a fr

event for most benchmarks whose working sets do not fit in the L1 cache. Decompression latency is critical sin

directly added to the L2 hit latency. Decompression is a slower process than compression, since prefixes for a

in the line have to be accessed in series, because each prefix is used to determine the length of its corres

encoded word and therefore the starting location of all the subsequent compressed words. Figure 1 present
5



Technical Report 1500, Computer Sciences Dept., UW-Madison, April 2004

pipeline

shift reg-

compres-

es. We

We also

t bound-

from the

nteger

er the

ys or less.
array to
t address
hift reg-
e pattern
efix.
matic diagram for a five-stage hardware pipeline that can be used to decompress 64-byte cache lines. Each

stage is 12 FO4 delays or less, assuming the parallel resources required are available for the parallel adder,

ister and pattern decoder. Assuming one processor cycle requires 12 FO4 gate delays, this means that the de

sion latency is limited to 5 processor cycles.

5  Evaluation

We evaluate our FPC scheme in terms of its achieved compressibility compared to other compression schem

show compression results for our frequent patterns, and demonstrate that zero runs are the most frequent.

analyze the performance of segmented compression, and the effect of restricting compressed lines to segmen

aries on compression ratios.

5.1 Workloads

To evaluate our design against alternative schemes, we used several multi-threaded commercial workloads

Wisconsin Commercial Workload Suite [3]. We also used six of the SPEC [24] benchmarks, three from the i

suite (SPECint2000) and three from the floating point suite (SPECfp2000). All of these workloads run und

Figure 1. Cache line decompression pipeline for a 64-byte (16-word) cache line.

This is a five-stage pipeline used to decompress a compressed cache line, where each stage contains 12 FO4 gate dela
The first pipeline stage (containing the zero run detector, shift register and parallel prefix decoder) decodes the prefix
determine the length in bits of each word. The second and third stages (Parallel Prefix adder array) compute the starting bi
for each data word by adding the length fields of the preceding words in a hierarchical fashion. The fourth stage (parallel s
isters) contains 16 registers each of which is shifted by the starting address of its word. The fifth and last stage contains th
decoder, which decodes the content of each 32-bit register into an uncompressed word according to its corresponding pr

tags

Data

Compressed
Line

Zero Run
Detector

Shift Register
(to expand
zero run data
into 3-bit tags)

Parallel
prefix
Decoder

48
bits

48
bits

16
3-bit
tags

16x
5-bits

Word
Lengths

Parallel
Carry-lookahead
Adder Array

Starting

16x9-bits

Addresses

Parallel
Shift
Registers

Computes
starting bit
addresses for
the 16 words

16 32-bit registers
(for compressed
words)

Divide data
into 16
compressed
words

Parallel
Pattern
Decoder

Uncompressed
Line
6



Technical Report 1500, Computer Sciences Dept., UW-Madison, April 2004

ults, we

4].

f bench-

suming

requent

r the

ere to

ple-

the

es). The

arbi-

ware, it

or some

is
base
mber
y a
s.

g
and

l
ling
e

g
pen
of

and
the
Solaris 9 operating system. These workloads are briefly described in Table 2. For each data point in our res

present the average and the 95% confidence interval of multiple simulations to account for space variability [

5.2  Compression Ratio

To evaluate the success of our compression scheme, we estimated the compressibility properties of our set o

marks. A snapshot is taken of the L2 cache contents for each of these benchmarks after a warm-up interval. As

variable length cache lines that can occupy any number of bits, we compare the compression ratio from our F

Pattern Compression scheme (FPC) with two other memory compression schemes:

•   The X-RL algorithm [18] used in some compressed cache implementations [21, 19, 20].

• The Block-Referential Compression with Lookahead (BRCL) scheme [14], which is an upper bound fo

parallel compression scheme used for memory compression in the IBM MXT technology [26]. We apply it h

cache lines.

We also compare against the “Deflate” algorithm used in the gzip unix utility, which combines an LZ-variant im

mentation with Huffman encoding of codewords in the dictionary. For this algorithm, we run the gzip utility on

whole cache snapshot file (as opposed to 64-byte lines individually compressed by the other three schem

“Deflate” algorithm is used to provide a practical bound on compressibility of dictionary-based schemes for

trarily long cache lines.

Figure 2 shows results that compare the four compression schemes. While FPC is faster to implement in hard

provides comparable compression ratios to the dictionary-based XRL and BRCL, and even approaches gzip f

benchmarks. FPC is slightly better than XRL and BRCL for the four commercial benchmarks.

Table 2. Workload Descriptions

Online Transaction Processing (OLTP): DB2 with a TPC-C-like workload. The TPC-C benchmark models the
database activity of a wholesale supplier, with many concurrent users performing transactions. Our OLTP workload
based on the TPC-C v3.0 benchmark using IBM’s DB2 v7.2 EEE database management system. We use a 5 GB data
with 25,000 warehouses stored on eight raw disks and an additional dedicated database log disk. We reduced the nu
of districts per warehouse, items per warehouse, and customers per district to allow more concurrency provided b
larger number of warehouses. There are 16 simulated users, and the database is warmed up for 100,000 transaction

Java Server Workload: SPECjbb.SPECjbb2000 is a server-side java benchmark that models a 3-tier system, focusin
on the middleware server business logic. We use Sun’s HotSpot 1.4.0 Server JVM. Our experiments use two threads
two warehouses, a data size of ~44 MB, and a warmup interval of 200,000 transactions.

Static Web Serving: Apache.We use Apache 2.0.43 for SPARC/Solaris 9, configured to use pthread locks and minima
logging as the web server. We use SURGE [6] to generate web requests. We use a repository of 20,000 files (total
~500 MB), and disable Apache logging for high performance. We simulate 400 clients each with 25 ms think tim
between requests, and warm up for 50,000 requests.

Static Web Serving: Zeus.Zeus is another static web serving workload driven by SURGE. Zeus uses an event-drivin
server model. Each processor of the system is bound by a Zeus process, which is waiting for web serving event (e.g., o
socket, read file, send file, close socket, etc.). The rest of the configuration is the same as Apache (20,000 files
~500 MB total size, 400 clients, 25 ms think time, 50,000 requests for warmup).

SPEC.We use three integer benchmarks (bzip, gcc, and mcf) and three floating point benchmarks (applu, equake,
swim) from the SPECcpu2000 set to cover a wide range of compressibility properties and working set sizes. We use
first reference input for each benchmark. We warm up caches of each benchmark run for 1 billion instructions.
7



Technical Report 1500, Computer Sciences Dept., UW-Madison, April 2004

pressed

ressibil-

Pattern

pression

e (Seg-

e three

n ratio

ld have
In most practical cache designs, cache lines cannot occupy any arbitrary number of bits. Restricting the com

line sizes to a certain subset of all possible lengths (as we do in our segmented design) partially reduces comp

ity. To assess the loss in compressibility, we compare the compression ratio from our Segmented Frequent

Compression scheme (Segmented-FPC) against the compression ratio from the Frequent Pattern Com

scheme assuming variable-length lines are possible (Maximum-FPC).

Figure 3 shows the compression ratios from the two schemes for our ten benchmarks. The simple schem

mented-FPC) has compression ratios of 1.7-2.4 for the three SPECint2000 benchmarks, 1.0-1.3 for th

SPECfp2000 benchmarks, 1.4-2.1 for the four commercial benchmarks. OLTP had the lowest compressio

among our set of commercial benchmarks, since its data is randomly generated. A real OLTP application wou

much less randomness, and thus have a higher compression ratio.

0

1

2

3

4

5
C

om
pr

ss
io

n 
R

at
io

XRL

BRCL

FPC

gzip

bzip gcc mcf applu equake swim oltp jbb apache zeus

Figure 2. Compression ratios (original size / compressed size) for XRL, BRCL, FPC and gzip

0

1

2

C
om

pr
ss

io
n 

R
at

io

Segmented FPC

Maximum FPC

bzip gcc mcf applu equake swim oltp jbb apache zeus

Figure 3. Compression ratios for segmented and variable-length FPC
8



Technical Report 1500, Computer Sciences Dept., UW-Madison, April 2004

le, only

here

ench-

th lines

han oth-

frequent

d words

r integer

le with

which is

verage

th for all

first was

save the

o (and
Compression ratios are higher for all integer benchmarks (1.4-2.4) than floating point benchmarks. For examp

0.4% of all cache lines inswimare compressible. This is because of the nature of floating point benchmarks w

floating point numbers might not fit any of the frequent patterns. However, some benefit is still possible for b

marks with lots of zero words. Segmented-FPC achieved most of the compression benefit from variable-leng

of Maximum-FPC.

5.3  Which Patterns Are Frequent?

Frequent Pattern Compression (FPC) is built on the observation that some word patterns are more frequent t

ers. We experimented with cache snapshots for our different benchmarks to come up with a reasonable set of

patterns (described in Table 1). Figure 4 shows the relative frequency of incompressible words, zero words an

compressible to 4, 8 and 16 bits. The 4-, 8-, and 16-bit patterns are present with various frequencies across ou

and commercial benchmarks. Unfortunately, most of the words in floating point benchmarks are incompressib

FPC, since our patterns are mainly integer patterns.

As Figure 4 demonstrates, zero words are the most frequent compressible pattern across all benchmarks,

why some compression techniques (e.g., X-RL) specifically optimize for runs of zeros. Figure 5 shows the a

number of zeros in a zero run for our set of benchmarks. Except for equake and jbb, the average zero run leng

benchmarks is greater than two. In developing the FPC scheme, we had two options to compress zeros. The

to have a prefix for each zero word with no data. The second was to encode zero runs with a single prefix and

length of the run in the data part corresponding to that prefix. However, since most zero runs have more than tw

in most cases three) words, the additional compressibility justifies having special treatment for zero runs.

0

20

40

60

80

100
Pa

tte
rn

 %

Uncompressible

Compr. 16-bits

Compr. 8-bits

Compr. 4-bits

Zero Words

bz
ip

bzip
gc

c

gcc
mcf

mcf
ap

plu

applu
eq

ua
ke

equake
sw

im

swim
olt

p

oltp
jbb

jbb
ap

ac
he

apache
ze

us

zeus

Figure 4. Frequent Pattern Histogram
9



Technical Report 1500, Computer Sciences Dept., UW-Madison, April 2004

A com-

nts allow

y. Cache

f 8-bytes

h bench-

egments

-FPC in
5.4  Analysis of Segmented Frequent Pattern Compression

In designing a practical compressed cache implementation, selecting a specific base segment size is critical.

pressed line can only be stored in a size that is an integer multiple of the base segment size. Smaller segme

for higher compression ratios. On the other hand, larger segments decrease the cache design complexit

design should balance the tradeoff between these two conflicting issues. We selected a base segment size o

(i.e., up to 8 segments for 64-byte lines) in our Segmented FPC design.

Figure 6 shows the sensitivity of our compression schemes to the base segment size. The four bars for eac

mark represent compression ratios if we have two possible sizes, i.e., an uncompressed line occupying two s

(32-byte segments), four (16--byte segments), eight (8-byte segments, which is the same as Segmented

0

1

2

3

4
A

ve
ra

ge
 Z

er
o 

R
un

 L
en

gt
h 

(W
or

ds
)

bzip gcc mcf applu equake swim oltp jbb apache zeus

Figure 5. Average number of words in a zero run for our ten benchmarks

0

1

2

C
om

pr
ss

io
n 

R
at

io

32-bytes

16-bytes

8-bytes

1-bit

bzip gcc mcf applu equake swim oltp jbb apache zeus

Figure 6. FPC Compression ratios for segment sizes (1 bit to 32 bytes)
10



Technical Report 1500, Computer Sciences Dept., UW-Madison, April 2004

creases

ows the

8, dem-

well as

ndwidth.

he lines,

PC) com-

format

re com-

com-
rchi-

sion.

ll,

ds.

rs. In

ts
Figure 3), and all possible sizes (1-bit segments, the same as Maximum-FPC). Our 8-byte-segment design in

the compression ratio by up to 52% vs. 32-byte segments, and up to 19% vs. 16-byte segments. Figure 7 sh

percentage of lines that can be compressed into 1-8 segments. We show a more detailed distribution in Figure

onstrating the cumulative distribution of compressed cache line sizes (1-512 bits) for our ten benchmarks, as

the 25th, 50th and 75th percentiles.

6  Conclusion

Cache designers might consider using cache compression to increase cache capacity and reduce off-chip ba

In this document, we propose and evaluate a simple significance-based compression scheme suitable for cac

since it has a low compression and decompression overhead. This scheme, Frequent Pattern Compression (F

presses individual cache lines on a word-by-word basis by storing common word patterns in a compressed

accompanied with an appropriate prefix. This simple scheme provides comparable compression ratios to mo

plex schemes that have higher cache hit latencies.

References
[1] Bulent Abali, Hubertus Franke, Xiaowei Shen, Dan E. Poff, and T. Basil Smith. Performance of hardware

pressed main memory. InProceedings of the Seventh IEEE Symposium on High-Performance Computer A
tecture, pages 73–81, January 2001.

[2] Edward Ahn, Seung-Moon Yoo, and Sung-Mo Steve Kang. Effective Algorithms for Cache-level Compres
In Proceedings of the 2001 Conference on Great Lakes Symposium on VLSI, pages 89–92, 2001.

[3] Alaa R. Alameldeen, Milo M. K. Martin, Carl J. Mauer, Kevin E. Moore, Min Xu, Daniel J. Sorin, Mark D. Hi
and David A. Wood. Simulating a $2M Commercial Server on a $2K PC.IEEE Computer, 36(2):50–57, February
2003.

[4] Alaa R. Alameldeen and David A. Wood. Variability in Architectural Simulations of Multi-threaded Workloa
In Proceedings of the Ninth IEEE Symposium on High-Performance Computer Architecture, pages 7–18, Febru-
ary 2003.

[5] Alaa R. Alameldeen and David A. Wood. Adaptive Cache Compression for High-Performance Processo
Proceedings of the 31st Annual International Symposium on Computer Architecture, June 2004.

0

20

40

60

80

100
%

 C
ac

he
 L

in
es

8 Segments

7 Segments

6 Segments

5 Segments

4 Segments

3 Segments

2 Segments

1 Segment

bz
ip

bzip
gc

c

gcc
mcf

mcf
ap

plu

applu
eq

ua
ke

equake
sw

im

swim
olt

p

oltp
jbb

jbb
ap

ac
he

apache
ze

us

zeus

Figure 7. Segment Length Histogram: Percentage of cache lines compressed into 1-8 Segmen
11



Technical Report 1500, Computer Sciences Dept., UW-Madison, April 2004
0 200 400 600

Bits

0

20

40

60

80

100

%
 L

in
es

bzip

0 200 400 600

Bits

0

20

40

60

80

100

%
 L

in
es

mcf

0 200 400 600

Bits

0

20

40

60

80

100

%
 L

in
es

gcc

0 200 400 600

Bits

0

20

40

60

80

100

%
 L

in
es

applu

0 200 400 600

Bits

0

20

40

60

80

100

%
 L

in
es

equake

0 200 400 600

Bits

0

20

40

60

80

100
%

 L
in

es
swim

0 200 400 600

Bits

0

20

40

60

80

100

%
 L

in
es

apache

0 200 400 600

Bits

0

20

40

60

80

100

%
 L

in
es

jbb

0 200 400 600

Bits

0

20

40

60

80

100

%
 L

in
es

oltp

0 200 400 600

Bits

0

20

40

60

80

100

%
 L

in
es

zeus

Figure 8. Cumulative Distribution of Compressed Line Lengths (1 to 512 bits). These graphs
highlight the 25th, 50th and 75th percentile values.
12



Technical Report 1500, Computer Sciences Dept., UW-Madison, April 2004

erfor-
ng of

ergy
d

ion
l

pres-

s Bus

s.

nstruc-

ork-
ads

Com-

emory

ce De-
l

ad for

cond Di-

in-

. IBM

-

[6] Paul Barford and Mark Crovella. Generating Representative Web Workloads for Network and Server P
mance Evaluation. InProceedings of the 1998 ACM Sigmetrics Conference on Measurement and Modeli
Computer Systems, pages 151–160, June 1998.

[7] Luca Benini, Davide Bruni, Alberto Macii, and Enrico Macii. Hardware-Assisted Data Compression for En
Minimization in Systems with Embedded Processors. InProceedings of the IEEE 2002 Design Automation an
Test in Europe, pages 449–453, 2002.

[8] Luca Benini, Davide Bruni, Bruno Ricco, Alberto Macii, and Enrico Macii. An Adaptive Data Compress
Scheme for Memory Traffic Minimization in Processor-Based Systems. InProceedings of the IEEE Internationa
Conference on Circuits and Systems, ICCAS-02, pages 866–869, May 2002.

[9] Ramon Canal, Antonio Gonzalez, and James E. Smith. Very Low Power Pipelines Using Significance Com
sion. InProceedings of the 33rd Annual IEEE/ACM International Symposium on Microarchitecture, pages 181–
190, December 2000.

[10] David Chen, Enoch Peserico, and Larry Rudolph. A Dynamically Partitionable Compressed Cache. InProceed-
ings of the Singapore-MIT Alliance Symposium, January 2003.

[11] Daniel Citron and Larry Rudolph. Creating a Wider Bus Using Caching Techniques. InProceedings of the First
IEEE Symposium on High-Performance Computer Architecture, pages 90–99, February 1995.

[12] Matthew Farrens and Arvin Park. Dynamic Base Register Caching: A Technique for Reducing Addres
Width. In Proceedings of the 18th Annual International Symposium on Computer Architecture, pages 128–137,
May 1991.

[13] P.A. Franaszek and J.T. Robinson. On Internal Organization in Compressed Random-Access MemorieIBM
Journal of Research and Development, 45(2):259–270, March 2001.

[14] Peter Franaszek, John Robinson, and Joy Thomas. Parallel Compression with Cooperative Dictionary Co
tion. InProceedings of the Data Compression Conference, DCC’96, pages 200–209, March 1996.

[15] Erik G. Hallnor and Steven K. Reinhardt. A Fully Associative Software-Managed Cache Design. InProceedings
of the 27th Annual International Symposium on Computer Architecture, pages 107–116, June 2000.

[16] Krishna Kant and Ravi Iyer. Compressibility Characteristics of Address/Data transfers in Commercial W
loads. InProceedings of the Fifth Workshop on Computer Architecture Evaluation Using Commercial Worklo,
pages 59–67, February 2002.

[17] R. E. Kessler. The Alpha 21264 Microprocessor.IEEE Micro, 19(2):24–36, March/April 1999.
[18] Morten Kjelso, Mark Gooch, and Simon Jones. Design and Performance of a Main Memory Hardware Data

pressor. InProceedings of the 22nd EUROMICRO Conference, 1996.
[19] Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim. Design and Evaluation of a Selective Compressed M

System. InProceedings of Internationl Conference on Computer Design (ICCD’99), pages 184–191, October
1999.

[20] Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim. An On-chip Cache Compression Technique to Redu
compression Overhead and Design Complexity.Journal of Systems Architecture:the EUROMICRO Journa,
46(15):1365–1382, December 2000.

[21] Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim. Adaptive Methods to Minimize Decompression Overhe
Compressed On-chip Cache.International Journal of Computers and Application, 25(2), January 2003.

[22] J. Pomerene, T. Puzak, R. Rechtschaffen, and F. Sparacio. Prefetching System for a Cache Having a Se
rectory for Sequentially Accessed Blocks, February 1989. U.S. Patent 4,807,110.

[23] Andre Seznec. Decoupled Sectored Caches.IEEE Transactions on Computers, 46(2):210–215, February 1997.
[24] Systems Performance Evaluation Cooperation. SPEC Benchmarks. http://www.spec.org.
[25] R. Brett Tremaine, T. Basil Smith, Mike Wazlowski, David Har, Kwok-Ken Mak, and Sujith Arramreddy. P

nacle: IBM MXT in a Memory Controller Chip.IEEE Micro, 21(2):56–68, March/April 2001.
[26] R.B. Tremaine, P.A. Franaszek, J.T. Robinson, C.O. Schulz, T.B. Smith, M.E. Wazlowski, and P.M. Bland

Memory Expansion Technology (MXT).IBM Journal of Research and Development, 45(2):271–285, March
2001.

[27] Jun Yang and Rajiv Gupta. Energy Efficient Frequent Value Data Cache Design. InProceedings of the 35th An-
nual IEEE/ACM International Symposium on Microarchitecture, pages 197–207, November 2002.

[28] Jun Yang and Rajiv Gupta. Frequent Value Locality and its Applications.ACM Transactions on Embedded Com
puting Systems, 1(1):79–105, November 2002.

[29] Jun Yang, Youtao Zhang, and Rajiv Gupta. Frequent Value Compression in Data Caches. InProceedings of the
33rd Annual IEEE/ACM International Symposium on Microarchitecture, pages 258–265, December 2000.
13



Technical Report 1500, Computer Sciences Dept., UW-Madison, April 2004

tures.

ign. In
s and
[30] Youtao Zhang and Rajiv Gupta. Data Compression Transformations for Dynamically Allocated Data Struc
In Proceedings of the International Conference on Compiler Construction (CC), pages 24–28, April 2002.

[31] Youtao Zhang, Jun Yang, and Rajiv Gupta. Frequent Value Locality and Value-centric Data Cache Des
Proceedings of the Ninth International Conference on Architectural Support for Programming Language
Operating Systems, pages 150–159, November 2000.

[32] Jacob Ziv and Abraham Lempel. A Universal Algorithm for Sequential Data Compression.IEEE Transactions
on Information Theory, 23(3):337–343, May 1977.
14


	Frequent Pattern Compression: A Significance-Based Compression Scheme for L2 Caches
	Alaa R. Alameldeen and David A. Wood Computer Sciences Department, University of Wisconsin-Madiso...
	Abstract
	1 Introduction
	2 Related Work
	3 Frequent Pattern Compression (FPC)
	Table 1. Frequent Pattern Encoding
	Prefix
	Pattern Encoded
	Data Size
	000
	001
	010
	011
	100
	101
	110
	111
	3.1 Segmented Frequent Pattern Compression (S-FPC)

	4 Compression and Decompression
	Figure 1. Cache line decompression pipeline for a 64-byte (16-word) cache line.

	5 Evaluation
	5.1 Workloads
	Table 2. Workload Descriptions
	Online Transaction Processing (OLTP): DB2 with a TPC-C-like workload. The TPC-C benchmark models ...
	Java Server Workload: SPECjbb. SPECjbb2000 is a server-side java benchmark that models a 3-tier s...
	Static Web Serving: Zeus. Zeus is another static web serving workload driven by SURGE. Zeus uses ...

	5.2 Compression Ratio
	Figure 2. Compression ratios (original size / compressed size) for XRL, BRCL, FPC and gzip
	Figure 3. Compression ratios for segmented and variable-length FPC

	5.3 Which Patterns Are Frequent?
	Figure 4. Frequent Pattern Histogram
	Figure 5. Average number of words in a zero run for our ten benchmarks

	5.4 Analysis of Segmented Frequent Pattern Compression
	Figure 6. FPC Compression ratios for segment sizes (1 bit to 32 bytes)
	Figure 7. Segment Length Histogram: Percentage of cache lines compressed into 1-8 Segments
	Figure 8. Cumulative Distribution of Compressed Line Lengths (1 to 512 bits). These graphs highli...


	6 Conclusion
	References




