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ABSTRACT

This paper studies the problem of frequent pattern mining
with uncertain data. We will show how broad classes of
algorithms can be extended to the uncertain data setting.
In particular, we will study candidate generate-and-test al-
gorithms, hyper-structure algorithms and pattern growth
based algorithms. One of our insightful observations is that
the experimental behavior of different classes of algorithms
is very different in the uncertain case as compared to the
deterministic case. In particular, the hyper-structure and
the candidate generate-and-test algorithms perform much
better than tree-based algorithms. This counter-intuitive
behavior is an important observation from the perspective
of algorithm design of the uncertain variation of the prob-
lem. We will test the approach on a number of real and
synthetic data sets, and show the effectiveness of two of our
approaches over competitive techniques.
Executable and Data Sets: Available at:
http://dbgroup.cs.tsinghua.edu.cn/liyan/u mining.tar.gz
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1. INTRODUCTION
Data mining of uncertain data has become an active area

of research recently. A detailed survey of uncertain data
mining techniques may be found in [2]. In this paper, we
will study the problem of frequent pattern mining with un-
certain data. The problem of frequent pattern mining with
uncertain data has been studied in a limited way in [7, 8,
11, 14], and a variety of pruning strategies are proposed
in order to speed up the algorithm for the uncertain case.
This paper will study the problem of frequent pattern min-
ing by examining the relative behavior of the extensions of
well known classes of deterministic algorithms. Since many
of the techniques used across different frequent pattern min-
ing algorithms are similar, the methodologies for extending
the different algorithmic classes have will have applicability
beyond the specific algorithms discussed in this paper.

One observation from our extensions to the uncertain case
is that the respective algorithms do not show similar trends
to the deterministic case. For example, in the deterministic
case, the FP-growth algorithm is well known to be an ex-
tremely efficient approach. However, in our tests, we found
that the extensions of the candidate generate-and-test as
well as the hyper-structure based algorithms are much more
effective. Furthermore, many pruning methods, which work
well for the case of low uncertainty probabilities do not work
very well for the case of high uncertainty probabilities. This
is because the extensions of some of the algorithms to the
uncertain case are significantly more complex, and require
different kinds of trade-offs in the underlying computations.
Thus, in addition to the new efficient methods proposed by
this paper, an important contribution of this paper is the
insight that natural extensions of deterministic algorithms
may show counter-intuitive behavior.

This paper is organized as follows. The next section de-
fines the uncertain version of the problem. We will also dis-
cuss the extension of candidate generate-and-test algorithms
to the uncertain version of the problem. The remainder of
the paper discusses the extension of other classes of algo-
rithms, and provides comparative experimental results.

1.1 Contributions of this Paper
This paper extends and compares many of the conven-

tional techniques for frequent pattern mining to the uncer-
tain case. These include candidate generate-and-test al-
gorithms, hyper-structure based algorithms, and pattern-



growth algorithms. While the problem of uncertain frequent-
pattern mining has recently been studied in a limited way
in the literature [8, 14], this is the first comprehensive study
which proposes extensions of many classes of algorithms to
the uncertain case. In addition to the efficient algorithms
proposed, our results suggest that the behavior of the nat-
ural uncertain extensions of frequent pattern algorithms is
quite different from the deterministic case. The results of
this paper suggest for the first time that the efficiency and
memory trade-offs are very different for the uncertain case,
and it is important to pick the algorithms carefully for ex-
tension to uncertain data sets. Since the observations of
this paper are fairly general, they may also help in design-
ing better extensions of other deterministic algorithms to
the uncertain case.

2. FREQUENT PATTERN MINING OF UN-

CERTAIN DATA SETS
In this section, we will discuss frequent pattern mining for

uncertain data sets. We first introduce some additional no-
tations and definitions. We assume that we have a database
D containing N transactions. We assume that the total
number of unique items is d, and each item is denoted by a
unique index in the range of {1 . . . d}. In sparse databases,
only a small number of items have a nonzero probability of
appearing in a given transaction. Let us assume that the ith
transaction in database D contains ni items with non-zero
probability. Let us assume that the items in the ith transac-
tion are denoted by ji

1 . . . ji
ni

. Without loss of generality, we
can assume that these items are in sorted order. We assume
that the probability of the ith item being present in trans-
action T is given by p(i, T ). Thus, in the uncertain version
of the problem, the item may be present in the transaction
T with the above-mentioned probability.

First, we will define the frequent pattern mining problem.
Since the transactions are probabilistic in nature, it is im-
possible to count the frequency of itemsets deterministically.
Therefore, we count the frequent itemsets only in expected
value. In order to do so, we need to count the probability
of presence of an itemset in a given transaction. Let s(I)
be the support of the itemset I . This support can only be
counted in probabilistic value. The expected support of an
itemset I is defined as follows:

Definition 2.1. The expected support of itemset I is de-
noted by E[s(I)], and is defined as the sum of the expected
probabilities of presence of I in each of the transactions in
the database.

The problem of frequent itemset mining is defined in the
context of uncertain databases as follows:

Definition 2.2. An itemset I is said to be frequent when
the expected support of the itemset is larger than the user-
defined threshold minsup.

Note that the expected number of occurrences of the item-
set I can be counted by summing the probability of presence
of the itemsets in the different transactions in the database.
The probability of the presence of itemset I in a given trans-
action can be computed using the relationship below.

Observation 2.1. The probability of the itemset I occur-
ring in a given transaction T is denoted by p(I, T ) and is

the product of the corresponding probabilities. Therefore, we
have the following relationship:

p(I, T ) =
∏

i∈I

p(i, T ) (1)

The above observation assumes statistical independence be-
tween the different items in terms of their uncertain proba-
bility behavior, which is the same as the assumption in other
related work [7, 8]. This is also a widely used simplifying
assumption across other data mining applications [2]. This
does not mean that the underlying instantiations of such a
database will result in uncorrelated items, since the values of
p(i, T ) may be non-zero in a transaction only across a small
fraction of correlated items.

2.1 Candidate Generate-and-Test Algorithms
We first study candidate generate-and-test algorithms for

frequent pattern mining. These can be join-based [3] or set-
enumerations based [1]. The conventional Apriori algorithm
[3] belongs to this category. The Apriori algorithm uses a
candidate generate-and-test approach which uses repeated
joins on frequent itemsets in order to construct candidates
with one more item. A key property for the correctness of
Apriori-like algorithms is the downward closure property.
We will see that the downward-closure property is true in
the uncertain version of the problem as well.

Lemma 2.1. If a pattern I is frequent in expected support,
then all subsets of the pattern are also frequent in expected
support.

Proof. Let J be a subset of I . We will first show that
for any transaction T , p(J, T ) ≥ p(I, T ). Since J is a subset

of I , we have p(I,T )
p(J,T )

=
∏

i∈I−J
p(i, T ) ≤ 1. This implies that

p(J, T ) ≥ p(I, T ). Summing this over the entire database D,
we get

∑
T∈D p(J, T ) ≥

∑
T∈D p(I, T ). Therefore, we have:

E[s(J)] ≥ E[s(I)]

The result follows.

The maintenance of the downward closure property means
that we can continue to use the candidate-generate-and-test
algorithms without the risk of losing true frequent patterns
during the counting process. In addition, pruning tricks
(such as those discussed in Apriori) which use the downward
closure property can be used directly. Therefore the major
steps in generalizing candidate generate-and-test algorithms
are as follows: (1) All steps for candidate generation using
joins and in pruning with the downward closure property
remain the same. (2) The counting procedure needs to be
modified using Observation 2.1.

We note that a number of recent techniques [7, 8] use
further pruning tricks in order to improve efficiency. We
will show that the effectiveness of such techniques is data-
dependent, since such pruning tricks do not work very well in
the case of dense data sets in which uncertainty probabilities
are high.

Similar techniques can be used in order to extend set-
enumeration based methods [1, 4, 6]. These methods typi-
cally use top-down tree-extension in conjunction with branch
validation and pruning using the downward closure property.
Different algorithms use different strategies for generation



of the tree in order to obtain the optimum results. Since
the set-enumeration based algorithms are also based on the
downward closure property, they can be easily extended to
the uncertain version of the problem. The key modifications
to set-enumeration based candidate generate-and-test algo-
rithms are as follows:
(1) The tree-extension phase uses the ordering of the dif-
ferent items in order to construct it in top-down fashion.
The tree extension phase is exactly the same as in candi-
date generate-and-test algorithms. (2) The counting of fre-
quent patterns uses Observation 2.1. (3) In the event that
transactions are projected on specific branches of the tree
(as in [1]), we can perform the projection process, except
that we need to retain the probabilities of presence of spe-
cific items along with the transactions. Also note that the
probabilities for the items across different transactions need
to be maintained respectively, even if the transactions are
identical after projection. This is because the probabilities
of the individual items will not be identical after projection.
Therefore each projected transaction needs to be maintained
separately. (4) The pruning of the branches of the tree re-
mains identical because of the downward closure property.

3. PATTERN GROWTH ALGORITHMS
There are also some popular frequent pattern mining al-

gorithms, which are based on the pattern growth paradigm.
Among these methods, the H-mine [12] and FP-growth [9]
algorithms are two representative ones. Their main differ-
ence lies in the data representation structures. FP-growth
adopts a prefix tree structure while H-mine uses a hyper-
linked array based structure. We will see that the use of
such different structures have a substantially different im-
pact in the uncertain case as compared to the deterministic
case. Next, we will discuss the extension of each of these
algorithms to the uncertain case in some detail.

c 0.7 d 0.8 e 0.7 g 0.6

a 0.8 c 0.7 d 0.6 e 0.9

a 0.8 c 0.7 d 0.8

a 0.7 d 0.6 e 0.8 g 0.8
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2.3 2.1 2.8 2.4 1.4Header
table H

Hyper-linked
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Figure 1: H-Struct

3.1 Extending the H-mine algorithm
The H-mine algorithm proposed in [12] adopts a hyper-

linked data structure called H-struct. Similar to FP-growth,
it is a partition-based divide-and-conquer method. Initially,
H-mine scans the input database once to find the frequent
items. The infrequent items are removed from the database.
The frequent items left in each input transaction are sorted
according to a certain global ordering scheme. The trans-
formed database is stored in an array structure, where each
row corresponds to one transaction. During the mining
process, there always exists a prefix itemset (denoted by
P , which is initially empty). H-mine needs to construct a

header table which records the starting places of the pro-
jected transactions. By following the links in the header
table, H-mine can locate all the projected transactions and
find the locally frequent items by scanning the projected
transactions. The locally frequent items w.r.t the prefix P

can be used to extend P to longer prefix itemsets.
As the hyper-linked array structure used in H-mine is not

in a compressed form, it is relatively easy to extend the
H-struct for mining frequent itemsets from uncertain data.
As described in [12], each frequent item in a transaction is
stored in an entry of the H-struct structure with two fields:
an item id and a hyper-link. In addition, the probability
p(i, T ) of the presence of item i in transaction T is main-
tained. Figure 1 shows an example of an extended H-struct
structure1. With the extended H-struct structure there are
two ways to mine frequent itemsets with the current pre-
fix P . The first approach is to maintain the probability
p(P, T ) of prefix P occurring in each projected transaction
T in memory. As the probability of the presence of locally
frequent item i in transaction T is recorded in the extended
H-struct, it is straightforward to compute the expected sup-
port of the new itemset of P∪{i}, E[s(P∪{i})], according to
Observation 2.1 and Definition 2.1. However, the expected
support of prefix P with respect to each conditional trans-
action needs to be maintained until all the locally frequent
items w.r.t. prefix P have been processed. This may cost
significant memory and may also lead to deterioration in the
internal caching behavior of the algorithm.

In order to avoid maintaining the probability of prefix P

with respect to each projected transaction T , p(P, T ), we
have another approach for computing it on the fly. As H-
mine adopts the pseudo-projection method, each original in-
put transaction is stored in the H-struct. By scanning the
sub-transaction before the projected transaction of prefix
P , we can find the probability of each item in P . Thus,
p(P, T ) can be computed according to Observation 2.1. In
a similar way, E[s(P ∪ {i})] can be computed according to
Observation 2.1 and Definition 2.1. In this paper, we adopt
the second approach for computing the expected support of
the current prefix itemset P . This is because the use of on-
the-fly computations reduces the space-requirements of the
technique. The reduced space-requirements also indirectly
improve the locality of the caching behavior of the underly-
ing computations. This leads to improved efficiency of the
overall algorithm.

3.2 Extending the FP-growth Algorithm
FP-growth [9] is a key frequent itemset mining algorithm,

which is based on the pattern growth paradigm. It adopts a
prefix tree structure, FP-tree, to represent the database (or
conditional databases). As FP-tree is a compressed struc-
ture, it poses several challenges when we try to adapt the
FP-growth algorithm for uncertain data sets. These chal-
lenges are as follows:
(1) In the original FP-tree structure, each node has a ‘count’
entry which records the number of transactions containing
the prefix path from the root node to this node. For un-
certain data, if we just store in a node the sum of item
probabilities with respect to the transactions containing the
prefix path, we will no longer be able to determine the prob-

1Note that the second row of the header table in the H-
struct structure stores the sum of item probabilities for each
locally frequent item.



ability of the presence of an item in each transaction. Thus,
there is an irreversible loss of information in the uncertain
case with the use of a compressed structure. Thus, we need
to find a different and efficient way to store the item proba-
bilities without losing too much information.
(2) The original FP-growth algorithm mines frequent item-
sets by searching the tree structure in a bottom up manner.
The computation of the support of a given prefix path is
quite straightforward. Its support is simply the support of
the lowest node of the path. However, for uncertain data,
the expected support of a given prefix path should be com-
puted according to Definition 2.1. As we no longer know the
mapping among the item probabilities and the transactions,
it is impossible to compute the exact expected support of a
given prefix according to Definition 2.1.
(3) Since it is impossible to determine the exact expected
support of each frequent itemset based on the FP-tree struc-
ture, we may need to first mine all the candidate itemsets,
and then remove the infrequent itemsets by checking the
original database. The process of determining such infre-
quent itemsets efficiently can be quite difficult in the uncer-
tain case.

There are two extreme solutions to adapt the FP-tree
structure for uncertain data mining. Let us denote the FP-
tee built from uncertain data by UFP-tree. The first one is
to store (in each node) the sum of item probabilities with
respect to the transactions containing the prefix path from
the root to it. The UFP-tree built in this way is as com-
pact as the original FP-tree. However, it cannot even be
used to compute the the upper bound or lower bound of
the expected support of an itemset, because it loses infor-
mation with respect to the distinct probability values for
different transactions. Another extreme solution is to split
a node into m nodes if the item in this node has m distinct
probability values. In this case, we can compute the exact
expected support. On the other hand, the UFP-tree built
in this way consumes a lot of memory.

In this work, we adopt a compromise by storing a subset of
the probabilities for the item in each node. These probabil-
ities are selected using clustering, and are stored as floating
point numbers. This method does not consume too much
memory, and we will show that it allows us to compute an
upper bound on the expected support of any itemset. We
then compute a set of candidate frequent itemsets based on
this upper bound. This set of candidates provides us with a
superset of the complete set of real frequent itemsets. Any
remaining false positives will then need to be removed by
scanning the input database. Next, we will discuss the adap-
tation of different steps of the FP-growth algorithm to the
uncertain case.

3.2.1 Construction of the UFP-tree

The process of constructing the UFP-tree for uncertain
data is very similar to the construction of the FP-tree for
deterministic data sets. The main difference lies in the in-
formation stored in each node. The UFP-tree is built using
the following steps. First, the database is scanned to find
the frequent items and to generate a support descending
item list. Then, the transactions are read one by one, and
the infrequent items are pruned. The remaining frequent
items are sorted according to the frequent item list. The
re-ordered transactions are inserted into the UFP-tree.

As discussed earlier in this paper, each node of the UFP-

tree stores a summary of the probabilities of the non-zero
probability items in those transactions which share the same
prefix path in clusters. We partition the probabilities into
a set of k clusters. The corresponding parameters created
for the ith cluster by the partitioning are represented by
ci and mi (1 ≤ i ≤ k), where ci denotes the maximum
probability value in the ith cluster and mi is the number
of item probabilities in the ith cluster. We assume that
c1 > c2 > . . . > ck. The reason that we store the maximum
probability value in each cluster instead of the center of the
cluster (i.e., the average value of all the item probabilities
in this cluster) is to make sure that the support computed
from the summary is no less than the true support. In Sec-
tion 3.2.2, we will introduce a method to compute an upper
bound on the true support based on the cluster information
stored in each node. Besides the global UFP-tree construc-
tion from the database, conditional UFP-trees are generated
from the global UFP-tree. Therefore, there are two different
situations which need the data summarization in the con-
struction process. We will discuss the solutions separately
under the two situations.

There are several clustering and data summarization meth-
ods available for our task. The choice of the proper method
should consider two factors. The first is memory usage. This
also indirectly affects the performance since lower memory
consumption results in better internal caching behavior on
most machines. Since there could be a large number of nodes
in the UFP-tree, the summarization of the probabilities in
each node should be as concise as possible in order to re-
duce memory consumption. The trade-off is that greater
conciseness leads to lower precision. In the mining process,
we compute the upper bound of the support of each item-
set according to the summarization of probabilities stored in
each node. We use this to compute the candidate frequent
itemsets. If the precision of the summarization is too low,
the difference between the upper bound and the true sup-
port will be large and a large number of false positives may
be generated. This will increase the memory and space re-
quirements for the elimination process of the false positives.
Clearly, the tradeoff needs to be carefully exploited in order
to optimize the performance of the underlying algorithm.

This problem is closely related to that of building V-
optimal histograms [10] for time-series data. It is however
not natural to apply the V-optimal technique to this situa-
tion. During the construction of the UFP-tree, the transac-
tions are read sequentially, and the item probabilities cor-
responding to a certain node will typically arrive in nei-
ther ascending nor descending order. In order to apply the
V-optimal algorithm to this set of probabilities (which are
floating point numbers) in each node, we would need to sort
these numbers in ascending or descending order, and this is
time consuming. Furthermore, the time and space complex-
ities of the complete V-optimal method are O(n2 · k) and
O(n · k) respectively. Because of the expensive behavior of
the V-optimal method, we decided to use k-means clustering
instead. However, if we store all the item probabilities as-
sociated with each node before applying k-means clustering
during the UFP-tree construction process, it will consume
too much memory and is too expensive for large data sets.

Therefore, we used a different approach by using a mod-
ified version of the k-means algorithm. First, we partition
the range of the probabilities of items into φ parts in equal
width, where φ is chosen to be significantly larger than k.



We store the maximum probability value and the number of
distinct item probabilities in each part. After we have all
the transactions inserted into the UFP-tree, we then cluster
these stored information by k-means.

As mentioned earlier, there are two points in the pat-
tern mining process in which we need to compute the data
summarizations. The first relates to the construction of
the global UFP-tree. We have discussed the first situa-
tion above. The second is the construction of conditional
UFP-trees during the mining process. We will discuss this
second situation at this point. Suppose we begin to mine
the frequent itemsets with prefix item ‘g’. By computing
the expected support of size 2-itemsets containing ‘g’ with
the method discussed in Section 3.2.2, we could find the lo-
cally frequent items. Then, we traverse each path in the
global UFP-tree linking the node with a label ‘g’ to the root
to extract the locally frequent items and the corresponding
distribution information of the item probabilities stored in
each node along the path. This forms a conditional transac-
tion. Here we give such an example of a conditional transac-
tion, which contains three items and corresponds to 30 input
transactions: {(a, ((0.6, 5), (0.7, 5), (0.8, 20))), (b, ((0.8, 10),
(0.9, 20))), (e, ((0.7, 20), (0.88, 10)))}. Next, we insert each
conditional transaction into the conditional UFP-tree with
respect to the item ‘g’. Note that the number of probabilities
of each item equals 30. This is the number of the probabili-
ties in the node ‘g’ at the bottom of the corresponding path.
This also means that there are 30 input transactions con-
taining ‘g’ in this path. Notice that we need to merge the
clusters after all the transactions are inserted in the condi-
tional UFP-tree in order to keep a limited number of entries
in each node. Thus is also done with the k-means clustering
algorithm.

3.2.2 Computation of Support Upper Bounds

In order to mine the frequent itemsets, we first need to
mine the potentially-frequent itemsets using the informa-
tion stored in each node. As mentioned earlier, the precise
support of an itemset cannot be computed directly from the
UFP-tree because of the information loss during compres-
sion. However, it is possible to compute an upper bound on
the support. It is clear that the number of item probabilities
in each node along any tree path may vary considerably. Let
the number of item probabilities in the last node of a path be
denoted by n (namely, the number of transactions contain-
ing the path is n). We should take out n largest probabilities
in each node along the prefix path from this last node up to
the root, and this is an easy task since the item probabili-
ties are summarized in the clusters. For example, suppose
all the item probabilities in each tree node are grouped into
three clusters (i.e., k=3), and the cluster information in the
last node N of a given path P is {(c1=0.95, m1=2), (c2=0.9,
m2=2), (c3=0.8, m3=1)}. The last node contains five item

probabilities. Let N
′

be any node along the path P , and its

cluster information be {(c
′

1=0.98, m
′

1=3), (c
′

2=0.91, m
′

2=1),

(c
′

3=0.85, m
′

3=2)}. The five largest item probabilities in N
′

are 0.98, 0.98, 0.98, 0.91, and 0.85, respectively. The process
of computing an upper bound on the expected support of an
itemset I w.r.t. a prefix P is shown in Algorithm 1.

Algorithm 1: Computation of an upper bound on the expected

support of an itemset I w.r.t. prefix path P

Input: The cluster information stored in each node along path P

corresponding to I, (ci1, mi1), (ci2, mi2), . . ., (cik, mik), i=1, 2,

. . ., |I|, and ci1>ci2>. . .>cik holds.
Output: An upper bound of the expected support of itemset I w.r.t.
path P , E(s(I)|P )
Initialization:

E(s(I)|P )=0;
C1←c11, C2←c21, . . ., C|I|←c|I|1;
M1←m11, M2←m21, . . ., M|I|←m|I|1;

Method: Repeat the following steps below until no item
probability in the last node of the path corresponding to
itemset I is left.
1) E(s(I)|P )=E(s(I)|P )+C1×C2×. . .×C|I|×m, where
m = min(M1, M2, ..., M|I|);
2) M1←M1 −m, M2←M2 −m, . . ., M|I|←M|I| −m;
3) For i ∈ [1, |I|] do

if Mi=0
Suppose Ci=cij (where 1≤j <k), then
Ci←ci(j+1) and Mi←mi(j+1);

Note that an itemset I may be contained in multiple prefix
paths, and we can compute an upper bound of the expected
support of itemset I with respect to each of these prefix
paths. The sum of the upper bounds with respect to these
prefix paths must form an upper bound of itemset I . We
will prove that the output of Algorithm 1 is an upper bound
on the expected support of the itemset w.r.t path P .

Lemma 3.1. Given an itemset I, when |I | = 2, the sup-
port computed according to algorithm 1 is an upper bound of
the expected support of I with respect to path P .

Proof. Suppose the number of item probabilities in the
last node of path P is n, that is,

∑k

i=1 m|I|i = n. Let us
denote the two tree nodes corresponding to the two items in
I w.r.t. path P by a and b, the top n largest item probabili-
ties in node a by a1≥a2≥. . .≥an, and the top n largest item
probabilities in node b by b1≥b2≥. . .≥bn. We will prove the
lemma using induction.

(1) Let n=2. Since (a1 − a2)(b1 − b2)≥0 holds, we have

a1b1 + a2b2 ≥ a1b2 + a2b1

Therefore, the lemma holds when n = 2.
(2) Assume the induction base that when n=k,

∑k

i=1 aibi

is an upper bound. Next, let n=k+1, we will find the maxi-
mum sum of products. Let bk+1 multiply at, 1≤t≤k, under
the assumption above we know that the maximum sum of
products of the k numbers left is (

∑t−1
i=1 aibi+

∑k+1
i=t+1 aibi−1).

Furthermore, we have:

k+1∑

i=1

aibi − (

t−1∑

i=1

aibi + atbk+1 +

k+1∑

i=t+1

aibi−1)

= (atbt + at+1bt+1 + at+2bt+2 + . . . ak+1bk+1)−

(atbk+1 + at+1bt + at+2bt+1 + . . . + ak+1bk)

= at+1(bt+1 − bt) + at+2(bt+2 − bt+1) + . . .

+ ak+1(bk+1 − bk) + at(bt − bk+1)

≥ at(bt+1 − bt) + at(bt+2 − bt+1) + . . .

+ at(bk+1 − bk) + at(bt − bk+1)

= at(bk+1 − bt) + at(bt − bk+1) = 0

then, we derive that when n=k+1,
∑k+1

i=1 aibi is an upper
bound of the sum of the products.
(3) Since when |I | = 2 the output of Algorithm 1 is

∑n

i=1 aibi,
the expected support computed following the steps in Algo-
rithm 1 must be an upper bound.

Corollary 3.1. Given two groups of n (∀n, n > 0) non-
negative floating-point numbers sorted in decreasing order,



cij (∀ i, p, q, 1 ≤ i ≤ 2, if 1 ≤ p < q ≤ n, then cip≥ciq

holds),
∑x

j=1

∏2
i=1 cij is the largest among all the sums of x

products, where 1 ≤ x ≤ n.

Proof. This result can be easily derived from Lemma 3.1
when x=n. For any possible set of x products which are con-
structed from the two groups of n floating-point numbers,
denoted by s1, s2,...sx, we can always find another set of x

products which are constructed from the two groups of the

first x floating-point numbers, denoted by s
′

1, s
′

2, ..., s
′

x, such

that sl≤s
′

l (∀l, 1 ≤ l ≤ x). That is, (
∑x

j=1 sj) ≤(
∑x

j=1 s
′

j).
In addition, according to the proof of Lemma 3.1 we know

that (
∑x

j=1

∏2
i=1 cij)≥(

∑x

j=1 s
′

j) holds. Thus, we have (
∑x

j=1∏2
i=1 cij) ≥(

∑x

j=1 sj), which means
∑x

j=1

∏2
i=1 cij is the

largest among all the sums of x products, where 1 ≤ x ≤
n.

Theorem 3.1. Given m groups of n (∀n, n > 0) floating-
point numbers sorted in decreasing order, cij (∀ i, p, q, 1 ≤
i ≤ m, if 1 ≤ p < q ≤ n, then cip≥ciq holds),

∑x

j=1

∏m

i=1 cij

is the largest among all possible sums of x products, where
1 ≤ x ≤ n.

Proof. We prove the theorem using induction.
1. According to Corollary 3.1, we know that it is true when
m = 2.
2. We assume, when m = k, the theorem holds.
3. We will derive from the above assumption that when
m=k+1,

∑x

j=1

∏m

i=1 cij is still the largest among all possible

sums of x products, where 1≤x≤n. Let the (k+1)-th group
of n floating-point numbers be c(k+1)1 ≥ c(k+1)2 ≥ . . . ≥
c(k+1)n. As c(k+1)1, c(k+1)2, . . . , and c(k+1)x are among the
top x largest values in the (k+1)-th group of n floating-point
numbers, one of the largest values of the sum of x products
constructed from the k+1 groups of n floating numbers must
be in the form of c(k+1)1s1+c(k+1)2s2+. . .+c(k+1)xsx, where

si=
∏k

j=1 zij
, zij

∈{cj1, cj2, . . . , cjn}.

If we use s
′

y to denote
∏k

i=1 ciy , we have:

x∑

j=1

m∏

i=1

cij = c(k+1)1s
′

1 + c(k+1)2s
′

2 + . . . + c(k+1)xs
′

x

and s
′

1 ≥ s
′

2 ≥ . . . ≥ s
′

x must hold.
In addition, we also have:

c(k+1)1s
′

1 + c(k+1)2s
′

2 + . . . + c(k+1)xs
′

x−

(c(k+1)1s1 + c(k+1)2s2 + . . . + c(k+1)xsx)

= (s
′

1 − s1)(c(k+1)1 − c(k+1)2)+

[(s
′

1 − s1) + (s
′

2 − s2)](c(k+1)2 − c(k+1)3) + ...+

[(s
′

1 − s1) + (s
′

2 − s2) + ... + (s
′

x − sx)]c(k+1)x

= (s
′

1 − s1)(c(k+1)1 − c(k+1)2)+

[(s
′

1 + s
′

2) − (s1 + s2)](c(k+1)2 − c(k+1)3) + ...+

[(s
′

1 + s
′

2 + ... + s
′

x) − (s1 + s2 + ... + sx)]c(k+1)x

According to our assumption, ∀l ≤ x, (
∑l

i=1 s
′

i−
∑l

i=1 si)≥0
holds, and as (c(k+1)l − c(k+1)(l+1))≥0 also holds, we get

that (
∑x

j=1 c(k+1)js
′

j −
∑x

j=1 c(k+1)jsj)≥0. Therefore, when

m=k+1,
∑x

j=1

∏m

i=1 cij is still the largest among all possible
sums of x products, where 1 ≤ x ≤ n.

Corollary 3.2. The output of Algorithm 1 must be an
upper bound of the expected support of itemset I (|I |≥2)
w.r.t. prefix P .

Proof. There are |I | nodes in the path P which cor-
respond to the |I | items in I , and each node maintains k

clusters. The cluster information of the last node in path P

is represented by ci(mi), i=1. . .k, and we let n=
∑k

j=1 mi.
We can then sort the n item probabilities in the last node in
descending order. For each of the other |I |−1 nodes, we can
extract its top n largest item probabilities and sort them in
descending order. In this way, we get |I | groups of n item
probabilities, denoted by zij , where 1≤i≤|I |, 1≤j≤n, and
∀ p,q, if p<q, zip≥ziq. According to Algorithm 1 we know

the output of Algorithm 1 equals
∑n

j=1

∏|I|
i=1 zij . According

to Theorem 3.1, we have that it is an upper bound of the
expected support of itemset I w.r.t. prefix P .

3.2.3 Mining Frequent Patterns with UFP-tree

We used two different approaches for the mining process
with UFP-tree. One is the recursive pattern growth ap-
proach introduced in [9]. The other is the one described in
[13], which constructs a conditional UFP-tree for each fre-
quent item, and then mines frequent itemsets in each condi-
tional tree. In the following, we will explain the two mining
methods in detail.

Assume that the frequent item list in support-descending
order is {e, a, c, d, g}. The process of recursively constructing
all-level conditional UFP-trees is as follows. First, the algo-
rithm mines frequent itemsets containing g. Second, it mines
frequent itemsets containing d but not g. Third, it mines fre-
quent itemsets containing c but neither d nor g. This pattern
is repeated until it mines frequent itemsets containing only
e. When we are mining frequent itemsets containing item d,
we first compute the upper bound of the expected support of
each itemset (e.g., (e, d), (a, d), and(c, d)) with the method
described in Section 3.2.2, and form the locally frequent item
list in support descending order (e.g., {c, e}). Next, the al-
gorithm traverses the UFP-tree by following the node-links
of item d again to get the locally frequent itemset informa-
tion in each path which forms a conditional transaction. We
insert the conditional transaction into the conditional UFP-
tree with respect to item d. After that, we will repeat the
above steps to this conditional UFP-tree of item d, which is
the same as the depth-first search in [9].

Observation 2.1 defines the probability of an itemset as the
product of the underlying item probabilities. This suggests
that the expected support of an itemset decreases quickly
when its length increases. While the algorithm proposed
in [13] is designed for the deterministic case, we observe that
it avoids recursively constructing conditional FP-trees, and
can therefore make good use of the geometric decrease in the
calculations of the expected support of itemsets. This is our
rationale for specifically picking the frequent itemset mining
algorithm introduced in [13]. It constructs a one-level condi-
tional FP-tree for each frequent item. After we have found
the locally frequent items for each conditional FP-tree, we
do not reorder the items, but we follow the global frequent
item list. The reason for doing so is for the generation of
the trie tree. The algorithm in [13] also adopts the popular
divide-and-conquer and pattern growth paradigm. Suppose
the locally frequent items with respect to the prefix item ‘g’
are {e, a, c, d}. The algorithm in [13] computes the itemsets
containing ‘d’ first, then computes those containing ‘c’ but



no ‘d’, then those containing ‘a’ but no ‘c’ nor ‘d’, and those
containing ‘e’ only at the end. Then, the algorithm proceeds
to generate itemsets of increasing size sequentially, until the
set of locally frequent items becomes empty.
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Figure 2: An example of a trie tree

3.2.4 Determining Support with a Trie Tree

As mentioned above, the itemsets mined so far are just
candidate frequent itemsets and may not be really frequent.
In order to determine the real support of each candidate
itemset, we store the candidate frequent itemsets in a trie
tree structure which is suitable to search and locate an item-
set. Figure 2 shows an example of a trie tree, which contain
a total of 14 nodes including the root node. Each path from
the root to a certain node represents an itemset, thus the
trie tree in Figure 2 stores 13 itemsets. We can also see that
along each path from the root to a leaf, the indices of the
items are sorted in decreasing order, and the child nodes of
each node are also sorted in decreasing order. This arrange-
ment of the items in the trie tree facilitates the search and
locating of an itemset.

In order to obtain the exact support of these candidate
itemsets stored in the trie tree, we need to read in the trans-
actions one by one, find the candidate itemsets contained
in each transaction and calculate the support according to
Definition 2.1 and Observation 2.1. Similar to [5], when we
deal with a transaction, we maintain two indices, one is for
the transaction, the other points to the node of the trie tree.
The entire process is an index moving process. The index for
the trie tree is moved to find the item pointed by the index
for the transaction, and then the index for the transaction
is moved to the next item. Once an itemset is found to be
contained in a transaction, its expected support is summed
according to Definition 2.1 and Observation 2.1. This pro-
cess continues until the transaction index reaches the last
item in the transaction or the trie tree index reaches the
last node of the tree.

4. PERFORMANCE STUDY
In this section, we present the performance study for the

extended classical frequent pattern mining algorithms of Apri-
ori, H-mine, and FP-growth. In the following we will de-
note these revised algorithms by UApriori, UH-mine, and
UFP-growth, respectively. We will compare their perfor-
mance with the state-of-the-art frequent itemset mining al-
gorithm for uncertain data sets, which is the DP approach
proposed in paper [8]. We implemented one of the DP meth-
ods proposed in [8] and denote it by UCP-Apriori. The
UCP-Apriori integrates a pruning method called CP with
the Apriori frequent itemset mining framework. The exper-
iments were conducted on a machine with 2.66GHz CPU
and 2G main memory installed. The operating system is
GNU/Linux.

Four data sets were used in the experiments. The first
two datasets, Connect4 and kosarak, are real datasets which
were downloaded from the FIMI repository.2 The Connect4
data is very dense while kosarak is very sparse. The other
two data sets, T40I10D100K and T25I15D320k, were gen-
erated using the IBM synthetic data set generator [3]. We
note that these are deterministic data sets. In order to ob-
tain uncertain data sets, we introduced the uncertainty to
each item in these data sets. We allocated a relatively high
probability to each item in the data sets in order to allow
the generation of longer itemsets. We assume that the un-
certainty of those items follows the commonly used normal
distribution N(µ, σ2). The value of µ was independently and
randomly generated in the range of [0.87, 0.99] for each item
in each transaction, while the value of σ was generated in
the same way but in the range of [1/21, 1/12]. We generated
a number between 0 and 1 for every item according to its
randomly given distribution. The high value of the uncer-
tain probability allowed us to stress test the technique for
a more challenging case than that discussed in other work
such as [7, 8].

As discussed in Section 3.2.3, we implemented two vari-
ants of the UFP-growth algorithm for uncertain data min-
ing. In the following we denote the variant of UFP-growth
which recursively constructs all levels of conditional UFP-
trees on uncertain data by UFP-tree, while we denote the
other one which only constructs the first-level UFP-trees by
UCFP-tree. In the experiments, we ran these algorithms
under different support levels to compare their efficiency for
data sets Connect4, kosarak, and T40I10D100K.

4.1 Performance Comparison
In the following, we illustrate the performance compar-

ison of the five algorithms in terms of runtime and mem-
ory consumed on three data sets of Connect4, kosarak, and
T40I10D100K, with varying support thresholds. In the un-
certain case, memory consumption is an especially impor-
tant resource because of the additional information about
probabilistic behavior which needs to be stored. In resource-
constrained hardware, memory-consumption may even de-
cide the range in which a given algorithm may be used. In
such cases, memory consumption may be an even more im-
portant measure than running time. Therefore, we will test
the memory consumption in addition to efficiency. We will
see that different algorithms provide the best performance
with the use of different measures. Our broad observation is
that UH-mine is the only algorithm which performs robustly
for all measures over all data sets, whereas the variations of
candidate generate-and-test also perform quite well, espe-
cially in terms of running time. This would suggest that
UH-mine is the most practical algorithm to use in a wide
variety of scenarios.

Figures 3(a) and 3(b) show the runtime and memory con-
sumption comparison3 result on the dense Connect4 data
set. UApriori and UH-mine provide the fastest performance
at different support thresholds, whereas UH-mine provides
the best memory consumption across all thresholds. Thus,

2URL: http://fimi.cs.helsinki.fi/data/
3In all the memory consumption comparisons in Figures
3(b), 4(b), 5(b) and 6(b), the curves for UApriori and UCP-
Apriori closely overlap, and are therefore difficult to dis-
tinguish. Similarly, curves for UFP-Tree and UCFP-Tree
closely overlap.
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Figure 3: Connect4 dataset

the UH-mine algorithm performs robustly on both measures.
UFP-tree and UCFP-tree are the slowest. UCP-Apriori [8]
is slower than our version of the Apriori algorithm, which
is denoted by UApriori. This is because the method for
candidate pruning in UCP-Apriori algorithm is not very ef-
ficient and only introduces additional overhead, unless the
uncertainty probabilities are set too low as in [8]. However,
low uncertainty probabilities are an uninteresting case, since
the data will no longer contain long frequent patterns (be-
cause of the multiplicative behavior of probabilities and its
impact on the expected support), and most algorithms will
behave efficiently. It is particularly interesting that the un-
certain extension of most deterministic algorithms can per-
form quite well, whereas the extensions to the well known
FP-Tree algorithms do not work well at all. We traced the
running process of UFP-tree and UCFP-tree and found that
considerable time is spent on the last step of eliminating false
positives. Furthermore, in most paths in the UFP-tree, the
probabilistic information for thousands of transactions need
to be stored, and the concise behavior of the determinis-
tic case is lost. It is this concise behavior which provides
the great effectiveness of this technique in the deterministic
case, and the loss of this property in the probabilistic case is
an important observation from the perspective of algorith-
mic design. In comparison to the UFP-tree, the UCFP-tree
does not need to build all levels of conditional UFP-trees re-
cursively, and it only needs to mine all frequent itemsets in
one-level of conditional UFP-tree. Thus, it performs better
than UFP-tree.

Figure 3(b) compares the memory usage on Connect4 data
set. In this case, the behavior of UH-Mine is significantly su-
perior to the other algorithms. As UApriori needs to store
a large number of candidate itemsets, UApriori consumes
more memory than UH-mine which outputs those mined
frequent itemsets on the fly. Connect4 is a relatively co-
herent data set, and so it is more likely for transactions to
share the same prefix path when inserting into the UFP-
tree. Thus, it gets the highest compression ratio among all
the data sets. However, because the UFP-tree stores uncer-
tainty information, its memory consumption is greater than
UApriori. Furthermore, as the support threshold goes down,
it generates too many candidate itemsets. This leads to the
sharp increase of memory usage.

Data set kosarak is sparse and therefore, the tree like enu-
meration of the underlying itemsets shows a bushy structure.
As shown in figure 4(a), both UApriori and UH-mine per-
form very well on the kosarak data set. In figure 4(a), the
Y-axis is in logarithmic scale. UCP-Apriori runs slightly
slower than UApriori. UFP-tree and UCFP-tree do not scale
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Figure 4: kosarak dataset

well with the decrease of the support threshold. For data
set kosarak, the UFP-tree is also bushy and large. When
the support is 0.0003, UCFP-tree costs too much time on
kosarak for the reason that the one-level conditional UFP-
trees are still large. For UFP-trees, too many recursively
constructed conditional UFP-trees and the large number of
false positives consume too much memory.

Figure 4(b) shows the comparison of memory consumed
by these algorithms on kosarak. As the support threshold
decreases, the UFP-trees constructed become large and can-
didate itemsets generated for UFP-tree and UCFP-tree in-
crease quickly, and thus the memory usage increases fast.
For UApriori, the memory consumed for storing candidate
frequent itemsets increases rapidly and surpasses UH-mine
which only holds the H-struct when the support threshold
becomes relatively low. The UH-mine maintains its robust-
ness in terms of memory consumption across all datasets.
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Figure 5: T40I10D100K dataset

Synthetic data set T40I10D100K contains abundant mix-
tures of short itemsets and long itemsets. Thus, it is a good
data set for testing the behavior of the algorithms when the
itemsets cannot be perfectly characterized to show any par-
ticular pattern. In this case, the UH-mine is significantly
superior to all algorithms both in terms of running time and
memory usage. We find that as the support threshold de-
creases, the gap between UH-mine and UApriori becomes
quite large. We note that since the Y -axis in Figure 5(a) is
in a logarithm scale of 5, the performance difference between
the two algorithms is much greater than might seem visu-
ally. As shown in Figure 5(b), the memory cost for UApriori
increases dramatically when the support threshold decrease
below 0.6%. This is because the number of frequent itemsets
increases rapidly with reduction in support. UCP-Apriori is
a little slower than UApriori and they consumes similar vol-
ume of memory.

According to the above experimental results, UApriori
and UH-mine are both efficient in mining frequent item-



sets. Both algorithms run much faster than UFP-tree and
UCFP-tree, especially when the support threshold is pretty
low. However, with the support level decreases, the number
of frequent itemsets increases exponentially, which results
in sharp increase of the memory cost. UH-mine is the only
algorithm which shows robustness with respect to both effi-
ciency and memory usage. The reason that the FP-growth
algorithm is not suitable to be adapted to mine uncertain
data sets lies in compressed structure which is not well suited
for probabilistic data. UCP-Apriori [8] runs a little slower
than UApriori on the three data sets. The memory cost for
UCP-Apriori is almost the same as that for UApriori, and
therefore UApriori is a more robust algorithm that UCP-
Apriori on the whole.
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Figure 6: Scalability Comparison

4.2 Scalability Comparison
To test the algorithm scalability w.r.t. the number of

transactions, we used the synthetic data set T25I15D320k.
It contains 320,000 transactions and a random subset of
these is used in order to test scalability. The support thresh-
old is set to 0.5%.

Figure 6 a) shows that all these algorithms have linear
scalability in terms of running time against the number of
transactions varying from 20k to 320k. Among them, UH-
mine, UApriori, and UCP-Apriori have much better perfor-
mance than UFP-tree and UCFP-tree, and among all the
algorithms, H-mine has the best performance.

In Figure 6 b), all algorithms shows linear scalability in
terms of memory usage. The curves denoted for UFP-tree
and UCFP-tree almost coincide, and so do the curves de-
noted for UApriori and UCP-Apriori. Both UApriori and
UH-mine scale much better than UFP-tree and UCFP-tree.
UH-mine algorithm scales better than any of the algorithms.
Thus, the UH-mine algorithms shows the best scalability
both in terms of running time and memory usage.

5. DISCUSSION AND CONCLUSIONS
In this paper, we focus on the frequent itemset mining on

uncertain data sets. We extended several existing classical
frequent itemset mining algorithms for deterministic data
sets, and compared their relative performance in terms of
efficiency and memory usage. We note that the uncertain
case has quite different trade-offs from the deterministic case
because of the inclusion of probability information. As a
result, the algorithms do not show similar relative behavior
as their deterministic counterparts.

As mentioned in [9], the FP-growth method is efficient and
scalable, especially for dense data sets. However, the nat-
ural extensions to uncertain data behaves quite differently.

There are two challenges to the extension of the FP-tree
based approach to the uncertain case. First, the compres-
sion properties of the FP-Tree are lost in the uncertain case.
Second, a large number of false positives are generated, and
the elimination of such candidates further affects the effi-
ciency negatively.

UH-mine is an algorithm which divides the search space
and employs the pattern-growth paradigm, which can avoid
generating a large number of candidate itemsets, especially
when most of them are infrequent. Both UCP-Apriori [8]
and UApriori are extended from the well-known Apriori al-
gorithm. The UCP-Apriori algorithm applies a candidate
pruning method during the mining process. According to
our performance study, the pruning method proposed for
UCP-Apriori results in greater overhead than the efficiency
it provides in the most challenging scenarios where uncer-
tainty probabilities are high and long patterns are present.
The UH-mine algorithm is especially useful, because it uses
the pattern growth paradigm, but does so without using
the FP-tree structure which does not extend well to the un-
certain case. This also reduces the memory requirements
drastically. The UH-mine algorithm proposed in this paper
provides the best trade-offs both in terms of running time
and memory usage.
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