
PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014) 85

Frequentism and Bayesianism: A Python-driven

Primer

Jake VanderPlas‡∗

http://www.youtube.com/watch?v=KhAUfqhLakw

✦

Abstract—This paper presents a brief, semi-technical comparison of the es-

sential features of the frequentist and Bayesian approaches to statistical infer-

ence, with several illustrative examples implemented in Python. The differences

between frequentism and Bayesianism fundamentally stem from differing defini-

tions of probability, a philosophical divide which leads to distinct approaches

to the solution of statistical problems as well as contrasting ways of asking

and answering questions about unknown parameters. After an example-driven

discussion of these differences, we briefly compare several leading Python sta-

tistical packages which implement frequentist inference using classical methods

and Bayesian inference using Markov Chain Monte Carlo.1

Index Terms—statistics, frequentism, Bayesian inference

Introduction

One of the first things a scientist in a data-intensive field hears

about statistics is that there are two different approaches: frequen-

tism and Bayesianism. Despite their importance, many researchers

never have opportunity to learn the distinctions between them and

the different practical approaches that result.

This paper seeks to synthesize the philosophical and pragmatic

aspects of this debate, so that scientists who use these approaches

might be better prepared to understand the tools available to them.

Along the way we will explore the fundamental philosophical

disagreement between frequentism and Bayesianism, explore the

practical aspects of how this disagreement affects data analysis,

and discuss the ways that these practices may affect the interpre-

tation of scientific results.

This paper is written for scientists who have picked up some

statistical knowledge along the way, but who may not fully

appreciate the philosophical differences between frequentist and

Bayesian approaches and the effect these differences have on both

the computation and interpretation of statistical results. Because

this passing statistics knowledge generally leans toward frequentist

principles, this paper will go into more depth on the details

of Bayesian rather than frequentist approaches. Still, it is not

meant to be a full introduction to either class of methods. In

particular, concepts such as the likelihood are assumed rather than

* Corresponding author: jakevdp@cs.washington.edu

‡ eScience Institute, University of Washington

Copyright © 2014 Jake VanderPlas. This is an open-access article distributed

under the terms of the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

1. This paper draws heavily from content originally published in a series of
posts on the author’s blog, Pythonic Perambulations [VanderPlas2014].

derived, and many advanced Bayesian and frequentist diagnostic

tests are left out in favor of illustrating the most fundamental

aspects of the approaches. For a more complete treatment, see,

e.g. [Wasserman2004] or [Gelman2004].

The Disagreement: The Definition of Probability

Fundamentally, the disagreement between frequentists and

Bayesians concerns the definition of probability.

For frequentists, probability only has meaning in terms of

a limiting case of repeated measurements. That is, if an

astronomer measures the photon flux F from a given non-variable

star, then measures it again, then again, and so on, each time

the result will be slightly different due to the statistical error of

the measuring device. In the limit of many measurements, the

frequency of any given value indicates the probability of measur-

ing that value. For frequentists, probabilities are fundamentally

related to frequencies of events. This means, for example, that

in a strict frequentist view, it is meaningless to talk about the

probability of the true flux of the star: the true flux is, by definition,

a single fixed value, and to talk about an extended frequency

distribution for a fixed value is nonsense.

For Bayesians, the concept of probability is extended to cover

degrees of certainty about statements. A Bayesian might claim

to know the flux F of a star with some probability P(F): that

probability can certainly be estimated from frequencies in the

limit of a large number of repeated experiments, but this is not

fundamental. The probability is a statement of the researcher’s

knowledge of what the true flux is. For Bayesians, probabilities

are fundamentally related to their own knowledge about an

event. This means, for example, that in a Bayesian view, we can

meaningfully talk about the probability that the true flux of a star

lies in a given range. That probability codifies our knowledge of

the value based on prior information and available data.

The surprising thing is that this arguably subtle difference in

philosophy can lead, in practice, to vastly different approaches

to the statistical analysis of data. Below we will explore a few

examples chosen to illustrate the differences in approach, along

with associated Python code to demonstrate the practical aspects

of the frequentist and Bayesian approaches.

A Simple Example: Photon Flux Measurements

First we will compare the frequentist and Bayesian approaches

to the solution of an extremely simple problem. Imagine that we

point a telescope to the sky, and observe the light coming from

http://www.youtube.com/watch?v=KhAUfqhLakw
mailto:jakevdp@cs.washington.edu
http://jakevdp.github.io/

86 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

a single star. For simplicity, we will assume that the star’s true

photon flux is constant with time, i.e. that is it has a fixed value F ;

we will also ignore effects like sky background systematic errors.

We will assume that a series of N measurements are performed,

where the ith measurement reports the observed flux Fi and error

ei.
2 The question is, given this set of measurements D = {Fi,ei},

what is our best estimate of the true flux F?

First we will use Python to generate some toy data to demon-

strate the two approaches to the problem. We will draw 50 samples

Fi with a mean of 1000 (in arbitrary units) and a (known) error ei:

>>> np.random.seed(2) # for reproducibility

>>> e = np.random.normal(30, 3, 50)

>>> F = np.random.normal(1000, e)

In this toy example we already know the true flux F , but the

question is this: given our measurements and errors, what is our

best point estimate of the true flux? Let’s look at a frequentist and

a Bayesian approach to solving this.

Frequentist Approach to Flux Measurement

We will start with the classical frequentist maximum likelihood

approach. Given a single observation Di =(Fi,ei), we can compute

the probability distribution of the measurement given the true flux

F given our assumption of Gaussian errors:

P(Di|F) =
(

2πe2
i

)−1/2
exp

(

−(Fi −F)2

2e2
i

)

.

This should be read "the probability of Di given F equals ...". You

should recognize this as a normal distribution with mean F and

standard deviation ei. We construct the likelihood by computing

the product of the probabilities for each data point:

L (D|F) =
N

∏
i=1

P(Di|F)

Here D = {Di} represents the entire set of measurements. For

reasons of both analytic simplicity and numerical accuracy, it

is often more convenient to instead consider the log-likelihood;

combining the previous two equations gives

logL (D|F) =−
1

2

N

∑
i=1

[

log(2πe2
i)+

(Fi −F)2

e2
i

]

.

We would like to determine the value of F which maximizes

the likelihood. For this simple problem, the maximization can be

computed analytically (e.g. by setting d logL /dF |F̂ = 0), which

results in the following point estimate of F :

F̂ =
∑wiFi

∑wi

; wi = 1/e2
i

The result is a simple weighted mean of the observed values.

Notice that in the case of equal errors ei, the weights cancel and

F̂ is simply the mean of the observed data.

We can go further and ask what the uncertainty of our estimate

is. One way this can be accomplished in the frequentist approach

is to construct a Gaussian approximation to the peak likelihood;

in this simple case the fit can be solved analytically to give:

σF̂ =

(

N

∑
i=1

wi

)−1/2

2. We will make the reasonable assumption of normally-distributed mea-
surement errors. In a Frequentist perspective, ei is the standard deviation of
the results of the single measurement event in the limit of (imaginary) repe-
titions of that event. In the Bayesian perspective, ei describes the probability
distribution which quantifies our knowledge of F given the measured value Fi.

This result can be evaluated this in Python as follows:

>>> w = 1. / e ** 2

>>> F_hat = np.sum(w * F) / np.sum(w)

>>> sigma_F = w.sum() ** -0.5

For our particular data, the result is F̂ = 999±4.

Bayesian Approach to Flux Measurement

The Bayesian approach, as you might expect, begins and ends with

probabilities. The fundamental result of interest is our knowledge

of the parameters in question, codified by the probability P(F |D).
To compute this result, we next apply Bayes’ theorem, a funda-

mental law of probability:

P(F |D) =
P(D|F) P(F)

P(D)

Though Bayes’ theorem is where Bayesians get their name, it is

important to note that it is not this theorem itself that is controver-

sial, but the Bayesian interpretation of probability implied by the

term P(F |D). While the above formulation makes sense given the

Bayesian view of probability, the setup is fundamentally contrary

to the frequentist philosophy, which says that probabilities have

no meaning for fixed model parameters like F . In the Bayesian

conception of probability, however, this poses no problem.

Let’s take a look at each of the terms in this expression:

• P(F |D): The posterior, which is the probability of the

model parameters given the data.

• P(D|F): The likelihood, which is proportional to the

L (D|F) used in the frequentist approach.

• P(F): The model prior, which encodes what we knew

about the model before considering the data D.

• P(D): The model evidence, which in practice amounts to

simply a normalization term.

If we set the prior P(F) ∝ 1 (a flat prior), we find

P(F |D) ∝ L (D|F).

That is, with a flat prior on F , the Bayesian posterior is maximized

at precisely the same value as the frequentist result! So despite the

philosophical differences, we see that the Bayesian and frequentist

point estimates are equivalent for this simple problem.

You might notice that we glossed over one important piece

here: the prior, P(F), which we assumed to be flat.3 The prior

allows inclusion of other information into the computation, which

becomes very useful in cases where multiple measurement strate-

gies are being combined to constrain a single model (as is the

case in, e.g. cosmological parameter estimation). The necessity to

specify a prior, however, is one of the more controversial pieces

of Bayesian analysis.

A frequentist will point out that the prior is problematic when

no true prior information is available. Though it might seem

straightforward to use an uninformative prior like the flat prior

mentioned above, there are some surprising subtleties involved.4

It turns out that in many situations, a truly uninformative prior

cannot exist! Frequentists point out that the subjective choice of a

prior which necessarily biases the result should have no place in

scientific data analysis.

3. A flat prior is an example of an improper prior: that is, it cannot be
normalized. In practice, we can remedy this by imposing some bounds on
possible values: say, 0 < F < Ftot , the total flux of all sources in the sky. As
this normalization term also appears in the denominator of Bayes’ theorem, it
does not affect the posterior.

FREQUENTISM AND BAYESIANISM: A PYTHON-DRIVEN PRIMER 87

A Bayesian would counter that frequentism doesn’t solve this

problem, but simply skirts the question. Frequentism can often be

viewed as simply a special case of the Bayesian approach for some

(implicit) choice of the prior: a Bayesian would say that it’s better

to make this implicit choice explicit, even if the choice might

include some subjectivity. Furthermore, as we will see below,

the question frequentism answers is not always the question the

researcher wants to ask.

Where The Results Diverge

In the simple example above, the frequentist and Bayesian ap-

proaches give basically the same result. In light of this, arguments

over the use of a prior and the philosophy of probability may

seem frivolous. However, while it is easy to show that the two

approaches are often equivalent for simple problems, it is also

true that they can diverge greatly in other situations. In practice,

this divergence most often makes itself most clear in two different

ways:

1) The handling of nuisance parameters: i.e. parameters

which affect the final result, but are not otherwise of

interest.

2) The different handling of uncertainty: for example, the

subtle (and often overlooked) difference between fre-

quentist confidence intervals and Bayesian credible re-

gions.

We will discuss examples of these below.

Nuisance Parameters: Bayes’ Billiards Game

We will start by discussing the first point: nuisance parameters.

A nuisance parameter is any quantity whose value is not directly

relevant to the goal of an analysis, but is nevertheless required to

determine the result which is of interest. For example, we might

have a situation similar to the flux measurement above, but in

which the errors ei are unknown. One potential approach is to

treat these errors as nuisance parameters.

Here we consider an example of nuisance parameters borrowed

from [Eddy2004] that, in one form or another, dates all the

way back to the posthumously-published 1763 paper written by

Thomas Bayes himself [Bayes1763]. The setting is a gambling

game in which Alice and Bob bet on the outcome of a process

they can’t directly observe.

Alice and Bob enter a room. Behind a curtain there is a billiard

table, which they cannot see. Their friend Carol rolls a ball down

the table, and marks where it lands. Once this mark is in place,

Carol begins rolling new balls down the table. If the ball lands

to the left of the mark, Alice gets a point; if it lands to the right

of the mark, Bob gets a point. We can assume that Carol’s rolls

are unbiased: that is, the balls have an equal chance of ending up

anywhere on the table. The first person to reach six points wins

the game.

Here the location of the mark (determined by the first roll)

can be considered a nuisance parameter: it is unknown and not

of immediate interest, but it clearly must be accounted for when

predicting the outcome of subsequent rolls. If this first roll settles

4. The flat prior in this case can be motivated by maximum entropy;
see, e.g. [Jeffreys1946]. Still, the use of uninformative priors like this often
raises eyebrows among frequentists: there are good arguments that even
"uninformative" priors can add information; see e.g. [Evans2002].

far to the right, then subsequent rolls will favor Alice. If it settles

far to the left, Bob will be favored instead.

Given this setup, we seek to answer this question: In a

particular game, after eight rolls, Alice has five points and Bob

has three points. What is the probability that Bob will get six points

and win the game?

Intuitively, we realize that because Alice received five of the

eight points, the marker placement likely favors her. Given that

she has three opportunities to get a sixth point before Bob can

win, she seems to have clinched it. But quantitatively speaking,

what is the probability that Bob will persist to win?

A Naïve Frequentist Approach

Someone following a classical frequentist approach might reason

as follows:

To determine the result, we need to estimate the location of the

marker. We will quantify this marker placement as a probability p

that any given roll lands in Alice’s favor. Because five balls out of

eight fell on Alice’s side of the marker, we compute the maximum

likelihood estimate of p, given by:

p̂ = 5/8,

a result follows in a straightforward manner from the binomial

likelihood. Assuming this maximum likelihood probability, we can

compute the probability that Bob will win, which requires him to

get a point in each of the next three rolls. This is given by:

P(B) = (1− p̂)3

Thus, we find that the probability of Bob winning is 0.053, or odds

against Bob winning of 18 to 1.

A Bayesian Approach

A Bayesian approach to this problem involves marginalizing (i.e.

integrating) over the unknown p so that, assuming the prior is

accurate, our result is agnostic to its actual value. In this vein, we

will consider the following quantities:

• B = Bob Wins

• D = observed data, i.e. D = (nA,nB) = (5,3)
• p = unknown probability that a ball lands on Alice’s side

during the current game

We want to compute P(B|D); that is, the probability that Bob

wins given the observation that Alice currently has five points to

Bob’s three. A Bayesian would recognize that this expression is a

marginal probability which can be computed by integrating over

the joint distribution P(B, p|D):

P(B|D)≡
∫ ∞

−∞
P(B, p|D)dp

This identity follows from the definition of conditional probability,

and the law of total probability: that is, it is a fundamental

consequence of probability axioms and will always be true. Even a

frequentist would recognize this; they would simply disagree with

the interpretation of P(p) as being a measure of uncertainty of

knowledge of the parameter p.

To compute this result, we will manipulate the above expres-

sion for P(B|D) until we can express it in terms of other quantities

that we can compute.

We start by applying the definition of conditional probability

to expand the term P(B, p|D):

P(B|D) =
∫

P(B|p,D)P(p|D)d p

88 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Next we use Bayes’ rule to rewrite P(p|D):

P(B|D) =
∫

P(B|p,D)
P(D|p)P(p)

P(D)
d p

Finally, using the same probability identity we started with, we

can expand P(D) in the denominator to find:

P(B|D) =

∫

P(B|p,D)P(D|p)P(p)d p
∫

P(D|p)P(p)d p

Now the desired probability is expressed in terms of three quanti-

ties that we can compute:

• P(B|p,D): This term is proportional to the frequentist like-

lihood we used above. In words: given a marker placement

p and Alice’s 5 wins to Bob’s 3, what is the probability that

Bob will go on to six wins? Bob needs three wins in a row,

i.e. P(B|p,D) = (1− p)3.

• P(D|p): this is another easy-to-compute term. In words:

given a probability p, what is the likelihood of exactly 5

positive outcomes out of eight trials? The answer comes

from the Binomial distribution: P(D|p) ∝ p5(1− p)3

• P(p): this is our prior on the probability p. By the problem

definition, we can assume that p is evenly drawn between

0 and 1. That is, P(p) ∝ 1 for 0 ≤ p ≤ 1.

Putting this all together and simplifying gives

P(B|D) =

∫ 1
0 (1− p)6 p5d p
∫ 1

0 (1− p)3 p5d p
.

These integrals are instances of the beta function, so we can

quickly evaluate the result using scipy:

>>> from scipy.special import beta

>>> P_B_D = beta(6+1, 5+1) / beta(3+1, 5+1)

This gives P(B|D) = 0.091, or odds of 10 to 1 against Bob

winning.

Discussion

The Bayesian approach gives odds of 10 to 1 against Bob, while

the naïve frequentist approach gives odds of 18 to 1 against Bob.

So which one is correct?

For a simple problem like this, we can answer this question

empirically by simulating a large number of games and count

the fraction of suitable games which Bob goes on to win. This

can be coded in a couple dozen lines of Python (see part II of

[VanderPlas2014]). The result of such a simulation confirms the

Bayesian result: 10 to 1 against Bob winning.

So what is the takeaway: is frequentism wrong? Not neces-

sarily: in this case, the incorrect result is more a matter of the

approach being "naïve" than it being "frequentist". The approach

above does not consider how p may vary. There exist frequentist

methods that can address this by, e.g. applying a transformation

and conditioning of the data to isolate dependence on p, or by

performing a Bayesian-like integral over the sampling distribution

of the frequentist estimator p̂.

Another potential frequentist response is that the question

itself is posed in a way that does not lend itself to the classical,

frequentist approach. A frequentist might instead hope to give the

answer in terms of null tests or confidence intervals: that is, they

might devise a procedure to construct limits which would provably

bound the correct answer in 100×(1−α) percent of similar trials,

for some value of α – say, 0.05. We will discuss the meaning of

such confidence intervals below.

There is one clear common point of these two frequentist

responses: both require some degree of effort and/or special exper-

tise in classical methods; perhaps a suitable frequentist approach

would be immediately obvious to an expert statistician, but is not

particularly obvious to a statistical lay-person. In this sense, it

could be argued that for a problem such as this (i.e. with a well-

motivated prior), Bayesianism provides a more natural framework

for handling nuisance parameters: by simple algebraic manipula-

tion of a few well-known axioms of probability interpreted in a

Bayesian sense, we straightforwardly arrive at the correct answer

without need for other special statistical expertise.

Confidence vs. Credibility: Jaynes’ Truncated Exponential

A second major consequence of the philosophical difference

between frequentism and Bayesianism is in the handling of un-

certainty, exemplified by the standard tools of each method: fre-

quentist confidence intervals (CIs) and Bayesian credible regions

(CRs). Despite their apparent similarity, the two approaches are

fundamentally different. Both are statements of probability, but

the probability refers to different aspects of the computed bounds.

For example, when constructing a standard 95% bound about a

parameter θ :

• A Bayesian would say: "Given our observed data, there is

a 95% probability that the true value of θ lies within the

credible region".

• A frequentist would say: "If this experiment is repeated

many times, in 95% of these cases the computed confi-

dence interval will contain the true θ ."5

Notice the subtle difference: the Bayesian makes a statement

of probability about the parameter value given a fixed credible

region. The frequentist makes a statement of probability about

the confidence interval itself given a fixed parameter value. This

distinction follows straightforwardly from the definition of proba-

bility discussed above: the Bayesian probability is a statement of

degree of knowledge about a parameter; the frequentist probability

is a statement of long-term limiting frequency of quantities (such

as the CI) derived from the data.

This difference must necessarily affect our interpretation of

results. For example, it is common in scientific literature to see

it claimed that it is 95% certain that an unknown parameter lies

within a given 95% CI, but this is not the case! This is erroneously

applying the Bayesian interpretation to a frequentist construction.

This frequentist oversight can perhaps be forgiven, as under most

circumstances (such as the simple flux measurement example

above), the Bayesian CR and frequentist CI will more-or-less

overlap. But, as we will see below, this overlap cannot always

be assumed, especially in the case of non-Gaussian distributions

constrained by few data points. As a result, this common misinter-

pretation of the frequentist CI can lead to dangerously erroneous

conclusions.

To demonstrate a situation in which the frequentist confidence

interval and the Bayesian credibility region do not overlap, let

us turn to an example given by E.T. Jaynes, a 20th century

physicist who wrote extensively on statistical inference. In his

words, consider a device that

5. [Wasserman2004], however, notes on p. 92 that we need not consider
repetitions of the same experiment; it’s sufficient to consider repetitions of any
correctly-performed frequentist procedure.

FREQUENTISM AND BAYESIANISM: A PYTHON-DRIVEN PRIMER 89

"...will operate without failure for a time θ because

of a protective chemical inhibitor injected into it; but

at time θ the supply of the chemical is exhausted,

and failures then commence, following the exponential

failure law. It is not feasible to observe the depletion of

this inhibitor directly; one can observe only the resulting

failures. From data on actual failure times, estimate the

time θ of guaranteed safe operation..." [Jaynes1976]

Essentially, we have data D drawn from the model:

P(x|θ) =

{

exp(θ − x) , x > θ

0 , x < θ

}

where p(x|θ) gives the probability of failure at time x, given an

inhibitor which lasts for a time θ . We observe some failure times,

say D = {10,12,15}, and ask for 95% uncertainty bounds on the

value of θ .

First, let’s think about what common-sense would tell us.

Given the model, an event can only happen after a time θ . Turning

this around tells us that the upper-bound for θ must be min(D).
So, for our particular data, we would immediately write θ ≤ 10.

With this in mind, let’s explore how a frequentist and a Bayesian

approach compare to this observation.

Truncated Exponential: A Frequentist Approach

In the frequentist paradigm, we’d like to compute a confidence

interval on the value of θ . We might start by observing that the

population mean is given by

E(x) =
∫ ∞

0
xp(x)dx = θ +1.

So, using the sample mean as the point estimate of E(x), we have

an unbiased estimator for θ given by

θ̂ =
1

N

N

∑
i=1

xi −1.

In the large-N limit, the central limit theorem tells us that the

sampling distribution is normal with standard deviation given by

the standard error of the mean: σ2
θ̂
= 1/N, and we can write the

95% (i.e. 2σ) confidence interval as

CIlarge N =
(

θ̂ −2N−1/2, θ̂ +2N−1/2
)

For our particular observed data, this gives a confidence interval

around our unbiased estimator of CI(θ) = (10.2,12.5), entirely

above our common-sense bound of θ < 10! We might hope that

this discrepancy is due to our use of the large-N approximation

with a paltry N = 3 samples. A more careful treatment of the

problem (See [Jaynes1976] or part III of [VanderPlas2014]) gives

the exact confidence interval (10.2,12.2): the 95% confidence

interval entirely excludes the sensible bound θ < 10!

Truncated Exponential: A Bayesian Approach

A Bayesian approach to the problem starts with Bayes’ rule:

P(θ |D) =
P(D|θ)P(θ)

P(D)
.

We use the likelihood given by

P(D|θ) ∝
N

∏
i=1

P(xi|θ)

and, in the absence of other information, use an uninformative flat

prior on θ to find

P(θ |D) ∝

{

N exp [N(θ −min(D))] , θ < min(D)
0 , θ > min(D)

}

where min(D) is the smallest value in the data D, which enters

because of the truncation of P(xi|θ). Because P(θ |D) increases

exponentially up to the cutoff, the shortest 95% credibility interval

(θ1,θ2) will be given by θ2 =min(D), and θ1 given by the solution

to the equation
∫ θ2

θ1

P(θ |D)dθ = f

which has the solution

θ1 = θ2 +
1

N
ln
[

1− f (1− e−Nθ2)
]

.

For our particular data, the Bayesian credible region is

CR(θ) = (9.0,10.0)

which agrees with our common-sense bound.

Discussion

Why do the frequentist CI and Bayesian CR give such different

results? The reason goes back to the definitions of the CI and CR,

and to the fact that the two approaches are answering different

questions. The Bayesian CR answers a question about the value

of θ itself (the probability that the parameter is in the fixed CR),

while the frequentist CI answers a question about the procedure

used to construct the CI (the probability that any potential CI will

contain the fixed parameter).

Using Monte Carlo simulations, it is possible to confirm that

both the above results correctly answer their respective questions

(see [VanderPlas2014], III). In particular, 95% of frequentist CIs

constructed using data drawn from this model in fact contain the

true θ . Our particular data are simply among the unhappy 5%

which the confidence interval misses. But this makes clear the

danger of misapplying the Bayesian interpretation to a CI: this

particular CI is not 95% likely to contain the true value of θ ; it is

in fact 0% likely!

This shows that when using frequentist methods on fixed data,

we must carefully keep in mind what question frequentism is

answering. Frequentism does not seek a probabilistic statement

about a fixed interval as the Bayesian approach does; it instead

seeks probabilistic statements about an ensemble of constructed

intervals, with the particular computed interval just a single draw

from among them. Despite this, it is common to see a 95%

confidence interval interpreted in the Bayesian sense: as a fixed

interval that the parameter is expected to be found in 95% of the

time. As seen clearly here, this interpretation is flawed, and should

be carefully avoided.

Though we used a correct unbiased frequentist estimator

above, it should be emphasized that the unbiased estimator is

not always optimal for any given problem: especially one with

small N and/or censored models; see, e.g. [Hardy2003]. Other

frequentist estimators are available: for example, if the (biased)

maximum likelihood estimator were used here instead, the con-

fidence interval would be very similar to the Bayesian credible

region derived above. Regardless of the choice of frequentist

estimator, however, the correct interpretation of the CI is the same:

it gives probabilities concerning the recipe for constructing limits,

not for the parameter values given the observed data. For sensible

90 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

parameter constraints from a single dataset, Bayesianism may be

preferred, especially if the difficulties of uninformative priors can

be avoided through the use of true prior information.

Bayesianism in Practice: Markov Chain Monte Carlo

Though Bayesianism has some nice features in theory, in practice

it can be extremely computationally intensive: while simple prob-

lems like those examined above lend themselves to relatively easy

analytic integration, real-life Bayesian computations often require

numerical integration of high-dimensional parameter spaces.

A turning-point in practical Bayesian computation was the

development and application of sampling methods such as Markov

Chain Monte Carlo (MCMC). MCMC is a class of algorithms

which can efficiently characterize even high-dimensional posterior

distributions through drawing of randomized samples such that

the points are distributed according to the posterior. A detailed

discussion of MCMC is well beyond the scope of this paper;

an excellent introduction can be found in [Gelman2004]. Below,

we will propose a straightforward model and compare a standard

frequentist approach with three MCMC implementations available

in Python.

Application: A Simple Linear Model

As an example of a more realistic data-driven analysis, let’s con-

sider a simple three-parameter linear model which fits a straight-

line to data with unknown errors. The parameters will be the the

y-intercept α , the slope β , and the (unknown) normal scatter σ

about the line.

For data D = {xi,yi}, the model is

ŷ(xi|α,β) = α +βxi,

and the likelihood is the product of the Gaussian distribution for

each point:

L (D|α,β ,σ) = (2πσ2)−N/2
N

∏
i=1

exp

[

−[yi − ŷ(xi|α,β)]2

2σ2

]

.

We will evaluate this model on the following data set:

import numpy as np

np.random.seed(42) # for repeatability

theta_true = (25, 0.5)

xdata = 100 * np.random.random(20)

ydata = theta_true[0] + theta_true[1] * xdata

ydata = np.random.normal(ydata, 10) # add error

Below we will consider a frequentist solution to this problem

computed with the statsmodels package6, as well as a Bayesian so-

lution computed with several MCMC implementations in Python:

emcee7, PyMC8, and PyStan9. A full discussion of the strengths

and weaknesses of the various MCMC algorithms used by the

packages is out of scope for this paper, as is a full discussion

of performance benchmarks for the packages. Rather, the purpose

of this section is to show side-by-side examples of the Python

APIs of the packages. First, though, we will consider a frequentist

solution.

6. statsmodels: Statistics in Python http://statsmodels.sourceforge.net/

7. emcee: The MCMC Hammer http://dan.iel.fm/emcee/

8. PyMC: Bayesian Inference in Python http://pymc-devs.github.io/pymc/

9. PyStan: The Python Interface to Stan https://pystan.readthedocs.org/

Frequentist Solution

A frequentist solution can be found by computing the maximum

likelihood point estimate. For standard linear problems such as

this, the result can be computed using efficient linear algebra. If

we define the parameter vector, θ = [α β]T ; the response vector,

Y = [y1 y2 y3 · · · yN]
T ; and the design matrix,

X =

[

1 1 1 · · · 1

x1 x2 x3 · · · xN

]T

,

it can be shown that the maximum likelihood solution is

θ̂ = (XT X)−1(XTY).

The confidence interval around this value is an ellipse in parameter

space defined by the following matrix:

Σθ̂ ≡

[

σ2
α σαβ

σαβ σ2
β

]

= σ2(MT M)−1.

Here σ is our unknown error term; it can be estimated based on the

variance of the residuals about the fit. The off-diagonal elements of

Σθ̂ are the correlated uncertainty between the estimates. In code,

the computation looks like this:

>>> X = np.vstack([np.ones_like(xdata), xdata]).T

>>> theta_hat = np.linalg.solve(np.dot(X.T, X),

... np.dot(X.T, ydata))

>>> y_hat = np.dot(X, theta_hat)

>>> sigma_hat = np.std(ydata - y_hat)

>>> Sigma = sigma_hat ** 2 *\

... np.linalg.inv(np.dot(X.T, X))

The 1σ and 2σ results are shown by the black ellipses in Figure

1.

In practice, the frequentist approach often relies on many more

statistal diagnostics beyond the maximum likelihood and confi-

dence interval. These can be computed quickly using convenience

routines built-in to the statsmodels package [Seabold2010].

For this problem, it can be used as follows:

>>> import statsmodels.api as sm # version 0.5

>>> X = sm.add_constant(xdata)

>>> result = sm.OLS(ydata, X).fit()

>>> sigma_hat = result.params

>>> Sigma = result.cov_params()

>>> print(result.summary2())

==

Model: OLS AIC: 147.773

Dependent Variable: y BIC: 149.765

No. Observations: 20 Log-Likelihood: -71.887

Df Model: 1 F-statistic: 41.97

Df Residuals: 18 Prob (F-statistic): 4.3e-06

R-squared: 0.70 Scale: 86.157

Adj. R-squared: 0.68

--

Coef. Std.Err. t P>|t| [0.025 0.975]

--

const 24.6361 3.7871 6.5053 0.0000 16.6797 32.592

x1 0.4483 0.0692 6.4782 0.0000 0.3029 0.593

--

Omnibus: 1.996 Durbin-Watson: 2.75

Prob(Omnibus): 0.369 Jarque-Bera (JB): 1.63

Skew: 0.651 Prob(JB): 0.44

Kurtosis: 2.486 Condition No.: 100

==

The summary output includes many advanced statistics which we

don’t have space to fully discuss here. For a trained practitioner

these diagnostics are very useful for evaluating and comparing fits,

http://statsmodels.sourceforge.net/
http://dan.iel.fm/emcee/
http://pymc-devs.github.io/pymc/
https://pystan.readthedocs.org/

FREQUENTISM AND BAYESIANISM: A PYTHON-DRIVEN PRIMER 91

especially for more complicated models; see [Wasserman2004]

and the statsmodels project documentation for more details.

Bayesian Solution: Overview

The Bayesian result is encapsulated in the posterior, which is

proportional to the product of the likelihood and the prior; in

this case we must be aware that a flat prior is not uninformative.

Because of the nature of the slope, a flat prior leads to a much

higher probability for steeper slopes. One might imagine address-

ing this by transforming variables, e.g. using a flat prior on the

angle the line makes with the x-axis rather than the slope. It turns

out that the appropriate change of variables can be determined

much more rigorously by following arguments first developed by

[Jeffreys1946].

Our model is given by y = α + βx with probability element

P(α,β)dαdβ . By symmetry, we could just as well have written

x = α ′ + β ′y with probability element Q(α ′,β ′)dα ′dβ ′. It then

follows that (α ′,β ′) = (−β−1α,β−1). Computing the determinant

of the Jacobian of this transformation, we can then show that

Q(α ′,β ′) = β 3P(α,β). The symmetry of the problem requires

equivalence of P and Q, or β 3P(α,β) = P(−β−1α,β−1), which

is a functional equation satisfied by

P(α,β) ∝ (1+β 2)−3/2.

This turns out to be equivalent to choosing flat priors on the

alternate variables (θ ,α⊥) = (tan−1 β ,α cosθ).
Through similar arguments based on the invariance of σ under

a change of units, we can show that

P(σ) ∝ 1/σ ,

which is most commonly known a the Jeffreys Prior for scale

factors after [Jeffreys1946], and is equivalent to flat prior on logσ .

Putting these together, we find the following uninformative prior

for our linear regression problem:

P(α,β ,σ) ∝
1

σ
(1+β 2)−3/2.

With this prior and the above likelihood, we are prepared to

numerically evaluate the posterior via MCMC.

Solution with emcee

The emcee package [ForemanMackey2013] is a lightweight pure-

Python package which implements Affine Invariant Ensemble

MCMC [Goodman2010], a sophisticated version of MCMC sam-

pling. To use emcee, all that is required is to define a Python

function representing the logarithm of the posterior. For clarity,

we will factor this definition into two functions, the log-prior and

the log-likelihood:

import emcee # version 2.0

def log_prior(theta):

alpha, beta, sigma = theta

if sigma < 0:

return -np.inf # log(0)

else:

return (-1.5 * np.log(1 + beta**2)

- np.log(sigma))

def log_like(theta, x, y):

alpha, beta, sigma = theta

y_model = alpha + beta * x

return -0.5 * np.sum(np.log(2*np.pi*sigma**2) +

(y-y_model)**2 / sigma**2)

def log_posterior(theta, x, y):

return log_prior(theta) + log_like(theta,x,y)

Next we set up the computation. emcee combines multiple

interacting "walkers", each of which results in its own Markov

chain. We will also specify a burn-in period, to allow the chains

to stabilize prior to drawing our final traces:

ndim = 3 # number of parameters in the model

nwalkers = 50 # number of MCMC walkers

nburn = 1000 # "burn-in" to stabilize chains

nsteps = 2000 # number of MCMC steps to take

starting_guesses = np.random.rand(nwalkers, ndim)

Now we call the sampler and extract the trace:

sampler = emcee.EnsembleSampler(nwalkers, ndim,

log_posterior,

args=[xdata,ydata])

sampler.run_mcmc(starting_guesses, nsteps)

chain is of shape (nwalkers, nsteps, ndim):

discard burn-in points and reshape:

trace = sampler.chain[:, nburn:, :]

trace = trace.reshape(-1, ndim).T

The result is shown by the blue curve in Figure 1.

Solution with PyMC

The PyMC package [Patil2010] is an MCMC implementation

written in Python and Fortran. It makes use of the classic

Metropolis-Hastings MCMC sampler [Gelman2004], and includes

many built-in features, such as support for efficient sampling of

common prior distributions. Because of this, it requires more

specialized boilerplate than does emcee, but the result is a very

powerful tool for flexible Bayesian inference.

The example below uses PyMC version 2.3; as of this writing,

there exists an early release of version 3.0, which is a complete

rewrite of the package with a more streamlined API and more

efficient computational backend. To use PyMC, we first we define

all the variables using its classes and decorators:

import pymc # version 2.3

alpha = pymc.Uniform('alpha', -100, 100)

@pymc.stochastic(observed=False)

def beta(value=0):

return -1.5 * np.log(1 + value**2)

@pymc.stochastic(observed=False)

def sigma(value=1):

return -np.log(abs(value))

Define the form of the model and likelihood

@pymc.deterministic

def y_model(x=xdata, alpha=alpha, beta=beta):

return alpha + beta * x

y = pymc.Normal('y', mu=y_model, tau=1./sigma**2,

observed=True, value=ydata)

package the full model in a dictionary

model = dict(alpha=alpha, beta=beta, sigma=sigma,

y_model=y_model, y=y)

Next we run the chain and extract the trace:

S = pymc.MCMC(model)

S.sample(iter=100000, burn=50000)

trace = [S.trace('alpha')[:], S.trace('beta')[:],

S.trace('sigma')[:]]

92 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

The result is shown by the red curve in Figure 1.

Solution with PyStan

PyStan is the official Python interface to Stan, a probabilistic

programming language implemented in C++ and making use of a

Hamiltonian MCMC using a No U-Turn Sampler [Hoffman2014].

The Stan language is specifically designed for the expression of

probabilistic models; PyStan lets Stan models specified in the form

of Python strings be parsed, compiled, and executed by the Stan

library. Because of this, PyStan is the least "Pythonic" of the three

frameworks:

import pystan # version 2.2

model_code = """

data {

int<lower=0> N; // number of points

real x[N]; // x values

real y[N]; // y values

}

parameters {

real alpha_perp;

real<lower=-pi()/2, upper=pi()/2> theta;

real log_sigma;

}

transformed parameters {

real alpha;

real beta;

real sigma;

real ymodel[N];

alpha <- alpha_perp / cos(theta);

beta <- sin(theta);

sigma <- exp(log_sigma);

for (j in 1:N)

ymodel[j] <- alpha + beta * x[j];

}

model {

y ~ normal(ymodel, sigma);

}

"""

perform the fit & extract traces

data = {'N': len(xdata), 'x': xdata, 'y': ydata}

fit = pystan.stan(model_code=model_code, data=data,

iter=25000, chains=4)

tr = fit.extract()

trace = [tr['alpha'], tr['beta'], tr['sigma']]

The result is shown by the green curve in Figure 1.

Comparison

The 1σ and 2σ posterior credible regions computed with these

three packages are shown beside the corresponding frequentist

confidence intervals in Figure 1. The frequentist result gives

slightly tighter bounds; this is primarily due to the confidence

interval being computed assuming a single maximum likelihood

estimate of the unknown scatter, σ (this is analogous to the use

of the single point estimate for the nuisance parameter p in

the billiard game, above). This interpretation can be confirmed

by plotting the Bayesian posterior conditioned on the maximum

likelihood estimate σ̂ ; this gives a credible region much closer to

the frequentist confidence interval.

The similarity of the three MCMC results belie the differences

in algorithms used to compute them: by default, PyMC uses a

Metropolis-Hastings sampler, PyStan uses a No U-Turn Sampler

(NUTS), while emcee uses an affine-invariant ensemble sam-

pler. These approaches are known to have differing performance

characteristics depending on the features of the posterior being

Fig. 1: Comparison of model fits using frequentist maximum like-
lihood, and Bayesian MCMC using three Python packages: emcee,
PyMC, and PyStan.

explored. As expected for the near-Gaussian posterior used here,

the three approaches give very similar results.

A main apparent difference between the packages is the

Python interface. Emcee is perhaps the simplest, while PyMC

requires more package-specific boilerplate code. PyStan is the

most complicated, as the model specification requires directly

writing a string of Stan code.

Conclusion

This paper has offered a brief philosophical and practical glimpse

at the differences between frequentist and Bayesian approaches

to statistical analysis. These differences have their root in differ-

ing conceptions of probability: frequentists define probability as

related to frequencies of repeated events, while Bayesians define

probability as a measure of uncertainty. In practice, this means

that frequentists generally quantify the properties of data-derived

quantities in light of fixed model parameters, while Bayesians

generally quantify the properties of unknown models parameters

in light of observed data. This philosophical distinction often

makes little difference in simple problems, but becomes important

within more sophisticated analysis.

We first considered the case of nuisance parameters, and

showed that Bayesianism offers more natural machinery to deal

with nuisance parameters through marginalization. Of course, this

marginalization depends on having an accurate prior probability

for the parameter being marginalized.

Next we considered the difference in the handling of uncer-

tainty, comparing frequentist confidence intervals with Bayesian

credible regions. We showed that when attempting to find a single,

fixed interval bounding the true value of a parameter, the Bayesian

solution answers the question that researchers most often ask. The

frequentist solution can be informative; we just must be careful to

correctly interpret the frequentist confidence interval.

FREQUENTISM AND BAYESIANISM: A PYTHON-DRIVEN PRIMER 93

Finally, we combined these ideas and showed several examples

of the use of frequentism and Bayesianism on a more realistic

linear regression problem, using several mature packages available

in the Python language ecosystem. Together, these packages offer

a set of tools for statistical analysis in both the frequentist and

Bayesian frameworks.

So which approach is best? That is somewhat a matter of

personal ideology, but also depends on the nature of the problem

at hand. Frequentist approaches are often easily computed and are

well-suited to truly repeatible processes and measurements, but

can hit snags with small sets of data and models which depart

strongly from Gaussian. Frequentist tools for these situations

do exist, but often require subtle considerations and specialized

expertise. Bayesian approaches require specification of a poten-

tially subjective prior, and often involve intensive computation

via MCMC. However, they are often conceptually more straight-

forward, and pose results in a way that is much closer to the

questions a scientist wishes to answer: i.e. how do these particular

data constrain the unknowns in a certain model? When used with

correct understanding of their application, both sets of statistical

tools can be used to effectively interpret of a wide variety of

scientific and technical results.

REFERENCES

[Bayes1763] T. Bayes. An essay towards solving a problem in the

doctrine of chances. Philosophical Transactions of the
Royal Society of London 53(0):370-418, 1763

[Eddy2004] S.R. Eddy. What is Bayesian statistics?. Nature
Biotechnology 22:1177-1178, 2004

[Evans2002] S.N. Evans & P.B. Stark. Inverse Problems as Statis-

tics. Mathematics Statistics Library, 609, 2002.
[ForemanMackey2013] D. Foreman-Mackey, D.W. Hogg, D. Lang,

J.Goodman. emcee: the MCMC Hammer. PASP
125(925):306-312, 2014

[Gelman2004] A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin.
Bayesian Data Analysis, Second Edition. Chapman
and Hall/CRC, Boca Raton, FL, 2004.

[Goodman2010] J. Goodman & J. Weare. Ensemble Samplers with

Affine Invariance. Comm. in Applied Mathematics
and Computational Science 5(1):65-80, 2010.

[Hardy2003] M. Hardy. An illuminating counterexample. Am.
Math. Monthly 110:234–238, 2003.

[Hoffman2014] M.C. Hoffman & A. Gelman. The No-U-Turn Sam-

pler: Adaptively Setting Path Lengths in Hamiltonian

Monte Carlo. JMLR, submitted, 2014.
[Jaynes1976] E.T. Jaynes. Confidence Intervals vs Bayesian In-

tervals (1976) Papers on Probability, Statistics and
Statistical Physics Synthese Library 158:149, 1989

[Jeffreys1946] H. Jeffreys An Invariant Form for the Prior Probabil-

ity in Estimation Problems. Proc. of the Royal Society
of London. Series A 186(1007): 453, 1946

[Patil2010] A. Patil, D. Huard, C.J. Fonnesbeck. PyMC: Bayesian

Stochastic Modelling in Python Journal of Statistical
Software, 35(4):1-81, 2010.

[Seabold2010] J.S. Seabold and J. Perktold. Statsmodels: Economet-

ric and Statistical Modeling with Python Proceedings
of the 9th Python in Science Conference, 2010

[VanderPlas2014] J. VanderPlas. Frequentism and Bayesianism. Four-
part series (I, II, III, IV) on Pythonic Perambulations

http://jakevdp.github.io/, 2014.
[Wasserman2004] L. Wasserman. All of statistics: a concise course in

statistical inference. Springer, 2004.

http://jakevdp.github.io/blog/2014/03/11/frequentism-and-bayesianism-a-practical-intro/
http://jakevdp.github.io/blog/2014/06/06/frequentism-and-bayesianism-2-when-results-differ/
http://jakevdp.github.io/blog/2014/06/12/frequentism-and-bayesianism-3-confidence-credibility/
http://jakevdp.github.io/blog/2014/06/14/frequentism-and-bayesianism-4-bayesian-in-python/
http://jakevdp.github.io/

	Introduction
	The Disagreement: The Definition of Probability
	A Simple Example: Photon Flux Measurements
	Frequentist Approach to Flux Measurement
	Bayesian Approach to Flux Measurement

	Where The Results Diverge
	Nuisance Parameters: Bayes' Billiards Game
	A Naïve Frequentist Approach
	A Bayesian Approach
	Discussion

	Confidence vs. Credibility: Jaynes' Truncated Exponential
	Truncated Exponential: A Frequentist Approach
	Truncated Exponential: A Bayesian Approach
	Discussion

	Bayesianism in Practice: Markov Chain Monte Carlo
	Application: A Simple Linear Model
	Frequentist Solution
	Bayesian Solution: Overview
	Solution with emcee
	Solution with PyMC
	Solution with PyStan
	Comparison

	Conclusion
	References

