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with an application to birth weight in American 
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Abstract 

Background: Single-step genomic best linear unbiased prediction (SSGBLUP) is a comprehensive method for 

genomic prediction. Point estimates of marker effects from SSGBLUP are often used for genome-wide association 

studies (GWAS) without a formal framework of hypothesis testing. Our objective was to implement p-values for single-

marker GWAS studies within the single-step GWAS (SSGWAS) framework by deriving computational algorithms and 

procedures, and by applying these to a large beef cattle population.

Methods: P-values were obtained based on the prediction error (co)variances for single nucleotide polymorphisms 

(SNPs), which were obtained from the prediction error (co)variances of genomic predictions based on the inverse of 

the coefficient matrix and formulas to estimate SNP effects.

Results: Computation of p-values took a negligible time for a dataset with almost 2 million animals in the pedigree 

and 1424 genotyped sires, and no inflation of statistics was observed. The SNPs that passed the Bonferroni threshold 

of  10−5.9 were the same as those that explained the highest proportion of additive genetic variance, but even at the 

same significance levels and effects, some of them explained less genetic variance due to lower allele frequency.

Conclusions: The use of a p-value for SSGWAS is a very general and efficient strategy to identify quantitative trait 

loci (QTL). It can be used for complex datasets such as those used in animal breeding, where only a proportion of the 

pedigreed animals are genotyped.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background

With availability of high-density SNP genotypes, detec-

tion and mapping of causal genes and QTL in livestock 

genetics is usually accomplished by genome-wide asso-

ciation studies (GWAS). The most frequent GWAS 

method is single-marker fixed regression in a mixed lin-

ear model, in which genotypes at one marker are fit in the 

model as a covariate, and correction for the remaining 

genetic effects is based on a genetic relationship matrix. 

This is also known as efficient mixed-model association 

expedited (EMMAX) [1–3]. In human and livestock 

genetic studies, the associated variance components 

are often estimated once on the same dataset and then 

assumed as known, e.g. [4, 5] with negligible effects on 

the p-values computed [1]. However, the use of EMMAX 

requires all phenotyped individuals to be genotyped and 

vice versa. In livestock, this requirement is not met for, 

e.g. dairy bulls, that do not have sex-limited phenotypes 

(e.g. milk yield). In general, many animals that are phe-

notyped (e.g. for growth) would benefit from pheno-

typic information on relatives (e.g. growth in daughters, 

ancestors and collateral relatives). Typically, for GWAS 

using EMMAX, phenotypes of relatives are “projected” 
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onto the genotyped animals [6–8] in a process called de-

regression, which has been successfully used to detect 

and map QTL in livestock [9, 10].

De-regression is a cumbersome process and usually it 

is not optimal because it is an approximation that loses 

information and can lead to inaccuracies (e.g. spuri-

ous signals) due to selection not being accounted for, or 

by ignoring environmental effects. In particular, using 

de-regression leads to double-counting when the geno-

typed population includes both sires and their progeny. 

Legarra and Vitezica [11] proposed a more general two-

trait variance component model for GWAS, where the 

two traits modeled are the phenotype and “gene content” 

(number of copies of the reference allele) at the marker. 

Single-marker EMMAX regression is a particular case of 

the model in [11] when all individuals are genotyped and 

phenotyped. However, the method in [11] would be very 

slow for a GWAS because it requires maximization of a 

restricted maximum likelihood (REML) at each marker.

The GBLUP or SNP-BLUP framework [12–14] allows 

for the joint estimation of marker effects and the auto-

matic correction for genetic structure in the popula-

tion. The so-called single-step methods [i.e. single-step 

GBLUP (SSGBLUP) and single-step SNP-BLUP (SSSNP-

BLUP)] project genotypes onto phenotyped individuals, 

using pedigree relationships [15–18]. These “single-step 

methods” allow estimation of both breeding values and 

marker effects [17, 19, 20], and the latter have been used 

for GWAS analysis [21–23], typically based on the size of 

estimated marker effects or a related statistic such as the 

proportion of genetic variance explained by a marker or 

chromosome segment.

Proper GWAS analyses typically consider the estimates 

of either marker estimates or variance explained by seg-

ments, together with their uncertainty, to derive either 

p-values being different from 0 [1, 24, 25], or posterior 

probabilities of a region explaining more than a prede-

termined threshold [26, 27]. Both are proper statistical 

analyses with well-defined error rates. However, in most 

single-step methods used for GWAS (e.g. [21–23]), point 

estimates (posterior means) of marker effects are used, 

without accounting for their incertitude, because this is 

the output of common software. The use of “variances 

explained” is also often poorly implemented, because 

the variance explained has the form 2
∑

piqiâ
2

i  , which 

ignores the uncertainty on the estimate of marker effects 

and the linkage disequilibrium between markers. In 

other words, variances explained are reported as point 

estimates, without confidence intervals, p-values or pos-

terior probabilities.

An additional source of confusion for the reader is 

the arbitrary choice of “windows” of adjacent SNPs, 

since, to date, there is no current consensus. As a result, 

studies are difficult to compare. For instance, [21] stud-

ied “the 20 largest explanatory loci”, [22] studied “the 

10 windows explaining the largest amount of genomic 

variance for gene annotation, gene network and path-

way analyses”, whereas [23] considered “1.5-Mb SNP 

windows that explained more than 0.50% of the genetic 

variance”. In these studies, there was no assessment (in 

the form of p-values or posterior probabilities) to check 

if the variances explained by these regions were not due 

to chance. Although using estimates of marker effects 

or explained variances considers correctly the magni-

tude of the estimated marker effects, it does not always 

consider correctly the uncertainty in the estimation of 

marker effects. Even worse, there is a possibility that 

different iterative schemes are used. All these problems 

render interpretation of signals more difficult and per-

haps suboptimal [28].

Recently, equivalences between GBLUP and single-

marker GWAS (EMMAX) results have been demon-

strated in a series of papers [28–30]. In both cases, the 

statistic used is âi/sd(âi) (i.e. the marker effect estimate 

over its standard deviation). Papers [28–30] proved 

that these statistics are mathematically equivalent, 

i.e. âi/sd(âi) from EMMAX is equal to âi/sd(âi) from 

GBLUP. This is remarkable because, in EMMAX, the 

effect of the marker is fitted as fixed and, in GBLUP, 

as random. An application and the comparison with 

Bayesian methods were performed on a dataset of gait 

in horses [25]. Still, the method using GBLUP results 

could not be applied to datasets that consisted of mix-

tures of genotyped and ungenotyped animals.

Lu et  al. [31] showed that the same logic used in 

[28–30] for GBLUP can be used in a SSGBLUP context. 

Simply stated, to obtain a statistical test for the effect of 

a single marker, we need only estimates of the breeding 

values of genotyped animals and their sampling distri-

bution, which can be readily obtained from SSGBLUP. 

Unfortunately, the article of Lu et al. [31] seems to have 

gone unnoticed because its main focus is on feed effi-

ciency (not on methods for GWAS) and uses a small 

dataset (i.e. 7000 phenotyped animals of which 5000 

are genotyped), and therefore the applicability to large 

datasets was unclear.

In the present work, we present the implementation 

of single-step GWAS (SSGWAS) with frequentist p-val-

ues, as in [31], together with an application on a very 

large beef cattle dataset. We describe algorithms and 

computational procedures along with their bottlenecks. 

We try to show that GWAS with frequentist p-values 

can be applied to quite large datasets, comparable to 

datasets used in many national evaluations. GWAS of 

the beef cattle dataset led to the detection of highly sig-

nificant signals in marker loci that have already been 
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described in the literature and showed good empirical 

behavior.

Methods

Theory

The classical GWAS method (EMMAX) for marker i uses 

a linear model y = Xb + ziai + u + e , where vector b 

contains fixed effects, zi is a vector with “gene contents” 

(0, 1, or 2 at the marker), ai is the allele substitution effect 

of the i th marker, and u is a vector of breeding values, 

modelled as Var(u) =
ZZ

′

2
∑

piqi
σ 2
u = Gσ 2

u , where G is a 

genomic relationship matrix and Z is a matrix with gene 

contents for all markers; pi (qi = 1 − pi) is the frequency 

of the reference allele  at the i th marker. We assume, as 

customary [1], that variances σ
2
u and σ

2
e  are assumed 

known, if needed from a single preliminary estimate from 

the same dataset. The normal hypothesis test for the 

effect of the marker uses the statistic âi

sd(âi)
 , where both 

values are obtained from the inversion of the coefficient 

matrix of the mixed model equations of the model. P-val-

ues testing whether the allele substitution effect differs 

from 0 are obtained as pvali = 2

(

1 − �

(∣

∣

∣

âi
sd(âi)

∣

∣

∣

))

 , 

where � is the cumulative standard normal function.

It has been shown [28–30] that joint estimates of 

marker effects a from SNP-BLUP (or GBLUP models) of 

the form y = Xb + Za + e with prior assumption 

Var(a) = I
σ 2
u

2
∑

piqi
 lead to the statistics âi

sd(ai)
 that are 

equivalent to the statistic obtained for marker i in the 

EMMAX fixed regression framework.

The use of SSSNP-BLUP instead of SSGBLUP to obtain 

p-values is straightforward, because âi and sd(âi) are 

immediately available from the output of SSSNP-BLUP 

(e.g. [17]). In GBLUP and SSGBLUP, the same values can 

be obtained as linear transformations of the estimates 

of breeding values ûi and their prediction error (co)

variances [25, 28–30]. These can be obtained from the 

inverse of the mixed model equations [32, 33].

Algorithm

The algorithm for SSGWAS, which accommodates both 

genotyped and non-genotyped animals, has been imple-

mented in the blupf90 suite of programs [34]. It combines 

the algorithms for SSGBLUP (e.g. [18]) and back-solving 

to obtain estimates of marker effects and their associated 

p-values from estimates of breeding values [30]:

1. Construct the inverse of the joint pedigree-genomic 

relationship matrix H−1
= A

−1
+

(

0 0

0 G
−1

− A
−1

22

)

 ,  with 

H =

(

A11 − A12A
−1

22
A21 + A12A

−1

22
GA

−1

22
A21 A12A

−1

22
G

GA
−1

22
A21 G

)

,  

which projects genomic relationships G = ZZ
′/2

∑
piqi 

from genotyped animals (labelled as “2”) to non-genotyped 

animals (labelled as “1”). Matrix A =

(

A11 A12

A21 A22

)

 is the 

pedigree-based relationship matrix. Matrix G is (usually) 

constructed as G = (1 − α)

(

a + b ZZ
′

2
∑

piqi

)

+ αA22 , where 

a and b are chosen to equate average inbreeding and aver-

age relationships in G and A22 and α is a small value (typi-

cally from 0 to 0.05). This results in genomic and pedigree 

relationships to be compatible [35, 36] and G is invertible 

[12]. Matrix Z contains centered gene content as in [12], 

but using observed allele frequencies. Other possibilities 

exist to create H−1 depending on model assumptions [37].

2. Construct the mixed model equations for SSGBLUP. 

In a simple case (a model with a single genetic effect) these 

would be:

where β̂ are estimates of fixed effects and û are estimates 

of breeding values (not marker effects). More complex 

cases and multiple-trait models can be easily accommo-

dated [31].

3. Factorize and obtain the sparse inverse of the coeffi-

cient matrix. The whole inverse cannot be obtained directly 

as it is typically too big [38]. Instead, a “sparse inverse” ( C ) 

is obtained with selected elements of the inverse that corre-

sponds to the non-zero entries of a (sparse) Cholesky factor 

( LL′ ). In our case, this is achieved using supernodal sparse 

factorization and inversions as programmed in YAMS [39, 

40]. Factorization is the computing bottleneck of the proce-

dure and is roughly cubic on the number of genotyped ani-

mals; YAMS reduces the computing time by, roughly, one 

order of magnitude.

4. Solve the mixed model equations for 

(

β̂
û

)

 by using the 

sparse Cholesky factor.

5. Extract from C the submatrix that corresponds to the 

genotyped animals, Cu2u2 , which contains the prediction 

error (co)variances of their estimated breeding values, û2 , 

i.e. Var
(

u − û2

)

.

6. Back-solve for SNP effect estimates using 

â|û = (1 − α)bZ′ 1

2Σpiqi
G

−1
û2.

If matrix G is full rank and compatible with pedigree rela-

tionships (for instance, if Z is built with base allele frequen-

cies) then â|û = Z
′ 1

2Σpiqi
G

−1
û2 [12, 41, 42].

7. Obtain individual prediction error variances of SNP 

effect estimates as [30]:

(

X′Xσ
−2
e X′Wσ

−2
e

W′Xσ
−2
e W′Wσ

−2
e + H−1

σ
−2
u

)(

β̂
û

)

=

(

X′yσ−2
e

W′yσ−2
e

)

,
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where zi is the i-th column of Z , corresponding to geno-

types of marker i across individuals. The values of α in 

steps 6 and 7 refer to the “blending” of G with A in step 

1 and will change with different choices of blending 

parameters.

8. The p-value for marker i is obtained as 

pvali = 2

(

1 − �

(∣

∣

∣

âi
sd(âi)

∣

∣

∣

))

.

Note that this analysis has to be run only once, as 

opposed to the n individual runs for n markers in the 

classical “fixed effect” regression or EMMAX (e.g. [43]). 

Note that within the framework of SSSNP-BLUP, the esti-

mates of SNP effects and their variance are obtained 

directly without steps 1 to 6. From expressions in [29], it 

is possible to convert estimates of the random marker 

effects, âi , to the fixed regression estimates, b̂i , using 

b̂i =
Var

(

b̂i

)

σ
2
u

âi , with Var
(

b̂i

)

=

(

σ 2
u

)2

Var(âi)
 , which results in 

b̂i =
σ 2
u

Var(âi)
âi.

Data

We re-analyzed a dataset on birth weight from the Ameri-

can Angus Association [44]. The complete dataset is very 

large, with about 7 million individual weights, 52,000 gen-

otyped animals and 8 million animals in the pedigree, and 

the SSGBLUP evaluations cannot be run in core. Thus, we 

used only phenotypes recorded in the last 4  years, spe-

cifically from 2009 to 2012, which comprised 1,046,623 

birth weights. Three generations of ancestors were traced 

back, totaling 1,849,865 individuals. All available geno-

types of sires with phenotyped offspring were used (i.e. 

1424 genotyped sires). Other genotyped animals were not 

considered since they include selection candidates (with 

no phenotypic information) and elite cows, which do not 

represent the population well. Genotypes were obtained 

with the BovineSNP50k v2 BeadChip; 38,122 polymor-

phic SNPs were used after quality control [44].

The linear model for birth weight included the effects 

of contemporary group, animal breeding values and the 

permanent environmental effect of the mother, which 

considers maternal ability during pregnancy. This differs 

from the model actually used in national evaluations, 

which also considers a maternal genetic effect. Variance 

components were fixed at values used in the national 

evaluation, with a heritability of 0.48 and a maternal 

component of 0.10.

Computations were done using the blupf90 software 

suite and GWAS results were plotted with qqman [45]. 

Var
(

âi
)

=
1

2
∑

piqi
(1 − α)bz

′

iG
−1

(

Gσ
2
u − C

u2u2

)

× G
−1

zi(1 − α)b
1

2
∑

piqi
,

Rejection thresholds used a Bonferroni correction for 

multiple testing of 0.05/38,122, which equals 5.9 on 

the − log 10 scale. Significant regions were explored in 

AnimalQTLdb and Jbrowse [46] using the bovine map 

assembly UMD 3.1 [47]. Although a new genome map 

assembly has already been published (i.e. ARS-UCD 1.2), 

the aforementioned genome browsers still use the UMD 

3.1 assembly.

In addition to SSGWAS p-values, we plotted GWAS 

results based on the percentage of variance explained by 

marker effects [20]. This estimates the population genetic 

variance explained by the marker effect, and is approxi-

mately computed as 2piqiâ
2

i  . There are no theoretical 

thresholds in this approach, and we used an arbitrary 

threshold of 0.10% of total genetic variance explained by 

one marker. Note that there is no formal assessment of 

this hypothesis: neither the p-values nor the posterior 

distributions are obtained for the “variance explained”. 

Opposite to [20], we do not present results of iterating 

the SSGBLUP using “weights” for each marker, as this 

procedure did not result in increased marker effect and 

variance (results not shown).

Results

Factorization of the mixed model equations and extrac-

tion of Cu2u2 required 30 Gb of RAM memory and 14 h 

(wall-clock time). Computation of Var(âi) and p-values 

took only a few minutes. Quantile–quantile plot and 

Manhattan plots are in Figs. 1 and 2. The quantile–quan-

tile plot did not show large deviations from the null 
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Fig. 1 Quantile-quantile plot (QQPLOT) for the − log 10(pvalue). The 

grey region represents a 95% confidence interval
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hypothesis, which means that SSGBLUP correctly cap-

tured the structure of the population through the rela-

tionship matrices. When population structure is not 

accounted for, inflation of GWAS signals (in our case, 

âi/sd(âi) or − log 10(pvalue) ) is expected [3, 48, 49].

The GWAS results pointed to two chromosome 

regions that are significant at the genome-wide level, 

with values of − log 10(pvalue) near 8. The region at 

the end of chromosome 7 includes three markers: ARS-

BFGL-NGS-107035, ARS-BFGL-NGS-101886 and 

ARS-BFGL-NGS-18900, which were in very high link-

age disequilibrium with each other (correlation between 

genotypes > 0.95 in all cases). AnimalQTLdb reports sig-

nals in the same region for “body conformation” in Hol-

stein cattle [10] and for “average daily body weight gain” 

in Brangus cattle (composite of Brahman and Angus) 

[50], which indicates that our finding is not a false posi-

tive. The second region at the end of chromosome 20 

only includes marker Hapmap42635-BTA-68718, which 

is included in a QTL region for mid-test body weight that 

was detected in the Hereford breed [51].

Figure  3 shows estimates of the percentage of genetic 

variance attributed to each marker (as 2piqiâ
2

i  ) based 

on estimates of marker effects from SSGBLUP. The top 

markers are the same as in Fig. 2 (ARS-BFGL-NGS-18900 

and Hapmap42635-BTA-68718), but the region on chro-

mosome 7 has a smaller peak than the region on chro-

mosome 20. At first sight, this raises questions, because 

estimates of marker effects ± standard errors were similar 

for the peaks on chromosomes 7 and 20 (− 0.041 ± 0.007 

and 0.043 ± 0.008, respectively). The different relative 

heights of the peaks on chromosomes 7 and 20 in the 

variance plot (Fig.  3) and in the − log 10(pvalue) plot 

(Fig.  2) are entirely due to the different minor allelic 

frequencies: 0.28 and 0.46, respectively, which enter 

into the estimator of explained variance 2piqiâ
2

i  . For 

the marker on chromosome 7, the variance explained 

is 2 × 0.28 × (1 − 0.28) × (−0.041)2 = 0.000678 , 

whereas for the marker on chromosome 20, it is 

2 × 0.46 × (1 − 0.46) × 0.043
2

= 0.000919 . In the case 

of these two markers, the estimates of the fixed marker 

effects are also nearly identical (not shown). In other 

words, these two figures explain two different things, 

i.e. Figure  2 explains whether markers have apparent 

effects that are seemingly different from 0 (with statis-

tical assessment) and Fig.  3 explains whether markers 

explain part of the genetic variance—but with no statisti-

cal assessment.

Discussion

Single-step methods can include genotyped and ungen-

otyped animals in a single genomic analysis. Estimates 

of SNP effects from single-step methods became avail-

able in 2012 [20, 52]. However, to date, a measure of the 

significance for SNP estimates has not been available in 

current implementations of single-step GBLUP. Expand-

ing the ideas based on the equivalence between GBLUP 

and single-marker GWAS [28–30], Lu et al. [31] derived 

GWAS within a ssGBLUP framework for a relatively 

small dataset. In our study, we show, for the first time, the 

acquisition of p-values calculated by using a large dataset 

including genotypes, phenotypes, and pedigree.

Fig. 2 Manhattan plot (p-values of individual SNP effects) for birth 

weight. The red line corresponds to the Bonferroni rejection threshold 

for nominal alpha = 0.05
Fig. 3 Percentage of genetic variance explained by markers for birth 

weight in American Angus. The red line corresponds to an arbitrary 

rejection threshold of 0.10%
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In this paper, we addressed frequentist statistics for 

GWAS. Single-step Bayesian methods using mixtures 

of distributions exist [17], and the posterior probabili-

ties that they report may better control the error rate in 

discoveries; we refer the reader to Fernando et  al. [26] 

for a thorough review and discussion. Here, we discuss 

models that assume multivariate normality, i.e. for which 

posterior probabilities are not explicitly obtained. How-

ever, Bayes factors can be easily obtained from âi and 

var(âi) [25], and they can be transformed into posterior 

probabilities.

Known associations from studies on beef cattle in 

the literature show good empirical agreement with our 

GWAS findings. The quantile–quantile plot showed no 

inflation of p-values, as expected, because the structure 

of relationships was well accounted for [2, 3, 48]. Com-

pared to EMMAX, SSGWAS is a more comprehensive 

method that can include phenotypes from non-geno-

typed individuals. Additional advantages compared to 

“approximate” SSGWAS include avoiding the need for 

arbitrary choices, such as the length of segments or the 

use of iterative schemes. The use of the percentage of 

explained variance, as advocated by several authors [20, 

27], needs to be done with formal testing, either frequen-

tist or Bayesian. Explained variance is useful for breed-

ing purposes, but may not be useful for QTL detection 

if the final objective is to have a detailed understanding 

of the action of genes. In particular, point estimates of 

explained variance using 2
∑

piqiâ
2

i  are neither statistics 

with defined distributions nor posterior probabilities.

The exact form of matrix G depends on modelling 

assumptions. The weight (1 − α) given to markers in 

G = (1 − α)

(

a + b ZZ
′

2
∑

piqi

)

+ αA22 depends on the pro-

portion of additive genetic variance that is explained by 

the markers, which can be estimated by REML [16]. Our 

experience shows that GEBV are fairly insensitive to val-

ues of (1 − α) between 0.95 and 1, and estimates of SNP 

effects should not change much. The values of a and b 

depend (basically) on the structure of the genotypes of 

the population, but they can be obtained from the data.

Although SSGWAS could be implemented for a data-

set that included the last 4  years of phenotypes and all 

genotyped bulls present in the American Angus data, it 

was computationally not feasible with the entire dataset. 

Even for the reduced dataset, the computational burden 

for the factorization of the left-hand side of the mixed 

model equations was not negligible. For this dataset, H−1 

contained (roughly) 16 million non-null elements from 

pedigree data and 2 million non-null elements from gen-

otypes. However, H−1 for the whole dataset in Lourenco 

et  al. [44] contained 63 million non-null elements from 

pedigree data and 2704 million non-null elements from 

genotypes. One simple method to reduce the size of 

the problem is to include only genotyped ancestors in 

SSGWAS and exclude genotyped selection candidates. 

This leads to a number of genotyped animals in the thou-

sands or tens of thousands. Another strategy is to use a 

sparse version of G−1 based on the APY (algorithm for 

proven and young) approach [44, 53, 54], which substan-

tially increases the number of null elements in G−1 . If 

animals in the APY core portion of G are a representative 

sample of the population, this also improves estimates 

of the SNP effects [55]. However, the use of the APY 

approach for SSGWAS on marker effect estimates and 

p-values should be explored further. Overall, our method 

is appropriate for data in the order of several thousands 

of genotyped individuals and several millions of pheno-

types and non-genotyped individuals. This includes the 

datasets used in many national and private company 

genetic evaluations but it does not include the very large 

evaluations, such as used in dairy cattle.

We emphasize that, contrary to regular single-marker 

GWAS, SSGWAS do not require computations to 

be repeated at each marker. Instead, all p-values are 

obtained in a single run of SSGWAS.

Conclusions

Single-step GWAS is a very general and efficient strategy 

for the detection, localization and testing of QTL, pro-

viding frequentist p-values of marker effects. It can be 

used in complex datasets such as those used in animal 

breeding, with many unbalanced effects, very complex 

mixed linear models and the presence of genotyped and 

ungenotyped animals. Our proposed strategy is compu-

tationally viable for very large populations and solves the 

main issues in single-step GWAS that precluded use of 

the method.
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