Fresh-Register Automata

Nikos Tzevelekos

Oxford University Computing Laboratory
nikt@comlab.ox.ac.uk

Abstract Our model is based on the successful paradigniioite-
Memory Automata (FMA) introduced by Kaminski and Francez
in the early 90’s [11]. Motivated by real-world problems (@vh
codes, addresses, identifiees¢c. may have unbounded domains),
those automata address a demand for a “natural” finite-state
chine model over infinite alphabets. An FMA is an automaton
attached with a finite number of name-storing registerstitsture
looks identical to that of an ordinary finite-state automatver a
finite set of labels generated by indices in the rahge. , n, where

n is the number of registers. Howevet, truly operates on the in-
finite set of inputsA (the set of names), with indicégeferring to
the names stored in thieth register ofA. This simple idea lifts the
automaton from finite to infinite alphabet.

There are two ways in which an FMA can access its registers:
either by comparing an input name to a stored one, or by staiin
input name in one of its registers but only in case lbisally fresh
that is, it does not already appear in any of them. Thus, FMres

What is a basic automata-theoretic model of computatiorh wit
names and fresh-name generatiow introduce Fresh-Register
Automata (FRA), a new class of automata which operate on an
infinite alphabet of names and use a finite number of registers
store fresh names, and to compare incoming names with pigyio
stored ones. These finite machines extend Kaminski and &anc
Finite-Memory Automata by being able to recognise globfithgh
inputs, that is, names fresh in the whole current run. We exam
ine the expressivity of FRA's both from the aspect of accgpte
languages and of bisimulation equivalence. We establishgpy
properties and connections between automata of this kirdlaa-
swer key decidability questions. As a demonstrating exampée
express the theory of the pi-calculus in FRAs and charesster
bisimulation equivalence by an appropriate, and decidabtbe
finitary case, notion in these automata.

Categories and Subject Descriptorg=.1.1 [Computation by Ab- history-free: their computational steps rely solely oniticarrent
stract Devicep Models of Computation; D.3.1Hrogramming registers. Here we introdud&resh-Register Automata (FRA)a
Languagef Formal Definitions and Theory—Semantics finite-register automaton model which extends FMA's digbal

freshnessecognition: an automaton can now accept (and store) an
input name just in case it is fresh in the whole run. For examal
transition
1. Introduction Y,

q—4q
means that if4 is at statey and the set of names that have appeared
inits registers so far iff, then.A can accept any name¢ H, store
itin its i-th register and proceed ¢6. This history-sensitive feature
precisely captures fresh-name creatiohhus, e.g. the following
language (not recognised by FMA's [11]) is recognised byhgls-
state FRA with one register.

General Terms Theory, Languages, Verification

One of the most common and useful abstractions in progragmmin
is the assumption that entities of specific kinds can be edeat
will and, moreover, in such a manner that newly creatediestitre
alwaysfresh— distinct from any other such created thus far. This
is, for example, the case with mutable reference cells, giares
user-declared datatypestc. in languages like Standard ML [15].
Following a long tradition in computer science [20], we dhakse
entitiesnamesand specify them as follows. Li={a1--a, €A |Vi#£ja; #a;}

Names can be created fresh dynamically and locally, cordpare An intuitive way to view ., is as the trace of a fresh-name gen-
for equality and communicated between agents or subrautine erator: one which returns reference cells in SML, object3ava,

Apart from the uses mentioned above, names form the basis of M€MOTY adcrilrc_asses in @tc'd heir formal | has b

calculi of mobile processes (e.g. thecalculus [14]); appear in F{esea;rc in F'\gAS zan 2t eir ck)]rmab anguFa]ges as Zeen hex-
network protocols and secure transactions; and are génesa tensive [2, 6, 1&' Il, 5, 27]. It las deends own [11, 21] that
sential in programming for identifying variables, charméhreads, FMA-recog.nlsa € languages a.re closed under union, B8,
objects, codes, and many other sorts of name in disguiseuffio o concatenation and Kleene star; they are not closed undepleem
knowledge, there has not been in the literature a proposabasic ment, emptiness of FMAS. IS QeC|dabIe, and.unlve.rsalltyr!slej-
automata-theoretic model of names, providing abstracthinas cidable. Our first contribution is to answer this series aégtions

; ; ; for FRA's. We show that for emptiness and universality tha-si
underlying all these paradigms. We propose just such a nhael ation remains the same as in FMAs. On the other hand, FRA-

recognisable languages are still closed under union awedsent-
tion, but history-sensitiveness prohibits this for coecation and
Kleene star. Moreover, they are not closed under complearaht
in fact, there is an FMA-recognisable language whose camghé
is not recognised by FRA'.

INote that, although history-sensitive, the automaton duestshave full
access to the histor§d. In automata-theoretic jargon, the situation can be
Revised versioi8/11/2010 described as consulting an oracle who can decide the freslufi@ames.

Our main vehicle for studying equivalence between FRA' is
bisimulation equivalence (also calldgisimilarity). The notion is
very relevant from the point of view of programming, and Ees
calculi in particular, and in the case of FRAs it implies dprage
equivalence. More importantly, we show that by examininghBR
at thesymbolic leveli.e. as ordinary finite-state automata on the
set of index-generated labels, it is possible to capturembas-
ity by an appropriate symbolic notion; we thus prove that FRA
bisimilarity is decidable. A symbolic bisimulation relatstates of
two automata in specific environments, the latter speaifyiow
are the names which appear in their registers related.

As a demonstrating example, we expressthealculus in the
context of fresh-register automata. We introduce sthecalculus
system: a presentation of thecalculus with early transition se-
mantics [14, 26], in which processes are states of an infitiRa.
Transitions are given by FRA-transitions and the systermitefi
branching. More specifically, bound outputs are modelledIbi-
ally fresh transitions, while each input is decomposed fimtitely
many cases: either the incoming name is locally fresh orétaaly
appears in the registers. This clean treatment of fresh andd
names is the main advantage of tke-calculus and allows for
the finite representation, as ordinary FRA’, of finitaryqesses.
Moreover, we characterise strong bisimilarity by an appedp
symbolic notion inxz. This gives an alternative proof of decid-
ability of bisimilarity for finitary processes.

Motivation and related work

Programming languages The idea of studying names in higher-
order languages and in isolation of other effects was finstyrd by
Pitts and Stark [24]. They introduced thecalculus, an extension
of the simply-typed\-calculus with references of unit type. Inves-
tigations on the/-calculus were meticulously carried on by Stark
in his PhD thesis [28], which exposed a rather unexpected com
plexity hidden behind names. It became evident that bettetals
for languages with names were needed. To address this, negv di
tions in denotational [1, 12, 13, 18] and operational [3, h@dels
were explored, significantly advancing our understandiihgom-
putation with names but, at the same time, leaving basictiqnss
unanswered. In particular, those works examined compumatt
the higher level, that of programs and program equivalelees/-
ing open the question of a basic, lower-level model.

Interestingly, in their initial paper on FMA's [11], Kamikisand
Francez motivate their construction (also) by briefly pntisg an
idealised procedural language with names. There, hame®tan

be freshly created, but they can be read from the environment

as inputs and stored in a finite memory. Moreover, stored same
can flow inside the memory from one register to another and can
also be compared for equality and thus triggeto’s. The authors
explain that FMA's operate like acceptors for that simplearative
language with names. By analogy, FRA's describe the exdarti

the language with fresh-name generation.

Process calculi For mobile systems like ther-calculus [14],
where processes can create locally, receive or send nahes, t
use of ordinary labelled transition systems for its senean in
many ways unsatisfactory: for example, infinite branchinges
even in the case of very simple processes that receive dlyioca
fresh) name, or output a locally created (globally freshg.d®uch
shortcomings naturally led to solutions involving repreasgions

of processes by formalisms which incorporate name-reagoufi
some sort [4, 5, 16]. The most notable paradigm in this divact
is that of History-Dependent Automata (HD-Automafap, 22],
which are structures defined in a universemamed setandnamed
functions HD-automata can succinctly representthealculus, as

2 A process idinitary if its it does not grow unboundedly in parallelism.

HD-transitions match ‘on-the-fly’ names between the soutae
get, and label ofr-calculus transitions, allowing thus for the use of
representatives of processes and transitions, ratheathpossible
ones under e.g. permutation of fresh names. The streameznas
on HD-automata has focussed both on foundational issue2®17
and on pragmatic applications [7]. The work presented hesees
objectives with HD-automata, and to some extent can be dewe
as a complementary attempt to the same question, albeid lnsse
basic machines of “first principles”.

Outline

In the next section we give the basic definitions on FRA'sti6aS
provides some useful bisimilar constructions. In Sectiomedre-
call FMA's and establish their connection to FRAs. We exaeni
WFRA’, a weaker notion of FRA's focussing on global frestse
in Section 5. In Section 6 we prove some technical resultarceg
ing closure properties for FRA's, and in Section 7 we showt tha
emptiness and bisimilarity are decidable using symbolithos.
Section 8 examines the-calculus in the setting of FRA’s.

2. Definitions

We distinguish between two sets of input symbols:
e an infinite set ohamesA, and
o a finite set ofconstantsC.

Constants have an auxiliary role and are non-storaiile. leta, b,
etc. range over names. We write™ for the set of finite strings
of names, and\® for its restriction to those containing pairwise
distinct names. Strings, - - - a,, Will be typically represented by
vectorsd, in which casémg(a) = {a1,...,an}.
For eachn € w, we write[n] for the set{1, . ..

L, =CuU{4,i%i®i€[n]}.
be the set of labels generated [by. Moreover, we define
Reg, = {o:[n] = AU{t} |Vi# j.o(i) = 0(j) = o(i) =1}
to be the set ofegister assignmentsf sizen. We writeimg (o) for

the name-range of, i.e.img(c) = {a € A |3i.0(:) = a }, and
letdom(c) = {i € [n] | (i) € A }. Whenever ¢ img(c),

oliral ={(i,a)}U{(G,o() 7 €[]\ {i}}

is anupdateof o, for anyi € [n].

,n}, and let

Definition 1. A fresh-register automaton (FRADf n registers is
a quintupled = (Q, qo, 00, 6, F') where:

e () is afinite set of states,

® o isthe initial state,

® 09 € Reg,, is the initial register assignment,
e § C @ x L, x Q@ isthe transition relation,

e ' C Q isthe set of final states.

A is called aregister automaton (RAJf there are nay, ¢, i such
that(q,i®,q’) € 6.

Transitions containing labels of the forinare calledknown
transitions; those of the forr? arelocally freshones; andylob-
ally freshtransitions involvei®. Thus, an RA is an FRA with no
globally fresh transition8.

Here is an informal reading & SupposeA is at statez; with
current register assignment If input ¢ € C U A arrives ther?

31n other presentations [11, 21] there is no such distingtmrnt symbols
that appear in the initial register assignment can playdleaf constants.

4This yields the same notion of register automaton as thaif |
5Note that the same symbdl,is later used to range over element<.of.

If ¢ € Cand(q1,/, ¢2) € ¢ thenA acceptd and moves t@..

o If £ € Aand(q1,4,q2) € § ando (i) = ¢ then A accepts and
moves togs.

If £ € A and(q1,:°% ¢2) € § and{ is not stored inr then A
acceptd, it setso (i) = £ and moves t@p..

o If £ € Aand(q1,i®,q2) € 6 andl ¢ img(ao) and/ has not
appeared in the current run thehaccept¥, it setso (i) = ¢
and moves t@s..

The above is formally defined by means of configurations repre
senting the intended current state of the automaton, whjelnt a
from states contains information on the current registeigasnent
and the set of names having appeared thus farHistery). The
latter component is necessary for globally fresh transgtio

Definition 2. A configurationof A is a triple(q, o, H) € 0, with

Q = Q X Regn X R"(A)

and Pn(A) being the set of finite subsets &f From§ define a
transition relation on configurations

—5C QOx (CUA) xQ
as follows. For al(q, o, H) € Q and(q, £, ¢') € &

o If £ € Cthen(q,o, H) —=; (¢, o, H).

o If ¢ =iando(i) = athen(q,0, H) %5 (¢',0, H U {a}).

e If £ = i®* anda ¢ img(o) then(q,0, H) —5 (¢',0’, H')
with o’ = o[i — a] andH' = H U {a}.

e If £ = i® anda ¢ HUimg(oo) then(q,o, H) 5 (¢',o’, H')
with o’ = o[i — a] andH' = H U {a}.

We write — s for the reflexive transitive closure ef—;.

We say that configuratiod is reachableif (qo, oo, 0) i»(; q
for somel € (A U C)*. We call A a closed FRA fif, for all
reachable configurationg, o, H) and all(q,,q’) € §, we have
thato (i) # f. Finally, the set of stringacceptedby A is:

L(A) = {T€ (AUC)" | (g0, 00,0) —5 (g0, H) A g€ F}

and is called thdanguagerecognised byA. Two automata are
equivalentif they recognise the same language.

Remark 3. There is an equivalent definition of FRA's in which his-
tories includeimg(oo) by default, and in which reachable config-
urations are the ones reached frég, oo, img(co)). Here instead
we have decided to separate the history of the run from it&ini
names, which appears to give a cleaner presentation buiytrie
means a substantial point of difference. Note also thathadale
configurations contain names that have appeared beforeanerw
another: if(¢, o, H) is reachable theimg(o) C img(oo) U H.

Example 4. The reader can check that the languggg= A®) of
the Introduction is recognised by the following FRA.

Ao = ({q0}, 90, {(1, 1)}, {(20, 1%, q0)}, {a0})

Note that the FRAB = ({qo}, q0, {(1,4)},{(q0,1°,q0)},{q0})
recognises the language:

Lo={a1 - ar €EA" |kEwAVi.a; # aiy1}
and is therefore not equivalent 1.

A more elaborate example is the following. Létbe the FRA:

1/1°
—@®——@
16

(D)

q2
16

®

with initial assignment{(1, #)}. The automaton works as follows.
It receives a name and then keeps receivinguntil someb # a
arrives; then it keeps receiviriguntil a globally freshe arrives; it
then repeats from start. Thus, member£) are of the form

aé” bg" o a{l b’fl c1 a%é b§2 2 ... a" bk e,
where, for alli, we havej;, ki > 0, a; # b; andc; differs from all
symbols preceding it. Formally, setting

L'(H)={a"b"c|ni>0Na#bAc¢ HU{a,b}}
we have thatC(A) = |, £i, where we seto = £'(() and
Lisi={ab|ae Linbe L'(img(@))}.
Some basic results The languages of FMA's [11] are regular once
constrained to a finite number of symbols. Moreover, theuagg
accepted by an FMA is impervious to name-permutations tbat d

not affect its initial register. These properties carryraeeFRA's,
and are proved as in [11].

Proposition 5. LetA = (Q, qo, 00, d, F') be an FRA of: registers
andS C A be finite. Then{(.A) N .S™ is a regular language.

Proposition 6. For A as above, ifi € £(A) andw : A = A is
such thatr(a) = a for all a € img(oo) thenn (&) € L(A).

Bisimulation Bisimulation equivalence turns out to be a great
tool for relating automata, even from different paradigtisnplies
language equivalence and, in all our cases of interesthibtitoo
strict in this aspect. We choose it here as our main vehicituafy.

Definition 7. Let A = <Q1, qo0i, 00i, 51', F1> be FRA's with n;
registers, fori = 1,2. A relation R C Q1 x Q2 is called a
simulationon A; and.A; if, for all (41, 42) € R,

o if m1(¢1) € F1thenmi(G2) € Fo,
o if g —5, ¢ thengs —s, g for some(di, Gb) € R.
R is called abisimulation if both R and R~! are simulations. We

say thatA; and.As arebisimilar, written A; ~ A, if there is a
bisimulationR such that((go1, 001, 0), (qo2, c02,0)) € R.

Lemma 8. If Ay ~ As thenL(A1) = L(Az).

The above is proved using standard methods. Bisimilarilsis
calledbisimulation equivalencd-or instance, the automatety of
example 4 is bisimilar to

B = ({q0,q1}, 90, {(1,)}, {(qo, 1°, q1), (g1, 1®7 q1)} {0, q1}),
with a bisimulation witnessing this being the following,

{((q0,00,0), (q0, 00, 0)) YU{((q0, 01, H1), (q1, 02, H2)) | Hi = H2)}
whereoo = {(1,1)}.

3. Bisimilar constructions

In this section we demonstrate some bisimilar construstighich
will be useful in the sequel. Starting from a fresh-registetoma-
ton A = (Q, qo, 00,0, F) of n registers, we effectively construct
the following bisimilar automata.

o The closed FRAA, called theclosureof A.

e Foranyd € A® with img(oo) Nimg(a@) = 0, the FRAA W G.
This is called thextensiorof A by @, and its initial assignment
iscot+td=ocoU{(i+n,a;)|1<i<]al}.

Our presentation will focus on constructing the bisimilateanata
and explaining the candidate bisimulation relati®nomitting the
actual proof thaR is a bisimulation, as these proofs are not difficult
(but tedious) and follow directly from the constructions.

Closures For A as above with registers we define itdosureto

be then-register FRAA = (Q’,), ab,6’, F') given as follows.
We setQ = Q x P([n]), ¢6 = (qo,dom(cy)), o5 = oo and
F'={(q,5) | q € F}. Recall we want to construct an automaton
which is closed, that is, whenever a configuration with steded
assignment is reached andyg, :, ¢') is a transition, thes (i) € A
and therefore the transition is allowed. The extra compbadded

4. Finite-memory automata

We now present FMAs and examine their properties in refatio
to FRA's and RAs. In fact, RA's are equivalent to FMAs and in
the literature they have been used as synonyms (e.g. corfidjre
with [21]). The precise correspondence is stated in projposil,
which is a folklore result.

Let us recall the original definition from [11]. Anite-memory

in @ monitors the registers that have been assigned a name (note, ;tomaton (FMA)of 1 registers is a sextuplé = (Q, qo, 70, p, 3, F')

that once a register has been assigned a name it cannottetben

state). Consequently, will be designed in such a way so that this
monitoring carries through and, moreover, the known ttans
included ind’ are always allowed:

& ={((a:9):4(d,9)) | (¢,4,d) € nteC)}
U{((g,9),3,(d,9)) | (a,3,d) €5 Ni€S)}
U{((g,9),i*/i% (¢, 8) | (¢,i*/i®,¢') € s A S = SU{i} }

Now, we can check that the following relation is a bisimwati

R={((q,0,H),((g,5),0,H)) |dom(c) = 5}

and therefore thatl ~ A. Moreover, the reachable configurations
of A are of the form((q, S), o, H) with dom(o) = S, and there-
fore the automaton is closed.

Remark 9. If A = (Q,qo,00,0, F) is a closed FRA then each

path qo A, q Loy Ay gm In A (where arrow notation

represents) yields is a configuration path

%

24 4
(q07007®) *lns ((I170'1,H1) s l>5 (qm70m7Hm)

according to the definition of—s. For example, ;11 = ¢ then
iv1 =05(1), 0541 = o5 andH; 41 = H; U{o;(4)}. In this case,
closedness ofl guarantees that; (z) # f.
Name extension For A as above witm registers andi € A® a
sequence of lengthe such thaimg(oo) N img(d) = 0, we define
the extensiord Wa as the FRA witm+m registers and description
(@', q0, 00,8, F') given as follows. We set

Q' =Qx ([n] = n+m]) x P({n+1,...,n+m})
andg = (qo, ¢, {n+1,...,n+m}), with . the inclusion function,
F'={(q,f,5) € Q" |q € F}andoy = oo + a. Finally:

& ={((q,£.9), f(0),(d. f,9)) [L€ CA(q.¢,q) €5}
U{((a, f,9).4: (", f',8)) | (¢,3°,d') € 6 A j ¢ img(f) }
U{((g: f,5),4:(d, f's5)) | (0,54) €snjeS}

where f(i*) = f(1)*, fG®) = f(1)®, f(£) = Lfor ¢ € C,

f'=fli = jlandS’" = S\ {j}.

The transition relation in4 W @ proceeds as ind with the ex-
ception of locally/globally fresh transitions, where soex¢ra care

where:
e () is a finite set of states, witty, € @ initial, and F' C @ final.
® 0o € Reg,, is the initial register assignment.
® p:@Q — [n] isthereassignmenfpartial) function.
¢ § C @ X [n] x Q is the transition relation.

The intuitive reading of is the following. Supposel is at statey;
with register assignment and let(q1,¢,¢2) € 0. Ifinputa € A
arrives then:

o If o(i) = a then.A accepts: and moves to stai@.

o If a ¢ img(c) andp(q1) = i thenA accepts, it setso (i) = a
and moves to stai@.

Formally, a configuration is now a pdig, o) € Q, where
Q=Q xReg,,
and the transition relation—; C Q x A x Q is defined as follows.
Forall(q,0) € Q and(q,i,q') € &:
o If o(i) = athen(q,0) 5 (¢, 0).
o If p(q) = ithen, foralla ¢ img(o), (¢,0) —=s (¢',ofi — a)).

The notions of reachable configurations and accepted stend
languages are defined just as in the case of FRA’s.

Example 10. Recall the languagé€. of example 4:
Lo = {a1~~~ak GA* |Vza1 ;éai.H}
which is RA-recognisableCs is recognised by the FMA:

B = <Q7q07‘707 {(q07 1)7 (q172)}7 {(q07 1,(]1)7 (q1727 qo)}7Q>

where@ = {q0,¢1} andoo = {(1,1), (2,£)}. Comparing this to

B of example 4, the reader can observe how the differencesbatw
RAs and FMA's in reassignment have been addressed hereeby us
of the extra register.

The main properties of FMAs and FMA-recognisable lan-
guages have been established as follows.

(a). Emptiness is decidable for FMA's [11] (i.e.4$.4) = () ?), and

in particular it is NP-complete [25].

is needed. Since the registers of the new automaton contaie m (b). The languages accepted by FMAs are closed under union,

names than those of the initial one, fresh transitionsli®a @ can
now capture fewer names. For exampleg ifs one of the added
names then aif transition from the initial configuration could cap-
ture it before, but this is no more the caseaaappears invg; in-
stead, we need an expligitransition for this purpose. This is what
the second clause of the definitiondfaddresses. For this to work
we need to introduce the componehto keep track of the corre-
spondences between old and new registers that arise in thista
described. For globally fresh transitions a similar situratarises,

intersection, concatenation and Kleene star; they areloséd
under complement [11].

(c). Universality is undecidable [21] (i.e. 5(.A) = A* ?). Hence,

the equivalence and containment problems are undecidadle t
(i.e.isL(A) =/ C L(B)?).

We shall see that the emptiness problem is also decidable for
FRA's (proposition 24). Clearly, FRA's being extensionddfiA's
implies that universality of the former is undecidable, apdce the

only that this time we need only remember which of the names in same holds for equivalence and containment. In section 6 e w
the initial @ have not appeared in the history thus far, which is what examine closure properties of FRAs and show that closudeun

the componen§ achieves. Thus, the following is a bisimulation

R={((g,0,H),((a,,5),0" H)) |0 = o'of Nimg (@) C Helo'(S) }

and therefored ~ AW a.

concatenation and Kleene star are lost, closure under eongpit
still fails, but closure under union and intersection pileva

We now relate FMA's to the kind of automata we have intro-
duced previously: in essence, FMAs are the same as RAs. The

notions of simulation and bisimulation straightforwarelxtend to
FMAs. In fact, definition 7 applies to all machines opergton the
infinite alphabeC U A which have configuration graphs containing
initial and final configurations. It therefore makes sensextend
these notions to RA-FMA pairs (and FRA-WFRA pairs later on).

Proposition 11. For any FMA A of n registers there is an effec-
tively constructible RA8 of . registers such thatl ~ B.
Conversely, for any RA of n registers there is an effectively con-
structible FMAA of n + 1 registers such thatl ~ B.

Proof. Going from FMA's to FRA's is simple: we use the same set
of states; we match each transition, ¢, g2) with (q1,1, g2); and,
addltlonally, for each transitioy, ¢, g2) wherep(q:1) = ¢ we add
(¢1,1%, q2). The other direction is more elaborate but apparently
the construction is already known [21], so we omit it. |

Corollary 12. The universality, equivalence and containment
problems are undecidable for RA’s and FRA's.

5. Weak fresh-register automata

In this section we examine a weaker version of FRA's by concen
trating on the aspect of global freshness while relaxingdahbcal
freshness. Even though this restriction leads us to masthirat do
not extend FMA's, we show that universality remains undaicid
(proposition 17).

The machines we introduce operate on sets of labels

Ly =Cu{4,i7,i® |i € [n]},

wherei? stands for “accept any name” transitions. Moreover, their
registers are now taken from the sdtsg), = [n] — A U {t}.

Definition 13. A weak fresh-register automaton (WFRA)f n
registers is a quintuplel = (Q, qo, 00, ¢, F') where:

e () is a finite set of states, witly, € @ initial, and F' C @ final.
® 0y € Reg), is the initial register assignment.
e 0 C Q x L} x @ isthe transition relation.

The transition relation has the same intuitive meaning aken
case of FRA's, with the exception that in transitions of thenf
(q1,17,g2) € ¢ the automaton accepts any namestores it at its
i-th cell and moves to statg. Formally, a configuration is now
given as atriplég, o, H) € Q, where

Q=Q x (In] = (AUH)) x Pu(d),

and the transition relation—;C Q x (CUA) x @ on configura-
tions is defined as follows. For dl, o, H) € Q and(q,¢,q’) € 4:

o if £ € Cthen(q, 0, H) —=; (¢, 0, H);

e if £=iando(i) = athen(q,o, H) 5 (¢, 0, H');

o if £ =i?then(q,0, H) 5 (¢, 0’ , H');

e if £ =4i® anda ¢ HUimg(ao)then(q, o, H) =5 (¢, o', H');

with ¢’ = o[i — a] andH' = H U {a}. Reachable configurations
and accepted strings/languages are defined exactly as ils.FRA

Example 14. Consider the following language,
[.3:{(11--' bZEA*|V7;7ﬁj.CL¢7§CLJ‘/\b¢7§bJ‘}
which is in fact the concatenation Af with itself, and the WFRA:

°
—{ 490 Z fth\ 2
17 1?6

akbl"’

()

with 2 registers, both of them initially empty. Call the abod. We
claimthatC(A) = A\ L3, thatis,s € L(A) <= s ¢ Lsforall
s € A*. The forward implication is clear: i§ € £(A) then either
the same name appears three times in(via the pathyoqig2q4),
or names:; andaz appear each twice inwithout interleaving (via
the pathgoqi g2g3q4). In both casess ¢ £'.

For the opposite direction, let ¢ L3 and feed it to.A. Since
s ¢ A®, we can writes = s1a152a15" With sja1s2 € A®. In A,
s1a182a1 leads control ta. Now, s ¢ L3 implies thata;s” ¢ A®
so there is some; in a; s’ such thatiy s’ = a1shass”, a1s) € A®
andao appears imsy. If a2 = a1 thens}as leadsA directly to
qs. Otherwise, it leads tg, via gs.

The reader may want to verify that changing the labels ofdbpd
atgo andg; above tol®, and the label frong to ¢; to 29, leads
to a WFRAA' that still satisfiesC(A") = A*\ Ls.

We show that any WFRA has a bisimilar FRA of the same
number of registers. The idea is to simulate the non-lineamory
(i.e. a set of registers that may contain names in commoreof t
WFRA by a linear memory plus ieordering functioron the FRA
part. For example, here is such a simulation:

{(1,a),(2,6),(3,6) } — {{pﬁsﬁff) B 2)

The reordering functions will be attached to the states ®RRA.
Moreover, we shall simulate any-transitions (i.e. of therfa?) of

the WFRA by means of locally-fresh-transition$)(and known-
transitions {, for all j). In the end, defining the new transition
relation gets a bit involved as one has to bear reorderingsrid,
which need to be accounted for before making a transition and
updated afterwards.

Lemma 15. For any WFRAA of n registers there is an effectively
constructible FRAS3 of n registers such thatl ~ B.

Proof. Let A = (Q, qo, 00, J, F); construct3 = (Q’, ¢4, 0, 6", F')
as follows. We se®’ = Q x ([n] — [n]) and write elements af’
as(q, f). Simulation of non-linear memory by linear memorw’
and reorderingf is defined in the obvious mannert = ¢’ o f.
Moreover, for eachi € [n], the multiplicity of o(4), i. e the num-
ber of times it appears in, is given by the size of ~'(f(i)); we
denote this by.(i). We let(o(, fo) be a simulation of such that
oy contains no more names thag, and setg; = (qo, fo) and
F' ={(q, f) | ¢ € F}. We now define}’:

&' ={((af). 6.)| (@td)esnteC}

U{ (g,), (@), (",) | (a,5,4') €5}
U{((q7f)7f(l) A) (9,3%,d) € 6 A (i) =1}
U{((a,1),3% (s 1) 1 (,i%d) € 6 A (i) > 1A ¢ img(f)}
U{(a: /) f()*,(d) | (097, ¢") € 5 A (i) =1}
U{(a:£):3% (s f)) | (g,47,d') € 5 A p(i) > 1A ¢ img(f)}
U{ (g,)4 (@, f) | (a37,d') €6}
where f' = f[i — j]. The first line is straightforward. The

second line says that receiving the name ofittleregister inA is
simulated by receiving thg(7)-th name in3. The same rationale
is repeated in the third line, only that now we have to do a nrgmo
update and therefore we need to be careful with reorderimgs.
particular, storing the new name, say in the f(i)-th register
should not be allowed whem(i) > 1: if this is the case and we set
o' (f(i)) = a thena still appears inr but no longer appears i,
breaking thus the simulation. Nonethelesg, () > 1 then there
must be somg which is free ino’ (i.e.j ¢ img(f)) and we can
safely store the new name in there, updating the reordewimggibn

accordingly. The last three lines @f implement the idea that
receiving any name can be matched by receiving either alyocal
fresh name or one of the stored ones. Thus,

R:{((%UvH)v((Q:f);UI,H))|U:Ulof}

is a bisimulation and thereford ~ 15. |

We next show that the absence of locally fresh transitions in
WFRA's renders them incapable of recognising FMA-recogjolis
languages. Combining this with the previous result we obtiaét
WFRA's are indeed strictly weaker than FRA's.

Lemma 16. The languagels = {a1 - - - ak | Vi. a;#ai+1} of ex-
amples 4 and 10 is not WFRA-recognisable.

Proof. Supposel, = L(A), for a WFRA A with n registers.
Then, for anys € A® of lengthm > 1, we havess € L(A).
Let the following be the transition path jA accepting it,

xm
—

/
qm
with the subpath fromy to ¢, accepting the second copy ef
Then, none of they's can be of the form® as their names have
appeared before. Moreover,df = ;7 thena; can also accept the
preceding symbol, contradicting the fact thit4) = £». Hence,
all o’'s are in[n]. Choosingn > n we arrive to a contradiction.

roaq /o2
Qo —> - —5q—q —

Emptiness is decidable for WFRA's, by inheritance. Moreint
estingly, the universality problem remains undecidalfg, laence
the same happens for equivalence and containment.

Proposition 17. Universality is undecidable for WFRA's.

Proof. The proof is by reduction from the Post Correspondence
Problem, and follows the track of the analogous proof in [24]
particular, we show that the locally fresh transitions of fRA'S
constructed in that proof can be replaced by WFRA-transstio
Unlike [21], here it is necessary to use the Get a

6. Closure properties

In order to establish closure properties of FRA's, and feilg the
approach on FMA's in [11], it is useful to introduce a versiai
FRA's with multiple assignmentthat is, automata that can store
an input name at several of their registers at one step. ticphar,
assignments will now be taken from the sktg;, . The set of labels
we shall use is the following.

L = CU(P([n]) x P([n]) x ({L} UP([n])))

Labels of the form(.S, T, L) are written simply(S, T"), and when
we write (S, T, A) we assumed # L. If we want to allow for_L,
we write (S, T, A,).

Definition 18. An MFRA of n registers is a quintupled
(@, q0, 00, 8, F) where:

e () is afinite set of stategy € Q is initial and ' C @ are final.
® 09 € Reg), is the initial register assignment.
e § C Q x L., x @ isthe transition relation.

The intuitive reading ob is the following. If A is at stateg;
with register assignmeiat and input? € C U A arrives then:

e if £ € Cand(qi,4, g2) € ¢ thenA acceptd and moves t@p..

eif £ € Aand(qi,(S,T),q2) € §and(o[S — €)1 (¢) =T,
i.e. £ appears exactly in the registersihafter it is assigned
to all registers inS, then A accept¥, it setso(S) = {¢} and
moves to stat@..

e if £ € Aand(qi,(S,T,A),q) €6, (c[S —)7 () =T
and/ has not appeared in the history nor does it appeas (i)
then.4 accept, it setso(S) = {¢} and moves to statg.

Thus, labels of the form(S,T") work in the same way as in
M-automata[11], and the main novelty here is the inclusion of
(S, T, A): in order for the transition to be allowed, the input name
a must be fresh in the history and in the partbafspecified byA.
This addition allows us to model globally fresh transitiamsl also
to combine automata unifying their initial assignments.

Formally, letQ = @ x Reg” x P (A) be the set of con-

figurations and define—;C @ x (CU A) x @ as follows.
Forall(¢,0,H) € Q:

o If (q,£,q') € 5 with £ € C then(q, o, H) ——5 (¢, 0, H).
o If (¢,(S,T),q) € 6,0’ = o[S — a] ando’~'(a) = T then
(a.0,H) =5 (¢',0', HU{a}).
o If (q,(S,T,A),q) € 6,0 =[S+ a],0’ " (a) = T and
a¢ HUoo(A)then(q,o, H) 25 (¢/,0', H U {a}).
Reachability and acceptance are defined as before. Notaldoasi-
ble transition label$S, T', A,) satisfyS C T'. Moreovetr, ifS # T
andA, # L then the transition can only be instantiated by a name

a € oo([n] \ A) that has not yet appeared in the history but is still
in some register.

Lemma 19. For any FRAA of n registers there is an effectively
constructible MFRASB of n + 1 registers such thatl ~ B

The other direction is a bit more elaborate and we achieve iti
two steps. Let us say that an MFRA\s pureif, for all transitions
(q,(S,T,A),¢')of A, S =T andA = [n].

Lemma 20. For any MFRAA of n registers there is an effectively
constructible pure MFRA of 2n registers such thatl ~ 5.

Lemma 21. For any pure MFRAA of n registers there is an
effectively constructible FRE of n registers such thatl ~ 5.

We can now establish the following closure properties. @ies
under union and intersection is answered positively, wtibsure
under concatenation, Kleene star or complement fails.

Proposition 22. For FRA's. A and BB, the language< (A) U L(B)
and L(A) N L(B) are FRA-recognisable.

Proof. Assume MFRAsA" = (Q1,qo01,001,01, F1) ~ A and
B = (Q2, qo2, 002,62, Fo) ~ B of n,m registers respectively.
For the union, construct an MFRA = (Q, qo, 00,6, F') of n +m
registers, where

Q = {q@}WQ1¥Q2, 00 = co1+002, F = FIURUG(FIUE)

with ¢ : Q1 W Q2 — @ mappinggor andgo2 to qo, and being
elsewhere the identity. Finally:

§={(¢".4,4) |1 L€CA(g,¢,qd)€d U}
U{(¢", (SUm™ TUm]™ AL),q) | (g, (S, T, AL),q') € 61}
U{(¢" (M US™ [UT™" AT™),¢') | (¢,(S, T, AL), ¢) € 62}

whereq” € {q,¢(¢)} andS*™ = {i+n|i € S}, for each
S Cw,and L™ = 1. Itfollows thatL(C) = L(A) U L(B).
For the intersection, construct an MFRA = (Q, o, 00,9, F)
of n + m registers wherg) = Q1 X Q2, g0 = (q017q02),
00 = 001 + 002, F' = F1 x Fy and, assuming U A, = A, :
§={(a.4,q") | L€ CAVie [2.(m(qg),L,mi(q)) € & }

U { (Q7 (Sl U S;n7 Ty T2+n7 All U AIQ")7 ql) |

Vi € [2]. (mi(q), (Si, Ti, ALi), mi(q')) € i }

It follows that£(C) = L(A) N L(B). O
Proposition 23. There are FRA's4 and B such that the language
L(A) = L(B) is not FRA-recognisable. Moreover, there is an FRA
A such that the languagé(.A)* is not FRA-recognisable. Finally,
there is an RAB such that the languag&™ \ £(B) is not FRA-

recognisable.

Proof. For the first part we show that the languafe= £ * £,

is not FRA-recognisable, wherg&; A®. Supposel’ were
recognised by an FRA& of n registers, ses € £(C) with s being a
string of m distinct names. Let the following be the transition path
in C accepting it,

/o Qq /
— 4 — ¢

= g,

with the subpath fromy; to ¢,,, call it p, accepting the second
copy of s. As all the symbols o have already appeared before,
none of thea’s is of the form:®. Moreover, as all the symbols
in s are distinct, there cannot bee [n] andj < j’ such that
a; € {1,i*} anda;» = 4, asa;; would then repeat a name already
present in the subpath Moreover, there cannot hei’ € [n] and

j < j < j”suchthat; € {i,i*}, oy = i® andayn = ¢'*

For suppose this were the case, and suppose thatsalietween

j andj’ are not in{z,i*}, and that allo's between;’ andj” are
notin{i'* | € [n]}. Then,s = sia1s2a2s3a354 With a1, a2, as
corresponding te;, o/, o respectively. Bui’® is also allowed
to acceptu1, hence there i} such thatsi a1 seazszai1sy € L(C),
contradictingC(C) = £'. But now takingm > n + 1 we obtain a
contradiction.

The second part is shown in a similar manner, takingdathe
automaton accepting the language

cax €A |Vi#ja; #a;}

for some choseniy. A similar argument to the above applies,
that is, we assumé&3 ,, = L(C) for some FRAC and select
aosaos € L3 ,, of size big enough to yield a contradiction.
Finally, it suffices to show'= A*\ £(B) for an RAB. By example
14 we have that’ = A* \ £(A) for a WFRA A with no fresh
transitions. From that, we obtai by applying lemma 15. a

ag
qo —— --- — ...

LQ,QU = {aoa1 ..

7. Symbolic methods

The automata we have introduced can be viewed in two differen
manners: either as ordinary finite-state automata operatircon-
stant symbols and the symbols1®,1®,...,n® (for machines

with n registers), or as machines which recognise languages from

an alphabet comprising a finite set of constants and an ief&st
of names. We use the tersemantic levefor the latter interpre-
tation, andsymbolic leveffor the former one. The semantic is of
course the intended interpretation but, on the other haieding
our automata as operating on the finite alphdbeis much more
convenient. In this section we examine methods from the sjimb
level which characterise semantic notions. More specificale
start by giving a simple proof of decidability of FRA-emmss

by reducing the problem to FSA-emptiness. We then proceed to

our main point of focus, which is the definition of an apprapei
notion of symbolic bisimilarity that is equivalent to thetiom of
bisimilarity we have been using thus far. As a corollary wever
that bisimilarity is decidable for FRA’s.

Proposition 24. The emptiness problem is decidable for FRA's.

Proof. Given an FRAA of n registers, construct its closu and
take A’ to be the ordinary FSA with the same set of states, initial
state, transition relation and final states4sand operating on the
set of labeldL,,. We claim thatC(A) = § <= L(A') = 0.

Indeed, ifA accepts a string € C U A* then, the accepting path
in A yields a strings’ € L%, ands’ € £(A’). Conversely, ifA’
accepts a string’ then the accepting path id’ is also a path it4
ending in an accepting state. From remark 9, we have thaattes |
yields a strings € L(A). O

In order to define a symbolic notion of bisimulation equiva-
lence which captures its semantical analogue, we introdwee
iliary structures which record the way in which two registe-
signments are related. In particular, they record the dosnaii the
assignments and those indices on which the two assignmeints ¢
cide. A symbolic bisimulation between two automata relatages
of the automata in specific record environments. At eachriiksi-
tion step the records are updated according to the specifibajc
transitions taking place. This symbolic description isvhdo ac-
curately capture what happens at the semantical level.

We adapt Stark’s notion afpan[28]. We call

(51, p,52) € P([na]) x P([na] x [n2]) x P([n2])
atyped sparon (n1, ng) if:
e (i,5),(i,j") € pimplies thati = i’ < j =7,
* img(p) C S2, whereimg(p) = {i € [n] | 3j.(j,9) € p},
e dom(p) C S1, wheredom(p) = {j € [n] | Fi. (j,i) €p }.

We write [n1] = [n2] for the set of typed spans qmi,n2). A
perhaps more intuitive way to view a typed sg&h, p, S2) is as a
triple of relations:

S1 < dom(p) — img(p) < Sz

By abuse of notation, we writg for the whole of(S1, p, S2), in
which case we also use the notati$in(p) = S1 andSa(p) = 5.
If p:[ni] = [n2] and(i, j) € [n1] x [n2] thenp[i < j] : [n1] =
[n2] is the typed span:

(S1(p)U{i}, P\ (&', 5") i = i'vi = j"} U{(i, 1)}, S2(p)U{s})

A typed span(Si, p, S2) relates register assignments and o
justin casep is a bijection between the parts pf,] and[n:] that
have common images under andoz, while S; keeps track of (the
indices of) all names ia;. Formally,p = o1 < o2 if:

S1(p)Adom(a2) = S2(p)Ap = {(i,4) | 01 (i) = 02(4)}

In this case||p|| = |S1(p)| + |S2(p)| — |dom(p)| gives the total
number of names ia; andos.

Suppose, for example, that we have related statef automa-
ton A, to stategs of As with respect t. If (¢1,4,41) is a transi-
tionin.A; and: € dom(p) then the name in registéof .4 (in the
semantical scenario captured by the symbolic descriptiesiles
in registerp(i) of Az. Consequentlyd, can only simulate the tran-
sition by some(gz, p(7), ¢3). On the other hand, ifg1,i®, ¢}) is a
transition inA; then there are several factors to consider:

dom(o1) =

¢ Any private name of4, can be captured by . Hence, A, needs
a simulating transitioriqz, 7, gz) for everyj € S2(p) \ img(p).

e Moreover, 4> needs a transition for all names locally fresh
to both.4; and A». This can be somégs, j°, ¢2) but, under
circumstances, it may also be sofae, j©, ¢5).

In order for (g2, 5®, ¢%) to capture all names locally fresh t;

and A, it must be the case that all names in history are present
in the registers of4; and.A> (so that global freshness coincide
with mutual local freshness). l#l; hasn: registers and4, has

n2, and assuming that the initial register assignments4prand

Az contain the same names, the latter can only happen in case les
thann; + ne names appear in the history.

We can therefore resolve the latter case by adding a componen names forchannel namesand letp range oveiprocess constants

which counts the names in the history, up7@ + n2. In the
following we writen for n1 +mn2, and seb™ = [h+1]" (= h+1
if h < n, andn otherwise).

Definition 25. Let AZ = <Qi,QQi,O'0¢,5i,F¢> be FRAs Ofni
registers, fori = 1,2, such thatimg(po1) = img(po2) = Ho.
A symbolic simulationon.4; and.A; is a relation

R C Q1 x([n]u{0}) x ([m] = [n2]) x Q2

such that, wheneve(g:, h, p,q2) € R, if g1 € Fi thengs € F

and if (g1, ¢, q}) € 61 then:

1. If £ € C then(gz, ¢, ¢3) € 8- for some(qi, h, p, ¢b) € R.

2.1f £ = i andi € dom(p) then (g2, p(i),q3) € &2 for some
(¢1,h,p,q2) € R.

3.1f¢ =iandi € Si(p) \ dom(p) then(gz,5°,q3) € 52 for
some(qi, h, p[i < j],q3) € R.

4. If £ = i® then, for anyj € S2(p) \ img(p), (g2, J,q2) € 52 for
some(qi, h, pli < jl,¢2) € R.

5.1f¢ = i* andh = nor ||p| < hthen(qe,j*, q3) € &2 for
some(qi, h, pli < jl, ¢2) € R.

6. If £ € {i*,i®} then(qz, j°*, q5) € 52, Or (g2, 5%, q3) € d2, for
some(qy, h™, pli < 4], ¢5) € R.

Setting(S1, p, S2) ™" = (S, p™ 1, S1), the inverse ofR is:

R71 = { (q27h7 p7q1) | (qlv h7p717q2) € R} .
We say thatR is a symbolic bisimulationif both R and R™*
are symbolic simulations. We say thdt; and .4, are symbolic
bisimilar, written A; ~ As, if there is a symbolic bisimulatiof®
on A; and A> such that(qo1, ho, po, qo2) € R with ho = |Ho|
andpo = 001 < 002.
In the following propositions let us assume the hypotheges o

Definition 25. Let us also writé] for H U Hy, andn for ni + no.

Proposition 26. If R is a symbolic simulation onl; and.A; then
R'={((q1,01,H),(q2,02,H)) | (q1,h,p,q2) € R
Ap=o1< o2 ANh=T[|H[]" Nimg(o;) C H}
is a simulation. Moreover, if? is a symbolic bisimulation theR’
is a bisimulation.

Proposition 27. If A; and A, are closed FRA's andR is a
simulation onA; and.A; then

R ={(q1,h,p,q2) | ((q1,01, H), (g2,02,H)) € R
Ap=o1< o2 ANh=T[|H]I" A (q:, 0, H) reachable}

is a symbolic simulation. Moreover, i is a bisimulation thenk’
is a symbolic bisimulation.

Corollary 28. Bisimilarity is decidable for FRA'’s.

Proof. Let A; = (Q;, qos, 00s, 03, F;) be FRA's ofn; registers, for

i = 1,2. Chooseidy, @ € A® such thatmg(a;) = img(oo:) \
img(oy;), and formA] = A; W d» and A5 = A W @1 Now
close these and obtain closed FRAS. We haveA; ~ A’. More-
over, by the previous propositiond), ~ A, < A} <~ A}, and
henced; ~ A» <<= A] & A,. As the symbolic bisimu-
lations betweend! and A} live in a space bounded relatively to
|Q1], |Q2], n1, n2, we can search it exhaustively for such relations.
Hence, FRA-bisimilarity is decidable. O

8. Automata for the w-calculus

We briefly recall the definition of the-calculus with early seman-
tics and strong bisimulation [14, 26]. We use the fixed Sedf

The seflI of 7-calculus processes is given as follows,
P,Q = 0|ab.P|a(b).P|[a =0b]P|va.P|P+Q|P|Q|p(@)

wherea,b € A andd € A*. Name binding is defined as usual
(b is bound ina(b).P andvb.P), and processes are equated up to
a-equivalence. We writén(P) for the set of names appearing free
in P. Process constants are accompaniedddinitionsof the form
p(@) = P, whered € A® andfn(P) = img(a). Moreover, each
occurrence op must beguarded i.e. it must come in one of the
formsab.p(a@) or a(b).p(a).

The semantics of the calculusdarly and is given via a labelled
transition relation with labels:

az= abla)|ab|T
Labels have free and bound occurrences of names, but theyptare
equated up te-equivalence.
fn(ab) = fn(ab) = {a,b} fn(a(d)) ={a} fn(r)=10
bn(ab) = bn(ab) =0 bn(a(b)) ={b} bn(r)=10
We write n(a) for fn(a) U bn(c). The transition relation is given
by the following rules (plus symmetric counterparts).

P2 P

ouT—mM MATCH =
ab.P 2% p [a=alP - P
P{a/b} = P’
INP p {a/ }j p(b)=P
a(b).P = P{c/b} p(@) — P’
ab ’ e /
OPENi a#b RES P 7} lid agn(a)
vb.p 2 pr va.P — va.P'
ab / ab /
« ! P P
SUM# ComMm - = Q—@
P+Q — P’ P|lQ— P'|Q
PP
PAR = - bn(a)Nfn(Q)=0
P|Q_J> PQ
P p @, Q
CLOSE — Q—0Q b fn(Q)

P|Q - vb(PQ)
Note how the side-conditions impose global freshness onesam
created using the constructor. We say that proce@ss adescen-
dantof P if there is a series of transitions froRto Q.

Bisimulation is the standard notion of equivalence in the
calculus; here we shall consider strong bisimulation. Aatieh
R C II x IT is called asimulation if, for all (P1, P) € R and
all o with bn(a) N fn(Py, P2) = 0, if Py - Py thenP; -~ P,
for some(Py, P}) € R. R is called abisimulation if both R and
R~ are simulations. We say th&andQ arer-bisimilar, written
P L Q,ifthere is a bisimulatior containing(P, Q).

We now define a version of the-calculus with extended syntax
that is directly representable by FRA's. Since transitiaresmulti-
symbol, and our automata can recognise one symbol at a time,
they will be decomposed to atomic ones. We add seispft and
output processes which cater for the intermediate stages in these
decompositions. For example,

ab.P 2% P decomposes toah.P —%s b.P -2 P

whereb. P is an output process. Output [resp. input] processes are
in the middle of sending [receiving] a name on a chosen cHanne

Definition 29. Thexr-calculussyntax is given by the set$, 1o
andITnp, with elements:

P,Q:= 0]ab.P|a(b).P|la=0bP|va.P|P+Q|P|Q|pa)
Pout := b.P | va. Pout | P | Pout | Pout | P
Pup ::= (b).P | va.Pup | P| Pup | Pnp | P

wherea,b € A andd € A*. We write I for I U Ilou U Iinp,
and letP, Q, . ..
a-equivalence. Name binding is defined as expediésibound in
vb.P,a(b).P and(b).P

It is handy to introduce here some very basic notions from the

theory of nominal sets [8, 23]. We calbminal structureny struc-
ture which may contain names (i.e. elementsA9f and we de-
note byPerm(A) the set of finite permutations ah(i.e. bijections
m : A — A such thatr(a) # a for finitely manya € A). For
exampleid = {(a,a)|a € A} € Perm(A). We shall define for
each sefX of nominal structures of interest a function

- : Perm(A)

such thatr- (n'-z) = (ron’)-zandid-z = z, forallz € X and
m, 7 € Perm(A). X will be called anominal setif all its elements
involve finitely many names, that is, for all € X there is a finite
setS C A such thatr - « = x wheneverva € S.w(a) = a.
For example A is a nominal set with actiom - « = w(a), and
S0 isPn(A) with action 7 - S = {n(a) | a € S}. Also, any
set of non-nominal structures is a nominal set with trivieti@n
m - x = x. More interestingly, ifX is a nominal set then so is
X*withaction 7 - z1...2n = (m-21)...(7 - zn). Also, if X
is a nominal set then so is the g¢f, . ([n] — X) with action
m f={(7 2)|(z)€ f}

Thus,IT, Iou, Iinp, II are all nominal sets. For example,

7 -a(b).be.0 =a'(b').b'c. 0

x X — X

wherea’=m(a), b'=n(b), ¢'=m(c) (note that permutations equally
affect bound and free name occurrences). Similarli to we have
that X x Y is a nominal set wheneveY andY are. Note that if
X is a nominal set an&’ C X is such thatr - « € X', for all

x € X' andr € Perm(A), thenX' is also a nominal set with the
inherited action. Hence, the following set is a hominal set.

K={(o,P |an Reg, AP eTIAf(P) Cimg(o)} (1)

We write K for the restriction o< to elementgo, P) with P € 1.
Finally, from a nominal seX we can derive its set afrbits:
O(X)={O0(z) |z € X} where O(z) = {m-z |7 € Perm(A)}.

Note that eacl®(z) is a nominal subset oX .

The technology of the previous paragraph is used for defining

the transition system of the extended calculus. In contaghe
ordinary w-calculus, the transition relation we define is finitely
branching, and this is achieved by considering processessitext
and specifying channels by their context indices insteatheif
names. More specifically, we |€}(K) be the set of processes-in-
context. Each suct(o, P) is writteno P.

Sinces + P = mo b m-P, for any permutationr, what
matters ino F P is not the specific names occurringdnor P,
but only their index inr. For example,

{(1,a),(2,¢)} Fa(b).b2.0 = {(1,d"),(2,)} F a'(b).bc'. 0
and in essence both of these are specified by an expressidike.g
({(1,0),(2,0)},1(b). b2. 0). Borrowing notation from FRAs, we
build up on the indices idea and use transition labels of onen f
i*/i® for fresh inputs/outputs.

Definition 30. The semantics of ther-calculus is given via a
labelled transition system with set of stat@gK’) and labels:

o m= 0| |i® |7]| g% | ig | g

Note thats - P - ¢’ - P’ implies|o| = |o’|. Some further

range over its elements, which we equate up to remarks on reduction:

e Transitions restricted tdl use onlyr and double labels, i.e.
from {5, 4% ,ij,ij° | i,j € w }.

e |nputs are decomposed as known inputsPdA) and locally
fresh ones (IP2B), and are therefore finitely branchlng The

side-conditions impose that, whenevet P, — o’ + P,
theno’ = ofi — a] ¢ img(o) andi is the least index such
thato(¢) ¢ fn(P).® Similar finiteness and minimisation apply
to bound outputs (€EN).

¢ Note that the CosEerule involves bound outputs, hence glob-
ally fresh transitions on the output side. On the input site,
is then necessary to have a matching locally fresh transitio
global freshness implies local freshness.

Example 31. For eachu € A, leto, = {(1,a)} and
P, = vb.p(ab)
In the w-calculus,P, induces an infinitely-branching, infinite-path

transition graph:
E(d) ...

with definition p(ab) = ab. ve. p(be) .

V © B
a(b) B(c)

P, Py P.

In the extended calculu®, induces the following transition graph,

Ga b Po = o b vb.bove. p(be) s oy b Py —s -

which is economic by branching once at each step. In fadinget
P, = vb.b.ve.p(be), and sinces, -+ P, = o F P, and
04 F Pout = 0p F Poue forall a, b € A, the graph above contains
just two nodes: 1

ok P

avga out

and using double labels we get simpby, - P, Q 119 .

The way in which the two transition relations are relatedvsigy
by the following lemma, which verifies the intuitions of Tatl.

Lemma 32. Leto, o’ be registers, andy, & be labels ofr andxr
respectively. For allP, P’ € II with fn(P) C img(o):

eifoc P -% o' P’ thenP - P/,
oif P-* P'theno - P % o' + P';
where eithelé = o« = 7 ando = o’; or & = ij/ij, o = @b/ab,

o(i) = a, O'(i) =bando’ = o; OrOé_’Lj®/’Lj a = a(b)/ab,
o(i) = a,0’ = o[j — blandj = min{j | o(j)¢fn("}

There is a straightforward passage from the-calculus to
FRAS: states are taken fro@(K), states fromO(K) are final,
and the transition relation is the one given in Table 1 (dngttou-
ble transitions). However, the usual (symbolic) notion of bisimu-
lation between FRA's is not appropriate because it is deffoed
single-step transitions and, moreover, does not take iotouant
the distinction between inputs and outputs. We therefofieeléhe
following notion.

Definition 33. An n-simulationis a relation
R C O(K) x ([n] = [n]) x O(K)

6 Although not essential, minimisation saves us from unresrgsbranching.

"Note that this translation typically yields infinite FRAs but we shall
examine classes of processes where the resulting FRAsiteeifi the end

wherei, j € w. The transition relation is given by the rules in Table 1. of this section.

oFP sk P

oFP ok P

INPL o(i)=a MATCH

ot a).P ot (b).P

ckla=aP-SotF P

Sum - —
ok P+Q — ok P’

INP2A - o(i)=a INP2B < i=min{i|o(i)¢fm(P)}
ok (b).P = o+ P{a/b} ok (b).P = oli— b F P
ot P{a/y ok P
OuTl - o(i)=a OuT2 - o(i)=b REC . — p(b)=P
okab.P ot bP obbP-SobP ok p(@—ok P
(c4+a)FP - (o' +a)F P oli v a] b Pos —— ofi — a] - P
RESs — p - a#(|lo|+1) OPEN s i=min{i | o(i)¢fm(P)}
octrva.P— o Fra.P UFVaAPoutZ—>U[i»—>a]FP
N ~ - Z'./1@ . /
« / ock-P — oli—bFP
PAR1 UJ_PTU}_JADI a=i/T PAR2 — [] j=min{j | c(j)&f(P",Q)}
o PIQ—oFFlQ ok P|Q L olj b - P'|Q
i ii C) il®
com I EP o b P ohQ ok o () PTGt E P () QT (b0 P
oFP|Q - 0oFP|Q oFP|Q - oFub(P Q)
i ili® ¢ NP Y
oFP ok P o FP obP—oF Pp=——dFP
DBLOUT DBLINP

z.z@
kP e p

ok p L o pr

Table 1. The transition relation for ther-calculus (Symmetric counterparts oB®@, PAR, ComM, CLOSE omitted).

such that if(o1 = Py, p,02 F P2) € Rthenoi, 02 € Reg, and
o1 F P, = of + P implies thatos - Py 2 o) - P for
some(oy - Pl p’, 04 = P3) € Rsuch that one of the following is
the case, withi € dom(p):

a=ad =r1andp = p;

a=ij, j € dom(p),a’ = p(i)p(j) andp’ = p;

a =1ij, j ¢ dom(p), &’ = p(i)k* andp’ = p[j < kJ;
a=1ij% o = p(i)k®, p' = p[j < k] and,
forall k' € Sa(p) \ img(p), o2 F Py "8
(01 = Pi,plj < K],02F P3) € R

* a=1ij,j €dom(p), & = p(i)p(j) andp’ = p;

e a=1j%a =p(i)k® andp’ = p[j < kl.

o2 - P for some

Ris called am-bisimulationif both R andR~! aren-simulations.
P; and P, are n-bisimilar, written P, ~ P, if there is ann-
bisimulation R containing(co1 F Pi,001 < 002,002 F P2),
for SOMeoo1, 002 with img(am) = fn(Pl), img(doz) = fn(Pz).

We say that a processiiscontainedif all its descendants have
less tham free names.

Proposition 34. For all n-containedP, @, P ~ Q iff P ~ Q.
Proof. The proof proceeds by showing thatfifis a simulation for
ther-calculus then

R/:{(Ul FP17P70'2 FPQ) | (P17P2) eR/\p:UIHUQ}

with P, P, n-contained andri,o2 € Reg, is ann-simulation
and, conversely, iR is ann-simulation then

Rl = {(Pl,PQ) | 30’1,0’24(0'1 F P170'1 — 02,02 F PQ) [R}

with Py, P> n-contained is a simulation for. O

8note:o+v = oU{(|o]+1,v)}, v+o = {(1,v) }U{(i+1,v") | (i,v) € o}.

10

The set of reducts of a given process-in-context is in géirera
finite, even if the process is-contained. The following result pro-
vides sufficient conditions for excluding such infinite belbars.
We say that a process hfisite controlif no parallel compositions
appear in its recursive definitions. A processistrict if all its
subprocesses of the forpm. P satisfya € fn(P).

Proposition 35. If Py € II has finite control and all its descen-
dants arev-strict, then there are somkf € w, o9 € Reg,, and a
finite S C O(K) such thatP, is M-contained(co - Py) € S and
forall (o - P) € Sifo - P -2 ¢’ P'then(o’ - P') € S.

Proof. Suppose (WLOG) thaky invokes definitiong;(d;) = P;

i € [N] for someN, and takeM = |Py| x max{ |P;| |7 € [N]}
for the size function which counts a process’ occurrenc@sop’s
and names, free or bound (but not binding): &§.P| = 2 + | P|,
la(b).P| =1+ |P|, |va.P| = |P|, |p(@)| = 1+ |@| and|0| = 1.

If @Q is a descendant oP then |Q| < M as a process may
only increase its size by recursion and, Bs has finite control,
recursions cannot obtain size greater thax{ |P;| | ¢ € [N] }.
But then, because all descendantspfare v-strict, their number
of v-abstractions is bounded By, and hence they all have length
(number of symbols or constructors) bounded relativelyMo
They are still unboundedly many, due to different choicefreé
variables. But since each descendant can be matched withiexto
from Reg,,, the number of the resulting processes-in-context is
bounded relatively td/. We collect all these it%. |

Corollary 36. Bisimilarity is decidable inll when restricted to
processes with finite control.

Proof. For any such processés, P» € II, by the previous propo-
sition and after equating processes up to non-striabstractions,
we obtain)M -transition graphs with sizes bounded relativelyo

and P,. Clearly, P, ~ P; iff there is an)M-bisimulation between

those graphs. As those bisimulations live in a space bourelad
tively to the sizes of?; and P», we can search it exhaustively for
such relations. O

Equating processes up structural congruenc§l4], the above
results can be further strengthened to processesfinite degree
of parallelism in a similar manner to [4].

9. Further directions

We have introduced an abstract computational paradigmstat-e
lished its key properties, laying the ground for furtheeash. The
next logical step is to examine concrete applications of BRA
the description of computation with names, either in theation
of mobile calculi or that of programming languages, relgtihis
approach to existing higher-level approaches. A first sutlaace
has been recently accomplished in [19] by constructing aenod
of a low-order restriction of Reduced ML (a fragment of ML kit
ground-type integer references) representable in a vafdrRA'S
where labels contain store information. This was achiewetep-
resenting the fully abstract game semantics of the lang[istje
On the foundational side, the study of thecalculus in FRA's
revealed that there is a notion of polarity inherent in cotapan
with names. In particular, the examined FRA's do not mix lyca
with globally fresh transitions, and this is clearly depittin the
partition IT = ITinp W Ilowe W IT. A similar observation applies to
FRA's describing Reduced ML [19]. There, the states arei-part
tioned in P-states (for Proponent/Program) and O-state©(bpo-
nent/Environment); only P-states are allowed to perforobally
fresh transitions, and only O-states can do locally fresésoin-
tuitively, the only notion of freshness that can be obsemwedhe
program'’s side is local freshness, whereas the environsfentld

A. Proofs from section 6

Proof of Lemma 19Let A = (Q, qo, 00, d, F'). The construction
of B = (Q',q),00,0, F') follows closely [11]. In particular,
each transition of4 involving a name induces an assignment of
that name in the extra register Bf If the transition were a fresh
assignment then this would result in the name occurring jost
once after assignment, otherwise it would occur twice. Asittual
extra register of3 changes during this process we add an extra
component in states to remember it.

We setQ’ = Q x ([n + 1] = [n + 1]) and write elements of
Q' as(q,). Moreover,q, = (qo,id), 0y = oo[n+1 — §] and
F'={(q,7)|q € F}. Finally:

& ={((q,7),4, (g2,m)) [L€ CA(q1,4,q2) €6}

U { (g1, {m(n+1)}, {m (i), 7(n+1)}), (g2, 7)) | (q1,7,92) €6}
U { (g1, {m(n+ 1)}, {mw(n+1)}), (g2, 7)) | (q1,i%,42) €6}

U{ (g1, ({m(n+ 1)}, {m(n+ 1)}, [0]), (g2, 7)) | (01,87, g2) €6}

whereq; = (qi,7) andn’ = (n(i) < w(n+1)) o (we write
(k < j7) for the permutation that swagsand;). We can show that
the following relation is a bisimulation and therefore that- B.

R={((q0,H),((qm),0",H)) | Vi € [n].0(i) = o'(n(i)) }
a

Proof of Lemma 20Let A = (Q, qo, 00, 0, F') and constructs =
(Q',q6,04,8", F') as follows. The idea is to keep in the extra
memory registers oB a copy of the initial configuratioay which

is never touched by assignments. Thus, whengverants to make

a transition with labe(.S, T', A), B will simulate it by a transition
(S,S,[n]) and transitions of the forndS,T" U Ti,) whereT, C
{n+1,...,2n}, a € oo([n] \ A) anda is not in the history. In

be assumed to have the memory needed in order to observe globaorder to accomplish this we need to enrich states with inéion

freshness. These observations suggest that a notipolafised

regarding whether the names img(oo) appear in the history.

FRA where states are partitioned as above, is relevant anddshou Therefore, we se®’ = Q x P(img(oo)), ¢ = (g0,0), o6 =

be further pursued. In the polarised setting, symbolicntiga-
tions are simplified as there is no longer need fohaomponent
(cf. Definitions 25 and 33).

A potential criticism towards FRA's concerns the fact thayt
fail to satisfy closure under concatenation and Kleene(sfaBec-
tion 6). We find these non-closure results rather expect&dRaés
are history-sensitive machines. On the other hand, FR&ms®
be closed under theominal version®f concatenation and Kleene
star, as recently introduced by Gabbay and Ciancia [9]. Tke p
cise connections between FRA's and regular languages waitien
restriction [9] are the subject of ongoing research.

Finally, some important questions have still not been anste
For example, we have not considered deterministic versadns
FRA's, nor examined whether FRA's can be determinised. Assu
ing that in a deterministic FRA to each input string correxjma
unique path, we can see that e.g. the FRA accepting the lgagua

LI{GJ"' ,ak}/\Vi;«éj.ai;éaj}

has no deterministic equivalent. Other directions forHertre-
search concern minimisation of FRAs (recently examined fo
FMA's [2]) and the evident connections to HD-automata. More
over, several possible extensions of FRA's are of inteeegt,vari-
ants with labels (data words), stores, or pushdown variants

ara | a € {a1,...

10. Acknowledgements

Thanks to Andrzej Murawski, Samson Abramsky, Vassilis lkoas
and Ulrich Schdpp for discussions and suggestions. Thalsksto
the anonymous reviewers for their comments. Section 7 itiqoar
lar is now much simpler due to a reviewer’s suggestion.

11

F' ={(q,I)|q € F}and:

oo + 0o,

&' ={ (g, 1), ¢ (/ D) [t€CA(qtq)€d}
U{((¢,1),(S,7),(d", 1)) | (q,(S,T),q') €}
u{((aD), STUT)y(q Iu{a}))|(e,(5.7),q') €6}
U{((¢, 1), (5.5, [n]), (¢", 1)) | (a, (S, 8,A),q') €6}
{((¢,), (S, TUTw), (¢", 1U{a'})) | (q, (S, T, A),q) €6}
where a € img(oo), Ta = {(n+14) € [2n] | 00(i) = a},

a’ € oo([n] \ A)\ I, andT,, asT,. We can check that
R={((g,0,H),((q,1),0", H))|I = HNimg(o0)Ao" = o-+00 }
is a bisimulation and therefore that~ 5. |

Proof of Lemma 21Let A = (Q, qo, 00, 0, F') and constructs =
(@', q0,00,8", F') by settingQ’ = @Q x ([n] — [n]) and selecting
fo, a4 such thaimg(oo) = img(og) andoo = o o fo. Moreover,

setqy = (qo, fo), F' = {(q, f) | ¢ € F'} and:

&' ={((a: /)4, (d, /)| LeCA(q,t,q)€d}
U{ (g,)i, (s)T AT\ S) ={i} A(a,(S.T),q") €6}
U{ (@ f)is (@)1 FHE) S S A (4, (S,5),q) €}
U{ (@)% (d,) [F716) S SA(g,(5,9),4") €6}
U{ (. f),i% (@ f) | f7HE) S S A (g, (5,5, [n]),q) €6}

with ' = f[S — i]. Now, the following is a bisimulation

R={((q.0,H),((q.1),0',H)) |o =00 f}
and henced ~ B. |

B. Proofs from section 7

Proof of Proposition 261t will suffice to check only non-constant
transitions. So le{(q1, 01, H), (q2,02, H)) € R’ due to some
(q1, h, p,q2) € Rand suppose thd,, o1, H) ——5, (¢\,07, H')
with H' = H U {a}. We do case analysis an Below we writep’
for p[i < j].

e a € img(o1) Nimg(o2), saya = o1(i) = o2(j). Then, itis
necessary thaig:,4,q1) € 51 ando] = 1. Also, p = 01 < o2
implies (i, j) € p, S0(¢2. j, 45) € 82 for some(q}, h, p, ¢2) € R.
Thus, (g2, 02, H) —2s, (g5, 02, H') and, noting thaf{’ = H so
h = [|H'|]", we can see thd(q}, o1, H'), (¢5,02,H')) € R'.

e a € img(o1)\img(o2), saya = o1 (i). Then, agaifq:, i, q1) €
51 andoy = o1, buti € Si(p) \ dom(p). Thus,(gz,5°, ¢2) € 52
forsome(qi, h, p’, ¢5) € R. Thus,(qe, o2, H) —25, (¢4, 0%, H'),
0% = o2[j — a]. Noting thatp’ = o1 — o4 andH’ = H, we have
that((q1, 01, H'), (g2, 02, H')) € R'.

e a € img(o2)\img(o1), saya = o2(j). Sincea € H \img(o1),
we have soméq:,i®,q;) € &1, ando] = o1[i — a]. More-
over,j € S2(p) \ img(p) and therefordq., j, g5 € 52 for some
(¢4, h,p',qb) € R.Thus,(qz, 02, H) ~2=5, (¢, 02, H') and we
can see that(qi, 01, H'), (¢3,02, H')) € R'.

e a € H\ (img(os) Uimg(o1)), S0(q1,i%,q}) € d1, ando; =
o1[i — al. If h < nthen||p|| = limg(o1) Uimg(o2)| < |H| = h.
Thus, (g2,5°%,g2) € d2 for some(qi,h,p’,q3) € R, and so
(g2, 00, H) %55, (¢h,05, H'), 0b = o2[j — a]. We havep’ =
o} —obandh = [|H'[1", thus((¢}, %, H'), (g5, 0%, H')) € R'.
e a ¢ H and say transition is due q:,4* /i®, ¢}) € 61,00 =
o1[i — a]. Then,(q2,5° /3%, ¢5) € 62 for some(qi, h*", p', ¢b) €
R, S0(q2, 00, H) 5, (gb, 045, H'), o4 = 02[j — a]. We have
thath™ = [|H'[]", s0((q1, 01, H'), (¢5,0%, H')) € R'.

Thus, R’ is a simulation. IfR is a symbolic bisimulation then,
by symmetry,R’ is a bisimulation. Finally, if(go1, |Ho|, 001 <
002, qo2) € Rthen((qo1,001,0), (goz2,002,0)) € R'. |

Proof of Proposition 27We check non-constant transitions. Let
(¢1,h,p,q2) € R', due to some(q1,01,H), (2,02, H)) € R
and suppose thdty, 4, ¢1) € §1. We do case analysis dnBelow
we write H' for H U {a}, andp’ for p[i < j].

e If ¢ = i then, by closure(q:, o1, H) ~=5, (qi,01, H') with
a = o1(i), and henceqz, 02, H) =5, (¢5,0%, H') for some
((¢1,01,H'),(q2,02,H")) € R.1If i € dom(p), say(i,j) € p,
thena € img(o2) and it must be(ge, j, gz) € 2, 05 = o2.
We can see thatq), h,p,q3) € R'.If i € Si(p) \ dom(p)
thena ¢ img(o2) and there is soméqq,j°*,qz) € d2, and
o = o3]j — a]. We have thatqi, h, o', ¢5) € R'.

o If £ = 4° then, for eachu ¢ img(o1), (q1,01, H) —4,
(q1,0%, H"), 0f = o1]i — a], and therefordqe, o2, H) —25,
(g2, 0%, H') for some((q1, 01, H'), (g5, 0%, H')) € R.

Foranyj € Sa(p) \ img(p), o2(j) ¢ img(o1), SO we can take
a = o2(j). Then, we must havéye, j, q5) € 02, 05 = o2, and we
can check thatq!, h, p’, g5) € R'.

If h = nor|p| < hthen we can choose € H \ (img(o1) U
img(c2)). Thus, we have som@e, 5°, q5) € d2, 05 = o2[j — al.
Noting thatH’ = H andp’ = o' —o%, we get(qi, h, p', ¢3) € R'.
Finally, if we choose: ¢ H then there is somép, j° /7%, ¢5) €
d2, andoy = o2[j — a]. We have thay’ = o7 < o5 and
H' = Hw{a}, thush™ = [|H'|]". Hence,(q}, k™, p', ¢4) € R'.
o If £ =4® then we work as in the last case above.

Thus, R’ is a symbolic simulation. If? is a bisimulation then, by
symmetry,R’ is a symbolic bisimulation. Finally, if(qo1, 01, 0),
(qo2,002,0)) € Rthen(qo1, |Ho|,001 < 002, q02) € R'. O

12

References

[1] S. Abramsky, D. R. Ghica, A. S. Murawski, C.-H. L. Ong, dn®. B.
Stark. Nominal games and full abstraction for the nu-catsul In
Proc. of LICS '04 pages 150-159. IEEE Comp. Soc. Press, 2004.

[2] M. Benedikt, C. Ley, and G. Puppis. Minimal memory autdana
Alberto Mendelzon Workshop on Foundations of Dataha2@%0.

[3] N. Benton and V. Koutavas. A mechanized bisimulation tfeg nu-
calculus. Tech. Rep. MSR-TR-2008-129, Microsoft Resea2608.

[4] R. Bruni, F. Honsell, M. Lenisa, and M. Miculan. Modelirfgesh
names in the pi-calculus using abstractions.Phc. of CMCS '04
volume 106, pages 25-41. Elsevier, 2004.

[5] S. Delaune, S. Kremer, and M. Ryan. Symbolic bisimutatior the
Applied Pi Calculus. IrProc. of FSTTCS 'O A/0lume 4855 oL NCS
pages 133-145, 2007.

[6] S. Demri and R. Lazic. LTL with the freeze quantifier andister
automata ACM Trans. Comput. Log10(3), 2009.

[7] G. L. Ferrari, U. Montanari, and E. Tuosto. Model checkifor
nominal calculi. InProc. of FOSSACS 'Q5/0lume 3441 ofLNCS
pages 1-24, 2005.

[8] M. Gabbay and A. M. Pitts. A new approach to abstract symh
variable binding.Formal Asp. Comput13(3-5):341-363, 2002.

[9] M. J. Gabbay and V. Ciancia. Freshness and name-réstriot sets
of traces with names. Submitted for publication, 2010.

[10] A. Jeffrey and J. Rathke. Towards a theory of bisimolatior local
names. IrLICS, pages 56-66, 1999.

[11] M. Kaminski and N. Francez. Finite-memory automat&heor.
Comput. Scj.134(2):329-363, 1994.

[12] J. Laird. A game semantics of local names and good Vasabin
Proc. of FOSSACS 'Q4/0lume 2987 oLNCS pages 289-303, 2004.

[13] J. Laird. A fully abstract trace semantics for geneedkerences. In
Proc. of ICALP '07 volume 4596 o NCS pages 667-679, 2007.

[14] R. Milner, J. Parrow, and D. Walker. A calculus of mohiecesses,
I and Il. Inf. Comput, 100(1):1-77, 1992.

[15] R. Milner, M. Tofte, and D. MacqueenThe Definition of Standard
ML. MIT Press, 1997.

[16] U. Montanari and M. Pistore. An introduction to Histobependent
Automata.Electr. Notes Theor. Comput. S0, 1997.

[17] U. Montanari and M. Pistore. Structured coalgebrasraimimal HD-
automata for the pi-calculusTheor. Comput. Sci340(3):539-576,
2005.

[18] A. S. Murawski and N. Tzevelekos. Full abstraction fadRced ML.
In Proc. of FOSSACS 'Q@olume 5504 o£ NCS pages 32—-47, 2009.

[19] A. S. Murawski and N. Tzevelekos. Algorithmic nominarge se-
mantics. Submitted for publication, 2010.

[20] R. M. Needham. Names. In S. Mullender, ediDistributed systems
pages 315-327. ACM Press/Addison-Wesley, 1993. 2nd aditio

[21] F. Neven, T. Schwentick, and V. Vianu. Finite state mae& for
strings over infinite alphabet?\CM Trans. Comput. Logi&(3):403—
435, 2004.

[22] M. Pistore. History Dependent AutomataPhD thesis, University of
Pisa, 1999.

[23] A. M. Pitts. Nominal logic, a first order theory of namesdebinding.
Inf. Comput, 186(2):165-193, 2003.

[24] A. M. Pitts and I. Stark. Observable properties of higheder func-
tions that dynamically create local names, or: Wha#s? In Proc. of
MFCS '93 number 711 in LNCS, pages 122-141, 1993.

[25] H. Sakamoto and D. Ikeda. Intractability of decisiorolglems for
finite-memory automatalheor. Comput. S¢i231(2):297-308, 2000.

[26] D. Sangiorgi and D. Walker.The pi-calculus: A Theory of Mobile
ProcessesCambridge University Press, 2001.

[27] L. Segoufin. Automata and logics for words and trees aveinfinite
alphabet. IrProc. of CSL '06vol. 4207 ofLNCS pages 41-57, 2006.

[28] I. Stark. Names and Higher-Order Function®hD thesis, University
of Cambridge, 1994.

