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Abstract
What is a basic automata-theoretic model of computation with
names and fresh-name generation?We introduce Fresh-Register
Automata (FRA), a new class of automata which operate on an
infinite alphabet of names and use a finite number of registersto
store fresh names, and to compare incoming names with previously
stored ones. These finite machines extend Kaminski and Francez’s
Finite-Memory Automata by being able to recognise globallyfresh
inputs, that is, names fresh in the whole current run. We exam-
ine the expressivity of FRA’s both from the aspect of accepted
languages and of bisimulation equivalence. We establish primary
properties and connections between automata of this kind, and an-
swer key decidability questions. As a demonstrating example, we
express the theory of the pi-calculus in FRA’s and characterise
bisimulation equivalence by an appropriate, and decidablein the
finitary case, notion in these automata.

Categories and Subject DescriptorsF.1.1 [Computation by Ab-
stract Devices]: Models of Computation; D.3.1 [Programming
Languages]: Formal Definitions and Theory—Semantics

General Terms Theory, Languages, Verification

1. Introduction
One of the most common and useful abstractions in programming
is the assumption that entities of specific kinds can be created at
will and, moreover, in such a manner that newly created entities are
alwaysfresh— distinct from any other such created thus far. This
is, for example, the case with mutable reference cells, exceptions
user-declared datatypes,etc. in languages like Standard ML [15].
Following a long tradition in computer science [20], we callthese
entitiesnamesand specify them as follows.

Names can be created fresh dynamically and locally, compared
for equality and communicated between agents or subroutines.

Apart from the uses mentioned above, names form the basis of
calculi of mobile processes (e.g. theπ-calculus [14]); appear in
network protocols and secure transactions; and are generally es-
sential in programming for identifying variables, channels, threads,
objects, codes, and many other sorts of name in disguise. To our
knowledge, there has not been in the literature a proposal ofa basic
automata-theoretic model of names, providing abstract machines
underlying all these paradigms. We propose just such a modelhere.

Revised version18/11/2010.

Our model is based on the successful paradigm ofFinite-
Memory Automata (FMA), introduced by Kaminski and Francez
in the early 90’s [11]. Motivated by real-world problems (where
codes, addresses, identifiers,etc. may have unbounded domains),
those automata address a demand for a “natural” finite-statema-
chine model over infinite alphabets. An FMAA is an automaton
attached with a finite number of name-storing registers. Itsstructure
looks identical to that of an ordinary finite-state automaton over a
finite set of labels generated by indices in the range1, . . . , n, where
n is the number of registers. However,A truly operates on the in-
finite set of inputsA (the set of names), with indicesi referring to
the names stored in thei-th register ofA. This simple idea lifts the
automaton from finite to infinite alphabet.

There are two ways in which an FMA can access its registers:
either by comparing an input name to a stored one, or by storing an
input name in one of its registers but only in case it islocally fresh,
that is, it does not already appear in any of them. Thus, FMA’sare
history-free: their computational steps rely solely on their current
registers. Here we introduceFresh-Register Automata (FRA), a
finite-register automaton model which extends FMA’s byglobal
freshnessrecognition: an automaton can now accept (and store) an
input name just in case it is fresh in the whole run. For example, a
transition

q
i⊛

−→ q′

means that ifA is at stateq and the set of names that have appeared
in its registers so far isH , thenA can accept any namea /∈ H , store
it in its i-th register and proceed toq′. This history-sensitive feature
precisely captures fresh-name creation.1 Thus, e.g. the following
language (not recognised by FMA’s [11]) is recognised by a single-
state FRA with one register.

L1 = { a1 · · · ak ∈ A
∗ | ∀i 6= j. ai 6= aj }

An intuitive way to viewL1 is as the trace of a fresh-name gen-
erator: one which returns reference cells in SML, objects inJava,
memory addresses in C,etc.

Research in FMA’s and their formal languages has been ex-
tensive [2, 6, 11, 21, 25, 27]. It has been shown [11, 21] that
FMA-recognisable languages are closed under union, intersection,
concatenation and Kleene star; they are not closed under comple-
ment; emptiness of FMA’s is decidable; and universality is unde-
cidable. Our first contribution is to answer this series of questions
for FRA’s. We show that for emptiness and universality the situ-
ation remains the same as in FMA’s. On the other hand, FRA-
recognisable languages are still closed under union and intersec-
tion, but history-sensitiveness prohibits this for concatenation and
Kleene star. Moreover, they are not closed under complementand,
in fact, there is an FMA-recognisable language whose complement
is not recognised by FRA’s.

1 Note that, although history-sensitive, the automaton doesnot have full
access to the historyH. In automata-theoretic jargon, the situation can be
described as consulting an oracle who can decide the freshness of names.
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Our main vehicle for studying equivalence between FRA’s is
bisimulation equivalence (also calledbisimilarity). The notion is
very relevant from the point of view of programming, and process
calculi in particular, and in the case of FRA’s it implies language
equivalence. More importantly, we show that by examining FRA’s
at thesymbolic level, i.e. as ordinary finite-state automata on the
set of index-generated labels, it is possible to capture bisimilar-
ity by an appropriate symbolic notion; we thus prove that FRA-
bisimilarity is decidable. A symbolic bisimulation relates states of
two automata in specific environments, the latter specifying how
are the names which appear in their registers related.

As a demonstrating example, we express theπ-calculus in the
context of fresh-register automata. We introduce thexπ-calculus
system: a presentation of theπ-calculus with early transition se-
mantics [14, 26], in which processes are states of an infiniteFRA.
Transitions are given by FRA-transitions and the system is finitely
branching. More specifically, bound outputs are modelled byglob-
ally fresh transitions, while each input is decomposed intofinitely
many cases: either the incoming name is locally fresh or it already
appears in the registers. This clean treatment of fresh and bound
names is the main advantage of thexπ-calculus and allows for
the finite representation, as ordinary FRA’s, of finitary processes.2

Moreover, we characterise strong bisimilarity by an appropriate
symbolic notion inxπ. This gives an alternative proof of decid-
ability of bisimilarity for finitary processes.

Motivation and related work

Programming languages The idea of studying names in higher-
order languages and in isolation of other effects was first pursued by
Pitts and Stark [24]. They introduced theν-calculus, an extension
of the simply-typedλ-calculus with references of unit type. Inves-
tigations on theν-calculus were meticulously carried on by Stark
in his PhD thesis [28], which exposed a rather unexpected com-
plexity hidden behind names. It became evident that better models
for languages with names were needed. To address this, new direc-
tions in denotational [1, 12, 13, 18] and operational [3, 10]models
were explored, significantly advancing our understanding of com-
putation with names but, at the same time, leaving basic questions
unanswered. In particular, those works examined computation at
the higher level, that of programs and program equivalence,leav-
ing open the question of a basic, lower-level model.

Interestingly, in their initial paper on FMA’s [11], Kaminski and
Francez motivate their construction (also) by briefly presenting an
idealised procedural language with names. There, names cannot
be freshly created, but they can be read from the environment
as inputs and stored in a finite memory. Moreover, stored names
can flow inside the memory from one register to another and can
also be compared for equality and thus triggergoto’s. The authors
explain that FMA’s operate like acceptors for that simple imperative
language with names. By analogy, FRA’s describe the extension of
the language with fresh-name generation.

Process calculi For mobile systems like theπ-calculus [14],
where processes can create locally, receive or send names, the
use of ordinary labelled transition systems for its semantics is in
many ways unsatisfactory: for example, infinite branching arises
even in the case of very simple processes that receive a (locally
fresh) name, or output a locally created (globally fresh) one. Such
shortcomings naturally led to solutions involving representations
of processes by formalisms which incorporate name-reasoning of
some sort [4, 5, 16]. The most notable paradigm in this direction
is that of History-Dependent Automata (HD-Automata)[16, 22],
which are structures defined in a universe ofnamed setsandnamed
functions. HD-automata can succinctly represent theπ-calculus, as

2 A process isfinitary if its it does not grow unboundedly in parallelism.

HD-transitions match ‘on-the-fly’ names between the source, tar-
get, and label ofπ-calculus transitions, allowing thus for the use of
representatives of processes and transitions, rather thanall possible
ones under e.g. permutation of fresh names. The stream of research
on HD-automata has focussed both on foundational issues [17, 22]
and on pragmatic applications [7]. The work presented here shares
objectives with HD-automata, and to some extent can be viewed
as a complementary attempt to the same question, albeit based on
basic machines of “first principles”.

Outline

In the next section we give the basic definitions on FRA’s. Section 3
provides some useful bisimilar constructions. In Section 4we re-
call FMA’s and establish their connection to FRA’s. We examine
WFRA’s, a weaker notion of FRA’s focussing on global freshness,
in Section 5. In Section 6 we prove some technical results regard-
ing closure properties for FRA’s, and in Section 7 we show that
emptiness and bisimilarity are decidable using symbolic methods.
Section 8 examines theπ-calculus in the setting of FRA’s.

2. Definitions
We distinguish between two sets of input symbols:

• an infinite set ofnames, A, and

• a finite set ofconstants, C.

Constants have an auxiliary role and are non-storable.3 We leta, b,
etc. range over names. We writeA∗ for the set of finite strings
of names, andA⊛ for its restriction to those containing pairwise
distinct names. Stringsa1 · · · an will be typically represented by
vectors~a, in which caseimg(~a) = {a1, . . . , an}.

For eachn ∈ ω, we write[n] for the set{1, . . . , n}, and let

Ln = C ∪ { i, i•, i⊛ | i ∈ [n] } .

be the set of labels generated by[n]. Moreover, we define

Regn = {σ : [n]→ A∪{♯} | ∀i 6= j. σ(i) = σ(j) =⇒ σ(i) = ♯ }

to be the set ofregister assignmentsof sizen. We writeimg(σ) for
the name-range ofσ, i.e. img(σ) = { a ∈ A | ∃i. σ(i) = a }, and
let dom(σ) = { i ∈ [n] | σ(i) ∈ A }. Whenevera /∈ img(σ),

σ[i 7→ a] = { (i, a) } ∪ { (j, σ(j)) | j ∈ [n] \ {i} }

is anupdateof σ, for anyi ∈ [n].

Definition 1. A fresh-register automaton (FRA)of n registers is
a quintupleA = 〈Q, q0, σ0, δ, F 〉 where:

• Q is a finite set of states,
• q0 is the initial state,
• σ0 ∈ Regn is the initial register assignment,
• δ ⊆ Q× Ln ×Q is the transition relation,
• F ⊆ Q is the set of final states.

A is called aregister automaton (RA)if there are noq, q′, i such
that(q, i⊛ , q′) ∈ δ.

Transitions containing labels of the formi are calledknown
transitions; those of the formi• are locally freshones; andglob-
ally fresh transitions involvei⊛ . Thus, an RA is an FRA with no
globally fresh transitions.4

Here is an informal reading ofδ. SupposeA is at stateq1 with
current register assignmentσ. If input ℓ ∈ C ∪ A arrives then:5

3 In other presentations [11, 21] there is no such distinction, but symbols
that appear in the initial register assignment can play the role of constants.
4 This yields the same notion of register automaton as that of [21].
5 Note that the same symbol,ℓ, is later used to range over elements ofLn.
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• If ℓ ∈ C and(q1, ℓ, q2) ∈ δ thenA acceptsℓ and moves toq2.

• If ℓ ∈ A and(q1, i, q2) ∈ δ andσ(i) = ℓ thenA acceptsℓ and
moves toq2.

• If ℓ ∈ A and(q1, i
•, q2) ∈ δ andℓ is not stored inσ thenA

acceptsℓ, it setsσ(i) = ℓ and moves toq2.

• If ℓ ∈ A and(q1, i
⊛ , q2) ∈ δ andℓ /∈ img(σ0) andℓ has not

appeared in the current run thenA acceptsℓ, it setsσ(i) = ℓ
and moves toq2.

The above is formally defined by means of configurations repre-
senting the intended current state of the automaton, which apart
from states contains information on the current register assignment
and the set of names having appeared thus far (thehistory). The
latter component is necessary for globally fresh transitions.

Definition 2. A configurationofA is a triple(q, σ, H) ∈ Q̂, with

Q̂ = Q× Regn × Pfn(A)

andPfn(A) being the set of finite subsets ofA. From δ define a
transition relation on configurations

−→δ ⊆ Q̂× (C ∪ A)× Q̂

as follows. For all(q, σ, H) ∈ Q̂ and(q, ℓ, q′) ∈ δ:

• If ℓ ∈ C then(q, σ, H)
ℓ
−→δ (q′, σ, H).

• If ℓ = i andσ(i) = a then(q, σ, H)
a
−→δ (q′, σ, H ∪ {a}).

• If ℓ = i• anda /∈ img(σ) then (q, σ, H)
a
−→δ (q′, σ′, H ′)

with σ′ = σ[i 7→ a] andH ′ = H ∪ {a}.
• If ℓ = i⊛ anda /∈ H∪img(σ0) then(q, σ, H)

a
−→δ (q′, σ′, H ′)

with σ′ = σ[i 7→ a] andH ′ = H ∪ {a}.

We write−→−→δ for the reflexive transitive closure of−→δ.

We say that configuration̂q is reachableif (q0, σ0, ∅)
~ℓ
−→−→δ q̂

for some~ℓ ∈ (A ∪ C)∗. We call A a closed FRA if, for all
reachable configurations(q, σ, H) and all(q, i, q′) ∈ δ, we have
thatσ(i) 6= ♯. Finally, the set of stringsacceptedbyA is:

L(A) = { ~ℓ ∈ (A ∪ C)∗ | (q0, σ0, ∅)
~ℓ
−→−→δ (q, σ, H) ∧ q ∈ F }

and is called thelanguagerecognised byA. Two automata are
equivalentif they recognise the same language.

Remark 3. There is an equivalent definition of FRA’s in which his-
tories includeimg(σ0) by default, and in which reachable config-
urations are the ones reached from(q0, σ0, img(σ0)). Here instead
we have decided to separate the history of the run from its initial
names, which appears to give a cleaner presentation but it isby no
means a substantial point of difference. Note also that reachable
configurations contain names that have appeared before one way or
another: if(q, σ, H) is reachable thenimg(σ) ⊆ img(σ0) ∪H .

Example 4. The reader can check that the languageL1 (= A
⊛ ) of

the Introduction is recognised by the following FRA.

A0 = 〈{q0}, q0, {(1, ♯)}, {(q0, 1
⊛ , q0)}, {q0}〉

Note that the FRAB = 〈{q0}, q0, {(1, ♯)}, {(q0, 1
•, q0)}, {q0}〉

recognises the language:

L2 = { a1 · · · ak ∈ A
∗ | k ∈ ω ∧ ∀i. ai 6= ai+1 }

and is therefore not equivalent toA.
A more elaborate example is the following. LetA be the FRA:

q0 q1 q2 q3
1• 1• 1⊛

1/1•

1 1

with initial assignment{(1, ♯)}. The automaton works as follows.
It receives a namea and then keeps receivinga until someb 6= a
arrives; then it keeps receivingb until a globally freshc arrives; it
then repeats from start. Thus, members ofL(A) are of the form

aj0
0 bk0

0 c0 aj1
1 bk1

1 c1 aj2
2 bk2

2 c2 . . . ajn

n bkn

n cn

where, for alli, we haveji, ki > 0, ai 6= bi andci differs from all
symbols preceding it. Formally, setting

L′(H) = { an1bn2c | ni > 0 ∧ a 6= b ∧ c /∈ H ∪ {a, b} }

we have thatL(A) =
S

i∈ω Li , where we setL0 = L′(∅) and

Li+1 = {~a~b | ~a ∈ Li ∧~b ∈ L′(img(~a)) } .

Some basic results The languages of FMA’s [11] are regular once
constrained to a finite number of symbols. Moreover, the language
accepted by an FMA is impervious to name-permutations that do
not affect its initial register. These properties carry over to FRA’s,
and are proved as in [11].

Proposition 5. LetA = 〈Q, q0, σ0, δ, F 〉 be an FRA ofn registers
andS ⊆ A be finite. Then,L(A) ∩ S∗ is a regular language.

Proposition 6. For A as above, if~a ∈ L(A) andπ : A
∼=
→ A is

such thatπ(a) = a for all a ∈ img(σ0) thenπ(~a) ∈ L(A).

Bisimulation Bisimulation equivalence turns out to be a great
tool for relating automata, even from different paradigms.It implies
language equivalence and, in all our cases of interest, it isnot too
strict in this aspect. We choose it here as our main vehicle ofstudy.

Definition 7. Let Ai = 〈Qi, q0i, σ0i, δi, Fi〉 be FRA’s with ni

registers, fori = 1, 2. A relation R ⊆ Q̂1 × Q̂2 is called a
simulationonA1 andA2 if, for all (q̂1, q̂2) ∈ R,

• if π1(q̂1) ∈ F1 thenπ1(q̂2) ∈ F2,

• if q̂1
ℓ
−→δ1 q̂′1 thenq̂2

ℓ
−→δ2 q̂′2 for some(q̂′1, q̂

′
2) ∈ R.

R is called abisimulation if both R andR−1 are simulations. We
say thatA1 andA2 arebisimilar, writtenA1 ∼ A2, if there is a
bisimulationR such that((q01, σ01, ∅), (q02, σ02, ∅)) ∈ R.

Lemma 8. If A1 ∼ A2 thenL(A1) = L(A2).

The above is proved using standard methods. Bisimilarity isalso
calledbisimulation equivalence. For instance, the automatonA0 of
example 4 is bisimilar to

B = 〈{q0, q1}, q0, {(1, ♯)}, {(q0, 1
•, q1), (q1, 1

⊛ , q1)}, {q0, q1}〉 ,

with a bisimulation witnessing this being the following,

{((q0, σ0, ∅), (q0, σ0, ∅))}∪{((q0, σ1, H1), (q1, σ2, H2)) |H1 = H2)}

whereσ0 = {(1, ♯)}.

3. Bisimilar constructions
In this section we demonstrate some bisimilar constructions which
will be useful in the sequel. Starting from a fresh-registerautoma-
tonA = 〈Q, q0, σ0, δ, F〉 of n registers, we effectively construct
the following bisimilar automata.

• The closed FRAA, called theclosureof A.

• For any~a ∈ A
⊛ with img(σ0) ∩ img(~a) = ∅, the FRAA⊎ ~a.

This is called theextensionofA by~a, and its initial assignment
is σ0 + ~a = σ0 ∪ { (i + n, ai) | 1 ≤ i ≤ |~a| }.

Our presentation will focus on constructing the bisimilar automata
and explaining the candidate bisimulation relationR, omitting the
actual proof thatR is a bisimulation, as these proofs are not difficult
(but tedious) and follow directly from the constructions.
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Closures ForA as above withn registers we define itsclosureto
be then-register FRAA = 〈Q′, q′0, σ

′
0, δ

′, F ′〉 given as follows.
We setQ′ = Q × P([n]), q′0 = (q0, dom(σ0)), σ′

0 = σ0 and
F ′ = { (q, S) | q ∈ F }. Recall we want to construct an automaton
which is closed, that is, whenever a configuration with stateq and
assignmentσ is reached and(q, i, q′) is a transition, thenσ(i) ∈ A

and therefore the transition is allowed. The extra component added
in Q monitors the registers that have been assigned a name (note
that once a register has been assigned a name it cannot returnto the
♯ state). Consequently,δ′ will be designed in such a way so that this
monitoring carries through and, moreover, the known transitions
included inδ′ are always allowed:

δ′ = { ((q, S), ℓ, (q′, S)) | (q, ℓ, q′) ∈ δ ∧ ℓ ∈ C) }

∪ { ((q, S), i, (q′, S)) | (q, i, q′) ∈ δ ∧ i ∈ S) }

∪ { ((q, S), i•/i⊛ , (q′, S′)) | (q, i•/i⊛ , q′) ∈ δ ∧ S′ = S ∪ {i} }

Now, we can check that the following relation is a bisimulation

R = { ((q, σ, H), ((q, S), σ, H)) | dom(σ) = S }

and therefore thatA ∼ A. Moreover, the reachable configurations
of A are of the form((q, S), σ, H) with dom(σ) = S, and there-
fore the automaton is closed.

Remark 9. If A = 〈Q, q0, σ0, δ, F〉 is a closed FRA then each

path q0
ℓ1−→ q1

ℓ2−→ · · ·
ℓm−→ qm in A (where arrow notation

representsδ) yields is a configuration path

(q0, σ0, ∅)
ℓ′
1−→δ (q1, σ1, H1)

ℓ′
2−→δ · · ·

ℓ′
m−→δ (qm, σm, Hm)

according to the definition of−→δ. For example, ifℓj+1 = i then
ℓ′j+1 = σj(i), σj+1 = σj andHj+1 = Hj ∪{σj(i)}. In this case,
closedness ofA guarantees thatσj(i) 6= ♯.

Name extension ForA as above withn registers and~a ∈ A
⊛ a

sequence of lengthm such thatimg(σ0) ∩ img(~a) = ∅, we define
the extensionA⊎~a as the FRA withn+m registers and description
〈Q′, q′0, σ

′
0, δ

′, F ′〉 given as follows. We set

Q′ = Q× ([n]→ [n + m])× P({n + 1, . . . , n + m})

andq′0 = (q0, ι, {n+1, . . . , n+m}), with ι the inclusion function,
F ′ = { (q, f, S) ∈ Q′ | q ∈ F } andσ′

0 = σ0 + ~a. Finally:

δ′ = { ((q, f, S), f(ℓ), (q′, f, S)) | ℓ ∈ C ∧ (q, ℓ, q′) ∈ δ }

∪ { ((q, f, S), j, (q′, f ′, S′)) | (q, i•, q′) ∈ δ ∧ j /∈ img(f) }

∪ { ((q, f, S), j, (q′, f ′, S′)) | (q, i⊛ , q′) ∈ δ ∧ j ∈ S }

wheref(i•) = f(i)•, f(i⊛) = f(i)⊛ , f(ℓ) = ℓ for ℓ ∈ C,
f ′ = f [i 7→ j] andS′ = S \ {j}.
The transition relation inA ⊎ ~a proceeds as inA with the ex-
ception of locally/globally fresh transitions, where someextra care
is needed. Since the registers of the new automaton contain more
names than those of the initial one, fresh transitions inA ⊎ ~a can
now capture fewer names. For example, ifa is one of the added
names then ani• transition from the initial configuration could cap-
ture it before, but this is no more the case asa appears inσ′

0; in-
stead, we need an explicitj transition for this purpose. This is what
the second clause of the definition ofδ′ addresses. For this to work
we need to introduce the componentf to keep track of the corre-
spondences between old and new registers that arise in the way just
described. For globally fresh transitions a similar situation arises,
only that this time we need only remember which of the names in
the initial~a have not appeared in the history thus far, which is what
the componentS achieves. Thus, the following is a bisimulation

R = { ((q, σ, H), ((q, f, S), σ′, H)) | σ = σ′◦f∧img(~a)⊆H⊎σ′(S) }

and thereforeA ∼ A⊎ ~a.

4. Finite-memory automata
We now present FMA’s and examine their properties in relation
to FRA’s and RA’s. In fact, RA’s are equivalent to FMA’s and in
the literature they have been used as synonyms (e.g. compare[11]
with [21]). The precise correspondence is stated in proposition 11,
which is a folklore result.

Let us recall the original definition from [11]. Afinite-memory
automaton (FMA)of n registers is a sextupleA = 〈Q, q0, σ0, ρ, δ, F 〉
where:

• Q is a finite set of states, withq0 ∈ Q initial, andF ⊆ Q final.

• σ0 ∈ Regn is the initial register assignment.

• ρ : Q ⇀ [n] is thereassignment(partial) function.

• δ ⊆ Q× [n]×Q is the transition relation.

The intuitive reading ofδ is the following. SupposeA is at stateq1

with register assignmentσ and let(q1, i, q2) ∈ δ. If input a ∈ A

arrives then:

• If σ(i) = a thenA acceptsa and moves to stateq2.

• If a /∈ img(σ) andρ(q1) = i thenA acceptsa, it setsσ(i) = a
and moves to stateq2.

Formally, a configuration is now a pair(q, σ) ∈ Q̂, where

Q̂ = Q× Regn ,

and the transition relation−→δ ⊆ Q̂×A×Q̂ is defined as follows.
For all (q, σ) ∈ Q̂ and(q, i, q′) ∈ δ:

• If σ(i) = a then(q, σ)
a
−→δ (q′, σ).

• If ρ(q) = i then, for alla /∈ img(σ), (q, σ)
a
−→δ (q′, σ[i 7→ a]).

The notions of reachable configurations and accepted strings and
languages are defined just as in the case of FRA’s.

Example 10. Recall the languageL2 of example 4:

L2 = { a1 · · · ak ∈ A
∗ | ∀i. ai 6= ai+1 }

which is RA-recognisable.L2 is recognised by the FMA:

B = 〈Q, q0, σ0, {(q0, 1), (q1, 2)}, {(q0, 1, q1), (q1, 2, q0)}, Q〉

whereQ = {q0, q1} andσ0 = {(1, ♯), (2, ♯)}. Comparing this to
B of example 4, the reader can observe how the differences between
RA’s and FMA’s in reassignment have been addressed here by use
of the extra register.

The main properties of FMA’s and FMA-recognisable lan-
guages have been established as follows.

(a). Emptiness is decidable for FMA’s [11] (i.e. isL(A) = ∅ ?), and
in particular it is NP-complete [25].

(b). The languages accepted by FMA’s are closed under union,
intersection, concatenation and Kleene star; they are not closed
under complement [11].

(c). Universality is undecidable [21] (i.e. isL(A) = A
∗ ?). Hence,

the equivalence and containment problems are undecidable too
(i.e. isL(A) = / ⊆ L(B) ?).

We shall see that the emptiness problem is also decidable for
FRA’s (proposition 24). Clearly, FRA’s being extensions ofFMA’s
implies that universality of the former is undecidable, andhence the
same holds for equivalence and containment. In section 6 we will
examine closure properties of FRA’s and show that closure under
concatenation and Kleene star are lost, closure under complement
still fails, but closure under union and intersection prevail.

We now relate FMA’s to the kind of automata we have intro-
duced previously: in essence, FMA’s are the same as RA’s. The
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notions of simulation and bisimulation straightforwardlyextend to
FMA’s. In fact, definition 7 applies to all machines operating on the
infinite alphabetC∪A which have configuration graphs containing
initial and final configurations. It therefore makes sense toextend
these notions to RA-FMA pairs (and FRA-WFRA pairs later on).

Proposition 11. For any FMAA of n registers there is an effec-
tively constructible RAB of n registers such thatA ∼ B.
Conversely, for any RAB of n registers there is an effectively con-
structible FMAA of n + 1 registers such thatA ∼ B.

Proof. Going from FMA’s to FRA’s is simple: we use the same set
of states; we match each transition(q1, i, q2) with (q1, i, q2); and,
additionally, for each transition(q1, i, q2) whereρ(q1) = i we add
(q1, i

•, q2). The other direction is more elaborate but apparently
the construction is already known [21], so we omit it.

Corollary 12. The universality, equivalence and containment
problems are undecidable for RA’s and FRA’s.

5. Weak fresh-register automata
In this section we examine a weaker version of FRA’s by concen-
trating on the aspect of global freshness while relaxing that of local
freshness. Even though this restriction leads us to machines that do
not extend FMA’s, we show that universality remains undecidable
(proposition 17).

The machines we introduce operate on sets of labels

L
w
n = C ∪ { i, i?, i⊛ | i ∈ [n] } ,

wherei? stands for “accept any name” transitions. Moreover, their
registers are now taken from the setsRegw

n = [n]→ A ∪ {♯}.

Definition 13. A weak fresh-register automaton (WFRA)of n
registers is a quintupleA = 〈Q, q0, σ0, δ, F 〉 where:

• Q is a finite set of states, withq0 ∈ Q initial, andF ⊆ Q final.
• σ0 ∈ Regw

n is the initial register assignment.
• δ ⊆ Q× L

w
n ×Q is the transition relation.

The transition relation has the same intuitive meaning as inthe
case of FRA’s, with the exception that in transitions of the form
(q1, i?, q2) ∈ δ the automaton accepts any namea, stores it at its
i-th cell and moves to stateq2. Formally, a configuration is now
given as a triple(q, σ, H) ∈ Q̂, where

Q̂ = Q× ([n]→ (A ∪ ♯))× Pfn(A) ,

and the transition relation−→δ⊆ Q̂× (C∪A)× Q̂ on configura-
tions is defined as follows. For all(q, σ, H) ∈ Q̂ and(q, ℓ, q′) ∈ δ:

• if ℓ ∈ C then(q, σ, H)
ℓ
−→δ (q′, σ, H);

• if ℓ = i andσ(i) = a then(q, σ, H)
a
−→δ (q′, σ, H ′);

• if ℓ = i? then(q, σ, H)
a
−→δ (q′, σ′, H ′);

• if ℓ = i⊛ anda /∈ H∪img(σ0) then(q, σ, H)
a
−→δ (q′, σ′, H ′);

with σ′ = σ[i 7→ a] andH ′ = H ∪{a}. Reachable configurations
and accepted strings/languages are defined exactly as in FRA’s.

Example 14. Consider the following language,

L3 = { a1 · · · ak b1 · · · bl ∈ A
∗ | ∀i 6= j. ai 6= aj ∧ bi 6= bj }

which is in fact the concatenation ofA
⊛ with itself, and the WFRA:

q0 q1 q2 q3

q4

2? 2

2

2?

2
1? 1? 1?

1?

1?

with 2 registers, both of them initially empty. Call the aboveA. We
claim thatL(A) = A

∗\L3, that is,s ∈ L(A) ⇐⇒ s /∈ L3 for all
s ∈ A

∗. The forward implication is clear: ifs ∈ L(A) then either
the same namea appears three times ins (via the pathq0q1q2q4),
or namesa1 anda2 appear each twice ins without interleaving (via
the pathq0q1q2q3q4). In both cases,s /∈ L′.
For the opposite direction, lets /∈ L3 and feed it toA. Since
s /∈ A

⊛ , we can writes = s1a1s2a1s
′ with s1a1s2 ∈ A

⊛ . In A,
s1a1s2a1 leads control toq2. Now,s /∈ L3 implies thata1s

′ /∈ A
⊛

so there is somea2 in a1s
′ such thata1s

′ = a1s
′
1a2s

′′, a1s
′
1 ∈ A

⊛

anda2 appears ina1s
′
1. If a2 = a1 thens′1a2 leadsA directly to

q4. Otherwise, it leads toq4 via q3.
The reader may want to verify that changing the labels of the loops
at q0 andq1 above to1⊛ , and the label fromq0 to q1 to 2⊛ , leads
to a WFRAA′ that still satisfiesL(A′) = A

∗ \ L3.

We show that any WFRA has a bisimilar FRA of the same
number of registers. The idea is to simulate the non-linear memory
(i.e. a set of registers that may contain names in common) of the
WFRA by a linear memory plus areordering functionon the FRA
part. For example, here is such a simulation:

{ (1, a), (2, b), (3, b) } 7−→

(

{ (1, a), (2, b), (3, c) }

plus(1 7→ 1, 2 7→ 2, 3 7→ 2)

The reordering functions will be attached to the states of the FRA.
Moreover, we shall simulate any-transitions (i.e. of the form i?) of
the WFRA by means of locally-fresh-transitions (i•) and known-
transitions (j, for all j). In the end, defining the new transition
relation gets a bit involved as one has to bear reorderings inmind,
which need to be accounted for before making a transition and
updated afterwards.

Lemma 15. For any WFRAA of n registers there is an effectively
constructible FRAB of n registers such thatA ∼ B.

Proof. LetA = 〈Q, q0, σ0, δ, F 〉; constructB = 〈Q′, q′0, σ
′
0, δ

′, F ′〉
as follows. We setQ′ = Q× ([n]→ [n]) and write elements ofQ′

as(q, f). Simulation of non-linear memoryσ by linear memoryσ′

and reorderingf is defined in the obvious manner:σ = σ′ ◦ f .
Moreover, for eachi ∈ [n], the multiplicity of σ(i), i.e. the num-
ber of times it appears inσ, is given by the size off−1(f(i)); we
denote this byµ(i). We let(σ′

0, f0) be a simulation ofσ0 such that
σ′

0 contains no more names thanσ0, and setq′0 = (q0, f0) and
F ′ = {(q, f) | q ∈ F}. We now defineδ′:

δ′ = { ((q, f), ℓ, (q′, f)) | (q, ℓ, q′) ∈ δ ∧ ℓ ∈ C }

∪ { ((q, f), f(i), (q′, f)) | (q, i, q′) ∈ δ }

∪ { ((q, f), f(i)⊛ , (q′, f)) | (q, i⊛ , q′) ∈ δ ∧ µ(i) = 1 }

∪ { ((q, f), j⊛ , (q′, f ′)) | (q, i⊛, q′) ∈ δ ∧ µ(i) >1 ∧ j /∈ img(f)}

∪ { ((q, f), f(i)•, (q′, f)) | (q, i?, q′) ∈ δ ∧ µ(i) = 1 }

∪ { ((q, f), j•, (q′, f ′)) | (q, i?, q′) ∈ δ ∧ µ(i) > 1 ∧ j /∈ img(f)}

∪ { ((q, f), j, (q′, f ′)) | (q, i?, q′) ∈ δ }

where f ′ = f [i 7→ j]. The first line is straightforward. The
second line says that receiving the name of thei-th register inA is
simulated by receiving thef(i)-th name inB. The same rationale
is repeated in the third line, only that now we have to do a memory
update and therefore we need to be careful with reorderings.In
particular, storing the new name, saya, in the f(i)-th register
should not be allowed whenµ(i) > 1: if this is the case and we set
σ′(f(i)) = a thena still appears inσ but no longer appears inσ′,
breaking thus the simulation. Nonetheless, ifµ(i) > 1 then there
must be somej which is free inσ′ (i.e. j /∈ img(f)) and we can
safely store the new name in there, updating the reordering function
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accordingly. The last three lines ofδ′ implement the idea that
receiving any name can be matched by receiving either a locally
fresh name or one of the stored ones. Thus,

R = { ((q, σ, H), ((q, f), σ′, H)) | σ = σ′ ◦ f }

is a bisimulation and thereforeA ∼ B.

We next show that the absence of locally fresh transitions in
WFRA’s renders them incapable of recognising FMA-recognisable
languages. Combining this with the previous result we obtain that
WFRA’s are indeed strictly weaker than FRA’s.

Lemma 16. The languageL2 = {a1 · · · ak | ∀i. ai 6=ai+1} of ex-
amples 4 and 10 is not WFRA-recognisable.

Proof. SupposeL2 = L(A), for a WFRAA with n registers.
Then, for anys ∈ A

⊛ of lengthm > 1, we havess ∈ L(A).
Let the following be the transition path inA accepting it,

q0
...
−→ · · ·

...
−→ q′0

α1−→ q′1
α2−→ · · ·

αm−→ q′m

with the subpath fromq′0 to q′m accepting the second copy ofs.
Then, none of theα’s can be of the formi⊛ as their names have
appeared before. Moreover, ifαi = j? thenαi can also accept the
preceding symbol, contradicting the fact thatL(A) = L2. Hence,
all α’s are in[n]. Choosingm > n we arrive to a contradiction.

Emptiness is decidable for WFRA’s, by inheritance. More inter-
estingly, the universality problem remains undecidable, and hence
the same happens for equivalence and containment.

Proposition 17. Universality is undecidable for WFRA’s.

Proof. The proof is by reduction from the Post Correspondence
Problem, and follows the track of the analogous proof in [21]. In
particular, we show that the locally fresh transitions of the RA’s
constructed in that proof can be replaced by WFRA-transitions.
Unlike [21], here it is necessary to use the setC.

6. Closure properties
In order to establish closure properties of FRA’s, and following the
approach on FMA’s in [11], it is useful to introduce a versionof
FRA’s with multiple assignment, that is, automata that can store
an input name at several of their registers at one step. In particular,
assignments will now be taken from the setsRegw

n. The set of labels
we shall use is the following.

L
′
n = C ∪ (P([n])× P([n]) × ({⊥} ∪ P([n])))

Labels of the form(S, T,⊥) are written simply(S, T ), and when
we write(S, T, A) we assumeA 6= ⊥. If we want to allow for⊥,
we write(S, T, A⊥).

Definition 18. An MFRA of n registers is a quintupleA =
〈Q, q0, σ0, δ, F 〉 where:

• Q is a finite set of states,q0 ∈ Q is initial andF ⊆ Q are final.
• σ0 ∈ Regw

n is the initial register assignment.
• δ ⊆ Q× L

′
n ×Q is the transition relation.

The intuitive reading ofδ is the following. IfA is at stateq1

with register assignmentσ and inputℓ ∈ C ∪ A arrives then:

• if ℓ ∈ C and(q1, ℓ, q2) ∈ δ thenA acceptsℓ and moves toq2.

• if ℓ ∈ A and(q1, (S, T ), q2) ∈ δ and(σ[S 7→ ℓ])−1(ℓ) = T ,
i.e. ℓ appears exactly in the registers inT after it is assigned
to all registers inS, thenA acceptsℓ, it setsσ(S) = {ℓ} and
moves to stateq2.

• if ℓ ∈ A and(q1, (S, T, A), q2) ∈ δ, (σ[S 7→ ℓ])−1(ℓ) = T
andℓ has not appeared in the history nor does it appear inσ0(A)
thenA acceptsℓ, it setsσ(S) = {ℓ} and moves to stateq2.

Thus, labels of the form(S, T ) work in the same way as in
M -automata[11], and the main novelty here is the inclusion of
(S, T, A): in order for the transition to be allowed, the input name
a must be fresh in the history and in the part ofσ0 specified byA.
This addition allows us to model globally fresh transitionsand also
to combine automata unifying their initial assignments.

Formally, let Q̂ = Q × Regw
n × Pfn(A) be the set of con-

figurations and define−→δ⊆ Q̂ × (C ∪ A) × Q̂ as follows.
For all (q, σ, H) ∈ Q̂:

• If (q, ℓ, q′) ∈ δ with ℓ ∈ C then(q, σ, H)
ℓ
−→δ (q′, σ, H).

• If (q, (S, T ), q′) ∈ δ, σ′ = σ[S 7→ a] andσ′−1(a) = T then
(q, σ, H)

a
−→δ (q′, σ′, H ∪ {a}).

• If (q, (S, T, A), q′) ∈ δ, σ′ = σ[S 7→ a], σ′−1(a) = T and
a /∈ H ∪ σ0(A) then(q, σ, H)

a
−→δ (q′, σ′, H ∪ {a}).

Reachability and acceptance are defined as before. Note thatplausi-
ble transition labels(S, T, A⊥) satisfyS ⊆ T . Moreover, ifS 6= T
andA⊥ 6= ⊥ then the transition can only be instantiated by a name
a ∈ σ0([n] \ A) that has not yet appeared in the history but is still
in some register.

Lemma 19. For any FRAA of n registers there is an effectively
constructible MFRAB of n + 1 registers such thatA ∼ B

The other direction is a bit more elaborate and we achieve it in
two steps. Let us say that an MFRAA is pure if, for all transitions
(q, (S, T, A), q′) of A, S = T andA = [n].

Lemma 20. For any MFRAA of n registers there is an effectively
constructible pure MFRAB of 2n registers such thatA ∼ B.

Lemma 21. For any pure MFRAA of n registers there is an
effectively constructible FRAB of n registers such thatA ∼ B.

We can now establish the following closure properties. Closure
under union and intersection is answered positively, whileclosure
under concatenation, Kleene star or complement fails.

Proposition 22. For FRA’sA andB, the languagesL(A)∪L(B)
andL(A) ∩ L(B) are FRA-recognisable.

Proof. Assume MFRA’sA′ = 〈Q1, q01, σ01, δ1, F1〉 ∼ A and
B′ = 〈Q2, q02, σ02, δ2, F2〉 ∼ B of n, m registers respectively.
For the union, construct an MFRAC = 〈Q, q0, σ0, δ, F 〉 of n + m
registers, where

Q = {q0}⊎Q1⊎Q2 , σ0 = σ01+σ02 , F = F1∪F2∪φ(F1∪F2)

with φ : Q1 ⊎ Q2 → Q mappingq01 andq02 to q0, and being
elsewhere the identity. Finally:

δ = { (q′′, ℓ, q′) | ℓ ∈ C ∧ (q, ℓ, q′) ∈ δ1 ∪ δ2 }

∪ { (q′′, (S ∪ [m]+n, T ∪ [m]+n, A⊥), q′) | (q, (S, T, A⊥), q′) ∈ δ1}

∪ { (q′′, ([n] ∪ S+n, [n] ∪ T+n, A+n
⊥ ), q′) | (q, (S, T, A⊥), q′) ∈ δ2}

whereq′′ ∈ {q, φ(q)} andS+n = { i + n | i ∈ S }, for each
S ⊆ ω, and⊥+n = ⊥. It follows thatL(C) = L(A) ∪ L(B).
For the intersection, construct an MFRAC = 〈Q, q0, σ0, δ, F 〉
of n + m registers whereQ = Q1 × Q2, q0 = (q01, q02),
σ0 = σ01 + σ02, F = F1 × F2 and, assuming⊥ ∪A⊥ = A⊥:

δ = { (q, ℓ, q′) | ℓ ∈ C ∧ ∀i ∈ [2]. (πi(q), ℓ, πi(q
′)) ∈ δi }

∪ { (q, (S1 ∪ S+n
2 , T1 ∪ T+n

2 , A⊥1 ∪A+n
⊥2 ), q′) |

∀i ∈ [2]. (πi(q), (Si, Ti, A⊥i), πi(q
′)) ∈ δi }
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It follows thatL(C) = L(A) ∩ L(B).

Proposition 23. There are FRA’sA andB such that the language
L(A) ∗ L(B) is not FRA-recognisable. Moreover, there is an FRA
A such that the languageL(A)∗ is not FRA-recognisable. Finally,
there is an RAB such that the languageA∗ \ L(B) is not FRA-
recognisable.

Proof. For the first part we show that the languageL′ = L1 ∗ L1

is not FRA-recognisable, whereL1 = A
⊛ . SupposeL′ were

recognised by an FRAC of n registers, soss ∈ L(C) with s being a
string ofm distinct names. Let the following be the transition path
in C accepting it,

q0
...
−→ · · ·

...
−→ q′0

α1−→ q′1
α2−→ · · ·

αm−→ q′m

with the subpath fromq′0 to q′m, call it p, accepting the second
copy of s. As all the symbols ofs have already appeared before,
none of theα’s is of the formi⊛ . Moreover, as all the symbols
in s are distinct, there cannot bei ∈ [n] and j < j′ such that
αj ∈ {i, i

•} andαj′ = i, asαj′ would then repeat a name already
present in the subpathp. Moreover, there cannot bei, i′ ∈ [n] and
j < j′ < j′′ such thatαj ∈ {i, i

•}, αj′ = i• andαj′′ = i′
•.

For suppose this were the case, and suppose that allα’s between
j andj′ are not in{i, i•}, and that allα’s betweenj′ andj′′ are
not in{i′• | i′ ∈ [n]}. Then,s = s1a1s2a2s3a3s4 with a1, a2, a3

corresponding toαj , αj′ , αj′′ respectively. Buti′• is also allowed
to accepta1, hence there iss′4 such thatss1a1s2a2s3a1s

′
4 ∈ L(C),

contradictingL(C) = L′. But now takingm > n + 1 we obtain a
contradiction.
The second part is shown in a similar manner, taking asA the
automaton accepting the language

L2,a0
= { a0a1 . . . ak ∈ A

∗ | ∀i 6= j. ai 6= aj }

for some chosena0. A similar argument to the above applies,
that is, we assumeL∗

2,a0
= L(C) for some FRAC and select

a0sa0s ∈ L
∗
2,a0

of size big enough to yield a contradiction.
Finally, it suffices to showL′= A

∗\L(B) for an RAB. By example
14 we have thatL′ = A

∗ \ L(A) for a WFRAA with no fresh
transitions. From that, we obtainB by applying lemma 15.

7. Symbolic methods
The automata we have introduced can be viewed in two different
manners: either as ordinary finite-state automata operating on con-
stant symbols and the symbols1, 1•, 1⊛ , . . . , n⊛ (for machines
with n registers), or as machines which recognise languages from
an alphabet comprising a finite set of constants and an infinite set
of names. We use the termsemantic levelfor the latter interpre-
tation, andsymbolic levelfor the former one. The semantic is of
course the intended interpretation but, on the other hand, viewing
our automata as operating on the finite alphabetLn is much more
convenient. In this section we examine methods from the symbolic
level which characterise semantic notions. More specifically, we
start by giving a simple proof of decidability of FRA-emptiness
by reducing the problem to FSA-emptiness. We then proceed to
our main point of focus, which is the definition of an appropriate
notion of symbolic bisimilarity that is equivalent to the notion of
bisimilarity we have been using thus far. As a corollary we prove
that bisimilarity is decidable for FRA’s.

Proposition 24. The emptiness problem is decidable for FRA’s.

Proof. Given an FRAA of n registers, construct its closureA, and
takeA′ to be the ordinary FSA with the same set of states, initial
state, transition relation and final states asA, and operating on the
set of labelsLn. We claim thatL(A) = ∅ ⇐⇒ L(A′) = ∅.

Indeed, ifA accepts a strings ∈ C ∪ A
∗ then, the accepting path

in A yields a strings′ ∈ L
∗
n, ands′ ∈ L(A′). Conversely, ifA′

accepts a strings′ then the accepting path inA′ is also a path inA
ending in an accepting state. From remark 9, we have that the latter
yields a strings ∈ L(A).

In order to define a symbolic notion of bisimulation equiva-
lence which captures its semantical analogue, we introduceaux-
iliary structures which record the way in which two registeras-
signments are related. In particular, they record the domains of the
assignments and those indices on which the two assignments coin-
cide. A symbolic bisimulation between two automata relatesstates
of the automata in specific record environments. At each bisimula-
tion step the records are updated according to the specific symbolic
transitions taking place. This symbolic description is shown to ac-
curately capture what happens at the semantical level.

We adapt Stark’s notion ofspan[28]. We call

(S1, ρ, S2) ∈ P([n1])× P([n1]× [n2]) ×P([n2])

a typed spanon (n1, n2) if:

• (i, j), (i′, j′) ∈ ρ implies thati = i′ ⇐⇒ j = j′,

• img(ρ) ⊆ S2, whereimg(ρ) = { i ∈ [n] | ∃j. (j, i) ∈ ρ },

• dom(ρ) ⊆ S1, wheredom(ρ) = { j ∈ [n] | ∃i. (j, i) ∈ ρ }.

We write [n1] ⇋ [n2] for the set of typed spans on(n1, n2). A
perhaps more intuitive way to view a typed span(S1, ρ, S2) is as a
triple of relations:

S1 →֒ dom(ρ)
≃
−→ img(ρ) ←֓ S2

By abuse of notation, we writeρ for the whole of(S1, ρ, S2), in
which case we also use the notationS1(ρ) = S1 andS2(ρ) = S2.
If ρ : [n1] ⇋ [n2] and(i, j) ∈ [n1]× [n2] thenρ[i↔ j] : [n1] ⇋

[n2] is the typed span:

(S1(ρ)∪{i}, ρ \ {(i′, j′) | i = i′∨j = j′} ∪ {(i, j)}, S2(ρ)∪{j})

A typed span(S1, ρ, S2) relates register assignmentsσ1 and σ2

just in caseρ is a bijection between the parts of[n1] and[n2] that
have common images underσ1 andσ2, whileSi keeps track of (the
indices of) all names inσi. Formally,ρ = σ1↔ σ2 if:

dom(σ1) = S1(ρ)∧dom(σ2) = S2(ρ)∧ρ = {(i, j) | σ1(i) = σ2(j)}

In this case,‖ρ‖ = |S1(ρ)| + |S2(ρ)| − |dom(ρ)| gives the total
number of names inσ1 andσ2.

Suppose, for example, that we have related stateq1 of automa-
tonA1 to stateq2 of A2 with respect toρ. If (q1, i, q

′
1) is a transi-

tion inA1 andi ∈ dom(ρ) then the name in registeri ofA1 (in the
semantical scenario captured by the symbolic description)resides
in registerρ(i) ofA2. Consequently,A2 can only simulate the tran-
sition by some(q2, ρ(i), q′2). On the other hand, if(q1, i

•, q′1) is a
transition inA1 then there are several factors to consider:

• Any private name ofA2 can be captured byi•. Hence,A2 needs
a simulating transition(q2, j, q

′
2) for everyj ∈ S2(ρ)\ img(ρ).

• Moreover,A2 needs a transition for all names locally fresh
to bothA1 andA2. This can be some(q2, j

•, q′2) but, under
circumstances, it may also be some(q2, j

⊛ , q′2).

In order for (q2, j
⊛ , q′2) to capture all names locally fresh toA1

andA2, it must be the case that all names in history are present
in the registers ofA1 andA2 (so that global freshness coincide
with mutual local freshness). IfA1 hasn1 registers andA2 has
n2, and assuming that the initial register assignments forA1 and
A2 contain the same names, the latter can only happen in case less
thann1 + n2 names appear in the history.
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We can therefore resolve the latter case by adding a component
which counts the names in the history, up ton1 + n2. In the
following we writen for n1+n2, and seth++ = ⌈h+1⌉n (= h+1
if h < n, andn otherwise).

Definition 25. Let Ai = 〈Qi, q0i, σ0i, δi, Fi〉 be FRA’s of ni

registers, fori = 1, 2, such thatimg(ρ01) = img(ρ02) = H0.
A symbolic simulationonA1 andA2 is a relation

R ⊆ Q1 × ([n] ∪ {0}) × ([n1] ⇋ [n2])×Q2

such that, whenever(q1, h, ρ, q2) ∈ R, if q1 ∈ F1 thenq2 ∈ F2

and if (q1, ℓ, q
′
1) ∈ δ1 then:

1. If ℓ ∈ C then(q2, ℓ, q
′
2) ∈ δ2 for some(q′1, h, ρ, q′2) ∈ R.

2. If ℓ = i and i ∈ dom(ρ) then (q2, ρ(i), q′2) ∈ δ2 for some
(q′1, h, ρ, q′2) ∈ R.

3. If ℓ = i and i ∈ S1(ρ) \ dom(ρ) then(q2, j
•, q′2) ∈ δ2 for

some(q′1, h, ρ[i↔ j], q′2) ∈ R.
4. If ℓ = i• then, for anyj ∈ S2(ρ) \ img(ρ), (q2, j, q

′
2) ∈ δ2 for

some(q′1, h, ρ[i↔ j], q′2) ∈ R.
5. If ℓ = i• andh = n or ‖ρ‖ < h then(q2, j

•, q′2) ∈ δ2 for
some(q′1, h, ρ[i↔ j], q′2) ∈ R.

6. If ℓ ∈ {i•, i⊛} then(q2, j
•, q′2) ∈ δ2, or (q2, j

⊛ , q′2) ∈ δ2, for
some(q′1, h

++, ρ[i↔ j], q′2) ∈ R.

Setting(S1, ρ, S2)
−1 = (S2, ρ

−1, S1), the inverse ofR is:

R−1 = { (q2, h, ρ, q1) | (q1, h, ρ−1, q2) ∈ R } .

We say thatR is a symbolic bisimulationif both R and R−1

are symbolic simulations. We say thatA1 andA2 are symbolic
bisimilar, writtenA1

s

∼ A2, if there is a symbolic bisimulationR
onA1 andA2 such that(q01, h0, ρ0, q02) ∈ R with h0 = |H0|
andρ0 = σ01↔ σ02.

In the following propositions let us assume the hypotheses of
Definition 25. Let us also writêH for H ∪H0, andn for n1 + n2.

Proposition 26. If R is a symbolic simulation onA1 andA2 then

R′ = { ((q1, σ1, H), (q2, σ2, H)) | (q1, h, ρ, q2) ∈ R

∧ ρ = σ1 ↔ σ2 ∧ h = ⌈|Ĥ |⌉n ∧ img(σi) ⊆ Ĥ }

is a simulation. Moreover, ifR is a symbolic bisimulation thenR′

is a bisimulation.

Proposition 27. If A1 and A2 are closed FRA’s andR is a
simulation onA1 andA2 then

R′ = { (q1, h, ρ, q2) | ((q1, σ1, H), (q2, σ2, H)) ∈ R

∧ ρ = σ1 ↔ σ2 ∧ h = ⌈|Ĥ |⌉n ∧ (qi, σi, H) reachable}

is a symbolic simulation. Moreover, ifR is a bisimulation thenR′

is a symbolic bisimulation.

Corollary 28. Bisimilarity is decidable for FRA’s.

Proof. LetAi = 〈Qi, q0i, σ0i, δi, Fi〉 be FRA’s ofni registers, for
i = 1, 2. Choose~a1,~a2 ∈ A

⊛ such thatimg(~ai) = img(σ0i) \
img(σ0ī), and formA′

1 = A1 ⊎ ~a2 andA′
2 = A2 ⊎ ~a1. Now

close these and obtain closed FRA’sA′
i. We haveAi ∼ A′

i. More-
over, by the previous propositions,A′

1 ∼ A
′
2 ⇐⇒ A′

1
s

∼ A′
2, and

henceA1 ∼ A2 ⇐⇒ A′
1

s

∼ A′
2 . As the symbolic bisimu-

lations betweenA′
1 andA′

2 live in a space bounded relatively to
|Q1|, |Q2|, n1, n2, we can search it exhaustively for such relations.
Hence, FRA-bisimilarity is decidable.

8. Automata for the π-calculus
We briefly recall the definition of theπ-calculus with early seman-
tics and strong bisimulation [14, 26]. We use the fixed setA of

names forchannel names, and letp range overprocess constants.
The setΠ of π-calculus processes is given as follows,

P, Q ::= 0 | āb.P | a(b).P | [a = b]P | νa.P |P+Q |P |Q | p(~a)

wherea, b ∈ A and~a ∈ A
∗. Name binding is defined as usual

(b is bound ina(b).P andνb.P ), and processes are equated up to
α-equivalence. We writefn(P ) for the set of names appearing free
in P . Process constants are accompanied bydefinitionsof the form
p(~a) = P , where~a ∈ A

⊛ andfn(P ) = img(~a). Moreover, each
occurrence ofp must beguarded, i.e. it must come in one of the
forms āb.p(~a) or a(b).p(~a).

The semantics of the calculus isearlyand is given via a labelled
transition relation with labels:

α ::= āb | ā(b) | ab | τ

Labels have free and bound occurrences of names, but they arenot
equated up toα-equivalence.

fn(āb) = fn(ab) = {a, b} fn(ā(b)) = {a} fn(τ ) = ∅

bn(āb) = bn(ab) = ∅ bn(ā(b)) = {b} bn(τ ) = ∅

We writen(α) for fn(α) ∪ bn(α). The transition relation is given
by the following rules (plus symmetric counterparts).

OUT

āb.P
āb
−→ P

MATCH
P

α
−→ P ′

[a = a]P
α
−→ P ′

INP
a(b).P

ac
−→ P{c/b}

REC
P{~a/~b}

α
−→ P ′

p(~a)
α
−→ P ′

p(~b)=P

OPEN
P

āb
−→ P ′

νb.P
ā(b)
−→ P ′

a 6=b RES
P

α
−→ P ′

νa.P
α
−→ νa.P ′

a/∈n(α)

SUM
P

α
−→ P ′

P+Q
α
−→ P ′

COMM
P

āb
−→ P ′ Q

ab
−→ Q′

P |Q
τ
−→ P ′ |Q′

PAR
P

α
−→ P ′

P |Q
α
−→ P ′ |Q

bn(α)∩fn(Q)=∅

CLOSE
P

ā(b)
−→ P ′ Q

ab
−→ Q′

P |Q
τ
−→ νb.(P ′ |Q′)

b/∈fn(Q)

Note how the side-conditions impose global freshness on names
created using theν constructor. We say that processQ is adescen-
dantof P if there is a series of transitions fromP to Q.

Bisimulation is the standard notion of equivalence in theπ-
calculus; here we shall consider strong bisimulation. A relation
R ⊆ Π × Π is called asimulation if, for all (P1, P2) ∈ R and
all α with bn(α) ∩ fn(P1, P2) = ∅, if P1

α
−→ P ′

1 thenP2
α
−→ P ′

2

for some(P ′
1, P

′
2) ∈ R. R is called abisimulation if both R and

R−1 are simulations. We say thatP andQ areπ-bisimilar, written
P

π

∼ Q, if there is a bisimulationR containing(P, Q).
We now define a version of theπ-calculus with extended syntax

that is directly representable by FRA’s. Since transitionsare multi-
symbol, and our automata can recognise one symbol at a time,
they will be decomposed to atomic ones. We add sets ofinput and
output processes which cater for the intermediate stages in these
decompositions. For example,

āb.P
āb
−→ P decomposes to āb.P

a
−→ b.P

b
−→ P

whereb.P is an output process. Output [resp. input] processes are
in the middle of sending [receiving] a name on a chosen channel.

Definition 29. Thexπ-calculussyntax is given by the setsΠ, Πout

andΠinp, with elements:

P, Q ::= 0 | āb.P | a(b).P | [a = b]P | νa.P | P+Q | P |Q | p(~a)

Pout ::= b.P | νa.Pout | P |Pout | Pout |P

Pinp ::= (b).P | νa.Pinp | P |Pinp | Pinp |P

8



wherea, b ∈ A and~a ∈ A
∗. We write Π̂ for Π ∪ Πout ∪ Πinp,

and letP̂ , Q̂, . . . range over its elements, which we equate up to
α-equivalence. Name binding is defined as expected:b is bound in
νb.P̂ , a(b).P and(b).P .

It is handy to introduce here some very basic notions from the
theory of nominal sets [8, 23]. We callnominal structureany struc-
ture which may contain names (i.e. elements ofA), and we de-
note byPerm(A) the set of finite permutations onA (i.e. bijections
π : A → A such thatπ(a) 6= a for finitely manya ∈ A). For
example,id = {(a, a) | a ∈ A} ∈ Perm(A). We shall define for
each setX of nominal structures of interest a function

· : Perm(A)×X → X

such thatπ · (π′ ·x) = (π ◦π′) ·x andid ·x = x, for all x ∈ X and
π, π′ ∈ Perm(A). X will be called anominal setif all its elements
involve finitely many names, that is, for allx ∈ X there is a finite
set S ⊆ A such thatπ · x = x whenever∀a ∈ S.π(a) = a.
For example,A is a nominal set with actionπ · a = π(a), and
so isPfn(A) with action π · S = {π(a) | a ∈ S}. Also, any
set of non-nominal structures is a nominal set with trivial action
π · x = x. More interestingly, ifX is a nominal set then so is
X∗ with action π · x1 . . . xn = (π · x1) . . . (π · xn). Also, if X
is a nominal set then so is the set

S

n∈ω([n] → X) with action
π · f = {(i, π · x) | (i, x) ∈ f}.

Thus,Π, Πout, Πinp, Π̂ are all nominal sets. For example,

π · a(b). bc̄.0 = a′(b′). b′c̄′.0

wherea′=π(a), b′=π(b), c′=π(c) (note that permutations equally
affect bound and free name occurrences). Similarly toX∗, we have
thatX × Y is a nominal set wheneverX andY are. Note that if
X is a nominal set andX ′ ⊆ X is such thatπ · x ∈ X ′, for all
x ∈ X ′ andπ ∈ Perm(A), thenX ′ is also a nominal set with the
inherited action. Hence, the following set is a nominal set.

K̂ = { (σ, P̂ ) | σ ∈
[

n∈ω
Regn ∧ P̂ ∈ Π̂∧ fn(P̂ ) ⊆ img(σ) } (1)

We writeK for the restriction ofK̂ to elements(σ, P̂ ) with P̂ ∈ Π.
Finally, from a nominal setX we can derive its set oforbits:

O(X) = {O(x) | x ∈ X} where O(x) = {π·x | π ∈ Perm(A)}.

Note that eachO(x) is a nominal subset ofX.
The technology of the previous paragraph is used for defining

the transition system of the extended calculus. In contrastto the
ordinary π-calculus, the transition relation we define is finitely
branching, and this is achieved by considering processes-in-context
and specifying channels by their context indices instead oftheir
names. More specifically, we letO(K̂) be the set of processes-in-
context. Each suchO(σ, P̂ ) is writtenσ ⊢ P̂ .

Sinceσ ⊢ P̂ = π·σ ⊢ π·P̂ , for any permutationπ, what
matters inσ ⊢ P̂ is not the specific names occurring inσ or P ,
but only their index inσ. For example,

{(1, a), (2, c)} ⊢ a(b). bc̄.0 = {(1, a′), (2, c′)} ⊢ a′(b). bc̄′.0

and in essence both of these are specified by an expression e.g. like
({(1, ◦), (2, ◦)}, 1(b). b2̄.0). Borrowing notation from FRA’s, we
build up on the indices idea and use transition labels of the form
i•/i⊛ for fresh inputs/outputs.

Definition 30. The semantics of thexπ-calculus is given via a
labelled transition system with set of statesO(K̂) and labels:

α ::= i | i• | i⊛ | τ | īj | īj⊛ | ij | ij•

wherei, j ∈ ω. The transition relation is given by the rules in Table1.

Note thatσ ⊢ P̂
ℓ
−→ σ′ ⊢ P̂ ′ implies |σ| = |σ′|. Some further

remarks on reduction:

• Transitions restricted toΠ use onlyτ and double labels, i.e.
from { īj, īj⊛ , ij, ij• | i, j ∈ ω }.

• Inputs are decomposed as known inputs (INP2A) and locally
fresh ones (INP2B), and are therefore finitely branching. The

side-conditions impose that, wheneverσ ⊢ Pinp
i•

−→ σ′ ⊢ P ,
thenσ′ = σ[i 7→ a], a /∈ img(σ) andi is the least index such
thatσ(i) /∈ fn(P ).6 Similar finiteness and minimisation apply
to bound outputs (OPEN).

• Note that the CLOSE rule involves bound outputs, hence glob-
ally fresh transitions on the output side. On the input side,it
is then necessary to have a matching locally fresh transition:
global freshness implies local freshness.

Example 31. For eacha ∈ A, let σa = {(1, a)} and

Pa = νb. p(ab) with definition p(ab) = āb. νc. p(bc) .

In theπ-calculus,Pa induces an infinitely-branching, infinite-path
transition graph:

...
...

...

Pa

ā(b)
//

ā(b′)

55
l

l
l

l
l

l
l

l
l

l

Pb

b̄(c)
//

b̄(c′)

55
l

l
l

l
l

l
l

l
l

l

Pc

c̄(d)
//

c̄(d′)

55
l

l
l

l
l

l
l

l
l

l

· · ·

In the extended calculus,Pa induces the following transition graph,

σa ⊢ Pa
1
−→ σa ⊢ νb. b. νc. p(bc)

1⊛

−→ σb ⊢ Pb
1
−→ · · ·

which is economic by branching once at each step. In fact, setting
Pout = νb. b. νc. p(bc), and sinceσa ⊢ Pa = σb ⊢ Pb and
σa ⊢ Pout = σb ⊢ Pout for all a, b ∈ A, the graph above contains
just two nodes:

σa ⊢ Pa

1
((

1⊛

hh σa ⊢ Pout

and using double labels we get simplyσa ⊢ PaP 11⊛cc .

The way in which the two transition relations are related is given
by the following lemma, which verifies the intuitions of Table 1.

Lemma 32. Letσ, σ′ be registers, andα, α̂ be labels ofπ andxπ
respectively. For allP, P ′ ∈ Π with fn(P ) ⊆ img(σ):

• if σ ⊢ P
α̂
−→ σ′ ⊢ P ′ thenP

α
−→ P ′,

• if P
α
−→ P ′ thenσ ⊢ P

α̂
−→ σ′ ⊢ P ′;

where either̂α = α = τ andσ = σ′; or α̂ = īj/ij, α = āb/ab,
σ(i) = a, σ(j) = b andσ′ = σ; or α̂ = īj⊛/ij•, α = ā(b)/ab,
σ(i) = a, σ′ = σ[j 7→ b] andj = min{j | σ(j) /∈ fn(P ′)}.

There is a straightforward passage from thexπ-calculus to
FRA’s: states are taken fromO(K̂), states fromO(K) are final,
and the transition relation is the one given in Table 1 (omitting dou-
ble transitions).7 However, the usual (symbolic) notion of bisimu-
lation between FRA’s is not appropriate because it is definedfor
single-step transitions and, moreover, does not take into account
the distinction between inputs and outputs. We therefore define the
following notion.

Definition 33. An n-simulation is a relation

R ⊆ O(K) × ([n] ⇋ [n]) ×O(K)

6 Although not essential, minimisation saves us from unnecessary branching.
7 Note that this translation typically yields infinite FRA’s —but we shall
examine classes of processes where the resulting FRA’s are finite in the end
of this section.
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INP1
σ ⊢ a(b).P

i
−→ σ ⊢ (b).P

σ(i)=a MATCH
σ ⊢ P

α
−→ σ ⊢ P̂ ′

σ ⊢ [a = a]P
α
−→ σ ⊢ P̂ ′

SUM
σ ⊢ P

α
−→ σ ⊢ P̂ ′

σ ⊢ P+Q
α
−→ σ ⊢ P̂ ′

INP2A

σ ⊢ (b).P
i
−→ σ ⊢ P{a/b}

σ(i)=a INP2B

σ ⊢ (b).P
i•

−→ σ[i 7→ b] ⊢ P
i=min{i | σ(i)/∈fn(P )}

OUT1
σ ⊢ āb.P

i
−→ σ ⊢ b.P

σ(i)=a OUT2
σ ⊢ b.P

i
−→ σ ⊢ P

σ(i)=b REC
σ ⊢ P{~a/~b}

α
−→ σ ⊢ P̂ ′

σ ⊢ p(~a)
α
−→ σ ⊢ P̂ ′

p(~b)=P

RES
(σ + a) ⊢ P̂

α
−→ (σ′ + a) ⊢ P̂ ′

σ ⊢ νa.P̂
α
−→ σ′ ⊢ νa.P̂ ′

α6=(|σ|+1) OPEN
σ[i 7→ a] ⊢ Pout

i
−→ σ[i 7→ a] ⊢ P

σ ⊢ νa.Pout
i⊛

−→ σ[i 7→ a] ⊢ P

i=min{i |σ(i)/∈fn(P )}

PAR1 σ ⊢ P̂
α
−→ σ ⊢ P̂ ′

σ ⊢ P̂ |Q
α
−→ σ ⊢ P̂ ′ |Q

α= i/τ PAR2
σ ⊢ P̂

i•/i⊛

−→ σ[i 7→ b] ⊢ P ′

σ ⊢ P̂ |Q
j•/j⊛

−→ σ[j 7→ b] ⊢ P ′ |Q

j=min{j |σ(j)/∈fn(P ′,Q)}

COMM
σ ⊢ P

īj
−→ σ ⊢ P ′ σ ⊢ Q

ij
−→ σ ⊢ Q′

σ ⊢ P |Q
τ
−→ σ ⊢ P ′ |Q′

CLOSE
(♯ + σ) ⊢ P

ī1⊛

−→ (b + σ) ⊢ P ′ (♯ + σ) ⊢ Q
i1•

−→ (b + σ) ⊢ Q′

σ ⊢ P |Q
τ
−→ σ ⊢ νb.(P ′ |Q′)

DBLOUT
σ ⊢ P

i
−→ σ ⊢ Pout

j/j⊛

−→ σ′ ⊢ P ′

σ ⊢ P
īj/īj⊛

−−−−→ σ′ ⊢ P ′

DBL INP
σ ⊢ P

i
−→ σ ⊢ Pinp

j/j•

−→ σ′ ⊢ P ′

σ ⊢ P
ij/ij•

−−−−→ σ′ ⊢ P ′

Table 1. The transition relation for thexπ-calculus (symmetric counterparts of SUM , PAR, COMM , CLOSE omitted8).

such that if(σ1 ⊢ P1, ρ, σ2 ⊢ P2) ∈ R thenσ1, σ2 ∈ Regn and

σ1 ⊢ P1
α
−→ σ′

1 ⊢ P ′
1 implies thatσ2 ⊢ P2

α′

−→ σ′
2 ⊢ P ′

2 for
some(σ′

1 ⊢ P ′
1, ρ

′, σ′
2 ⊢ P ′

2) ∈ R such that one of the following is
the case, withi ∈ dom(ρ):

• α = α′ = τ andρ′ = ρ;
• α = ij, j ∈ dom(ρ), α′ = ρ(i)ρ(j) andρ′ = ρ;
• α = ij, j /∈ dom(ρ), α′ = ρ(i)k• andρ′ = ρ[j↔ k];
• α = ij•, α′ = ρ(i)k•, ρ′ = ρ[j↔ k] and,

for all k′ ∈ S2(ρ) \ img(ρ), σ2 ⊢ P2
ρ(i)k′

−→ σ2 ⊢ P ′
2 for some

(σ′
1 ⊢ P ′

1, ρ[j ↔ k′], σ2 ⊢ P ′
2) ∈ R;

• α = īj, j ∈ dom(ρ), α′ = ρ(i)ρ(j) andρ′ = ρ;
• α = īj⊛ , α′ = ρ(i)k⊛ andρ′ = ρ[j↔ k].

R is called ann-bisimulation if bothR andR−1 aren-simulations.
P1 and P2 are n-bisimilar, written P1

n

∼ P2, if there is ann-
bisimulationR containing(σ01 ⊢ P1, σ01 ↔ σ02, σ02 ⊢ P2),
for someσ01, σ02 with img(σ01) = fn(P1), img(σ02) = fn(P2).

We say that a process isn-containedif all its descendants have
less thann free names.

Proposition 34. For all n-containedP, Q, P
π

∼ Q iff P
n

∼ Q.

Proof. The proof proceeds by showing that ifR is a simulation for
theπ-calculus then

R′ = { (σ1 ⊢ P1, ρ, σ2 ⊢ P2) | (P1, P2) ∈ R ∧ ρ = σ1↔ σ2 }

with P1, P2 n-contained andσ1, σ2 ∈ Regn is an n-simulation
and, conversely, ifR is ann-simulation then

R′ = { (P1, P2) | ∃σ1, σ2. (σ1 ⊢ P1, σ1↔ σ2, σ2 ⊢ P2) ∈ R }

with P1, P2 n-contained is a simulation forπ.

8 note:σ+v = σ∪{(|σ|+1, v)}, v+σ = {(1, v)}∪{(i+1, v′) | (i, v′) ∈ σ}.

The set of reducts of a given process-in-context is in general in-
finite, even if the process isn-contained. The following result pro-
vides sufficient conditions for excluding such infinite behaviours.
We say that a process hasfinite controlif no parallel compositions
appear in its recursive definitions. A process isν-strict if all its
subprocesses of the formνa.P satisfya ∈ fn(P ).

Proposition 35. If P0 ∈ Π has finite control and all its descen-
dants areν-strict, then there are someM ∈ ω, σ0 ∈ RegM and a
finiteS ⊆ O(K) such thatP0 isM -contained,(σ0 ⊢ P0) ∈ S and
for all (σ ⊢ P ) ∈ S if σ ⊢ P

α
−→ σ′ ⊢ P ′ then(σ′ ⊢ P ′) ∈ S.

Proof. Suppose (WLOG) thatP0 invokes definitionspi(~ai) = Pi,
i ∈ [N ] for someN , and takeM = |P0| ×max{ |Pi| | i ∈ [N ] }
for the size function which counts a process’ occurrences of0’s, p’s
and names, free or bound (but not binding): e.g.|āb.P | = 2 + |P |,
|a(b).P | = 1 + |P |, |νa.P | = |P |, |p(~a)| = 1 + |~a| and|0| = 1.
If Q is a descendant ofP then |Q| ≤ M as a process may
only increase its size by recursion and, asP0 has finite control,
recursions cannot obtain size greater thanmax{ |Pi| | i ∈ [N ] }.
But then, because all descendants ofP0 areν-strict, their number
of ν-abstractions is bounded byM , and hence they all have length
(number of symbols or constructors) bounded relatively toM .
They are still unboundedly many, due to different choices offree
variables. But since each descendant can be matched with a context
from RegM , the number of the resulting processes-in-context is
bounded relatively toM . We collect all these inS.

Corollary 36. Bisimilarity is decidable inΠ when restricted to
processes with finite control.

Proof. For any such processesP1, P2 ∈ Π, by the previous propo-
sition and after equating processes up to non-strictν-abstractions,
we obtainM -transition graphs with sizes bounded relatively toP1

andP2. Clearly,P1
M

∼ P2 iff there is anM -bisimulation between
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those graphs. As those bisimulations live in a space boundedrela-
tively to the sizes ofP1 andP2, we can search it exhaustively for
such relations.

Equating processes up tostructural congruence[14], the above
results can be further strengthened to processes withfinite degree
of parallelism, in a similar manner to [4].

9. Further directions
We have introduced an abstract computational paradigm and estab-
lished its key properties, laying the ground for further research. The
next logical step is to examine concrete applications of FRA’s to
the description of computation with names, either in the direction
of mobile calculi or that of programming languages, relating this
approach to existing higher-level approaches. A first such advance
has been recently accomplished in [19] by constructing a model
of a low-order restriction of Reduced ML (a fragment of ML with
ground-type integer references) representable in a variant of FRA’s
where labels contain store information. This was achieved by rep-
resenting the fully abstract game semantics of the language[18].

On the foundational side, the study of theπ-calculus in FRA’s
revealed that there is a notion of polarity inherent in computation
with names. In particular, the examined FRA’s do not mix locally
with globally fresh transitions, and this is clearly depicted in the
partition Π̂ = Πinp ⊎ Πout ⊎ Π. A similar observation applies to
FRA’s describing Reduced ML [19]. There, the states are parti-
tioned in P-states (for Proponent/Program) and O-states (for Oppo-
nent/Environment); only P-states are allowed to perform globally
fresh transitions, and only O-states can do locally fresh ones. In-
tuitively, the only notion of freshness that can be observedon the
program’s side is local freshness, whereas the environmentshould
be assumed to have the memory needed in order to observe global
freshness. These observations suggest that a notion ofpolarised
FRA, where states are partitioned as above, is relevant and should
be further pursued. In the polarised setting, symbolic bisimula-
tions are simplified as there is no longer need for anh component
(cf. Definitions 25 and 33).

A potential criticism towards FRA’s concerns the fact that they
fail to satisfy closure under concatenation and Kleene star(cf. Sec-
tion 6). We find these non-closure results rather expected asFRA’s
are history-sensitive machines. On the other hand, FRA’s seem to
be closed under thenominal versionsof concatenation and Kleene
star, as recently introduced by Gabbay and Ciancia [9]. The pre-
cise connections between FRA’s and regular languages with name-
restriction [9] are the subject of ongoing research.

Finally, some important questions have still not been answered.
For example, we have not considered deterministic versionsof
FRA’s, nor examined whether FRA’s can be determinised. Assum-
ing that in a deterministic FRA to each input string corresponds a
unique path, we can see that e.g. the FRA accepting the language

L = { a1 · · · aka | a ∈ {a1, . . . , ak} ∧ ∀i 6= j. ai 6= aj }

has no deterministic equivalent. Other directions for further re-
search concern minimisation of FRA’s (recently examined for
FMA’s [2]) and the evident connections to HD-automata. More-
over, several possible extensions of FRA’s are of interest,e.g. vari-
ants with labels (data words), stores, or pushdown variants.
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A. Proofs from section 6
Proof of Lemma 19.Let A = 〈Q, q0, σ0, δ, F 〉. The construction
of B = 〈Q′, q′0, σ

′
0, δ

′, F ′〉 follows closely [11]. In particular,
each transition ofA involving a name induces an assignment of
that name in the extra register ofB. If the transition were a fresh
assignment then this would result in the name occurring inB just
once after assignment, otherwise it would occur twice. As the actual
extra register ofB changes during this process we add an extra
component in states to remember it.
We setQ′ = Q × ([n + 1]

∼=
−→ [n + 1]) and write elements of

Q′ as (q, π). Moreover,q′0 = (q0, id), σ′
0 = σ0[n+1 7→ ♯] and

F ′ = {(q, π) | q ∈ F}. Finally:

δ′ = { ((q1, π), ℓ, (q2, π)) | ℓ ∈ C ∧ (q1, ℓ, q2) ∈ δ }

∪ { (q′1, ({π(n+1)}, {π(i), π(n+1)}), (q2, π)) | (q1, i, q2) ∈ δ }

∪ { (q′1, ({π(n+1)}, {π(n+1)}), (q2, π
′)) | (q1, i

•, q2) ∈ δ }

∪ { (q′1, ({π(n+1)}, {π(n+1)}, [n]), (q2, π
′)) | (q1, i

⊛ , q2) ∈ δ }

whereq′1 = (q1, π) andπ′ = (π(i) ↔ π(n+1)) ◦ π (we write
(k↔ j) for the permutation that swapsk andj). We can show that
the following relation is a bisimulation and therefore thatA ∼ B.

R = { ((q, σ, H), ((q, π), σ′, H)) | ∀i ∈ [n]. σ(i) = σ′(π(i)) }

Proof of Lemma 20.LetA = 〈Q, q0, σ0, δ, F 〉 and constructB =
〈Q′, q′0, σ

′
0, δ

′, F ′〉 as follows. The idea is to keep in the extra
memory registers ofB a copy of the initial configurationσ0 which
is never touched by assignments. Thus, wheneverA wants to make
a transition with label(S, T, A), B will simulate it by a transition
(S, S, [n]) and transitions of the form(S, T ∪ Ta) whereTa ⊆
{n+1, ..., 2n}, a ∈ σ0([n] \ A) and a is not in the history. In
order to accomplish this we need to enrich states with information
regarding whether the names inimg(σ0) appear in the history.
Therefore, we setQ′ = Q × P(img(σ0)), q′0 = (q0, ∅), σ′

0 =
σ0 + σ0, F ′ = {(q, I) | q ∈ F} and:

δ′ = { ((q, I), ℓ, (q′, I)) | ℓ ∈ C ∧ (q, ℓ, q′) ∈ δ }

∪ { ((q, I), (S, T ), (q′, I)) | (q, (S, T ), q′) ∈ δ }

∪ { ((q, I), (S, T ∪ Ta), (q′, I ∪ {a})) | (q, (S, T ), q′) ∈ δ }

∪ { ((q, I), (S, S, [n]), (q′, I)) | (q, (S, S, A), q′) ∈ δ }

∪ { ((q, I), (S, T ∪ Ta′), (q′, I ∪ {a′})) | (q, (S, T, A), q′) ∈ δ }

where a ∈ img(σ0), Ta = { (n + i) ∈ [2n] | σ0(i) = a },
a′ ∈ σ0([n] \ A) \ I , andTa′ asTa. We can check that

R = { ((q, σ, H), ((q, I), σ′, H)) | I = H∩img(σ0)∧σ′ = σ+σ0 }

is a bisimulation and therefore thatA ∼ B.

Proof of Lemma 21.LetA = 〈Q, q0, σ0, δ, F 〉 and constructB =
〈Q′, q′0, σ

′
0, δ

′, F ′〉 by settingQ′ = Q× ([n]→ [n]) and selecting
f0, σ

′
0 such thatimg(σ0) = img(σ′

0) andσ0 = σ′
0 ◦ f0. Moreover,

setq′0 = (q0, f0), F ′ = {(q, f) | q ∈ F} and:

δ′ = { ((q, f), ℓ, (q′, f)) | ℓ ∈ C ∧ (q, ℓ, q′) ∈ δ }

∪ { ((q, f), i, (q′, f ′)) | f(T \ S) = {i} ∧ (q, (S, T ), q′) ∈ δ }

∪ { ((q, f), i, (q′, f ′)) | f−1(i) ⊆ S ∧ (q, (S,S), q′) ∈ δ }

∪ { ((q, f), i•, (q′, f ′)) | f−1(i) ⊆ S ∧ (q, (S,S), q′) ∈ δ }

∪ { ((q, f), i⊛ , (q′, f ′)) | f−1(i) ⊆ S ∧ (q, (S, S, [n]), q′) ∈ δ }

with f ′ = f [S 7→ i]. Now, the following is a bisimulation

R = { ((q, σ, H), ((q, f), σ′, H)) | σ = σ′ ◦ f }

and henceA ∼ B.
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B. Proofs from section 7
Proof of Proposition 26.It will suffice to check only non-constant
transitions. So let((q1, σ1, H), (q2, σ2, H)) ∈ R′ due to some
(q1, h, ρ, q2) ∈ R and suppose that(q1, σ1, H)

a
−→δ1 (q′1, σ

′
1, H

′)
with H ′ = H ∪ {a}. We do case analysis ona. Below we writeρ′

for ρ[i↔ j].
• a ∈ img(σ1) ∩ img(σ2), saya = σ1(i) = σ2(j). Then, it is
necessary that(q1, i, q

′
1) ∈ δ1 andσ′

1 = σ1. Also, ρ = σ1 ↔ σ2

implies(i, j) ∈ ρ, so(q2, j, q
′
2) ∈ δ2 for some(q′1, h, ρ, q′2) ∈ R.

Thus,(q2, σ2, H)
a
−→δ2 (q′2, σ2, H

′) and, noting that̂H ′ = Ĥ so
h = ⌈|Ĥ ′|⌉n, we can see that((q′1, σ1, H

′), (q′2, σ2, H
′)) ∈ R′.

• a ∈ img(σ1)\ img(σ2), saya = σ1(i). Then, again(q1, i, q
′
1) ∈

δ1 andσ′
1 = σ1, but i ∈ S1(ρ) \ dom(ρ). Thus,(q2, j

•, q′2) ∈ δ2

for some(q′1, h, ρ′, q′2) ∈ R. Thus,(q2, σ2, H)
a
−→δ2 (q′2, σ

′
2, H

′),
σ′

2 = σ2[j 7→ a]. Noting thatρ′ = σ1↔σ′
2 andĤ ′ = Ĥ, we have

that((q′1, σ1, H
′), (q′2, σ

′
2, H

′)) ∈ R′.
• a ∈ img(σ2)\ img(σ1), saya = σ2(j). Sincea ∈ Ĥ \ img(σ1),
we have some(q1, i

•, q′1) ∈ δ1, andσ′
1 = σ1[i 7→ a]. More-

over, j ∈ S2(ρ) \ img(ρ) and therefore(q2, j, q
′
2 ∈ δ2 for some

(q′1, h, ρ′, q′2) ∈ R. Thus,(q2, σ2, H)
a
−→δ2 (q′2, σ2, H

′) and we
can see that((q′1, σ

′
1, H

′), (q′2, σ2, H
′)) ∈ R′.

• a ∈ Ĥ \ (img(σ2) ∪ img(σ1)), so(q1, i
•, q′1) ∈ δ1, andσ′

1 =
σ1[i 7→ a]. If h < n then‖ρ‖ = |img(σ1)∪ img(σ2)| < |Ĥ | = h.
Thus, (q2, j

•, q2) ∈ δ2 for some (q′1, h, ρ′, q′2) ∈ R, and so
(q2, σ2, H)

a
−→δ2 (q′2, σ

′
2, H

′), σ′
2 = σ2[j 7→ a]. We haveρ′ =

σ′
1↔σ′

2 andh = ⌈|Ĥ ′|⌉n, thus((q′1, σ
′
1, H

′), (q′2, σ
′
2, H

′)) ∈ R′.
• a /∈ Ĥ and say transition is due to(q1, i

•/i⊛ , q′1) ∈ δ1, soσ′
1 =

σ1[i 7→ a]. Then,(q2, j
•/j⊛ , q′2) ∈ δ2 for some(q′1, h

++, ρ′, q′2) ∈
R, so(q2, σ2, H)

a
−→δ2 (q′2, σ

′
2, H

′), σ′
2 = σ2[j 7→ a]. We have

thath++ = ⌈|Ĥ ′|⌉n, so((q′1, σ
′
1, H

′), (q′2, σ
′
2, H

′)) ∈ R′.
Thus, R′ is a simulation. IfR is a symbolic bisimulation then,
by symmetry,R′ is a bisimulation. Finally, if(q01, |H0|, σ01 ↔
σ02, q02) ∈ R then((q01, σ01, ∅), (q02, σ02, ∅)) ∈ R′.

Proof of Proposition 27.We check non-constant transitions. Let
(q1, h, ρ, q2) ∈ R′, due to some((q1, σ1, H), (q2, σ2, H)) ∈ R
and suppose that(q1, ℓ, q

′
1) ∈ δ1. We do case analysis onℓ. Below

we writeH ′ for H ∪ {a}, andρ′ for ρ[i↔ j].
• If ℓ = i then, by closure,(q1, σ1, H)

a
−→δ1 (q′1, σ1, H

′) with
a = σ1(i), and hence(q2, σ2, H)

a
−→δ2 (q′2, σ

′
2, H

′) for some
((q′1, σ1, H

′), (q′2, σ
′
2, H

′)) ∈ R. If i ∈ dom(ρ), say(i, j) ∈ ρ,
then a ∈ img(σ2) and it must be(q2, j, q

′
2) ∈ δ2, σ′

2 = σ2.
We can see that(q′1, h, ρ, q′2) ∈ R′. If i ∈ S1(ρ) \ dom(ρ)
then a /∈ img(σ2) and there is some(q2, j

•, q′2) ∈ δ2, and
σ′

2 = σ2[j 7→ a]. We have that(q′1, h, ρ′, q′2) ∈ R′.
• If ℓ = i• then, for eacha /∈ img(σ1), (q1, σ1, H)

a
−→δ1

(q′1, σ
′
1, H

′), σ′
1 = σ1[i 7→ a], and therefore(q2, σ2, H)

a
−→δ2

(q′2, σ
′
2, H

′) for some((q′1, σ
′
1, H

′), (q′2, σ
′
2, H

′)) ∈ R.
For anyj ∈ S2(ρ) \ img(ρ), σ2(j) /∈ img(σ1), so we can take
a = σ2(j). Then, we must have(q2, j, q

′
2) ∈ δ2, σ′

2 = σ2, and we
can check that(q′1, h, ρ′, q′2) ∈ R′.
If h = n or ‖ρ‖ < h then we can choosea ∈ Ĥ \ (img(σ1) ∪
img(σ2)). Thus, we have some(q2, j

•, q′2) ∈ δ2, σ′
2 = σ2[j 7→ a].

Noting thatĤ ′ = Ĥ andρ′ = σ′
1↔σ′

2, we get(q′1, h, ρ′, q′2) ∈ R′.
Finally, if we choosea /∈ Ĥ then there is some(q2, j

•/j⊛ , q′2) ∈
δ2, and σ′

2 = σ2[j 7→ a]. We have thatρ′ = σ′
1 ↔ σ′

2 and
Ĥ ′ = Ĥ⊎{a}, thush++ = ⌈|Ĥ ′|⌉n. Hence,(q′1, h

++, ρ′, q′2) ∈ R′.
• If ℓ = i⊛ then we work as in the last case above.
Thus,R′ is a symbolic simulation. IfR is a bisimulation then, by
symmetry,R′ is a symbolic bisimulation. Finally, if((q01, σ01, ∅),
(q02, σ02, ∅)) ∈ R then(q01, |H0|, σ01↔ σ02, q02) ∈ R′.
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