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Abstract
We identified 14 emerging and poorly understood threats and opportunities for ad-
dressing the global conservation of freshwater mussels over the next decade. A panel 
of 17 researchers and stakeholders from six continents submitted a total of 56 topics 
that were ranked and prioritized using a consensus-building Delphi technique. Our 
14 priority topics fell into five broad themes (autecology, population dynamics, global 
stressors, global diversity, and ecosystem services) and included understanding diets 
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1  |  INTRODUC TION

Freshwater mussels (Bivalvia, Unionida; hereafter, mussels) are im-
portant ecosystem engineers in many of the world's rivers, canals, 
lakes, and ponds, yet globally they represent one of the most im-
periled taxonomic groups (Böhm et al.,  2021). Mussels can domi-
nate the benthic biomass of rivers (Newton et al., 2011) and their 
filtration of water, coupled with the creation of biodeposits, plays 
a key role in transferring suspended material from the water col-
umn to the benthos, thus influencing water clarity, primary and sec-
ondary production, biogeochemical cycles, and sedimentation rates 
(Vaughn,  2018). Their shells provide substrate for epiphytes and 
refuge for macrozoobenthic taxa (Ilarri et al., 2018). The important 
role of mussels in freshwater ecosystems is also demonstrated by 
the higher richness of macroinvertebrates in locations with higher 
mussel densities (Aldridge et al.,  2007; Chowdhury et al.,  2016; 
McCasker & Humphries, 2021; Vaughn & Spooner, 2006).

In recent decades, mussels have experienced precipitous de-
clines, with both loss of species (Bogan,  1993) and reductions in 
abundance (Karatayev et al.,  2012). Under current IUCN assess-
ments, 127 of the approximately 300 described species of mussels 
from North America are considered extinct, possibly extinct, criti-
cally endangered, endangered, or vulnerable (IUCN, 2022). Seven of 
Europe's 16 described mussel species fall within the same risk cat-
egories (Lopes-Lima et al., 2017). While declines have also been re-
ported for the neotropics, afrotropics, Indotropics, and Australasia, 
lack of comprehensive study means that the conservation status of 
mussels in these ecoregions remains poorly understood (Lopes-Lima 
et al., 2018).

Understanding the drivers of mussel declines has received in-
creasing attention (e.g., Ferreira-Rodriguez et al.,  2019), although 
research is strongly biased toward Europe and North America. 
Deforestation and the proliferation of oil palm plantations in 
Southeast Asia can cause increased channel sedimentation and 
change environmental characteristics (Gallardo et al., 2018). Habitat 
alteration, such as through dam construction, can affect sediment 
transport, temperature, flow, and oxygen regimes, and alter distri-
butions of host fishes (Sousa et al., 2020; Winemiller et al., 2016). 
Droughts driven through climate change, dam management, and 
over-abstraction can lead to mass mortalities (Sousa et al.,  2018, 
2020; Vaughn et al.,  2015). Invasive non-native species, such as 
zebra mussels (Dreissena polymorpha), can reduce body condition 
(Sousa et al., 2011) and extirpate local populations of unionids (Lucy 
et al.,  2014). Selective predation by introduced mammals, such as 
muskrat, has been implicated in population declines and changes in 
species compositions (Diggins & Stewart,  2000). Over-harvesting 
for food and pearls has resulted in population losses in Asia and 
the Americas (Anthony & Downing, 2001; Zhang et al., 2013), and 
physical habitat destruction, such as through cattle trampling, is 
considered a substantial threat in Australia (Walker et al., 2014). The 
remarkable life history of freshwater mussels exposes them to addi-
tional indirect threats: mussels produce parasitic larvae (glochidia) 
that must successfully parasitize a host (typically a fish) upon which 
they metamorphose before excysting as juveniles some weeks or 
months later (Modesto et al., 2018). Initially, the juvenile mussel de-
posit feeds within the sediment and then transitions toward suspen-
sion feeding once its siphons form, resulting in the mussel moving up 
toward the sediment–water interface (Araujo et al., 2018). This life 
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throughout mussel life history; identifying the drivers of population declines; defining 
metrics for quantifying mussel health; assessing the role of predators, parasites, and 
disease; informed guidance on the risks and opportunities for captive breeding and 
translocations; the loss of mussel–fish co-evolutionary relationships; assessing the 
effects of increasing surface water changes; understanding the effects of sand and 
aggregate mining; understanding the effects of drug pollution and other emerging 
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history means that mussels are vulnerable to declines in their host 
fishes and deterioration of sediment and water chemistry. While 
some of the threats to mussels are well known, the cause of many 
declines remains enigmatic (Haag, 2019).

To halt and reverse declines, there is an increasing interest in 
projects that focus on propagation and reintroduction, particularly 
in North America (e.g., Patterson, Mair, et al., 2018) and Europe (e.g., 
Gum et al., 2011; Patterson, Mair, et al., 2018). The future conser-
vation of mussels on a global scale will depend on a better under-
standing of the current causes of decline, identifying future threats, 
and embracing emerging tools. To meet such needs, horizon scan-
ning has developed as a systematic approach to identify and prior-
itize emerging trends, challenges, and opportunities (Sutherland & 
Woodroof, 2009) and has successfully been implemented in several 
fields including conservation (Sutherland et al., 2021) and invasive 
species (Ricciardi et al., 2017). We assembled a team of 17 freshwa-
ter mussel researchers and stakeholders from six continents, rep-
resenting a wide range of research and management interests. We 
used consensus building (Box 1) to identify 14 priority topics that 
could drive a global research agenda for mussel conservation over 
the next 10 years. The topics are grouped around broad themes and 
are not in an order of importance.

2  |  THEME: AUTECOLOGY

Four of our topics related to the better understanding of factors 
affecting mussel autecology, for which future research should par-
ticularly focus on ecological studies. In many cases, such studies will 
need to be directed toward single taxa. The fact that we know so 
little about the habitat requirements of juvenile mussels and the diet 
of mussels at any stage in their life history is a fundamental knowl-
edge gap that requires filling.

2.1  |  Mussel health

Discovering causes of mussel declines and developing effective, 
proactive responses to these factors may often require the ability 
to assess individual mussel health. Numerous studies have docu-
mented mussel responses to specific stressors, such as pesticides, 
pharmaceuticals, temperature, and pathogens (Bolotov et al.,  2018; 
Castro et al., 2018; Ingersoll et al., 2006; Payton et al., 2016; Waller 
& Cope, 2019). However, no standard set of biomarkers or other di-
agnostic tools exist to assess mussel health in response to a wide 
range of known and unknown stressors. Because mussels are filter 
feeders, their symbiotic microbiome also may be sensitive to environ-
mental conditions and could provide additional insight about overall 
health status (Aceves,  2019; McCauley et al.,  2021; Mioduchowska 
et al., 2020; Weingarten et al., 2019). A standardized diagnostic ap-
proach specific to mussels is needed that can identify clinical signs 
of compromised health. For example, molecular tools could be used 
to nondestructively identify parasites, cellular tools (e.g., hemocyte 

BOX 1 CONSENSUS BUILDING AND 
IDENTIFICATION OF PRIORITY TOPICS

An international team of 17 researchers and stake-
holders active in mussel conservation was assembled from 
across six continents. Each participant was asked to write 
at least two short (200–300 words) synopses identifying 
novel or emerging topics they viewed as either “challenges” 
or “opportunities” for freshwater mussel conservation in 
the next 10 years. To ensure maximum inclusion of ideas, 
participants were encouraged to consult with their net-
work of researchers and practitioners.

In total, 56 synopses were submitted by participants. 
A Delphi technique was employed to identify the most 
important topics (Mukherjee et al.,  2015), using recom-
mended approaches to anonymity, inclusiveness, and iter-
ative rounds of voting (Sutherland & Burgman, 2015).

Synopses were anonymized and assembled in random 
order, then circulated to all participants who were asked to 
rank the synopses in order of importance from 1 (highest) 
to 56 (lowest). Criteria for ranking were novelty of topic, 
pervasiveness (scope of influence), and potential impact on 
mussel conservation in the next 10 years.

The average rank awarded to each synopsis was calcu-
lated and circulated to participants prior to meeting.

Participants met online in May 2021 to discuss the top-
ics. Some synopses were agreed to fall outside the scope 
of the horizon scan and were removed from further consid-
eration. The remaining synopses were discussed. To avoid 
bias, guidelines for the discussion asked that the original 
author of a topic synopsis should not be among the first 
three people to speak about it. Topics that were proposed 
more than once were combined and four new topics were 
proposed, resulting in a revised list of 50 synopses.

After these initial discussions, and taking into account 
any new evidence and information provided at the first 
meeting, participants were asked to re-rank the topic syn-
opses, using the same scoring criteria.

The new average rank for each synopsis was again calcu-
lated and circulated to participants. The average interquar-
tile range in rankings for a synopsis decreased from 21.2 in 
round 1 to 15.8 in round 2 (t102 = 4.66, p < .001), reflecting 
the positive effect of the consensus-building process.

Participants met once more to discuss the new rank-
ings. Again, some similar topics were combined and the 
highest ranked topics were collectively selected. A total of 
14 final topics were agreed upon (Figure  1). These were 
divided into five broad themes and a working group was 
formed for each theme to refine and standardize synopses 
of each final topic.
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count, phagocytic activity, lysozyme concentration) could be used to 
assess immune responses and general stress (Hinzmann et al., 2013), 
biochemical measures (e.g., glycogen content) can inform on energy 
stores and identify mussels experiencing stress (Sousa et al., 2011), 
behavioral measures (e.g., valve closure, gaping, locomotion) can pro-
vide an early warning of mussels experiencing unfavorable conditions 
(Hartmann et al., 2016), and microbiological markers (e.g., microbiome 
communities) could be used to compare responses of mussels to dif-
ferent diets and growing conditions. Such tools will facilitate the rapid 
detection of sublethal stress in wild and captive mussels in a wide va-
riety of ecological contexts (Waller & Cope, 2019).

2.2  |  What do mussels eat? Linkages between 
mussel feeding ecology and conservation

Mussel diets are generally poorly understood. Mussels are consid-
ered omnivorous filter feeders that consume bacteria, algae, detritus, 
zooplankton, dissolved organic matter, and other material (reviewed by 
Strayer, 2008; Vaughn et al., 2008). However, feeding mechanics and 
diet may differ substantially among life stages, populations, species, cli-
mates, seasons, and habitats. Juveniles appear to be primarily deposit 
feeders until the filtering apparatus develops (Araujo et al., 2018), but 
the extent to which adults use deposit versus suspension feeding may 
vary widely (Raikow & Hamilton, 2001; Weber et al., 2017). Isotopic and 
fatty acid signatures indicate only modest dietary differences among spe-
cies in some cases (Fujibayashi et al., 2016; Newton et al., 2013; Weber 
et al., 2017), but laboratory studies show strong differences among spe-
cies in food selection and clearance rates (Atkinson et al., 2011; Tran 

& Ackerman,  2019). Differences in isotopic signatures among rivers 
indicate that mussels either have nonspecific dietary requirements or 
they can adapt readily to available food resources in different habitats 
(Newton et al., 2013). Other approaches, such as DNA metabarcoding, 
that may alleviate difficulties of stable isotope studies (see Strayer, 2008) 
are needed to better describe mussel diets. Anthropogenic factors, 
such as increases in suspended sediment, may negatively affect food 
acquisition, and such effects appear stronger for juveniles than adults 
(Tuttle-Raycraft et al., 2017). Growth was reduced when food resources 
were dominated by cyanobacteria (Bartsch et al., 2017). These observa-
tions suggest that anthropogenic alteration of aquatic food webs and 
mussel food resources may be important factors in mussel declines. 
Furthermore, differences in feeding mechanics and dietary requirements 
among species may explain differential species responses to some types 
of anthropogenic factors. Isotopic labeling approaches may help to track 
the uptake of food items at different life stages.

2.3  |  What are the causes of mussel declines?

There is a widespread perception in the conservation community that 
the causes of mussel declines are reasonably well understood. The ef-
fects of dam construction, invasive zebra mussels (Dreissena spp.), and a 
few other factors are well known (Haag, 2012; Strayer & Malcom, 2018). 
However, support for many other explanations for mussel declines is 
poor or equivocal (Downing et al., 2010). For example, supporting evi-
dence for the role of sedimentation is limited (Geist & Auerswald, 2007; 
Haag, 2019; Strayer & Malcom, 2012). Other factors, such as disease, 
parasites, and the invasive Asian clam (Corbicula fluminea), have only 

F I G U R E  1  Nesting of the five themes and 14 topics identified through the horizon scanning exercise. Approaches for addressing the 
themes vary across different scales: Ecological studies are important across all themes; technological approaches are particularly important 
in addressing topics within population dynamics, global stressors, global diversity, and ecosystem services; socio-political approaches are 
needed to address global stressors, global diversity, and ecosystem services. More details of potential solutions are given in each of the 14 
topic synopses.
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recently received serious attention (Brian & Aldridge,  2019; Haag 
et al.,  2021; Richard et al.,  2020). Unexplained mussel die-offs have 
been documented for over 40 years (Neves, 1987), but it is unknown 
if these are independent, localized events or parts of a larger pattern of 
mussel declines. Current conservation approaches are largely motivated 
by untested ideas about the causes of mussel declines. A better, mecha-
nistic understanding of causes is needed to direct funds in directions 
that have a better chance of reversing or preventing mussel declines. In 
particular, rapid response plans should be developed for enigmatic die-
offs so that dying individuals can be collected alongside control animals 
and preserved appropriately for subsequent autopsy.

2.4  |  Predators, parasites, and disease

Predation has been widely attributed to the localized decline of adult 
mussels. Studies have focused on both introduced species such a 
muskrats (Ondatra zibethicus; Haag, 2012), feral pigs (Sus scofra; van Ee 
et al., 2020), crayfish (Meira et al., 2019), and coypu (Myocastor coypus; 
Nagayama et al., 2020), and native predators, such as otters (Lutra lutra; 
Zając, 2014). However, the population-level effects of predators upon 
mussels have received little quantitative attention. Predators, such as fish 
(Haag, 2012) and flatworms (Zimmerman et al., 2003), may also be im-
portant in preventing juveniles from reaching adulthood in natural pop-
ulations (Strayer & Malcom, 2018). Endosymbionts can affect mussels 
throughout their life history, yet parasites and disease are not considered 
in an IUCN assessment of any unionid mussel (Brian & Aldridge, 2019). 
Reduced fecundity in mussels has been reported from adults parasitized 
by trematodes, unionicolid mites (Brian, Dunne, et al., 2021), and cili-
ates (Lynn et al., 2018), but no parasites of juvenile mussels have been 
described. Effective conservation of mussels requires a more compre-
hensive understanding of the roles of predators, parasites, and disease in 
affecting survival both for cultivation programs within hatchery systems 
and in natural populations. Without such information, it is impossible 
identify or prioritize effective management approaches.

3  |  THEME: POPUL ATION DYNAMIC S

The topics identified within the population dynamics theme highlight the 
important consideration of the interaction that mussels have with their 
fish hosts (Modesto et al., 2018) and demonstrate the need for integrated 
approaches to conservation. Solutions to these challenges require funda-
mental ecological studies which can underpin the development of tech-
nologies and best practices, particularly for captive breeding of mussels.

3.1  |  Learning opportunities and risks of species 
reintroductions, population augmentation, and 
translocation

Species reintroduction and population augmentation with cap-
tively propagated juveniles and translocation of adult mussels are 

now widely practiced, particularly in Europe and North America, 
yet often poorly evaluated (Rytwinski et al., 2021). In Europe, the 
focus of captive breeding has been on the most endangered mussel 
species such as Margaritifera margaritifera and Unio crassus, whereas 
it has been applied to a wider range of species in North America 
(Gum et al., 2011; Patterson, Jones, & Gatenby, 2018). Most activi-
ties typically address a specific conservation goal, such as restoring 
an extirpated species or removing mussels from construction areas. 
Unfortunately, published evaluations of these activities are rare, due 
to their recent advent and the low priority often placed on post-
project monitoring (Strayer et al., 2019). Carefully evaluating the out-
comes of these activities can provide critical information about (1) 
how to conduct them successfully, (2) the causes of mussel declines, 
and (3) the effects of many environmental factors on mussel popu-
lations. Moving mussels among hatchery facilities or natural water 
bodies also poses risks. Genetic effects of captive breeding efforts 
have only rarely been monitored (but see Geist et al., 2021). Genetic 
guidelines for reintroduction and translocation have been proposed 
(Jones, Hallerman, et al., 2006), but risks of pathogen transmission 
have only recently been discussed (Brian, Ollard, et al., 2021; Waller 
& Cope, 2019; Wolf et al., 2019). Pathogens, including trematodes, 
nematodes, mites, ciliates, bacteria, and viruses can have a wide 
range of negative effects on mussels (and other species), including 
catastrophic mortality (Brian & Aldridge, 2019; Richard et al., 2020; 
Taskinen et al., 1997). In addition, bacterial endosymbionts, that is, 
Wolbachia and Cardinium, recently recorded in the threatened Unio 
crassus (Mioduchowska et al., 2020), can significantly increase par-
thenogenesis and female-biased sex ratios through feminization, 
male killing, and cytoplasmic incompatibility. The infection and se-
verity of these endosymbionts are expected to be affected by cli-
mate change (Charlesworth et al., 2019). Considering their potential 
detrimental impacts on host fitness and population demography, 
the presence of these endosymbionts is of serious conservation 
concern. Using molecular techniques, populations declining in the 
wild or maternal stock used in restoration or reintroduction pro-
jects must be screened for these endosymbionts. Quarantine and 
pathogen monitoring are not included in most projects (Brian, Ollard, 
et al., 2021). We know little about pathogen distribution, modes of 
transmission, and the susceptibility of recipient populations. Such in-
formation is necessary to develop tools and best practice guidelines 
to effectively mitigate risks of pathogen spread.

3.2  |  The loss of mussel–fish coevolutionary 
relationships at the intraspecific level

Completion of mussel life cycles depends on the availability of compat-
ible host fish species and lineages. Loss of host fish species, on which 
larvae (glochidia) attach and metamorphose, may threaten mussel popu-
lations. Besides the occurrence of invasive cryptic lineages of freshwater 
fish (Morais & Reichard, 2018), intentional introductions are particularly 
common with tens of billions of individuals of varying domestication lev-
els introduced into natural habitats worldwide yearly (Cucherousset & 
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Olden, 2020). These processes inevitably change the ecology, behavior, 
and immunity of fish individuals, and we lack data on how this affects 
the ecological and physiological compatibility between mussels and fish. 
Intraspecific host relationships of mussels show substantial differences 
in metamorphosis success and developmental times even within indi-
vidual catchments (Douda et al., 2014; Karlsson et al., 2014; Taeubert 
et al., 2010). Current conservation practice and host-fish research must 
be supplemented by host compatibility testing and conservation strate-
gies going below the species level. Another potential source of emerging 
mussel–fish relationship threats at the interspecific level can paradoxi-
cally be the rapid development of freshwater mussel culture methods 
(see previous paragraphs). Varying levels of attention are paid to the 
choice of host fish (or the settings of in vitro conditions) used for glochidia 
development and associated unwanted selection during culture (Geist 
et al., 2021). Increasing speed and potentially high-capacity production 
of juveniles for extended periods in captivity, or the use of successive 
exclusively captive-bred generations could select for traits that are adap-
tive to captive breeding larval conditions but non-adaptive to the hosts 
and their behavior in the wild. These factors highlight the critical need 
for data to verify whether cultured mussels thrive and reproduce in the 
long term (Douda et al., 2021). Such verification is an integral part of 
conservation breeding activities in other taxa (e.g., Davis et al., 2020) but 
is not yet commonly performed on mussels. Studies identifying patterns 
in host-fish suitability are needed to determine adequate management 
units for mussel–host resources. New technical solutions may enable 
simpler and more frequent intraspecific host testing in the field and areas 
with inadequate laboratory infrastructure (Douda et al., 2020). This will 
also lead to a better appreciation of how short-term benefits from fish 
and mussel captive breeding programs might be offset by long-term im-
pairment of mussel–fish relationships in the wild.

4  |  THEME: GLOBAL STRESSORS

Growing human populations and climate change are prompting water-
engineering responses in anticipation of greater demand and elevated 
frequency of floods and droughts (Vörösmarty et al., 2010). Mussels 
are relatively sedentary, and so are vulnerable to changes in hydrology 
which may come about through both natural process and engineered 
responses. The specific activity of sand mining can also both destroy 
and create habitats for mussels, illustrating the combination of threats 
and opportunities arising from many of the topics identified. The ef-
fects of emerging pollutants, such as drugs and micro- and nanoplas-
tics, alongside the growing awareness of the positive and negative 
effects of endosymbionts, deserve greater attention. While we know 
little about the independent effects of these stressors on mussels, we 
know even less about how they may interact in combination.

4.1  |  Global surface water changes

Between 1984 and 2015, 90,000 km2 of global permanent surface 
water disappeared while new permanent surface waters covering 

184,000 km2 were formed (Pekel et al., 2016). Water loss was mainly 
due to climate change, land use intensification, water abstraction, 
and channel diversions (Datry et al.,  2017). Much of the increase 
was related to new reservoirs and new lakes in the Tibetan Plateau 
(Pekel et al., 2016). These changes have large ecological effects, es-
pecially for sedentary organisms like freshwater mussels, including 
the extinction of some species and opportunities for colonization 
of new habitats. Some freshwater mussel species are highly sensi-
tive to desiccation while others are relatively tolerant, resulting in 
species shifts in drought-stricken communities (Vaughn et al., 2015). 
Similarly, species with traits maximizing dispersal (e.g., using fish 
hosts that are migratory or widely stocked by humans, or able to 
thrive in human-created habitats such as reservoirs and canals) will 
best take advantage of the new habitats formed. Engineered solu-
tions to cope with water scarcity are particularly alarming, including 
the implementation of water transfer megaprojects such as China's 
South-to-North Water Transfer Project. These megaprojects are 
commonly associated with large-scale agricultural and energy de-
velopment schemes (Shumilova et al., 2018) in North America, Asia, 
and Africa, and may be responsible for the introduction of invasive 
species (Gallardo & Aldridge, 2018) and homogenization of freshwa-
ter mussel (and other taxa) communities. Changes in global surface 
waters present a novel conservation challenge that might need to be 
actively managed, through translocation of mussels, better regula-
tion of river flow, and the use of remote sensing to assess spatial and 
temporal changes in hydroperiod in real time (Kissel et al., 2020). In 
addition, the availability of new anthropogenic habitats (e.g., reser-
voirs and canals; see Sousa et al., 2021) should also be assessed as 
refuges or ecological traps for freshwater mussels.

4.2  |  Sand mining

Sand (used here as a generic term that includes any riverine ag-
gregates regardless of particle size) is the second-most consumed 
natural resource (after water) on the planet, with 32–50 bil-
lion tonnes of sand and gravel extracted annually (UNEP Global 
Environmental Alert Service,  2014). Demand for sand and other 
aggregates is expected to increase in coming decades due to 
rapid human population growth and urbanization, especially in 
countries with a developing construction industry (Chen,  2017; 
Gavriletea,  2017). Besides construction, sand and other aggre-
gates are used for land reclamation and have numerous applica-
tions in other industries. Sand mining in and near stream channels 
can cause channel incision, alter riparian zones and change sedi-
ment transport (Koehnken et al., 2020), and alter patterns in host 
fish distribution and abundance (Gavriletea,  2017), resulting in 
pervasive effects on freshwater biodiversity, especially for ben-
thic species such as mussels (Hartfield, 1993). Positive effects are 
also possible because aggregate extraction creates novel habi-
tats for mussels—in Europe, gravel pits are commonly colonized 
by mussels at very high densities (Sousa et al., 2021). There is a 
growing interest in nature-friendly design or restoration of gravel 
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pits (Damnjanović et al., 2019), usually aiming at creating habitat 
favorable for birds, and mussels may benefit from these new an-
thropogenic habitats (Sousa et al., 2021). Impacts of sand mining 
on mussels are still poorly known, and should be assessed in the 
appropriate spatial and temporal dimensions; remote sensing may 
be useful (Sonter et al., 2018). Impacts of mining should be miti-
gated as far as possible, perhaps including translocating mussels 
to unaffected areas.

4.3  |  Drug pollution and other emerging 
environmental contaminants

The widespread consumption and subsequent release of pharma-
ceutical and personal care products (PPCPs) to freshwaters have 
increased at a rate greatly surpassing that of other environmental 
contaminants; yet PPCPs have seldom appeared in global change 
discussions (Bernhardt et al., 2017). The biological effects of PPCPs 
on non-target organisms, like mussels, can be severe to both the 
organism's fitness and reproduction, including oocyte maturation, 
spawning, and parturition (release of glochidia; Gilroy et al., 2020; 
Richmond et al.,  2017). For example, fluoxetine, a commonly pre-
scribed drug to treat disorders such as depression and panic attacks, 
is reported to artificially induce spawning and disrupt reproduction 
in mussels (Bringolf et al., 2010). Microplastic and nanoplastic pol-
lution in marine systems has received considerable attention and 
has demonstrated negative effects on bivalves at the molecular 
(Canesi et al., 2015), cellular (Paul-Pont et al., 2016), and organismal 
level (Li et al.,  2020). While it has been demonstrated that fresh-
water mussels uptake microplastics (e.g., Berglund et al.,  2019), 
little is known about the effects, especially in natural ecosystems. 
To date, no attention has been given to the effects of nanomate-
rials on freshwater mussels within natural ecosystems. The conse-
quence of PPCPs, working synergistically, additively, or negatively 
with other emergent contaminants (e.g., brominated flame retard-
ants, pesticides, and micro/nanoplastics), in mussel conservation 
is under-appreciated. Our understanding of the threats to juvenile 
mussels is limited or nonexistent for most species, and most data 
come from laboratory exposures to toxicants of captively bred in-
dividuals within hatcheries (e.g., Jones et al., 2005) rather than from 
natural systems. Laboratory studies indicate that early life stages of 
freshwater mussels may be more responsive to some toxicants than 
adult mussels (e.g., Cope et al., 2008; Haag et al., 2019).

4.4  |  River restoration as a threat and opportunity

River restoration has become common and is likely to increase in 
the future (Geist & Hawkins,  2016); for example, the European 
Biodiversity Strategy for 2030 aims to restore >25,000 km of rivers 
(European Commission Directorate-General for Environment, 2021). 
Restoration covers a wide range of activities, including dam removal, 
changes to release schedules from reservoirs, adjustments to channel 

and bed materials, daylighting of buried streams, and management of 
riparian zones and catchments (Palmer et al., 2014). Goals typically 
are to restore more natural conditions; stabilize channels; or improve 
habitat, connectivity, biodiversity, or ecological functioning (Palmer 
et al., 2014), but the setting of restoration targets is also strongly 
influenced by human perception and the values for people (Deffner 
& Haase, 2018). River restoration can benefit mussels by improving 
connectivity in fragmented populations, restoring host fish popula-
tions (Benson et al., 2018; Foley et al., 2017), improving hydrologic 
and thermal regimes (Palmer & Ruhi, 2019), stabilizing streambeds 
(Palmer et al.,  2014), re-establishing streambed dynamics (Pander 
et al.,  2019), reducing harmful impacts of non-native species, and 
removing contaminants. However, restoration can harm mussel 
populations by mobilizing sediments formerly held behind dams 
(Foley et al., 2017; Sethi et al., 2004), increasing scour and other ef-
fects of dam removal on downstream habitats (Gangloff, 2013), or 
increasing dispersal routes for non-native species (Foley et al., 2017; 
Paillex et al.,  2015). Effects of restoration on mussels have been 
rarely assessed, and usually over the short term and with low sta-
tistical power to detect effects (Barnett & Woolnough, 2021; Heise 
et al., 2013; Sethi et al., 2004), so effects on mussel populations may 
not be appreciated, and harmful restoration practices may continue 
to be applied. To reduce risks and increase benefits, the particular 
needs of mussels (such as their sedentary nature and the interstitial 
habits of juveniles) should be considered when planning restoration 
projects, including more attention to long-term sediment routing. In 
addition, mussel populations should be assessed before and after 
restoration, including long-term monitoring for at least 10 years, in-
cluding at least one large, channel-forming flood and one significant 
drought.

5  |  THEME: GLOBAL DIVERSIT Y

The fourth major theme arising from our horizon scan relates to 
understanding and documenting the global diversity of mussels, 
for which capacity building is essential, built around the principles 
of decolonizing conservation. Even in well-studied regions, recent 
molecular work is redefining species boundaries (Prié et al., 2012) 
and providing new perspectives on the most appropriate taxonomic 
scale for effective conservation (Klunzinger et al., 2021).

5.1  |  Conservation in understudied hotspots

The availability of data, scientific expertise, and conservation re-
sources are distributed unequally across the world. Species richness 
and endemism are very high in (sub)tropical regions, including the 
mussel biodiversity hotspots of Southeast Asia and Central America 
(Graf & Cummings, 2021; Mittermeier et al., 2011), where freshwa-
ter biodiversity is declining rapidly (Lopes-Lima et al., 2018). Given 
the lack of expertise on these poorly known biodiversity hotspots, 
collaborations, information-sharing, and funding are required to 
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develop capacity and establish long-term conservation projects 
led by local scientists and which integrate and train early career re-
searchers in freshwater mussel taxonomy, ecology, and conservation. 
Protecting mussel biodiversity is underpinned by conservation sta-
tus assessment, requiring species' biological, ecological, and threat 
data. Despite recent advances in understanding (sub)tropical mussel 
diversity and ecology, information gaps persist (Bolotov et al., 2020; 
Pereira et al., 2014; Walker et al., 2014). A scan of the IUCN Red 
List reveals an almost complete lack of conservation assessments 
(e.g., South America) or a high number of data-deficient species 
(e.g., Africa and Indotropics) in these areas (Lopes-Lima et al., 2018). 
Therefore, rapid collection of relevant data is urgent considering 
the fast rates of decline in mussels (Lopes-Lima et al., 2021). Novel 
methods, including environmental DNA (meta)barcoding and un-
derwater drones, have recently emerged, which would improve the 
speed, reliability, and scope of data collection (Collas et al., 2020; 
Prié et al., 2021). Additionally, provision of biodiversity data through 
platforms such as MolluscaBase (http://www.mollu​scaba​se.org) or 
MUSSELp (http://musse​l-proje​ct.uwsp.edu) for taxonomy, GBIF 
(https://www.gbif.org) for distribution, and GenBank (https://www.
ncbi.nlm.nih.gov/genbank) or BOLD (https://www.bolds​ystems.org) 
for genetic information, making sure that these databases are dy-
namically cross-updated, and that identifications are checked and 
verified, will ensure that data essential for informing conservation 
reach the right audience (Graf & Cummings,  2021). Integration of 
biological data across different platforms is challenging and requires 
collaboration between the database providers. Hypertext links can 
facilitate navigation between databases.

5.2  |  Taxonomy and evolutionary versus 
genetic rescue

Species delimitation is important in mussel conservation because 
most legislation uses species as conservation units. However, sev-
eral factors can challenge traditional morphology-based classifica-
tion (Benson et al., 2022; Klunzinger et al., 2021; Zieritz et al., 2010). 
Recent molecular re-evaluations have identified biogeographically 
restricted taxonomic units of conservation concern, including Unio 
mancus in Europe (Prié et al., 2012) and Westralunio carteri in south-
western Australia (Benson et al.,  2022; Klunzinger et al.,  2021). 
Conversely, molecular re-evaluations of three threatened American 
Cyclonaias species demonstrated that they were synonyms of glob-
ally secure C. pustulosa (Johnson et al., 2018). The situation becomes 
even more complex when conservation units are deduced within 
recognized species. Within the Holarctic Margaritifera margaritifera, 
pronounced levels of genetic differentiation were observed at small 
spatial scales within Europe (Geist & Kuehn, 2005; Geist et al., 2018), 
whereas the majority of North American populations were all part 
of one single conservation unit (Zanatta et al.,  2018). Without a 
comprehensive review of the taxonomy of even well-studied mus-
sel species, using modern molecular tools, we risk overlooking the 
protection of unrecognized distinct taxonomic units. Within species, 

there is also the need to prioritize important populations for conser-
vation. Given that species persist through natural selection, an effort 
has been made to integrate evolutionary concepts into conservation 
practice (Hendry et al., 2011). However, maintaining neutral genetic 
variation rather than adaptation has been prioritized in conservation 
(e.g., Jones, Neves, et al., 2006), ignoring the link between pheno-
types and demography; this is concerning when protecting popula-
tions. Evolutionary rescue occurs rarely in nature for species with 
low population size, long generation times, and limited genetic vari-
ability, which may be the case in threatened mussels. Conservation 
plans aim to conserve areas with higher genetic diversity and diver-
gent lineages/populations with unique gene pools. Alternatively, 
introducing new alleles from elsewhere may improve the fitness of 
restricted populations by the introduction of new genetic material 
(i.e., genetic rescue). These measures have been used successfully in 
small and inbred populations of vertebrates (e.g., Edmands, 2007). 
Such conservation measures should be approached with caution due 
to the balance between inbreeding and outbreeding depression by 
the inclusion of new genes into a population.

6  |  THEME: ECOSYSTEM SERVICES

At the widest scale, our horizon scan identified the growing recogni-
tion of mussels as providers of a multitude of ecosystem services 
as a topic that will be crucial for their long-term conservation. Only 
through a robust quantification of the ecosystem services provided 
by mussels will we be able to set evidence-based management goals 
that will maintain fully functioning ecosystems. Moreover, by dem-
onstrating the important roles that mussels play in the world's rivers, 
streams, ponds, and lakes, we will be better able to engage with the 
wider public who will become increasingly important contributors to 
the future conservation of mussels (Clavijo, 2018; Cochero, 2018).

6.1  |  Better understanding of values and 
ecosystem services provided by mussels

Freshwater mussels provide multiple benefits (ecosystem services) 
to people, including provisioning services (food for people and other 
species, medicine, products from shells), regulating services (biofiltra-
tion that improves water quality, sequestration of harmful substances, 
nutrient cycling and storage, habitat and habitat modification for 
other species, food web support, environmental monitoring), and cul-
tural services (spiritual benefits, ornamentation, conservation values; 
Zieritz et al., 2022). However, these benefits are likely largely under-
estimated, undervalued, and unknown to most people, which limits 
their use as a conservation tool (Strayer,  2017). Efforts are needed 
to quantify mussel-provided ecosystem services globally, especially in 
underexplored areas outside North America, which will also require 
estimating mussel abundance. In many regions, quantifying direct ben-
efits provided by mussels, such as (functional) food provision through-
out Asia (Ke et al., 2011), will be a good starting point. Research is also 

http://www.molluscabase.org
http://mussel-project.uwsp.edu
https://www.gbif.org
https://www.ncbi.nlm.nih.gov/genbank
https://www.ncbi.nlm.nih.gov/genbank
https://www.boldsystems.org
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needed to explore newly recognized benefits such as their potential to 
serve as early-warning systems of human diseases and remove patho-
gens and contaminants from the water (Bianchi et al., 2014). Robust 
efforts are needed to assign value to mussel services, including both 
economic and social value, which will require collaboration with so-
cial scientists and economists and the use of non-market and mod-
eling methods (Strayer, 2017). Finally, significant outreach efforts are 
needed to raise awareness of mussels and their benefits to the general 
public and decision makers. These efforts could include crowdsourc-
ing projects aided by novel tools and approaches, such as the use of 
internet data (Jarić et al., 2020; culturomics; Ladle et al., 2016).

6.2  |  How many mussels are enough?

Mussel populations that are abundant and self-sustaining can best 
provide ecosystem services to humans. In addition, there are many 
benefits to both mussels and other species from living in diverse, 
dense mussel beds including increased condition, higher fertilization 
rates, higher survival rates, density-dependent hydrological habitat 
feedbacks, and enhanced material and nutrient cycling (Atkinson & 
Vaughn,  2015; Sansom et al.,  2020; Terui et al.,  2015). How do we 
know when we have enough mussels? Do we focus on single-species 
population viability or do we assess communities? Is there a critical 
density that ensures successful reproduction, which may be a bottle-
neck for small, isolated populations? Is there a critical species com-
position, or age and size distribution? In most regions of the world, 
historical mussel abundances are largely undocumented but may be 
approximated through traditional ecological knowledge and other 
methods. Long-term monitoring studies that describe how demo-
graphics vary over space and time are needed, but traditional meas-
ures of mussel populations, such as density and species richness, may 
not be sensitive enough due to long response times and life spans 
(Freshwater Mollusk Conservation Society, 2016). Abundance–impact 
curves, currently used to understand and manage the impacts of in-
vasive species, could be used to estimate critical mussel densities for 
maintaining mussel function and services (Strayer, 2020).

7  |  CONCLUSIONS

In recent years, declines of freshwater mussels have been docu-
mented at the global (Böhm et al., 2021), regional (Zieritz et al., 2018), 
and local scale (Karatayev et al.,  2012). Some of the major driv-
ers of these declines, such as habitat loss (Vaughn & Taylor, 1999), 
pollution (Strayer & Malcom,  2012), invasive non-native species 
(Sousa et al., 2014), and the effects of climate change (Gallardo & 
Aldridge, 2013) have been reported widely across many freshwater 
taxa and are well known (Dudgeon et al., 2006). However, our ho-
rizon scan identified 14 emerging or poorly understood topics that 
deserve particular attention for the global conservation of freshwa-
ter mussels over the next decade. As such, our scan helps to estab-
lish a research agenda for immediate prioritization. The five broad 

themes into which we categorized our topics can be considered to 
be nested, with each theme requiring a particular range of ecologi-
cal, technological, and socio-political approaches to address them 
effectively (Figure 1). We did not rank the priority topics in order of 
importance as different topics are likely to be of interest to differ-
ent researchers working across different geographies. However, a 
foundational requirement for successfully addressing all of our top-
ics is to understand the global diversity of freshwater mussels and to 
establish a robust taxonomy.

Additional important topics were rejected from our horizon scan 
because it was felt that they lacked novelty or that they would not 
play an especially important role in mussel conservation over the 
next decade. Well-known topics which we felt were important, but 
which already are subject to considerable research attention, in-
cluded habitat loss through dam construction and channelization; 
climate change; fragmentation; declines in host fishes; introduction 
of invasive non-native species; predation; and over-harvesting for 
food. Topics that we felt may become important over longer times-
cales, and were worthy of future consideration, included the de-
velopment of genome editing and gene drives as tools to manage 
potentially harmful non-native invasive species; the use of internet 
data and culturomics to better understand distributions and assess 
threats; the role and importance of cancers on individuals and pop-
ulations; and the pros and cons of assisted migration under climate 
change.

Horizon scanning through the use of consensus-building tech-
niques has proven to be effective and influential in helping to prior-
itize conservation efforts and in targeting limited resources toward 
the most pressing needs (e.g., Sutherland et al., 2022). The Delphi 
technique requires a formal process of iterative decision-making 
between participants that has conventionally used face-to-face 
meetings to facilitate discussion and debate. Due to the Sars-Cov-2 
pandemic, our entire horizon scan was conducted virtually using an 
online meeting platform (Zoom) and was found to be an effective 
process for employing the Delphi framework. While the absence of 
an in-person meeting did not allow for the informal discussion of 
topics during breaks and meals, we advocate the use of virtual hori-
zon scans as an efficient, cost-effective, and low-carbon approach 
that can allow for wider inclusiveness of participation. Horizon scans 
can help to identify emerging issues that can facilitate pro-active 
rather than entirely reactive management responses, thus leading to 
more desirable outcomes for conservation.
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