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A different approach to the Fresnel region field approximation is introduced. Instead
of using the conventional truncated power series expansion approximation, the Newton's
iteration formula for square root is used. By unsing such an approximation for circular
apertures with tapered illumination of the form (1—¢2)7, the Fresnel region fields can finally
be expressed in terms of a new class of functions Wiy, u). The function W§ is shown to
be related to the Lommel's funetions of two variables, and the funetion W3} is then obtained
from the function Wji=' by a simple recurrence relationship. Field distributions for
n=0, 1, 2, 3, 4 and at distances 4 D2/X, Y5 DX, 8 DX, DX, 2D\, = have been computed
and presented as sets of curves. General and quantitative properties of the fields are
clearly demonstrated by these curves, 1t is also shown that the field of any other nonuniform
illumination with eircular symmetry can be expressed in terms of the fields of the basic
illumination of the form (1—{3)n.

1. Introduction

It 1s well known that there is a close similarity between diffraction problems in opties and
aperture field problems in antenna theory.  In opties, two diffraction problems—the diffraction
from a single edge or a slit and the diffraction from a circular aperture—have been well treated.
These two problems were first solved by Fresnel and Lommel, respeetively, in terms ol the
now so-called Fresnel integrals and Lommel's functions ol two variables.  The corresponding
problems in antenna theory are the Fresnel region fields produced by rectangular and eircular
apeciures.  However, in opties, the primary illumination is assumed to be uniform over the
aperture, but in antenna theory, the case of nonuniform illumination is of great interest.

For the case of uniform illumination, the analytical methods developed i opties can also
be applied to antenna problems.  For Fresnel region fields of rectangular apertures, generali-
zations Lo include nonuniform illumination through expansions in terms ol different basic
forms are not too difficult, polynomial and trigonometric sum types of illumination were
treated by the author [1]1.5 Op the other hand, the analysis of Fresnel region fields of circular
aperture antennas with nonuniform illumination is considerably more difficult. However,
with the use of illumination of the form (1— )", the Fresnel region field was solved by the
present author [1]. A short communication about this result has been published [2]. The
complete analysis and numerical results arve presented in this paper. A refined but more
complicated result for the ease of uniform illumination was given by Hansen and Bailin [3].
[t may be noted that the corresponding far field problems have been treated by many authors
with the use of different basie forms [4, 5, 6, 7], including the form (1—¢*)" |4, 5] used in this
paper.

@

2. Fresnel Region Approximation

[n the study of field distributions of linearly polarized uniform phase plane aperture
antennas [8] the following formula [1] or a slightly different form given by Silver [8] may be
used as a starting point.

e Jkry = '

(14-)aa, (1)

L) b3 0

E(xy,2) --—iﬂ_ ‘J;l Figm)

! Contribution from Department of Electrieal Engineering, Syracuse University, Syracnse 10, N.Y. This work is part of a project sponsored
by Rome Air Development Center under Contract No. AF 300602)—28 with Syracuse Univ.
? Figures in brackets indieate the literature references at the end of this paper.
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where

E(x,y,2) =the complex magnitude (amplitude and phase) of the electrie field intensity at the
field point (z,y,2),
F (&) =the illumination at the point (£,7,0) in the apperture A. For uniform phase illumi-
nation, F(£,1) can be taken as a real function of £ and 5,
ro=+/(z—£)*+ (3}—1;)2—{— 2?—=the distance between the field point (z,,2) and the source
point (¢,7,0), and

2 :
,{'=—>\— with A=the wavelength.

The coordinate system used for writing formula (1) is given in figure 1. Formula (1) holds
for any illumination function F'(£,4) and for apertures of any shape. In the present paper, it
is assumed that the aperture is circular and the illumination is of circular symmetry.

For a circular aperture of radius @, as given in figure 2, formula (1) can be rewritten as
follows:

Ew,0,0)=2 [ " F,0) ”_"“'-'(Hr—"-cm e) d pde’ )
e 4 0 0 i Iy ry : e .
where

o=+ (r Sin 6 cos ¢—p cos ¢')2+ (7 sin 0 sin ¢—p sin ¢’)*+ (7 cos 6)*.

The evaluation of the above integral is a very difficult one without further approximation. In
order to facilitate its evaluation, different approximations are generally used. Depending upon
the approximation used, the result may be classified as the far field approximation, the Fresnel
region approximation, ete. The most widely used approach to such approximations is to expand
the distance r,, appearing in the exponential, into a power series involving », 8, and ¢. The
result obtained, by neglecting all terms of order higher than one or of order higher than two, is
generally considered as the far field approximation or the Fresnel region approximation. As
far as the remaining 7’s under the integral sign are concerned, much more erude approximations
are satisfactory. If the field point in consideration is not too close to the aperture and 6 is not
too large, then the factor 1/ry (1-+(r/ry) cos #) can be approximated to good accuracy by using
the relation,

1 r 2 =
7 (1 +- cos 9)2}_--- (3)

(x,y,2)

(r,8,¢)

Ficoure 1. Coordinate system for A plane aperture. Ficure 2.  Coordinate system for A circular aperture.
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A rather different approach to the Fresnel region approximation is used in the present
paper. Instead of using the truncated power series expansion, the well-known Newton’s
iteration formula for finding square root of a given number is employed. This formula has
the following special property. If an approximation B, of /A is known to be correct to n
significant figures, then the approximation B, of 4/ A obtained by using the iteration formula,

1 A
B, =3 ( B+ B (4)

will be correet to 2n significant figures. I this formula is applied to the approximation of 7o
in Fresnel region, we have

! '-"—1'})'{ o (r sin 8 cos ¢—p cos ')+ (r h;u 6 sin ¢—p sin ¢’)*-+ (r cos 91_2} ) )
After simplifyving, eq (5) becomes
. '02
ro=r—p sin f cos (qb—qb')-]—-;r- (6)

This approximation of ry gives a simpler form than that given by Silver [8] and also by Hansen
and Bailin [3]. It should be noted that this particular form makes the following relatively
simple analysis possible.

Using the approximations (3) and (6), formula (2) gives:

ot

l ]"[p .‘i,,.)rﬂ.‘ l:n sin @ cos (¢p—o') - :!.r] p,{p,{¢f . (?)

. : . (.--J'kr ['Er
W — s
E(r,0,0)=jk 2

0 o

If it is further assumed that the aperture illumination F(p,®’) is of circular symmetry, i.e.,
F(pg') ean be written as F(p); then K(r.0,¢) will be independent of 8 and can be denoted by
E(r.6). Hence we have

= L - . —ik "‘ .
Er.e) =ik (—; - ’ Fp)J,(k: sin fp)e < (?f) pip. (8)
AL
If & normalized variable
e 9
S ©)

is defined, then eq (8) can be written as

= k7 31 L
Eeo =ik () | F@ o2 e, (10)
3 S0
where
u=Fa sin # (11)
and
~ ka? 5
P (12)

From eqs (11) and (12) it is clear that u=+v implies r sin 8=-a; therefore u=v means thatthe
field point is at a distance, equal to the radius of the aperture, from the aperture-axis.
[t is more convenient for the following discussions to rewrite eq (10) as:

, =y 1 = PI P2
E({r, 8)=e¢ ('yrf 172 ) [ F(o)Jy(up)e’s (=0 tat. (13)
. at 0
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3. Uniform Aperture Illumination

For the case of uniform illumination, F(¢) =1, eq (13) reduces to
S o (e
E(@,6)=e¢ " (v’ 2 J Jou)els =8 wdg (14)
]
In the above equation, the integral may be denoted by Wi(y,u),
1 er
WO (y,u) :f Jo(ui)e's 8 wde, (15)
]

This integral has an imaginary part as well as a real part. It is closely related to the Lommel’s
functions of two variables [9]. The Lommel’s functions of two variables can be expressed in
integral forms as:

1
Uit = [ Jutus) cos 3 (1= g,

Ustrs) = [ Jutut) sin § (=) - e, (6)

U (v,u) and Us(y,u) are of order one and order two, respectively.
By integrating by parts and using the recurrence relations of Bessel functions, it ean be
proved that U7 (y,u) and U,(y,u) may be expanded into the following two series:

fity u)m(;—t) Jl(u.)u('—:i)a Tt +G) T s o

Us(y) =(;j:)’ Ja() ~(j§)‘ 7400 +( Y g . a7)

Generalizations of these funetions to higher orders are possible, but these generalizations will
not be used in the present paper.
In terms of UV, (y,u) and U, (y,u), we have

Wit 0 I, (18)

v

Using the above relation for W(y,u), formula (14) can be written simply as:

B =e-ve’ ") . Witr). (19)

This result is essentially the same as the first term in the series solution of Hansen and Bailin [3].
It can be seen {rom their figure 6 that the two results are close to each other within the region
considered in this paper.

4. Nonuniform Aperture lllumination of the Form (1 — )"

If the aperture illumination is assumed to be of the form (1—¢%)”, the field expression can
be obtained by substituting F({)=(1—)" into eq (13), that gives

faE=vN 1 S _
Erfy=e— (¢ T )[ (A=) o) e 2% rde. (20)

o 0
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Now if we define

o | s R “
W (7,;;_)_—[ A—rd,(up) 2 ? wde (21)
o
then
L T—Y
Erf)=e-* (v ) Wit (22)

When n=0, eqs (20) and (22) reduce to eqs (14) and (19), respectively. In other words
eqs (20) and (22) inelude uniform illumination as a special case.  For n 0, these give the
field distributions for the special tapered illumination (1—¢*)"  The integration of the integral
(21), or the evaluation of the function W{(y,u), can be ecarried out by noting the following
simple property: If differentiation of W (y,u) with respect to v is earried out, we have

¥ J 1 jlil—fﬂl .
| Ei'(v,w)=6f (A=) ey (ui)e 2™ gdg. (23)

Equation (23) gives the recurrence relation,

Wit (v, u)—-- e H 1), (24)
In terms of Wi(y,u), we have
- OND =
Wiy, u) —(‘}) oy Wi () (25)
or
2 0" Uy, r.f} o o IFy (7 i) O
Iﬂ( !”) ( ) [a,_yu- T a,},u ] l-‘[})

It is possible to derive expressions of Wi(y,u) in terms of Lommel’s functions of orders
higher than two. But as far as numerical evaluation is concerned, it was found that the
simplest way is to use eq ("['l} and the series expansions ( ") i'm U(y,w) and UUy(y,u). The
series expansions of (0"/0y") (U, (y,u)/y) and (0"/dy") ({1(y,u), for n=0,1,2,3, and 4, are
obtained by differentiating tlm power series of U (y,u)/y and I.z(y,m_};y, term by term, n times
with respect to v,

5. Results

In the last section, for the aperture illumination of the form (1—¢*)", the field expression
is given by

=
— .
E(f'ﬂ):f"“’(we 2] - Wilvw), 27)
where
ka®
— (28)
and
U=ha sin 6. (29)
E(r,0) in eq (27) can always be rewritten in the following form:
E(rg)=Ae”"¢ (30)

where < is the amplitude and 2#¢ is the phase angle in radians.

Plots of the aperture illumination (1—¢)* for n=0,1,2,3,4, are given in figure 3. The
field distribution eurves, both amplitude A and phase 27¢, are computed for the following
cases (see fig. 4):
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Fiaure 3. Aperture illumination distributions, uniform and
tapered.

(1) Field distributions along the circular ares:

= 5 = i
=@ ) ) -
4NN/ BA\NS 2\ A A A
where D=2a. The corresponding values for v are:

o OT _mw
Y=4Ty 5 Ty 57 4r

0.

It should be noted that the ease r=w or y=0 is the conventional far field result.
For the convenience of comparison, the field distribution curves are normalized in the
following way: Let
E(r,0) =A% (31)

then the normalized E(r,0) for a fixed » is given by

E(rp) _ A

ers j:}l’{ﬁ_ﬁ‘u}:_l f,-'l'l‘!’d'n.
4 dly

E@r,0)" A, (32)

The normalized amplitude and phase distributions along the ares are given in figure 5 to
figure 14.
(i1} Field distributions along the aperture-axis:

In this and the following case, the distributions are not normalized but are plotted with
the factor ¢™*" excluded. The two distribution curves, amplitude and phase, in the present
case are useful in correlating the normalized distributions given in case (i).

(iti) Field distributions along a line parallel to the aperture-axis and at a distance equal to
the radius of the aperture:
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Froure 10.

Normalized phase distribution eurves with aperture

illwminalion

(L=

illumination= (1 — ¢2)3,

Distribution curves for case (i) and cases (iii) are given in figure 15 to figure 18. From
these field distribution curves, the following properties are observed.

(1) For the normalized field distribution curves along circalar ares:
(a) For each aperture illumination of the form (1—¢)”, the main beam width is essentially
a constant in the range of » from X(2D%/\) up to infinity. (Note: For a fixed direction, the
parameter o is a constant.)
(b) There is no perceptible difference in the normalized amplitude distribution curves at
2017/x (conventional far field limit) and at infinity for the same aperture illumination, except
near those directions where the infinity case has zero values or nulls. On the other hand,
there are differences between the phase distribution curves; these curves change from a stepped
form at infinity to a smooth continuous form at 2702\,

144

Froure 12, Normalized phase distribution curves with aperture



1.0 1.0 F1 2 T T
2 > k |
\\ rn () |r-2E e (5) | 7ot n |
|
\ 1 © 0 5 | w 0
« 2 2 w4 H o 2 w4
< 3 i w2 - 3 I e I a1l
'y +
3 6 4 e ” E o8| 4 12 ™ - == %
F 5 /3 3wz = 5 1/3 3m2
-]
3 6 14 2w £ e /4 2n /7
E i \ ] L |
2 <
\ . A
2 N 1 A /I'
: a 3 6 5|4
S
N , 527
| —
7\%;:‘—% f_:ﬁ?'z "\
0 a 6 ] 10 2 o 2 a 6 8 10
u=kasing utka sind
Fraure

13. % Normalized amplitude distribulion curves with | Ficure 14, Normalized phase distribution curves with aperture

aperture tluminalion = (1 — )4 Hlumanation= (1 — H4,
I \ §

(¢) The “side lobe level” increases as the distance r is reduced, but the amplitude distribution
curve as a whole becomes “smoother.”

It is also true that the phase distribution curve
becomes smoother too as » is reduced.
(d) When the distribution curves of different aperture illuminations are compared, it is seen
that the main lobe beamwidth increases as n is inereased. At the same time, within a fixed
measure of the angle 4, the number of side lobes is reduced.
() The side lobe level is definitely reduced as n is increased.  The ratio of the normalized
maximum amplitudes of the first side lobes with n=4 and #=0 is approximately 1 to 10.
() As n increases, the difference in the normalized amplitude distribution curves at different
r becomes smaller.

(2) For the field distribution curves along the aperture-axis:
(a) Along the aperture-axis, the amplitude distributions vary closely as 1/ in the range
r=1%(217/X) to r=infinity for all cases studied. As for the particular case n=4, this is true
even when ris reduced to %(2172/\).
(b) Along the aperture-axis, all the phase distributions, excluding the exponential factor
¢ are approximately straight lines, i.e., the phase varies linearly with respect to 1/r.

(3) For the field distribution curves along a line parallel to the aperture-axis and at a
distance equal to the radius of the aperture;
(n) In the range, »=20I7/x to r=infinity, both the amplitude and phase distributions have
approximately the same values as those obtained along the aperture-axis.
(h) At r=1%(20D7/\), the ratio of the corresponding amplitudes for the present case and case
(i1) is roughly one to four for all cases computed.

6. Generalization to Nonuniform Aperture Illuminations of Other Forms

In the last section, only a special type of nonuniform illumination of the form (1— )"
was given. It is possible to generalize the analysis to include nonuniform illuminations of
other forms either through expansions by the Schmidt orthogonalization process [5] or by the
following simple algebraic procedure. For any circularly symmetric aperture illumination, it
is always possible to approximate it by an even polynomial of the variable ¢.  Such poly-
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nomials are of the following form:
@, V- L e ta,. (33)
It is elear that such a polynomial can always be transformed into the following form:
ha(l—=2 b (1—2 1 . (=0 s (34)

For a given set of a’s, the corresponding b's ean be uniquely determined by solving a system of
linear simultaneous algebraic equations.  In particular, for the case of n=4, the cocflicients
b's obtained in terms of the a’s are as follows:

o=

ba: — I'l';|_‘-1:l‘!'.|

by=a,-+3a,-}6a,

b =—a,—2a,—3a,—4a,
by—=ay+a,+as+as-+ay. (35)
When by, by, . . ., by ave determined as above, the field expression is then given by
1 . .”T-{.\ e 2 ?“--h_l." ¢ 26
E(r, 8)=¢ -’“(WI ’ )[ > b (=) Jyup)e 2 g (36)
Jo o oe=n
In terms of Wi\ u), (36) gives
” .J”ﬂ) 1. .
E(r,0)=e~"* (w 2 ) 20 0. Wi (v ) (37)
=1

Equation (37) can then be evaluated by using the results already obtained in this paper.
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