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ABSTRACT

The Fresnel volume and the interface Fresnel zone (IFZ) con-

cepts play an important role in seismic exploration because the

IFZ largely contributes to the formation of the reflection and trans-

mission wavefields at an observation point. We derived analytic

expressions based on traveltime approximations to evaluate the

IFZ size for converted and nonconverted waves reflected (or trans-

mitted) by a curved interface between two homogeneous general

anisotropic media, and more specifically for dip-constrained

transversely isotropic homogeneous media. The reflectors are

of anticline, syncline, or saddle type, and their principal curvature

axes may not lie in the incidence plane. As in an anisotropic

medium the isochron in most cases assumes a nonelliptical shape,

the size and the shape of the IFZ for reflected waves are predomi-

nantly dependent on the curvatures of the isochrons together with

the curvatures of the interface. The IFZ shapes also exhibit large

variation with interface curvature and incidence angle. In addition,

the difference between the Thomsen anisotropy parameters ϵ and

δ is found to control the size of the IFZ for P-P and P-S reflections.

The IFZ for anisotropic media with curved interface can be much

larger than that for equivalent isotropic media, and more specifi-

cally for positive values of ϵ − δ. The spatial resolution of unmi-

grated seismic data in anisotropic media would consequently be

different from that determined for the same configuration for iso-

tropic models and a planar interface.

INTRODUCTION

The Fresnel volume (FV) concept (Kravtsov and Orlov, 1990)

plays an important role in the formation of the seismic field at

an observation point. Of particular interest for seismic exploration

is the size of the interface Fresnel zone (IFZ), i.e., the intersection of

the FV with an interface. This finite area of a reflector can be viewed

as the region of constructive reflection interference surrounding

the reflection point of the geometrical ray. The IFZ determines

the spatial resolving power for unmigrated seismic data with which

important lithological changes along a seismic profile direction may

be observed (Sheriff, 1980). Additionally, it also largely contributes

to the reflected and transmitted wavefields, and more specifically to

their amplitude (Spetzler and Snieder, 2004; Favretto-Cristini al.,

2007a, 2007b). As a consequence, the IFZ has received increasing

attention in past decades.

Analytic and numerical modeling techniques have been used to

determine the IFZ dimensions in various configurations. Hubral and

his coworkers define the projected Fresnel zone of a zero-offset

reflection onto the subsurface reflector using a standard 3D CMP

traveltime analysis, without knowing the overburden (Hubral et al.,

1993; Schleicher et al., 1997). Červený (2001) suggests two meth-

ods that include FV parameter calculations into the ray tracing

procedure in complex 2D and 3D structures. The first one, called

FV ray tracing (Červený and Soares, 1992), combines paraxial ray

approximation with dynamic ray tracing and is only applicable to

zero-order waves (i.e., direct, reflected, and transmitted waves...),

whereas the second, more accurate, method is based on network

ray tracing (Kvasnička and Červený, 1994). Unfortunately, it can

be applied only to first arrivals at receivers. Moser and Červený

(2007) show how the Fresnel region can be calculated by conven-

tional dynamic ray tracing in Cartesian coordinates, for isotropic

and anisotropic inhomogeneous layered media. However, the der-

ivations are cumbersome. Pulliam and Snieder (1998) outline an

efficient scheme based on ray perturbation theory to compute

approximate FZs in inhomogeneous media.
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With the help of the Kirchhoff approximation and on the basis of

the reciprocity relation, Gelchinsky (1985) derives symmetrized

invariant formulas for the computation of IFZ and FV for structur-

ally complex media (e.g., an inhomogeneous medium with curved

interfaces), the limitation being that the medium is considered lo-

cally homogeneous in the vicinity of the FZ center. Kvasnička and

Červený (1996a, 1996b) derive analytical expressions for FVs of

seismic body waves and for IFZ for simple structures with plane

interfaces, which offer a deeper insight into the properties of the

FV and IFZ. It is interesting to note that FV boundaries with cor-

responding FZ can also be estimated using the method of isochron

rays (Iversen, 2004, 2006). Monk (2010) examines the shape of the

IFZ for nonzero offset and in the situation of a constant velocity

gradient, using a derivation that takes a largely geometric approach.

Eaton et al. (1991) derive formulas for the P-SV Fresnel-zone radius

for surface and VSP geometries. Lindsey (1989) empirically studies

the changes in IFZ size for normal wave incidence when the reflec-

tor is either a syncline or an anticline, as compared with the IFZ size

for a plane reflector. Favretto-Cristini et al. (2009) extend the study

of Lindsey to the case of oblique wave incidence onto a spherically

shaped interface of anticline or syncline type by deriving analytical

expressions for the size of the IFZ.

Most studies are concerned with zero-offset configurations and

plane reflectors. In addition, few works have been devoted to aniso-

tropic media. For instance, Okoye and Uren (2000) calculate the FZ

diameter for zero-offset configurations for P- and SH-waves in TI

media and isotropic media and for dipping plane reflectors. They

conclude that the FZ diameter is predominantly dependent on the

curvatures and wavelength of the wavefront as well as the dip angle

of the reflector. The parameter δ� and the Thomsen anisotropy

parameters ϵ and γ also affect the FZ diameter.

The purpose of the paper is to address the issue of deriving simple

analytical expressions for the IFZ for multioffset configurations and

a curved interface between anisotropic media. More specifically, we

propose to generalize the work reported in Favretto-Cristini et al.

(2009) for the IFZ for (possibly converted) reflected and transmitted

waves from a nonspherically shaped interface between anisotropic

media. Indeed, in Favretto-Cristini et al. (2009), the analytic deri-

vations take a geometric approach based on analytical expressions

of shifted isochrons (which are of a simple form for isotropic

media), and they can hardly be extended to the case of more complex

media (e.g., anisotropic media) without numerical developments.

Analytical expressions, even approximate, could, however, provide

valuable insight into the influence of anisotropic parameter combi-

nations on the shape and size of the IFZ and hence on the horizontal

seismic resolution. This is the objective of this paper.

The organization of the paper is as follows. The second section

reviews some basic concepts of wave propagation in anisotropic

media and establishes analytical expressions for the IFZ for re-

flected and transmitted waves from a curved interface between two

anisotropic media. The third section considers the particular case of

dip-constrained transversely isotropic (DTI)media (Ayzenberg et al.,

2009; Farra and Pšenčík, 2013), i.e., TI media with the symmetry

axis orthogonal to the curved reflector at each point of the interface.

The weak-anisotropy approximation (Thomsen, 1986) has proved

extremely useful in identifying anisotropy parameter combinations

responsible for various seismic signatures (Tsvankin, 2001; Tsvan-

kin and Grechka, 2011). It is used here to gain valuable analytic

insight into the influence of certain anisotropy parameters on the

size of the IFZ. The formulae for isotropic media are presented in

the fourth section. The last section investigates the shape and

the size of the IFZ for P-P and P-SV reflections as a function of

anisotropy parameters for various incidence angles and interface

curvatures. Results obtained indicate that, in addition to the curva-

ture of the interface (of anticline, syncline, or saddle type), a certain

combination of the anisotropy parameters controls the IFZ shape

and size and hence the horizontal seismic resolution.

ANISOTROPIC MEDIA

We consider a curved interface between two homogeneous aniso-

tropic media. An incident wave strikes the interface and gives rise to

reflected and transmitted waves. These waves may be of arbitrary

types. We choose the coordinate system with the origin at the re-

flection/transmission point. The normal to the interface points into

the medium of the transmitted waves. The x1-axis lies in the surface

tangent plane and in the plane defined by the surface normal and

the slowness of the incident wave, and the x3-axis is parallel to the

surface normal (Figure 1).

The slownesses of the incident, reflected and transmitted waves

(pS, pR, pT, respectively) lie then all in the x1 − x3 plane, i.e., the

plane of incidence. This implies that the out-of-plane components

pU
2 ðU ¼ S; R; TÞ of these slowness vectors are equal to zero. The

superscript S denotes the quantities for the incident wave, R for the

reflected wave, and T for the transmitted wave.

We consider that the source is located at xS ¼ ðxS1 ; x
S
2 ; x

S
3Þ at a

distance

dS ¼ kxSk ¼ ½ðxS1Þ
2 þ ðxS2Þ

2 þ ðxS3Þ
2�

1
2 (1)

from the reflection/transmission point O. The receiver point can be

located either in the incident medium or in the transmitted medium

at xR;T ¼ ðxR;T1 ; xR;T2 ; xR;T3 Þ at a distance dR;T from the reflection/

transmission point O.

Traveltime approximations

The difference in traveltime between a ray from point x to the

origin O and from point x to a point at δx near the origin O is

Figure 1. Incident S, reflected R, and transmitted T waves at a
curved interface Σ between two anisotropic media. The slowness
and group velocity vectors are denoted by p and V, respectively.
The source (respectively, the receiver) is located at xS (respectively,
xR;T) at a distance dS (respectively, dR;T ) from the reflection/trans-
mission point O.
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δTðx; δxÞ ¼ Tðx; δxÞ − Tðx; 0Þ

¼
1

V þ δV
kx − δxk −

1

V
kxk; (2)

where V is the group velocity,

V ¼ kVk ¼ ðV2
1 þ V2

2 þ V2
3Þ

1
2; (3)

and δV is the change in group velocity for the perturbed ray. With

d ¼ kxk, we obtain the approximation

δTðx; δxÞ ≃
d

V

��

1 −
δV

V

��

1 − 2
x · δx

d2
þ

kδxk2

d2

�1
2

− 1

�

.

(4)

Expanding the square-root term in a Taylor series and consider-

ing ðkδxk
d
Þ
3
≪ 1 leads to a second-order approximation for the trav-

eltime difference:

δTðx; δxÞ ≃
1

2Vd

�

1 −
δV

V

�

×

�

kδxk2 − 2x · δx −

�

x · δx

d

�

2
�

−
δV

V2
. (5)

Neglecting changes in group velocity V (i.e., δV
V
≪ 1) leads to a

small relative error in the traveltime difference and

δTðx; δxÞ ≃
1

2Vd

�

kδxk2 − 2x · δx −

�

x · δx

d

�

2
�

. (6)

Let the group velocity vector V point away from the origin O, so

that

x ¼
d

V
V. (7)

The approximate traveltime difference may then be expressed as a

function of the group velocity:

δTðV; δxÞ ≃
1

2Vd

�

kδxk2 − 2d
V · δx

V
−

�

V · δx

V

�

2
�

. (8)

Fresnel volumes and interface Fresnel zones

The FVs associated with the reflected or transmitted wave are

defined by

jδTðxS; δxÞ þ δTðxU; δxÞj ≤
1

2f
ðU ¼ R; TÞ (9)

or

jδTðVS; δxÞ þ δTðVU; δxÞj ≤
1

2f
ðU ¼ R; TÞ; (10)

where f is the dominant frequency of the signal and δT has to be

replaced with its approximation 6 or 8 with the appropriate super-

script.

The wave is reflected or transmitted at a curved interface Σ,

which may locally be approximated by a second-order expression:

x3 ¼ Fðx1; x2Þ ¼
1

2
ðx1; x2ÞFðx1; x2Þ

t

¼
1

2
ðF11x

2
1 þ 2F12x1x2 þ F22x

2
2Þ. (11)

Equation 9 for the reflected wave is valid only for δx3 ≤

Fðδx1; δx2Þ, and for the transmitted wave, it is valid only for

δx3 ≥ Fðδx1; δx2Þ. For Fresnel zones at the curved interface, we

have δx3 ¼ Fðδx1; δx2Þ.
Using expression 11 in equation 6 and only keeping terms up to

second-order leads to the approximation for the traveltime differ-

ence:

δTΣðx;δx1;δx2Þ≃
1

2Vd

��

1−
x21
d2

�

δx21þ

�

1−
x22
d2

�

δx22

−2
x1x2

d2
δx1δx2−2x1δx1−2x2δx2−2Fðδx1;δx2Þx3

�

(12)

or

δTΣðV; δx1; δx2Þ ≃
1

2Vd

��

1 −
V2
1

V2

�

δx21 þ

�

1 −
V2
2

V2

�

δx22

− 2
V1V2

V2
δx1δx2

�

−
V1

V2
δx1 −

V2

V2
δx2 − Fðδx1; δx2Þ

V3

V2
.

(13)

The IFZs for the reflected and transmitted waves are then defined

as the points on the interface that satisfy the inequality

jδTΣðx
S; δx1; δx2Þ þ δTΣðx

U; δx1; δx2Þj ≤
1

2f
ðU ¼ R; TÞ

(14)

or

jδTΣðV
S;δx1;δx2ÞþδTΣðV

U;δx1;δx2Þj≤
1

2f
ðU¼R;TÞ;

(15)

in which δTΣ has to be substituted by its expression 12 or 13 with

the appropriate superscript.

In our situation, the position vector xS of the source point and the

slowness vector pS are given. From the group velocity vectorVS, we

determine the reflection/transmission point. By virtue of Snell’s

law, the horizontal slowness p1, determined from the slowness vec-

tor and the surface tangent, is constant for all waves. Because the

out-of-plane component of the slowness vector is equal to zero for

all waves, the vertical slowness pU
3 ðU ¼ R; TÞ is thus computed

using equation A-3 with the proper wave type and by applying a

Anisotropic Fresnel volume and zone C125
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proper radiation condition. The group velocity vector VUðU ¼
R; TÞ is then computed using the results in Appendix A with the

correct medium parameters, proper wave mode, and considering

p ¼ ðp1; 0; p3Þ. The receiver points for the reflected and transmit-

ted rays are finally computed from equation 7 when the lengths of

the respective rays are given (Figure 1).

DIP-CONSTRAINED TRANSVERSELY

ISOTROPIC MEDIA

To provide analytic insight into the influence of anisotropy on the

IFZ, we apply the previous theory to a curved interface between two

DTI media (Ayzenberg et al., 2009; Farra and Pšenčík, 2013). The

symmetry axis of both media is then parallel to the interface normal

at each point of the interface. At the reflection point, both half-

spaces are VTI in the local coordinate system because the symmetry

axis is parallel to the x3-axis. The three wave types that may occur

are the SH-wave and coupled P-SV-waves. Because of the sym-

metry, all seismic signatures depend only on the angle between the

propagation direction and the symmetry axis. The out-of-plane

components of the group velocity vector and slowness vector are

equal to zero in all cases. From equation 7, x2 is equal to zero as

well. Consequently, expression 13 for the traveltime difference

becomes

δTΣðV; δx1; δx2Þ ≃
1

2Vd

��

1 −
V2
1

V2

�

δx21 þ δx22

�

−
V1

V2
δx1 − Fðδx1; δx2Þ

V3

V2
. (16)

Exact expressions for the group velocities V1 and V3 are given in

Appendix B. For the SH-wave, the expressions are simple, but for

the P- and SV-waves, they are more complicated. Even if it is pref-

erable to use the exact expressions in actual modeling, inversion,

and processing algorithms, we shall instead use the approximate

dispersion relation to gain analytic insight into the effects of aniso-

tropy on the IFZ. These approximate dispersion relations for P-

waves are (Pestana et al., 2012)

ω2 ¼ υ2P0½ð1þ 2ϵÞk21 þ k23� − 2
υ2P0ðϵ − δÞk21k

2
3

k23 þ ξk21
; (17)

where k1 ¼ ωp1 and k3 ¼ ωp3, and for SV-waves,

ω2 ¼ υ2S0ðk
2
1 þ k23Þ þ 2

υ2P0ðϵ − δÞk21k
2
3

k23 þ ξk21
; (18)

where the notation of Thomsen (1986) is used:

8

>

>

>

>

>

<

>

>

>

>

>

:

υP0 ¼
ffiffiffiffiffi

c33
ρ

q

υS0 ¼
ffiffiffiffiffi

c44
ρ

q

ϵ ¼ c11−c33
2c33

δ ¼ ðc13þc44Þ
2−ðc33−c44Þ

2

2c33ðc33−c44Þ

; (19)

where υP0 and υS0 are the vertical velocities defined by the density ρ

and the elastic constants cij given in Voigt notation and

ξ ¼ 1þ 2ϵ
υ2P0

υ2P0 − υ2S0
. (20)

The approximate dispersion relations 17 and 18 are valid for

�

�

�

�

2ðϵ − δÞυ2P0ðυ
2
P0 − υ2S0Þsin

2 2θ

½υ2P0ð1þ 2ϵ sin2 θÞ − υ2S0�
2

�

�

�

�

≪ 1; (21)

with θ being the angle between the slowness vector and the sym-

metry axis. They provide independent equations for P- and SV-

waves. Using equations 17 and 18, together with equation A-7,

yields the components of the group velocity for P-waves:

�

VP1 ¼ υ2P0p1½ð1þ 2ϵÞ − 2ðϵ − δÞχ�
VP3 ¼ υ2P0p3½1 − 2ðϵ − δÞχ 0�

(22)

and for SV-waves:

�

VS1 ¼ υ2S0p1½1þ 2σχ�
VS3 ¼ υ2S0p3½1þ 2σχ 0�

; (23)

where

Figure 2. Variation in the shape and size of the IFZ for P-P reflec-
tion from a plane reflector between anisotropic (solid line) and iso-
tropic (dashed line) media, as a function of the difference ϵ − δ
(with a positive [top] or negative [bottom] value) and for various
incidence angles θ. The incidence angles are θ ¼ 0° (black),
θ ¼ 20° (red), θ ¼ 30° (light blue), and θ ¼ 50° (green). The size
of each IFZ is normalized with respect to the incident P-wavelength
for θ ¼ 0°.
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(

χ ¼
p4
3

ðp2
3
þξp2

1
Þ2

χ 0 ¼
ξp4

1

ðp2
3
þξp2

1
Þ2

(24)

and

σ ≡
υ2P0
υ2S0

ðϵ − δÞ. (25)

From equations 16 and 22, we can note that the traveltime differ-

ence for P-waves is controlled by the interface parameters F, the

vertical P-wave velocity υP0, the anisotropy parameter ϵ, and the

parameter combination ϵ − δ. Equations 16 and 23 show that

the traveltime difference for SV-waves is controlled by the interface

parameters F, the vertical S-wave velocity υS0, and the above-

defined parameter σ, which is proportional to the difference ϵ − δ.

Consequently, beside the interface parameters F and the vertical

velocities υP0 and υS0, the difference ϵ − δ also controls the shape

and the size of the IFZ for P-P and P-SV reflections.

The IFZ for a P-SV reflected wave in a DTI medium is computed

in Appendix C. The IFZ for a P-P reflected wave can be straight-

forwardly deduced from these derivations.

ISOTROPIC MEDIA

For isotropic media, the previous computations simplify consider-

ably because there are only two parameters: the velocities υP0 and υS0
of P- and S-waves, respectively. Nevertheless, the general equations 9

and 14 defining the FV and IFZ, respectively, remain the same.

Figure 3. Variation in the shape and size of the IFZ for P-P reflection in anisotropic (solid line) and isotropic (dashed line) media at an
anticline- (top), syncline- (middle), and saddle-type (bottom) reflector, as a function of the difference ϵ − δ (with positive [left] or negative
[right] value) and for various incidence angles θ. The incidence angles are θ ¼ 0° (black), θ ¼ 20° (red), and θ ¼ 35° (light blue). The principal
curvature axes of the reflectors lie along the Cartesian coordinate axes. The size of each IFZ is normalized with respect to the incident
P-wavelength for θ ¼ 0°.
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For an isotropic medium, the IFZ for a P-SV reflected wave is

given by equation C-1 taking into account Snell’s law:

1

2υP0dP
ðcos2 θPδx

2
1þ δx22ÞþFðδx1;δx2Þ

�

cos θP
υP0

þ
cos θS
υS0

�

þ
1

2υS0dP
ðcos2 θSδx

2
1þ δx22Þ≤

1

2f
; (26)

where θP and θS are the angles the rays for the P- and SV-waves

make with the surface normal, respectively.

NUMERICAL EXAMPLES

Here, we do not consider transmitted waves and focus only on the

reflection at a curved interface between two DTI media. The shape

and the size of the IFZ for P-P and P-SV reflections are investigated

for various anisotropy parameters, incidence angles, and interface

curvatures. The purpose is to demonstrate how all these parameters,

and specifically the anisotropy parameters, may control the IFZ size

and hence the lateral seismic resolution. To emphasize this influ-

ence, we compare the results with those obtained for the equivalent

isotropic media and plane reflectors.

Figure 4. Same as in Figure 3, except that the principal curvature axes of the reflectors do not lie along the Cartesian coordinate axes (rotation
of the curvature axes by ϕ ¼ 20° with respect to the x1- and x2-axes).
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Description of the model

We use the measured values of anisotropy parameters in brine-

saturated shales (Wang, 2002). The incidence medium has density

ρ ¼ 2597 kg∕m3, vertical P-wave velocity υP0 ¼ 4409 m∕s, verti-

cal S-wave velocity υS0 ¼ 2688 m∕s, and Thomsen parameters ϵ ¼
0.110 and δ ¼ −0.043. The velocities and Thomsen parameters are

connected to elastic coefficients aij ¼ cij∕ρ through equation 19.

Alkhalifah and Tsvankin (1995) introduce the traveltime parameter

η ¼ ϵ−δ
1þ2δ

, which appears in the relation between the horizontal

velocity and NMO velocity for a P-P reflection in a VTI layer.

In the exact expression and in the relations for traveltimes in a lay-

ered VTI medium (Ursin and Stovas, 2006), only the difference

ϵ − δ appears. This is also the case for the dispersion relation for

P and SV waves in a VTI medium (Tsvankin, 2001; Pestana et al.,

2012). Here, we shall consider this difference, which in the previous

sections was found to also control the IFZ size for P-P and P-SV

reflections. The difference ϵ − δ is positive for most sedimentary

rocks, and a typical value is ϵ − δ ¼ 0.153 for real brine-saturated

shales. For comparison purposes, and to emphasize the influence

of this difference on the shape and the size of the IFZ, we fix

the parameters ρ, υP0, and υS0, and we also consider a negative value

for ϵ − δ (−0.153). The source and the receiver are located at a dis-

tance x3 ¼ 3000 m from the plane tangent to the interface at the

reflection point. The central frequency f of the incident P-wave

is chosen equal to 25 Hz. The incident P-wavelength at normal in-

cidence is then 176 m.

We consider three kinds of curved reflector in this study: an

anticline-type reflector with positive values for the main radii of inter-

face curvature (Ursin, 1986) (R1 ¼ þ5000 m and R2 ¼ þ4000 m),

a syncline-type reflector with negative values for radii (R1 ¼
−5000 m andR2 ¼ −4000 m), and a saddle-type reflector withR1 ¼
−5000 m andR2 ¼ þ4000 m. To remain general, we cannot suppose

that δx1 and δx2 lie along the principal curvature axes of the interface

because the x1-direction is given by the incoming ray, which implies

that the functions Fijði; j ¼ 1; 2Þ in equation 11 can be expressed as

(Stavroudis, 1972, p. 149)

8

>

<

>

:

F11 ¼
1
R1
cos2 ϕþ 1

R2
sin2 ϕ

F12 ¼ ð 1
R1
− 1

R2
Þ cos ϕ sin ϕ

F22 ¼
1
R1
sin2 ϕþ 1

R2
cos2 ϕ

; (27)

where ϕ is the angle between the principal curvature axes of the inter-

face and the Cartesian coordinate axes. Hereafter, we will consider

ϕ ¼ 20°. We also consider the particular case where δx1 and δx2 both

lie along the principal curvature axes of the interface, which implies

ϕ ¼ 0, and hence

8

<

:

F11 ¼
1
R1

F12 ¼ 0

F22 ¼
1
R2

. (28)

Note that for a plane reflector, the radii R1 and R2 have infinite values.

Influence of ϵ − δ on the interface Fresnel zone for
P-P reflection from various curved reflectors

We first wanted to validate the results provided by our approxi-

mation with the results obtained with the method suggested in

Favretto-Cristini al. (2009) in the simpler case of a curved interface

between isotropic media. More specifically, the variation in the size

of the IFZ for a P-P reflection as a function of the incidence angle θ,

and for a given value of the radii R1;2, was investigated. On the one

hand, this variation is obtained using equations 8 and 11 given in

Favretto-Cristini et al. (2009), and on the other hand, through equa-

tion 26, taking into account the specific alignment given in equa-

tion 28. We obtained a very good agreement between the results

whatever the interface curvature. For the syncline-type interface,

this very good agreement occurs up to the particular incidence angle

for which the radius of the interface curvature approaches the radius

of curvature of the isochron associated with the specular reflection.

In a second step, we study the effects of the difference ϵ − δ

on the shape and the size of the IFZ for P-P reflection for various

incidence angles and various interface curvatures.

Figure 2 illustrates the results for a plane reflector. For compari-

son purposes, we also show the IFZs for the equivalent isotropic

medium (ϵ ¼ δ ¼ 0). The size of each IFZ is normalized with

respect to the incident P-wavelength for θ ¼ 0. For θ ¼ 0, the aniso-

tropic IFZ is equivalent to the isotropic counterpart and exhibits

a circular shape. This result seems to contradict that presented

in Okoye and Uren (2000). In fact, our zero-offset results for

anisotropic media are due to the traveltime approximation, which

consists in an expansion in a Taylor series around the central ray

(see equation 5). Because the reflector dip is zero, the zero-offset

Figure 5. Variation in the shape and size of the IFZ for P-SV re-
flection from a plane reflector between anisotropic (solid line) and
isotropic (dashed line) media, as a function of the difference ϵ − δ
(with a positive [top] or negative [bottom] value) and for various
incidence angles θ. The incidence angles are θ ¼ 0° (black),
θ ¼ 20° (red), and θ ¼ 30° (light blue). The size of each IFZ is nor-
malized with respect to the incident P-wavelength for θ ¼ 0°.
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Figure 6. Variation in the shape and size of the IFZ for P-SV reflection in anisotropic (solid line) and isotropic (dashed line) media at an anticline-
(top), syncline- (middle), and saddle-type (bottom) reflector, as a function of the difference ϵ − δ (with a positive [left] or negative [right] value)
and for various incidence angles θ. The incidence angles are θ ¼ 0° (black), θ ¼ 20° (red), and θ ¼ 30° (light blue). The principal curvature axes
of the reflectors lie along the Cartesian coordinate axes. The size of each IFZ is normalized with respect to the incident P-wavelength for θ ¼ 0°.
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rays depend only on the vertical velocity of the medium and the

results are the same as for isotropic media. Nevertheless, with in-

creasing θ, the anisotropic IFZ shows significant changes in shape

with respect to the isotropic counterpart. These changes are much

more pronounced for positive values of ϵ − δ.

Figure 3 presents variations in the shape and size of the IFZ at an

anticline-, syncline-, and saddle-type reflector, respectively, as a

function of ϵ − δ and for various incidence angles θ. The principal

curvature axes of the reflectors lie along the Cartesian coordi-

nate axes.

As expected in the case of an anticline, because a smaller area of

the interface is in contact with the isochron, the anisotropic IFZ is

smaller than that at the plane reflector. Whatever the value for ϵ − δ

and for small (or moderate) incidence angles, the size and the shape

of the anisotropic IFZ are identical to the isotropic counterparts

(Figure 3, top).

On the contrary, the anisotropic IFZ at the syncline-type reflector

exhibits a more complex shape with increasing θ (Figure 3, middle).

For small incidence angles, the IFZ has an elliptical shape with the

major axis lying in the transverse plane, whatever the value for

ϵ − δ. As the angle θ increases, the curvature of the isochron tends

to that of the reflector over a very large distance, which leads to

growing portions of the reflectors involved in the reflection process,

and hence an unusually large IFZ in the incidence plane (e.g., for

θ ¼ 35° in Figure 3 [middle]). Whatever the value for ϵ − δ, the size

of the anisotropic IFZ at a syncline is larger than the isotropic

counterpart. Nevertheless, this feature is still more pronounced

for positive values of ϵ − δ. Note that for wider incidence angles

the anisotropic IFZ exhibits four infinitely extended tails along

diagonal directions, known as indicators of the existence of station-

ary points of hyperbolic type (Asatryan and Kravtsov, 1988; Spet-

zler and Snieder, 2004). Nevertheless, these tails are unphysical and

must be truncated to obtain the actual field-formation region, which

is of finite size (Asatryan and Kravtsov, 1988). The real size of the

anisotropic IFZ is then given by the ellipse tangent to the vertices of

hyperbolae and whose axes lie in the incidence and transverse

planes.

The anisotropic IFZ at the saddle-type reflector exhibits a specific

shape, which is a mix between the shapes of the anisotropic IFZ at

the anticline and at the syncline (Figure 3, bottom). As expected

from the values of the main radii of the interface curvature, its size

is limited in the incidence (respectively, transverse) plane by the

extent of the anisotropic IFZ at the syncline (respectively, anticline).

The anisotropic IFZ at the saddle-type reflector is larger than the

isotropic counterpart, this feature still being more pronounced for

positive values of ϵ − δ.

Considering the general case in which the principal curvature

axes of the reflectors do not lie along the Cartesian coordinate axes

leads to significant changes in the shape and the size of the IFZ,

more specifically for syncline- and saddle-type reflectors (Figure 4,

middle and bottom). The IFZ patterns still remain ellipses expand-

ing from the fixed reflection point with increasing incidence angle,

but they are now rotated by the angle ϕ ¼ 20° with respect to the

x1-axis. In addition to the rotation of the patterns, the rotation of

the principal curvature axes of the reflectors leads to larger (respec-

tively, smaller) size of the isotropic and anisotropic IFZs at the syn-

cline (respectively, saddle-type reflector) along the direction of the

principal curvature axis associated with radius R1, the size along

the perpendicular direction remaining unchanged. Moreover, the

occurrence of the infinitely extended tails along diagonal directions

can be noted at the syncline for smaller incidence angles than pre-

viously. Finally, the anisotropic IFZs are larger than the isotropic

counterparts, this feature still being more pronounced for positive

values of ϵ − δ.

Influence of ϵ − δ on the interface Fresnel zone for
P-SV reflection from various curved reflectors

We now investigate the effects of the difference ϵ − δ on the

shape and the size of the IFZ for P-SV reflection for various inci-

dence angles and various interface curvatures.

Figure 5 illustrates the results for a plane reflector. As noted in

Eaton et al. (1991), the relative changes in size and shape of the

isotropic IFZ for P-SV reflection for various incidence angles are

not large and are comparable to the P-P reflection case. For θ ¼ 0,

the anisotropic IFZ is equivalent to the isotropic counterpart and

exhibits a circular shape. Nevertheless, with increasing θ, the aniso-

tropic IFZ shows significant changes in shape and size with respect

to the isotropic counterpart. For negative (respectively, positive) val-

ues of the difference ϵ − δ, the shape of the IFZ is almost circular

(respectively, elliptical with the major axis in the incidence plane)

and the center for the IFZ patterns is shifted left (respectively, right)

of the reflection point for isotropic media. This peculiar property

can be explained by examining the equations for the IFZ, as shown

in Appendix C.

Figure 6 presents the variation in shape and size of the IFZ at an

anticline-, syncline-, and saddle-type reflector, respectively, as a

function of ϵ − δ and for various incidence angles θ. The principal

curvature axes of the reflectors lie along the Cartesian coordinate

axes. For a fixed interface curvature, the isotropic IFZ has a sym-

metric shape centered at the reflection point and does not exhibit

significant changes with increasing θ. On the contrary, the aniso-

tropic IFZ exhibits significant variations in size and shape with in-

creasing θ depending on the interface curvature. Its size is always

much larger than the isotropic counterpart, this feature being much

more pronounced for positive values of ϵ − δ. A shift of the center

of the IFZ can still be noticed for negative and positive values

of ϵ − δ.

Note that except the rotation of the patterns, the rotation of the

principal curvature axes of the reflectors leads to no significant

changes in the shape nor the size of the anisotropic IFZ.

CONCLUSIONS

The IFZ largely contributes to the formation of the reflection and

transmission wavefields at an observation point. We have derived

analytic expressions, based on traveltime approximations, to evalu-

ate its size for converted and nonconverted waves reflected or trans-

mitted by a curved reflector between two homogeneous anisotropic

media. We have investigated the shape and size of the IFZ for P-P

and P-SV reflections as a function of the anisotropy parameters for

various incidence angles and interface curvatures. We have consid-

ered more specifically DTI media and reflectors of the anticline,

syncline, and saddle type (with principal curvatures axes not nec-

essarily lying along the Cartesian coordinate axes). In an anisotropic

medium, the isochron in most cases assumes a nonelliptical shape.

The size and shape of the IFZ for reflected waves are predominantly

dependent on the curvatures of the isochrons together with the

curvatures of the reflector. As expected, the syncline- and the
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saddle-type reflectors exhibit very large IFZs compared to those for

plane or anticline-type reflectors. In addition, the difference be-

tween the Thomsen anisotropy parameters ϵ and δ is found to also

control the shape and size of the IFZ for P-P and P-SV reflections.

The effects are much more pronounced for positive values of the

difference ϵ − δ.
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APPENDIX A

GROUP VELOCITY

In a ray-tracing modeling scheme (e.g., Červený, 2001), the posi-

tion vector X and the direction of the slowness vector p are known.

The phase velocity CI and the orthonormal polarization vectors ĝI
are determined from the Christoffel equation (e.g., Chapman, 2004):

ðΓ̂ − C2
I Þ ĝI ¼ 0; (A-1)

where no summation over I is considered. The Christoffel matrix is

Γ̂ik ¼ aijklp̂j p̂l ði; j; k; l ¼ 1; 2; 3Þ (A-2)

for an arbitrary slowness vector p̂, with aijkl ¼ cijkl∕ρ being the den-

sity-normalized elastic moduli. Note that in equation A-2 the Einstein

summation rule over repeated index has been used. The permitted

slowness vector p ¼ p̂∕cI satisfies

det ðΓ − IÞ ¼ 0; (A-3)

where Γ is given by equation A-2 with the slowness p. With the help

of the Hamiltonian defined by (e.g., Chapman, 2004)

HIðX; pÞ ¼
1

2
ĝtIΓĝI; (A-4)

(with no summation over I) where the superscript t denotes the trans-

pose of a quantity, the components of the group velocity vector are

Vi ¼
∂H

∂pi

¼
1

2
aijklpkĝj ĝl . (A-5)

Alternatively, the group velocity may be computed from the

dispersion relation (Auld, 1990)

ΩðK;ωÞ ¼ det ðΓðKÞ − ω2IÞ ¼ 0 (A-6)

with K ¼ ωp (ω being the angular frequency), using

Vi ¼ −
∂Ω∕∂ki

∂Ω∕∂ω
. (A-7)

Zhou and Greenhalgh (2004) give a third method for computing the

group velocities by taking derivatives of the phase velocities com-

puted from equation A-1. Explicit expressions for group velocity

through phase velocity can also be found in Tsvankin (2001).

APPENDIX B

GROUP VELOCITY COMPONENTS IN DIP-CON-

STRAINED TRANSVERSELY ISOTROPIC MEDIUM

With p2 ¼ 0, the Christoffel equation reduces to (Chapman, 2004)

0

B

@

a11p
2
1þa44p

2
3−1 0 ða13þa44Þp1p3

0 a66p
2
1þa44p

2
3−1 0

ða13þa44Þp1p3 0 a44p
2
1þa33p

2
3−1

1

C

A
ĝ¼0;

(B-1)

where aij ¼ cij∕ρ are the density-normalized elastic constants, now

in Voigt notation.

For the SH-wave, the Christoffel equation then gives (Chapman,

2004)

a66p
2
1 þ a44p

2
3 ¼ 1. (B-2)

This equation leads to the expression for p3 as a function of p1:

p3 ¼ �

�

1

a44
−
a66

a44
p2
1

�

1∕2

. (B-3)

From the dispersion equation A-6

ΩðK;ωÞ ¼ a66k
2
1 þ a44k

2
3 − ω2 ¼ 0; (B-4)

we obtain the group velocity components using equation A-7 addi-

tionally

�

V1 ¼ a66p1

V3 ¼ a44p3
. (B-5)

For the coupled P-SV waves, the Christoffel equation B-1 gives

(Chapman, 2004)

ða11p
2
1 þ a44p

2
3 − 1Þða44p

2
1 þ a33p

2
3 − 1Þ

− ða13 þ a44Þ
2p2

1p
2
3 ¼ 0. (B-6)

For a given horizontal slowness p1, the solution for the vertical

slowness is (Chapman, 2004)

p2
3 ¼

B∓½B2 − 4a33a44ða11p
2
1 − 1Þða44p

2
1 − 1Þ�1∕2

2a33a44
; (B-7)

with B ¼ a33 þ a44 þ ða213 þ 2a13a44 − a11a33Þp
2
1. In equation B-

7, the minus sign is for the P-wave and the plus sign is for the SV-

wave. The group velocity is computed from the dispersion relation:
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ΩðK;ωÞ ¼ ða11k
2
1 þ a44k

2
3 − ω2Þða44k

2
1 þ a33k

2
3 − ω2Þ

− ða13 þ a44Þ
2k21k

2
3 ¼ 0 (B-8)

and using equation A-7,

�

V1 ¼ p1
a11B2þa44B1−p

2
3
A2

B1þB2

V3 ¼ p3
a44B2þa33B1−p

2
1
A2

B1þB2

; (B-9)

with B1 ¼ a11p
2
1 þ a44p

2
3 − 1 and B2 ¼ a44p

2
1 þ a33p

2
3 − 1.

APPENDIX C

INTERFACE FRESNEL ZONE FOR A P-SV

REFLECTION

We consider a P-to-SV-converted reflected wave in a DTI medi-

um above a curved reflector. The IFZ is given by equation 15, where

the absolute value sign can be removed because the quantity in the

absolute value sign is positive due to Fermat’s principle. The outer

boundary of the IFZ can then be described using equation 16:

1

2VPdP

�

V2
P3

V2
P

δx21þδx22

�

þ
VP1

V2
P

δx1þFðδx1;δx2Þ
VP3

V2
P

þ
1

2VSdS

�

V2
S3

V2
S

δx21þδx22

�

−
VS1

V2
S

δx1þFðδx1;δx2Þ
VS3

V2
S

¼ 1
2f ;

(C-1)

where the P (respectively, S) subscript is associated to the incident

P-wave (respectively, the reflected SV-wave).

Because of the interface term Fðδx1; δx2Þ, the IFZ is not neces-

sarily symmetric about the x1- and x2-axes. Along the x1-axis

(x2 ¼ 0), the boundary of the IFZ is described by

aδx21 þ 2bδx1 −
1

f
¼ 0 (C-2)

with

a ¼
V2
P3

V3
PdP

þ
V2
S3

V3
SdP

þ F11

�

VP3

V2
P

þ
VS3

V2
S

�

(C-3)

and

b ¼
VP1

V2
P

−
VS1

V2
S

(C-4)

and whose solution is

δx1 ¼
1

a

�

−b�

�

b2 þ
a

f

�

1∕2
�

. (C-5)

When a is positive, there are two solutions of opposite sign. For

b < 0, the positive solution is larger in absolute value than the neg-

ative one, whereas for b > 0, the negative solution is the largest one

in absolute value. To analyze b in equation C-4, we use the approxi-

mate group velocities given in equations 22 and 23. This gives

b ¼ p1

�

ð1þ 2ϵÞ
υ2P0
V2
P

−
υ2S0
V2
S

�

− 2p1ðϵ − δÞχυ2P0

�

1

V2
P

þ
1

V2
S

�

.

(C-6)

From this expression, we note that b is large and positive when

ϵ − δ < 0 and small, possibly negative, when ϵ − δ > 0. For ϵ − δ ¼
0, the sign of b depends on the VP∕VS ratio. This explains the re-

sults in Figures 5 and 6, in which the IFZ lies mostly in the left half-

plane (δx1 < 0) when ϵ − δ < 0 and mostly in the right half-plane

(δx1 > 0) when ϵ − δ > 0.
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