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For � real, we consider the pattern given by the value modulo

2 of the integer part of �(x2 + y2), where (x; y) 2 Z � Z.

We study the periodicity and other geometric properties of this

pattern, and show that it can provide, by visual inspection

and an elementary computation, a diophantine approximation

for �. We conclude with similar results for other moduli.

1. INTRODUCTIONFresnel zones arise from di�raction. They con-sist of alternating light and dark concentric ringswhose radii increase as pn, for n a positive inte-ger. In nature the boundary between the rings isnot sharp|the brightness varies continuously withdistance from the center|but we will consider theall-or-nothing approximation that appears on theleft.To describe this brightness function f(x; y) wechoose a scale coe�cient, denoted p� for conve-nience. Thenf(x; y) = ( 0 if p2n � p�px2 + y2 < p2n+ 1,1 if p2n+ 1 � p�px2 + y2 < p2n+ 2,for some positive integer n. Equivalently,f(x; y) = [(x2 + y2)�] (mod 2); (1.1)where the brackets denote the 
oor function: [a] isthe greatest integer not exceeding a.To plot the Fresnel zones on a computer screen,we must discretize the domain. From now on weregard f as a function de�ned on Z�Z , and color apixel (x; y) white if f(x; y) = 0, black if f(x; y) = 1.We let G� denote the pattern obtained in this way.The �gures on the next two pages, which showG� for several rational values of �, contain somesurprises. We get not one but several families of
c
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FIGURE 1. Region [�100; 300]�[�100; 300] for � = 1200 .Fresnel rings (Figures 1 and 2); the pattern is pe-riodic (Figures 1 and 3); and secondary systems ofrings appear (Figures 1 and 2). The aim of thispaper is to explain these phenomena.In Section 3, we prove that G� is periodic if andonly if � is rational, and �nd its shortest period.In Section 4, we describe the geometrical structureof G�. In Section 5, we explain why secondary sys-tems of rings arise, and where they are located. InSection 6, we show that one can �nd a rational ap-proximation of � by visual inspection of G� and anelementary calculation. Section 7 concludes withsome generalizations.Dewdney [1986] has discussed similar patterns,but to my knowledge there has been no mathemat-ical treatment of them.
2. NOTATION AND CONVENTIONSFor � a real number, we de�ne f by (1.1), anddenote by G� the associated pattern. When neces-sary we write f� instead of f . Clearly f� = f�+2,so by adding or subtracting a positive integer wecan assume that � 2 [0; 2) as far as f is concerned.

FIGURE 2. Region [�100; 300]�[�100; 300] for � = 1201 .
Convention. Whenever we write � = r=s we assumethat r and s are relatively prime positive integers.If there exists a positive integer T such thatf(x+ T; y) = f(x; y) for all x; y 2 Z,we say that f and G� are periodic of period T . Inthis case f is also periodic of period T in y, since fis symmetric. The shortest period of f (or of G�)is the smallest integer T such that f is periodic ofperiod T .Any real number � 2 [0; 2) can be written in base2 in the form � = a0:a1a2a3 : : :, where ai = 0 or 1for all i. This is the same as writing� = 1X0 ai2i :
Convention. If � is of the form k2�j for integersj � 0 and k, there are two binary expansions for �,one of the form : : : an�1an1000 : : : and the other ofthe form : : : a0n�1a0n0111 : : : . We will always use theformer expansion: in other words, there is never aninteger i0 such that ai = 1 for all i � i0.
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FIGURE 3. Region [�43; 43]� [�43; 43] for � = 722 .
3. UNIQUENESS AND PERIODICITY

Lemma 3.1. Let � be a real number . Then f� isidentically zero if and only if � is an even integer .
Proof. As already observed, we can assume that� 2 [0; 2). Suppose that f� vanishes identically, sothat [(p2 + q2)�] = 0 (mod 2) for all p; q 2 Z. Let� = a0:a1a2a3 : : : be the binary expansion of �. Foran arbitrary positive integer j, we plug in p = 2jand q = 0; then[(p2 + q2)�] = �22j 1X0 ai2i � = [a2j] (mod 2);where for the second equality we have used theconvention that there is never a position beyondwhich all the ai = 1. We conclude that a2j = 0 forall j. Then we plug in p = 2j and q = 2j; this gives[(p2 + q2)�] = �22j+1 1X0 ai2i � = [a2j+1] (mod 2);so that, likewise, a2j+1 = 0 for all j. This showsthat � = 0. �This argument actually shows that the whole bi-nary expansion a0:a1a2a3 : : : of a number � 2 [0; 2)can be recovered from f�: namely, a2j = f�(2j; 0)and a2j+1 = f�(2j; 2j). We thus have proved:
Proposition 3.2. G� = G� (equivalently , f� = f�) ifand only if � and � di�er by an even integer . �

Remark. It is still possible to have G� coincide withG� after a translation, for distinct �; � 2 [0; 2).This happens when � = r=s with r odd and s is amultiple of four: then G�+1 is a translate of G� bythe vector ( 12s; 12s), as a straightforward calculationshows.
Proposition 3.3. G� is periodic if and only if � isrational .
Proof. If � = r=s, we easily verify that 2s is aperiod of f . Conversely, assume that f is periodicof period T . This means that[((x+ pT )2+(y+ qT )2)�] = [(x2+ y2)�] (mod 2)for any integers p; q. Taking x = 0 and y = 0shows that fT 2� is identically zero, so T 2� is aneven integer by Lemma 3.1. Since T is an integer,� is rational. �
Theorem 3.4. If � = r=s, the shortest period of G�is 2s if rs is odd , and s if rs is even. (Recall thatr and s are relatively prime positive integers.)
Lemma 3.5. Let �; � 2 R be such that[�+ k�] = [�] (mod 2) for any k 2 Z : (3.1)Then � is an even integer .
Proof. Again we can obviously reduce to the case� 2 [0; 2). We prove that � = 0 by contradiction.If � = 1 then [� + �] = [�] + 1, contradicting(3.1). If 0 < � < 1, let n be the largest integer suchthat [�+n�] = [�]. Then [�+ (n+1)�] = [�] + 1,again contradicting (3.1). Finally, if 1 < � < 2,the same reasoning applied to 2 � � contradictsthe equality[�� k(2� �)] = [�] (mod 2) for any k 2 Z ;which is equivalent to (3.1). �
Proof of the theorem. We know that f is periodic ofperiod 2s; let t be the shortest period. The proof ofProposition 3.3 shows that �t2 is an even integer.We substitute x = 1 and y = 0 in the equation((x+ kt)2 + y2)rs = (x2 + y2)rs (mod 2);
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where k is any integer, and expand the square.Taking into account that (r=s)t2 is an even inte-ger, we obtainhrs + k2trs i = hrsi (mod 2)for all k 2 Z, and by Lemma 3.5 this implies that2rt=s is an even integer. Since r and s are relativelyprime, s divides t. But 2s is a period, and so amultiple of t. Therefore t = s or t = 2s. Finally,the equalityh((x+ s)2 + y2)rsi = h(x2 + y2)rs + rsi (mod 2);obtained by expanding (x + s)2, shows that s is aperiod if and only if rs is even. �
4. SYMMETRIES AND OTHER GEOMETRIC REMARKSWe now turn to the symmetries of G�. We start byobserving that there are always eight symmetries�xing the origin: four rotations by multiples of 90�,and four re
ections in the coordinate axes and inthe diagonals x = y and x = �y.When � is irrational, G� has no other symme-tries.When � is rational, let t be the shortest periodof G�. We already know that the translations (t; 0)and (0; t) preserve G�.When rs is even, these two translations gener-ate the group of translational symmetries of G�.Adjoining the symmetries about the origin we ob-tain the full group of symmetries of G�. Thus apoint (x; y) 2 Z � Z has order-eight symmetry ifand only if(x; y) = ( 12pt; 12qt) with p; q 2 Z and p+ q even.Points of the form ( 12pt; 12qt), for p + q odd, are�xed by four symmetries: re
ections in horizontaland vertical lines, and 180� rotations.When rs is odd, (t; 0) and (0; t) generate only asubgroup of index two in the group of translationalsymmetries of G�; the translation ( 12 t; 12 t) is also asymmetry. Adjoining this latter to the symmetries

about the origin we get the full group of symme-tries of G�. A point (x; y) 2 Z � Z has order-eightsymmetry if and only if(x; y) = (pt; qt) with p; q 2 Z.Points of the form ( 14pt; 14qt), for p + q even, are�xed by four symmetries: re
ections in diagonallines and 180� rotations.It is also interesting to consider transformationsthat don't quite leave G� invariant, but act in somesimple way. For example, de�ne a semisymmetryof G� as an isometry of Z � Z that interchangesblack and white, or, more formally, that conjugatesf to 1� f .It is trivial to show that, if � = r=s with rs odd,a horizontal or vertical translation by s = 12 t is asemisymmetry. In this case G� has a draughtboardpattern (Figure 4).
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FIGURE 4. Left: Region [�35; 35] � [�35; 35] for� = 7=15. Right: In general, for � = r=s withrs odd, G� can be divided into blocks of side s,arranged a draughtboard pattern (N and P denotecomplementary arrays).For rs odd, the group of symmetries of G� de-scribed above has index two in the group of symme-tries and semisymmetries combined. For rs evenor � irrational, there are no semisymmetries.Yet another generalization of symmetries of G�is the following. If r is odd and s is even, everyother pixel changes color under a diagonal transla-tion by ( 12 t; 12 t), where t = s is the shortest period.More precisely, this translation acts as a pixelwiseexclusive-or with the �lter
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0 1 0 1 01 0 1 0 10 1 0 1 01 0 1 0 10 1 0 1 0 ;
where the origin combines with 1 (changes color)if 12s is odd and with 0 if 12s is even.
Finding r and s from G�Proposition 3.2 says that a real number � 2 [0; 2)is uniquely determined from G�. Here we assumethat G� is periodic and spell out a procedure for�nding � = r=s.First, �nd the shortest period t. If G� has thedraughtboard structure, s = 12 t, otherwise s = t.To �nd r, recall from the discussion precedingProposition 3.2 that the (2i)-th bit in the binaryexpansion of � is the color of the pixel (2i; 0), andthe (2i+1)-th bit is the color of (2i; 2i). Now choosej such that 2j > s, and �nd the bits a0; : : : ; aj.Since � = rs = jXi=0 ai2i + " with 0 � " < 12jand since s(2�j � ") < 1, we get

r = �s� jXi=0 ai2i + 12j��: (4.1)

We remark that this procedure requires the exam-ination of [log2 s] + 1 pixels of G�.
5. THE RINGSWe observe in Figures 1 and 5 the surprising ap-pearance of rings. In both cases we can remarkthat � is close to a \simple" fraction: 1251 is closeto 01 and 72251 is close to 27 . The purpose of thissection is to explain the following observation:
Observation. Rings are seen when � = r=s is closeto a fraction a=b with small denominator. Mainrings have center (us=(2c); vs=(2c)), where u and vare integers of same parity as ab, and c = rb� as.

FIGURE 5. Region [�160; 160]�[�160; 160] for � = 72251 .
Explanation. Let r, s, a, b be positive integers, �and � real numbers, and set x0 = �s, y0 = �s,c = rb� as. For any integer x and y, de�ne � and� by x = x0 + � and y = y0 + �. We havex2 + y2 = 2(x0x+ y0y)� (x20 + y20) + (�2 + �2);and so(x2+y2) csb = 2(�x+�y)cb�(�2+�2)csb +(�2+�2) csb :Substituting c=(sb) = r=s� a=b, we obtain(x2 + y2)rs = A(x; y) + (�2 + �2) csb;whereA(x; y) = (x2+ y2)ab +2(�x+�y)cb � (�2+�2)csb :Let (x1; y1) 2 Z�Z and let z1 2 [0; 2) be the residueof A(x1; y1) modulo 2. Then all (x; y) 2 Z � Zsatisfying A(x; y) = z1 (mod 2)� have the same color in every ring limited by con-secutive circles with center (x0; y0) and radii ofthe form p(k � z1)sb=c, where k is an integer� z1 if c > 0 and � z1 if c < 0; and they
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� change their color when passing from a ring tothe next.The same properties hold for all values of A(x; y)modulo 2. In order to see the rings on the patternG� it is necessary that the limit circles correspond-ing to these values be clearly distinct and have bigenough radii: for example, the radii of the smallestcircles should be � 10, and the di�erence betweentwo successive radii should be � 2. Then� sb=c must be big (> 100) and a=b must be closeto r=s;� the values of A(x; y) modulo 2 must be few,which requires that �; � be rational and b besmall.Namely, in order that (a(x2+y2)2+2(�x+�y)c)=btake only a few values, we must choose 2�c and2�c to be integers. Then, if � = r=s is close toa fraction a=b with a small denominator, we ob-serve families of concentric rings with center at(us=(2c); vs=(2c)) for u; v 2 Z.If we choose � = u=(2c) and � = v=(2c), we have(x2 + y2)rs = a(x2 + y2) + (ux+ vy)b � (�2 + �2)csb+ (�2 + �2) csb :Nowa(x2 + y2) + (ux+ vy)b � (�2 + �2)csb (5.1)varies much faster than the last summand in thepreceding equality. This means that near (x0; y0)we can obtain G� by modifying the pattern aris-ing from the integer part of (5.1) (mod 2) with thehelp of the term (�2+�2)c=(sb). Assume that ab isodd. It is easy to show that the shortest period of(5.1) is b if uv is odd and 2b otherwise. In the sec-ond case, the draughtboard structure with a smallb gives a general impression of grey, and consecu-tive rings are indistinguishable: the rings are seenwhen ab is odd if u and v are odd. Similarly, ifab is even, the rings are seen if both u and v areeven. �

In the particular case when r=s is small, that is, ifa = 0, b = 1, c = r, the expression 2(�x + �y)ctakes only very few values modulo 2 if � and � arefractions with the same small denominator. Weobserve in this case families of rings with center at(us=w; vs=w), for u and v integers and w a smallpositive integer (see Figure 3).
Application. Given a G� that shows rings, with � =r=s, we can easily �nd a \simple" fraction a=b closeto r=s as follows: count the number k of the mostvisible systems of rings whose centers belong to ahorizontal segment of length s; then solve the equa-tion ry� sx = k in integers and select the solutionwith smallest jxj and jyj. These two absolute val-ues are a and b.For example, in Figure 5, with r = 72 and s =251, we see that k = 2. Solving 72y � 251x =2 gives x = 2 + 72m and y = 7 + 251m, for minteger. Then a = 2 and b = 7. The error in theapproximation is 21757 .
6. DIOPHANTINE APPROXIMATION USING G�Nearby values of � lead to patterns that di�er butlittle near the origin: we will formalize this asser-tion shortly. Therefore, if a pattern G� is quasi-periodic|that is, periodic except at some excep-tional points|in a neighborhood of the origin, thisshould mean that � is close to a rational numberr=s. This rational approximation can be found bythe method at the end of Section 4.We denote by D(R) the open disk with centerat (0; 0) and radius R. Suppose � 2 [0; 2) satis�es� = r=s+ ", where r; s are positive integers, r=s 2[0; 2), and the real number " is less than 1=s inabsolute value. Let Es be the set of (x; y) 2 Z � Zsuch that x2+ y2 = ks for some positive integer k;this exceptional set is where changes may occur.For any (x; y) 2 Z � Z such that x2 + y2 <(j"js)�1, we have[(x2+y2)�] = h(x2+y2)rs+(x2+y2)"i = h(x2+y2)rsiunless " < 0 and (x; y) 2 Es. Therefore:
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� If " > 0 and R2 < ("s)�1, G� is identical to Gr=sin D(R).� If " < 0 and R2 < �("s)�1, G� is identical toGr=s in D(R) n Es.Thus G� is quasiperiodic in D(R). We note thatD(R) \ Es is small, since the number of integersolutions of the equation x2 + y2 = n for integer nis 4 Xdjnd odd(�1)(d�1)=2(see, for example, [Landau 1958, p. 138]), and thisnumber is O(n�) for any � > 0 [Hua 1982, p. 120].To allow the detection of a quasiperiod of a pat-tern G�, the window under examination should

contain at least two shortest periods t of Gr=s, sothat G� is identical to Gr=s in [�t; t]2 n Es. Thiswould require 2s3j"j < 1 if t = s and 8s3j"j < 1if t = 2s. But experience shows that in mostcases one can guess t when s3j"j < 1. In thiscase one can also conclude that r=s is a conver-gent of the continued fraction expansion of �, sincej� � r=sj < s�3 < 12s�2 for s > 2 (for the contin-ued fraction criterion, see [Hua 1982, p. 262], forexample).Given a patternG� quasiperiodic around the ori-gin, the shortest quasiperiod t can be easily mea-sured, and from it s can be deduced. Finally, rcan be computed using the method at the end ofSection 4. So even if � is not known one can useG� to �nd a rational approximation.

0 1 2 3 401
23
4

a0 a2 a4a1 a3
a5

FIGURE 6. Regions [�125; 125] � [�125; 125], [�18; 18] � [�18; 18] and [0; 4] � [0; 4], for � = sin 0:807. The�gure under high magni�cation shows the pixels relevant to the computation of the binary expansion of �.
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FIGURE 7. Regions [�125; 125]� [�125; 125], [0; 16]� [0; 16] and [�10; 10]� [�10; 10], for � = � � 3.
Examples. Figure 6 shows G� for � = sin 0:807.From the top right diagram we see that t = 18,and so s = 18 since G� does not have the draught-board structure. Since 24 < 18 and 25 > 18, weneed the bits a0; : : : ; a5 of the binary expansion of� in order to compute r. From the bottom rightdiagram we read a0 = 0, a1 = 1, a2 = 0, a3 = 1,a4 = 1, a5 = 1. Consulting (4.1) we then haver = 13. The di�erence �� r=s is in fact less thans�4 in this case.Figure 7 shows G� for � = �� 3, with the fairlylarge quasiperiod t = 113. Again, s = t, and ris computed by a binary calculation to have thevalue 16, and ��r=s < 12s�3. We recover the well-known rational approximation � = 3 16113 = 355113 .Moreover, if we look near the origin we see anotherquasiperiodicity (Figure 7, bottom right), showing

the draughtboard pattern. Here s = 7 and r = 1with � � r=s < 12s�3, again yielding a famous ra-tional approximation for �.
7. GENERALIZATIONSSimilar results can be developed replacing the mod-ulus 2 by any modulus p > 2, and using p di�erentcolors to draw the pattern. As an example we givewithout proof the result about the periodicity ofthe pattern.We denote by V2(n) the exponent of 2 in thefactorization of a positive integer n into primes.
Theorem 7.1. For � a real number and p � 2 aninteger , let g be the function de�ned on Z � Z byg(x; y) = [(x2 + y2)�] (mod p):
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Then g is periodic if and only if � is rational . If� = r=s with r; s relatively prime positive integers,the shortest period t of g is
t = c psgcd(ps; 2r) ;where c = � 1 if V2(ps) 6= V2(2r),2 if V2(ps) = V2(2r).Surprisingly, the situation in one dimension is morecomplicated than in two:

Theorem 7.2. For � a real number and p � 2 aninteger , let h be the function de�ned on Z by
h(x) = [x2�] (mod p):

Then h is periodic if and only if � is rational . If� = r=s with r; s relatively prime positive integers,the shortest period t of h is given by the same for-mula as in the preceding theorem, except for thefollowing combinations of p; r; s:

p s r (mod ps) t2 2 1 12 3 2 12 3 5 22 6 11 32 12 11 or 23 43 4 3 13 4 7 or 11 3
ACKNOWLEDGEMENTI am greatly indebted to Dr. Silvio Levy for a cor-rection, remarks and help in the preparation of the�nal version of this paper.
REFERENCES[Dewney 1986] A. K. Dewdney, \Wallpaper for themind: computer images that are almost, but notquite, repetitive", Scienti�c American, September1986.[Landau 1958] E. Landau, Elementary Number Theory,Chelsea, New York, 1958.[Hua 1982] Hua Loo-Keng, Introduction to NumberTheory, Springer, Berlin, 1982.

Pierre Goetgheluck, Universit�e de Paris-sud, Math�ematiques, Bâtiment 425, 91405 Orsay CEDEX, France(goetghe@iut-orsay.fr)
Received May 13, 1993; accepted January 12, 1994


