Fresnel Zones on the Screen

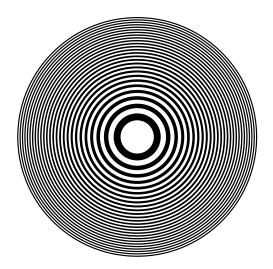
Pierre Goetgheluck

CONTENTS

1. Introduction

- 2. Notation and Conventions
- 3. Uniqueness and Periodicity
- 4. Symmetries and Other Geometric Remarks
- 5. The Rings
- 6. Diophantine Approximation Using G_{λ}
- 7. Generalizations
- Acknowledgement

References



For λ real, we consider the pattern given by the value modulo 2 of the integer part of $\lambda(x^2 + y^2)$, where $(x, y) \in \mathbb{Z} \times \mathbb{Z}$. We study the periodicity and other geometric properties of this pattern, and show that it can provide, by visual inspection and an elementary computation, a diophantine approximation for λ . We conclude with similar results for other moduli.

1. INTRODUCTION

Fresnel zones arise from diffraction. They consist of alternating light and dark concentric rings whose radii increase as \sqrt{n} , for n a positive integer. In nature the boundary between the rings is not sharp—the brightness varies continuously with distance from the center—but we will consider the all-or-nothing approximation that appears on the left.

To describe this brightness function f(x, y) we choose a scale coefficient, denoted $\sqrt{\lambda}$ for convenience. Then

$$f(x,y) = egin{cases} 0 & ext{if} \quad \sqrt{2n} \leq \sqrt{\lambda}\sqrt{x^2+y^2} < \sqrt{2n+1}, \ 1 & ext{if} \ \sqrt{2n+1} \leq \sqrt{\lambda}\sqrt{x^2+y^2} < \sqrt{2n+2}, \end{cases}$$

for some positive integer n. Equivalently,

$$f(x,y) = [(x^2 + y^2)\lambda] \pmod{2}, \qquad (1.1)$$

where the brackets denote the floor function: [a] is the greatest integer not exceeding a.

To plot the Fresnel zones on a computer screen, we must discretize the domain. From now on we regard f as a function defined on $\mathbb{Z} \times \mathbb{Z}$, and color a pixel (x, y) white if f(x, y) = 0, black if f(x, y) = 1. We let G_{λ} denote the pattern obtained in this way.

The figures on the next two pages, which show G_{λ} for several rational values of λ , contain some surprises. We get not one but several families of

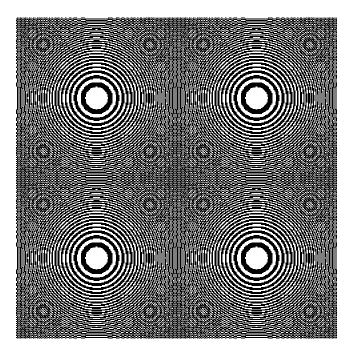


FIGURE 1. Region $[-100, 300] \times [-100, 300]$ for $\lambda = \frac{1}{200}$.

Fresnel rings (Figures 1 and 2); the pattern is periodic (Figures 1 and 3); and secondary systems of rings appear (Figures 1 and 2). The aim of this paper is to explain these phenomena.

In Section 3, we prove that G_{λ} is periodic if and only if λ is rational, and find its shortest period. In Section 4, we describe the geometrical structure of G_{λ} . In Section 5, we explain why secondary systems of rings arise, and where they are located. In Section 6, we show that one can find a rational approximation of λ by visual inspection of G_{λ} and an elementary calculation. Section 7 concludes with some generalizations.

Dewdney [1986] has discussed similar patterns, but to my knowledge there has been no mathematical treatment of them.

2. NOTATION AND CONVENTIONS

For λ a real number, we define f by (1.1), and denote by G_{λ} the associated pattern. When necessary we write f_{λ} instead of f. Clearly $f_{\lambda} = f_{\lambda+2}$, so by adding or subtracting a positive integer we can assume that $\lambda \in [0, 2)$ as far as f is concerned.

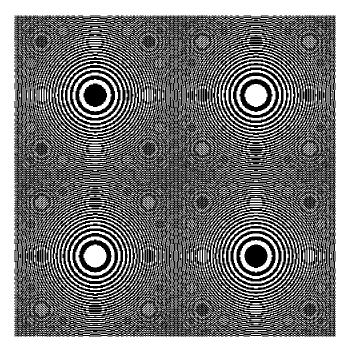


FIGURE 2. Region $[-100, 300] \times [-100, 300]$ for $\lambda = \frac{1}{201}$.

Convention. Whenever we write $\lambda = r/s$ we assume that r and s are relatively prime positive integers.

If there exists a positive integer T such that

$$f(x+T, y) = f(x, y)$$
 for all $x, y \in \mathbb{Z}$,

we say that f and G_{λ} are periodic of period T. In this case f is also periodic of period T in y, since fis symmetric. The *shortest period* of f (or of G_{λ}) is the smallest integer T such that f is periodic of period T.

Any real number $\theta \in [0, 2)$ can be written in base 2 in the form $\theta = a_0.a_1a_2a_3...$, where $a_i = 0$ or 1 for all *i*. This is the same as writing

$$heta = \sum_{0}^{\infty} \frac{a_i}{2^i}.$$

Convention. If θ is of the form $k2^{-j}$ for integers $j \ge 0$ and k, there are two binary expansions for θ , one of the form $\ldots a_{n-1}a_n1000\ldots$ and the other of the form $\ldots a'_{n-1}a'_n0111\ldots$. We will always use the former expansion: in other words, there is never an integer i_0 such that $a_i = 1$ for all $i \ge i_0$.

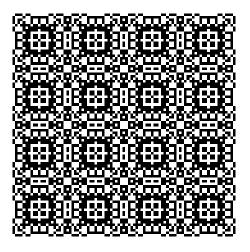


FIGURE 3. Region $[-43, 43] \times [-43, 43]$ for $\lambda = \frac{7}{22}$.

3. UNIQUENESS AND PERIODICITY

Lemma 3.1. Let λ be a real number. Then f_{λ} is identically zero if and only if λ is an even integer.

Proof. As already observed, we can assume that $\lambda \in [0, 2)$. Suppose that f_{λ} vanishes identically, so that $[(p^2 + q^2)\lambda] = 0 \pmod{2}$ for all $p, q \in \mathbb{Z}$. Let $\lambda = a_0.a_1a_2a_3...$ be the binary expansion of λ . For an arbitrary positive integer j, we plug in $p = 2^j$ and q = 0; then

$$[(p^2 + q^2)\lambda] = \left[2^{2j} \sum_{0}^{\infty} \frac{a_i}{2^i}\right] = [a_{2j}] \pmod{2},$$

where for the second equality we have used the convention that there is never a position beyond which all the $a_i = 1$. We conclude that $a_{2j} = 0$ for all j. Then we plug in $p = 2^j$ and $q = 2^j$; this gives

$$[(p^2 + q^2)\lambda] = \left[2^{2j+1}\sum_{0}^{\infty} \frac{a_i}{2^i}\right] = [a_{2j+1}] \pmod{2},$$

so that, likewise, $a_{2j+1} = 0$ for all j. This shows that $\lambda = 0$.

This argument actually shows that the whole binary expansion $a_0.a_1a_2a_3...$ of a number $\lambda \in [0, 2)$ can be recovered from f_{λ} : namely, $a_{2j} = f_{\lambda}(2^j, 0)$ and $a_{2j+1} = f_{\lambda}(2^j, 2^j)$. We thus have proved:

Proposition 3.2. $G_{\lambda} = G_{\mu}$ (equivalently, $f_{\lambda} = f_{\mu}$) if and only if λ and μ differ by an even integer. \Box **Remark.** It is still possible to have G_{λ} coincide with G_{μ} after a translation, for distinct $\lambda, \mu \in [0, 2)$. This happens when $\lambda = r/s$ with r odd and s is a multiple of four: then $G_{\lambda+1}$ is a translate of G_{λ} by the vector $(\frac{1}{2}s, \frac{1}{2}s)$, as a straightforward calculation shows.

Proposition 3.3. G_{λ} is periodic if and only if λ is rational.

Proof. If $\lambda = r/s$, we easily verify that 2s is a period of f. Conversely, assume that f is periodic of period T. This means that

$$[((x+pT)^2+(y+qT)^2)\lambda]=[(x^2+y^2)\lambda] \pmod{2}$$

for any integers p, q. Taking x = 0 and y = 0shows that $f_{T^2\lambda}$ is identically zero, so $T^2\lambda$ is an even integer by Lemma 3.1. Since T is an integer, λ is rational.

Theorem 3.4. If $\lambda = r/s$, the shortest period of G_{λ} is 2s if rs is odd, and s if rs is even. (Recall that r and s are relatively prime positive integers.)

Lemma 3.5. Let $\alpha, \beta \in \mathbb{R}$ be such that

$$[\alpha + k\beta] = [\alpha] \pmod{2} \quad for \ any \ k \in \mathbb{Z}.$$
 (3.1)

Then β is an even integer.

Proof. Again we can obviously reduce to the case $\beta \in [0, 2)$. We prove that $\beta = 0$ by contradiction.

If $\beta = 1$ then $[\alpha + \beta] = [\alpha] + 1$, contradicting (3.1). If $0 < \beta < 1$, let *n* be the largest integer such that $[\alpha + n\beta] = [\alpha]$. Then $[\alpha + (n+1)\beta] = [\alpha] + 1$, again contradicting (3.1). Finally, if $1 < \beta < 2$, the same reasoning applied to $2 - \beta$ contradicts the equality

$$[\alpha - k(2 - \beta)] = [\alpha] \pmod{2}$$
 for any $k \in \mathbb{Z},$

which is equivalent to (3.1).

Proof of the theorem. We know that f is periodic of period 2s; let t be the shortest period. The proof of Proposition 3.3 shows that λt^2 is an even integer. We substitute x = 1 and y = 0 in the equation

$$((x+kt)^2+y^2)\frac{r}{s} = (x^2+y^2)\frac{r}{s} \pmod{2},$$

where k is any integer, and expand the square. Taking into account that $(r/s)t^2$ is an even integer, we obtain

$$\left[\frac{r}{s} + k\frac{2tr}{s}\right] = \left[\frac{r}{s}\right] \pmod{2}$$

for all $k \in \mathbb{Z}$, and by Lemma 3.5 this implies that 2rt/s is an even integer. Since r and s are relatively prime, s divides t. But 2s is a period, and so a multiple of t. Therefore t = s or t = 2s. Finally, the equality

$$\left[((x+s)^2 + y^2)\frac{r}{s} \right] = \left[(x^2 + y^2)\frac{r}{s} + rs \right] \pmod{2},$$

obtained by expanding $(x + s)^2$, shows that s is a period if and only if rs is even.

4. SYMMETRIES AND OTHER GEOMETRIC REMARKS

We now turn to the symmetries of G_{λ} . We start by observing that there are always eight symmetries fixing the origin: four rotations by multiples of 90°, and four reflections in the coordinate axes and in the diagonals x = y and x = -y.

When λ is irrational, G_{λ} has no other symmetries.

When λ is rational, let t be the shortest period of G_{λ} . We already know that the translations (t, 0)and (0, t) preserve G_{λ} .

When rs is even, these two translations generate the group of translational symmetries of G_{λ} . Adjoining the symmetries about the origin we obtain the full group of symmetries of G_{λ} . Thus a point $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ has order-eight symmetry if and only if

$$(x,y) = (\frac{1}{2}pt, \frac{1}{2}qt)$$
 with $p, q \in \mathbb{Z}$ and $p + q$ even.

Points of the form $(\frac{1}{2}pt, \frac{1}{2}qt)$, for p + q odd, are fixed by four symmetries: reflections in horizontal and vertical lines, and 180° rotations.

When rs is odd, (t, 0) and (0, t) generate only a subgroup of index two in the group of translational symmetries of G_{λ} ; the translation $(\frac{1}{2}t, \frac{1}{2}t)$ is also a symmetry. Adjoining this latter to the symmetries about the origin we get the full group of symmetries of G_{λ} . A point $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ has order-eight symmetry if and only if

$$(x,y) = (pt,qt) \text{ with } p,q \in \mathbb{Z}.$$

Points of the form $(\frac{1}{4}pt, \frac{1}{4}qt)$, for p + q even, are fixed by four symmetries: reflections in diagonal lines and 180° rotations.

It is also interesting to consider transformations that don't quite leave G_{λ} invariant, but act in some simple way. For example, define a *semisymmetry* of G_{λ} as an isometry of $\mathbb{Z} \times \mathbb{Z}$ that interchanges black and white, or, more formally, that conjugates f to 1 - f.

It is trivial to show that, if $\lambda = r/s$ with rs odd, a horizontal or vertical translation by $s = \frac{1}{2}t$ is a semisymmetry. In this case G_{λ} has a draughtboard pattern (Figure 4).

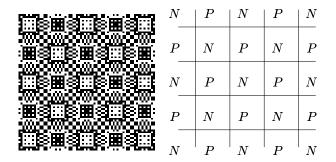


FIGURE 4. Left: Region $[-35, 35] \times [-35, 35]$ for $\lambda = 7/15$. Right: In general, for $\lambda = r/s$ with rs odd, G_{λ} can be divided into blocks of side s, arranged a draughtboard pattern (N and P denote complementary arrays).

For rs odd, the group of symmetries of G_{λ} described above has index two in the group of symmetries and semisymmetries combined. For rs even or λ irrational, there are no semisymmetries.

Yet another generalization of symmetries of G_{λ} is the following. If r is odd and s is even, every other pixel changes color under a diagonal translation by $(\frac{1}{2}t, \frac{1}{2}t)$, where t = s is the shortest period. More precisely, this translation acts as a pixelwise exclusive-or with the filter

0	1	0	1	0	
1	0	1	0	1	
0	1	0	1	0	,
1	0	1	0	1	
0	1	0	1	0	

where the origin combines with 1 (changes color) if $\frac{1}{2}s$ is odd and with 0 if $\frac{1}{2}s$ is even.

Finding r **and** s **from** G_{λ}

Proposition 3.2 says that a real number $\lambda \in [0, 2)$ is uniquely determined from G_{λ} . Here we assume that G_{λ} is periodic and spell out a procedure for finding $\lambda = r/s$.

First, find the shortest period t. If G_{λ} has the draughtboard structure, $s = \frac{1}{2}t$, otherwise s = t.

To find r, recall from the discussion preceding Proposition 3.2 that the (2i)-th bit in the binary expansion of λ is the color of the pixel $(2^i, 0)$, and the (2i+1)-th bit is the color of $(2^i, 2^i)$. Now choose j such that $2^j > s$, and find the bits a_0, \ldots, a_j . Since

$$\lambda = rac{r}{s} = \sum_{i=0}^{j} rac{a_i}{2^i} + \varepsilon \quad ext{with } 0 \leq \varepsilon < rac{1}{2^j}$$

and since $s(2^{-j} - \varepsilon) < 1$, we get

$$r = \left[s \left(\sum_{i=0}^{j} \frac{a_i}{2^i} + \frac{1}{2^j} \right) \right].$$
 (4.1)

We remark that this procedure requires the examination of $[\log_2 s] + 1$ pixels of G_{λ} .

5. THE RINGS

We observe in Figures 1 and 5 the surprising appearance of rings. In both cases we can remark that λ is close to a "simple" fraction: $\frac{1}{251}$ is close to $\frac{0}{1}$ and $\frac{72}{251}$ is close to $\frac{2}{7}$. The purpose of this section is to explain the following observation:

Observation. Rings are seen when $\lambda = r/s$ is close to a fraction a/b with small denominator. Main rings have center (us/(2c), vs/(2c)), where u and v are integers of same parity as ab, and c = rb - as.

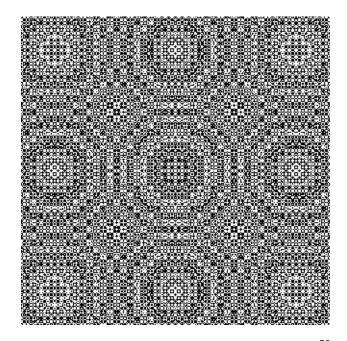


FIGURE 5. Region $[-160, 160] \times [-160, 160]$ for $\lambda = \frac{72}{251}$.

Explanation. Let r, s, a, b be positive integers, α and β real numbers, and set $x_0 = \alpha s$, $y_0 = \beta s$, c = rb - as. For any integer x and y, define ξ and η by $x = x_0 + \xi$ and $y = y_0 + \eta$. We have

$$x^{2} + y^{2} = 2(x_{0}x + y_{0}y) - (x_{0}^{2} + y_{0}^{2}) + (\xi^{2} + \eta^{2}),$$

and so

$$(x^{2}+y^{2})\frac{c}{sb} = 2(\alpha x + \beta y)\frac{c}{b} - (\alpha^{2}+\beta^{2})\frac{cs}{b} + (\xi^{2}+\eta^{2})\frac{c}{sb}.$$

Substituting c/(sb) = r/s - a/b, we obtain

$$(x^{2} + y^{2})\frac{r}{s} = A(x, y) + (\xi^{2} + \eta^{2})\frac{c}{sb},$$

where

$$A(x,y) = (x^{2} + y^{2})\frac{a}{b} + 2(\alpha x + \beta y)\frac{c}{b} - (\alpha^{2} + \beta^{2})\frac{cs}{b}.$$

Let $(x_1, y_1) \in \mathbb{Z} \times \mathbb{Z}$ and let $z_1 \in [0, 2)$ be the residue of $A(x_1, y_1)$ modulo 2. Then all $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ satisfying $A(x, y) = z_1 \pmod{2}$

• have the same color in every ring limited by consecutive circles with center (x_0, y_0) and radii of the form $\sqrt{(k-z_1)sb/c}$, where k is an integer $\geq z_1$ if c > 0 and $\leq z_1$ if c < 0; and they • change their color when passing from a ring to the next.

The same properties hold for all values of A(x, y)modulo 2. In order to see the rings on the pattern G_{λ} it is necessary that the limit circles corresponding to these values be clearly distinct and have big enough radii: for example, the radii of the smallest circles should be ≥ 10 , and the difference between two successive radii should be ≥ 2 . Then

- *sb/c* must be big (> 100) and *a/b* must be close to *r/s*;
- the values of A(x, y) modulo 2 must be few, which requires that α, β be rational and b be small.

Namely, in order that $(a(x^2+y^2)^2+2(\alpha x+\beta y)c)/b$ take only a few values, we must choose $2\alpha c$ and $2\beta c$ to be integers. Then, if $\lambda = r/s$ is close to a fraction a/b with a small denominator, we observe families of concentric rings with center at (us/(2c), vs/(2c)) for $u, v \in \mathbb{Z}$.

If we choose $\alpha = u/(2c)$ and $\beta = v/(2c)$, we have

$$(x^2 + y^2)\frac{r}{s} = rac{a(x^2 + y^2) + (ux + vy)}{b} - (\alpha^2 + \beta^2)rac{cs}{b} + (\xi^2 + \eta^2)rac{c}{sb}.$$

Now

$$\frac{a(x^2+y^2) + (ux+vy)}{b} - (\alpha^2 + \beta^2)\frac{cs}{b}$$
(5.1)

varies much faster than the last summand in the preceding equality. This means that near (x_0, y_0) we can obtain G_{λ} by modifying the pattern arising from the integer part of (5.1) (mod 2) with the help of the term $(\xi^2 + \eta^2)c/(sb)$. Assume that ab is odd. It is easy to show that the shortest period of (5.1) is b if uv is odd and 2b otherwise. In the second case, the draughtboard structure with a small b gives a general impression of grey, and consecutive rings are indistinguishable: the rings are seen when ab is odd if u and v are odd. Similarly, if ab is even, the rings are seen if both u and v are even.

In the particular case when r/s is small, that is, if a = 0, b = 1, c = r, the expression $2(\alpha x + \beta y)c$ takes only very few values modulo 2 if α and β are fractions with the same small denominator. We observe in this case families of rings with center at (us/w, vs/w), for u and v integers and w a small positive integer (see Figure 3).

Application. Given a G_{λ} that shows rings, with $\lambda = r/s$, we can easily find a "simple" fraction a/b close to r/s as follows: count the number k of the most visible systems of rings whose centers belong to a horizontal segment of length s; then solve the equation ry - sx = k in integers and select the solution with smallest |x| and |y|. These two absolute values are a and b.

For example, in Figure 5, with r = 72 and s = 251, we see that k = 2. Solving 72y - 251x = 2 gives x = 2 + 72m and y = 7 + 251m, for m integer. Then a = 2 and b = 7. The error in the approximation is $\frac{2}{1757}$.

6. DIOPHANTINE APPROXIMATION USING G_{λ}

Nearby values of λ lead to patterns that differ but little near the origin: we will formalize this assertion shortly. Therefore, if a pattern G_{λ} is quasiperiodic—that is, periodic except at some exceptional points—in a neighborhood of the origin, this should mean that λ is close to a rational number r/s. This rational approximation can be found by the method at the end of Section 4.

We denote by D(R) the open disk with center at (0,0) and radius R. Suppose $\lambda \in [0,2)$ satisfies $\lambda = r/s + \varepsilon$, where r, s are positive integers, $r/s \in$ [0,2), and the real number ε is less than 1/s in absolute value. Let E_s be the set of $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ such that $x^2 + y^2 = ks$ for some positive integer k; this exceptional set is where changes may occur.

For any $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ such that $x^2 + y^2 < (|\varepsilon|s)^{-1}$, we have

$$[(x^2+y^2)\lambda] = \left[(x^2+y^2)\frac{r}{s} + (x^2+y^2)\varepsilon\right] = \left[(x^2+y^2)\frac{r}{s}\right]$$

unless $\varepsilon < 0$ and $(x, y) \in E_s$. Therefore:

- If $\varepsilon > 0$ and $R^2 < (\varepsilon s)^{-1}$, G_{λ} is identical to $G_{r/s}$ in D(R).
- If $\varepsilon < 0$ and $R^2 < -(\varepsilon s)^{-1}$, G_{λ} is identical to $G_{r/s}$ in $D(R) \setminus E_s$.

Thus G_{λ} is quasiperiodic in D(R). We note that $D(R) \cap E_s$ is small, since the number of integer solutions of the equation $x^2 + y^2 = n$ for integer n is

$$4\sum_{\substack{d\mid n\\d \text{ odd}}} (-1)^{(d-1)/2}$$

(see, for example, [Landau 1958, p. 138]), and this number is $O(n^{\alpha})$ for any $\alpha > 0$ [Hua 1982, p. 120].

To allow the detection of a quasiperiod of a pattern G_{λ} , the window under examination should contain at least two shortest periods t of $G_{r/s}$, so that G_{λ} is identical to $G_{r/s}$ in $[-t,t]^2 \setminus E_s$. This would require $2s^3|\varepsilon| < 1$ if t = s and $8s^3|\varepsilon| < 1$ if t = 2s. But experience shows that in most cases one can guess t when $s^3|\varepsilon| < 1$. In this case one can also conclude that r/s is a convergent of the continued fraction expansion of λ , since $|\lambda - r/s| < s^{-3} < \frac{1}{2}s^{-2}$ for s > 2 (for the continued fraction criterion, see [Hua 1982, p. 262], for example).

Given a pattern G_{λ} quasiperiodic around the origin, the shortest quasiperiod t can be easily measured, and from it s can be deduced. Finally, r can be computed using the method at the end of Section 4. So even if λ is not known one can use G_{λ} to find a rational approximation.

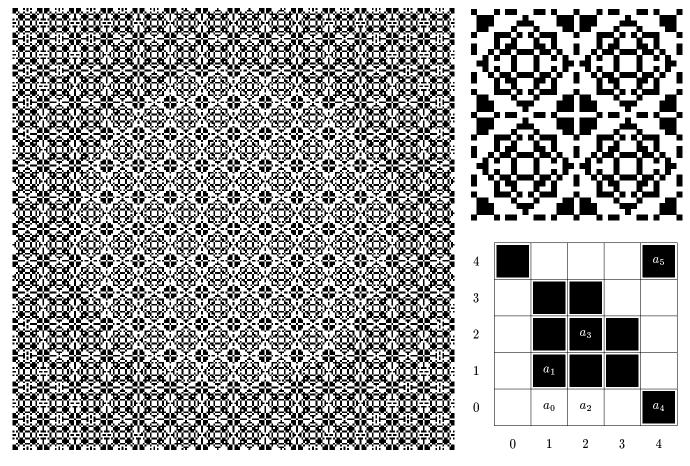


FIGURE 6. Regions $[-125, 125] \times [-125, 125]$, $[-18, 18] \times [-18, 18]$ and $[0, 4] \times [0, 4]$, for $\lambda = \sin 0.807$. The figure under high magnification shows the pixels relevant to the computation of the binary expansion of λ .

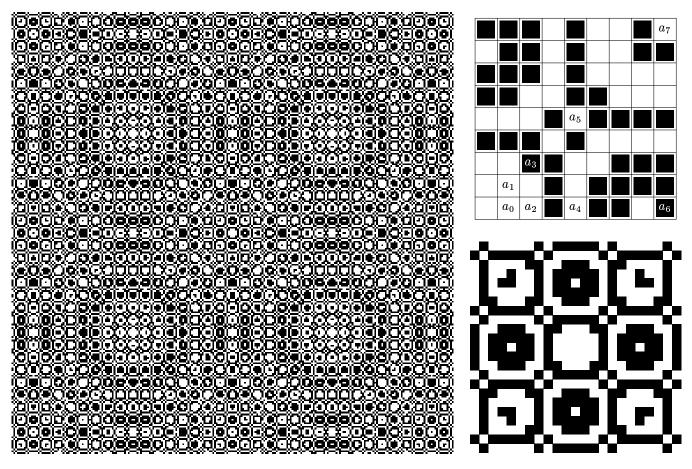


FIGURE 7. Regions $[-125, 125] \times [-125, 125], [0, 16] \times [0, 16]$ and $[-10, 10] \times [-10, 10]$, for $\lambda = \pi - 3$.

Examples. Figure 6 shows G_{λ} for $\lambda = \sin 0.807$. From the top right diagram we see that t = 18, and so s = 18 since G_{λ} does not have the draughtboard structure. Since $2^4 < 18$ and $2^5 > 18$, we need the bits a_0, \ldots, a_5 of the binary expansion of λ in order to compute r. From the bottom right diagram we read $a_0 = 0$, $a_1 = 1$, $a_2 = 0$, $a_3 = 1$, $a_4 = 1$, $a_5 = 1$. Consulting (4.1) we then have r = 13. The difference $\lambda - r/s$ is in fact less than s^{-4} in this case.

Figure 7 shows G_{λ} for $\lambda = \pi - 3$, with the fairly large quasiperiod t = 113. Again, s = t, and ris computed by a binary calculation to have the value 16, and $\lambda - r/s < \frac{1}{2}s^{-3}$. We recover the wellknown rational approximation $\pi = 3\frac{16}{113} = \frac{355}{113}$. Moreover, if we look near the origin we see another quasiperiodicity (Figure 7, bottom right), showing the draughtboard pattern. Here s = 7 and r = 1 with $\lambda - r/s < \frac{1}{2}s^{-3}$, again yielding a famous rational approximation for π .

7. GENERALIZATIONS

Similar results can be developed replacing the modulus 2 by any modulus p > 2, and using p different colors to draw the pattern. As an example we give without proof the result about the periodicity of the pattern.

We denote by $V_2(n)$ the exponent of 2 in the factorization of a positive integer n into primes.

Theorem 7.1. For λ a real number and $p \geq 2$ an integer, let g be the function defined on $\mathbb{Z} \times \mathbb{Z}$ by

$$g(x,y) = [(x^2+y^2)\lambda] \pmod{p}$$

Then g is periodic if and only if λ is rational. If $\lambda = r/s$ with r, s relatively prime positive integers, the shortest period t of g is

$$t = c \frac{ps}{\gcd(ps, 2r)},$$

where

$$c = \begin{cases} 1 & \text{if } V_2(ps) \neq V_2(2r), \\ 2 & \text{if } V_2(ps) = V_2(2r). \end{cases}$$

Surprisingly, the situation in one dimension is more complicated than in two:

Theorem 7.2. For λ a real number and $p \geq 2$ an integer, let h be the function defined on \mathbb{Z} by

$$h(x) = [x^2\lambda] \pmod{p}.$$

Then h is periodic if and only if λ is rational. If $\lambda = r/s$ with r, s relatively prime positive integers, the shortest period t of h is given by the same formula as in the preceding theorem, except for the following combinations of p, r, s:

p	s	$r \pmod{ps}$	t
2	2	1	1
$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \end{array} $	3	2	1
2	3	5	2
2	6	11	3
2	12	11 or 23	4
3	4	3	1
3	4	7 or 11	3

ACKNOWLEDGEMENT

I am greatly indebted to Dr. Silvio Levy for a correction, remarks and help in the preparation of the final version of this paper.

REFERENCES

- [Dewney 1986] A. K. Dewdney, "Wallpaper for the mind: computer images that are almost, but not quite, repetitive", *Scientific American*, September 1986.
- [Landau 1958] E. Landau, Elementary Number Theory, Chelsea, New York, 1958.
- [Hua 1982] Hua Loo-Keng, Introduction to Number Theory, Springer, Berlin, 1982.

Pierre Goetgheluck, Université de Paris-sud, Mathématiques, Bâtiment 425, 91405 Orsay CEDEX, France (goetghe@iut-orsay.fr)

Received May 13, 1993; accepted January 12, 1994