## Fresnel Zones on the Screen

Pierre Goetgheluck

## CONTENTS

1. Introduction
2. Notation and Conventions
3. Uniqueness and Periodicity
4. Symmetries and Other Geometric Remarks
5. The Rings
6. Diophantine Approximation Using $G_{\lambda}$
7. Generalizations

Acknowledgement
References

For $\lambda$ real, we consider the pattern given by the value modulo 2 of the integer part of $\lambda\left(x^{2}+y^{2}\right)$, where $(x, y) \in \mathbb{Z} \times \mathbb{Z}$. We study the periodicity and other geometric properties of this pattern, and show that it can provide, by visual inspection and an elementary computation, a diophantine approximation for $\lambda$. We conclude with similar results for other moduli.

## 1. INTRODUCTION

Fresnel zones arise from diffraction. They consist of alternating light and dark concentric rings whose radii increase as $\sqrt{n}$, for $n$ a positive integer. In nature the boundary between the rings is not sharp-the brightness varies continuously with distance from the center-but we will consider the all-or-nothing approximation that appears on the left.

To describe this brightness function $f(x, y)$ we choose a scale coefficient, denoted $\sqrt{\lambda}$ for convenience. Then
$f(x, y)= \begin{cases}0 & \text { if } \quad \sqrt{2 n} \leq \sqrt{\lambda} \sqrt{x^{2}+y^{2}}<\sqrt{2 n+1}, \\ 1 & \text { if } \sqrt{2 n+1} \leq \sqrt{\lambda} \sqrt{x^{2}+y^{2}}<\sqrt{2 n+2},\end{cases}$
for some positive integer $n$. Equivalently,

$$
\begin{equation*}
f(x, y)=\left[\left(x^{2}+y^{2}\right) \lambda\right] \quad(\bmod 2), \tag{1.1}
\end{equation*}
$$

where the brackets denote the floor function: $[a]$ is the greatest integer not exceeding $a$.

To plot the Fresnel zones on a computer screen, we must discretize the domain. From now on we regard $f$ as a function defined on $\mathbb{Z} \times \mathbb{Z}$, and color a pixel $(x, y)$ white if $f(x, y)=0$, black if $f(x, y)=1$. We let $G_{\lambda}$ denote the pattern obtained in this way.

The figures on the next two pages, which show $G_{\lambda}$ for several rational values of $\lambda$, contain some surprises. We get not one but several families of


FIGURE 1. Region $[-100,300] \times[-100,300]$ for $\lambda=\frac{1}{200}$.
Fresnel rings (Figures 1 and 2); the pattern is periodic (Figures 1 and 3); and secondary systems of rings appear (Figures 1 and 2). The aim of this paper is to explain these phenomena.

In Section 3, we prove that $G_{\lambda}$ is periodic if and only if $\lambda$ is rational, and find its shortest period. In Section 4, we describe the geometrical structure of $G_{\lambda}$. In Section 5 , we explain why secondary systems of rings arise, and where they are located. In Section 6, we show that one can find a rational approximation of $\lambda$ by visual inspection of $G_{\lambda}$ and an elementary calculation. Section 7 concludes with some generalizations.

Dewdney [1986] has discussed similar patterns, but to my knowledge there has been no mathematical treatment of them.

## 2. NOTATION AND CONVENTIONS

For $\lambda$ a real number, we define $f$ by (1.1), and denote by $G_{\lambda}$ the associated pattern. When necessary we write $f_{\lambda}$ instead of $f$. Clearly $f_{\lambda}=f_{\lambda+2}$, so by adding or subtracting a positive integer we can assume that $\lambda \in[0,2)$ as far as $f$ is concerned.


FIGURE 2. Region $[-100,300] \times[-100,300]$ for $\lambda=\frac{1}{201}$.
Convention. Whenever we write $\lambda=r / s$ we assume that $r$ and $s$ are relatively prime positive integers.

If there exists a positive integer $T$ such that

$$
f(x+T, y)=f(x, y) \quad \text { for all } x, y \in \mathbb{Z}
$$

we say that $f$ and $G_{\lambda}$ are periodic of period $T$. In this case $f$ is also periodic of period $T$ in $y$, since $f$ is symmetric. The shortest period of $f$ (or of $G_{\lambda}$ ) is the smallest integer $T$ such that $f$ is periodic of period $T$.

Any real number $\theta \in[0,2)$ can be written in base 2 in the form $\theta=a_{0} . a_{1} a_{2} a_{3} \ldots$, where $a_{i}=0$ or 1 for all $i$. This is the same as writing

$$
\theta=\sum_{0}^{\infty} \frac{a_{i}}{2^{i}}
$$

Convention. If $\theta$ is of the form $k 2^{-j}$ for integers $j \geq 0$ and $k$, there are two binary expansions for $\theta$, one of the form $\ldots a_{n-1} a_{n} 1000 \ldots$ and the other of the form $\ldots a_{n-1}^{\prime} a_{n}^{\prime} 0111 \ldots$ We will always use the former expansion: in other words, there is never an integer $i_{0}$ such that $a_{i}=1$ for all $i \geq i_{0}$.


FIGURE 3. Region $[-43,43] \times[-43,43]$ for $\lambda=\frac{7}{22}$.

## 3. UNIQUENESS AND PERIODICITY

Lemma 3.1. Let $\lambda$ be a real number. Then $f_{\lambda}$ is identically zero if and only if $\lambda$ is an even integer.
Proof. As already observed, we can assume that $\lambda \in[0,2)$. Suppose that $f_{\lambda}$ vanishes identically, so that $\left[\left(p^{2}+q^{2}\right) \lambda\right]=0(\bmod 2)$ for all $p, q \in \mathbb{Z}$. Let $\lambda=a_{0} \cdot a_{1} a_{2} a_{3} \ldots$ be the binary expansion of $\lambda$. For an arbitrary positive integer $j$, we plug in $p=2^{j}$ and $q=0$; then

$$
\left[\left(p^{2}+q^{2}\right) \lambda\right]=\left[2^{2 j} \sum_{0}^{\infty} \frac{a_{i}}{2^{i}}\right]=\left[a_{2 j}\right] \quad(\bmod 2),
$$

where for the second equality we have used the convention that there is never a position beyond which all the $a_{i}=1$. We conclude that $a_{2 j}=0$ for all $j$. Then we plug in $p=2^{j}$ and $q=2^{j}$; this gives

$$
\left[\left(p^{2}+q^{2}\right) \lambda\right]=\left[2^{2 j+1} \sum_{0}^{\infty} \frac{a_{i}}{2^{i}}\right]=\left[a_{2 j+1}\right] \quad(\bmod 2)
$$

so that, likewise, $a_{2 j+1}=0$ for all $j$. This shows that $\lambda=0$.

This argument actually shows that the whole binary expansion $a_{0} . a_{1} a_{2} a_{3} \ldots$ of a number $\lambda \in[0,2)$ can be recovered from $f_{\lambda}$ : namely, $a_{2 j}=f_{\lambda}\left(2^{j}, 0\right)$ and $a_{2 j+1}=f_{\lambda}\left(2^{j}, 2^{j}\right)$. We thus have proved:
Proposition 3.2. $G_{\lambda}=G_{\mu}$ (equivalently, $f_{\lambda}=f_{\mu}$ ) if and only if $\lambda$ and $\mu$ differ by an even integer.

Remark. It is still possible to have $G_{\lambda}$ coincide with $G_{\mu}$ after a translation, for distinct $\lambda, \mu \in[0,2)$. This happens when $\lambda=r / s$ with $r$ odd and $s$ is a multiple of four: then $G_{\lambda+1}$ is a translate of $G_{\lambda}$ by the vector $\left(\frac{1}{2} s, \frac{1}{2} s\right)$, as a straightforward calculation shows.

Proposition 3.3. $G_{\lambda}$ is periodic if and only if $\lambda$ is rational.

Proof. If $\lambda=r / s$, we easily verify that $2 s$ is a period of $f$. Conversely, assume that $f$ is periodic of period $T$. This means that
$\left[\left((x+p T)^{2}+(y+q T)^{2}\right) \lambda\right]=\left[\left(x^{2}+y^{2}\right) \lambda\right] \quad(\bmod 2)$
for any integers $p, q$. Taking $x=0$ and $y=0$ shows that $f_{T^{2} \lambda}$ is identically zero, so $T^{2} \lambda$ is an even integer by Lemma 3.1. Since $T$ is an integer, $\lambda$ is rational.
Theorem 3.4. If $\lambda=r / s$, the shortest period of $G_{\lambda}$ is $2 s$ if $r s$ is odd, and $s$ if rs is even. (Recall that $r$ and $s$ are relatively prime positive integers.)

Lemma 3.5. Let $\alpha, \beta \in \mathbb{R}$ be such that

$$
\begin{equation*}
[\alpha+k \beta]=[\alpha] \quad(\bmod 2) \quad \text { for any } k \in \mathbb{Z} \tag{3.1}
\end{equation*}
$$

Then $\beta$ is an even integer.
Proof. Again we can obviously reduce to the case $\beta \in[0,2)$. We prove that $\beta=0$ by contradiction.

If $\beta=1$ then $[\alpha+\beta]=[\alpha]+1$, contradicting (3.1). If $0<\beta<1$, let $n$ be the largest integer such that $[\alpha+n \beta]=[\alpha]$. Then $[\alpha+(n+1) \beta]=[\alpha]+1$, again contradicting (3.1). Finally, if $1<\beta<2$, the same reasoning applied to $2-\beta$ contradicts the equality

$$
[\alpha-k(2-\beta)]=[\alpha] \quad(\bmod 2) \quad \text { for any } k \in \mathbb{Z},
$$

which is equivalent to (3.1).
Proof of the theorem. We know that $f$ is periodic of period $2 s$; let $t$ be the shortest period. The proof of Proposition 3.3 shows that $\lambda t^{2}$ is an even integer. We substitute $x=1$ and $y=0$ in the equation

$$
\left((x+k t)^{2}+y^{2}\right) \frac{r}{s}=\left(x^{2}+y^{2}\right) \frac{r}{s} \quad(\bmod 2),
$$

where $k$ is any integer, and expand the square. Taking into account that $(r / s) t^{2}$ is an even integer, we obtain

$$
\left[\frac{r}{s}+k \frac{2 t r}{s}\right]=\left[\frac{r}{s}\right] \quad(\bmod 2)
$$

for all $k \in \mathbb{Z}$, and by Lemma 3.5 this implies that $2 r t / s$ is an even integer. Since $r$ and $s$ are relatively prime, $s$ divides $t$. But $2 s$ is a period, and so a multiple of $t$. Therefore $t=s$ or $t=2 s$. Finally, the equality
$\left[\left((x+s)^{2}+y^{2}\right) \frac{r}{s}\right]=\left[\left(x^{2}+y^{2}\right) \frac{r}{s}+r s\right] \quad(\bmod 2)$,
obtained by expanding $(x+s)^{2}$, shows that $s$ is a period if and only if $r s$ is even.

## 4. SYMMETRIES AND OTHER GEOMETRIC REMARKS

We now turn to the symmetries of $G_{\lambda}$. We start by observing that there are always eight symmetries fixing the origin: four rotations by multiples of $90^{\circ}$, and four reflections in the coordinate axes and in the diagonals $x=y$ and $x=-y$.

When $\lambda$ is irrational, $G_{\lambda}$ has no other symmetries.

When $\lambda$ is rational, let $t$ be the shortest period of $G_{\lambda}$. We already know that the translations $(t, 0)$ and $(0, t)$ preserve $G_{\lambda}$.

When $r s$ is even, these two translations generate the group of translational symmetries of $G_{\lambda}$. Adjoining the symmetries about the origin we obtain the full group of symmetries of $G_{\lambda}$. Thus a point $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ has order-eight symmetry if and only if

$$
(x, y)=\left(\frac{1}{2} p t, \frac{1}{2} q t\right) \quad \text { with } p, q \in \mathbb{Z} \text { and } p+q \text { even. }
$$

Points of the form ( $\frac{1}{2} p t, \frac{1}{2} q t$ ), for $p+q$ odd, are fixed by four symmetries: reflections in horizontal and vertical lines, and $180^{\circ}$ rotations.

When $r s$ is odd, $(t, 0)$ and $(0, t)$ generate only a subgroup of index two in the group of translational symmetries of $G_{\lambda}$; the translation $\left(\frac{1}{2} t, \frac{1}{2} t\right)$ is also a symmetry. Adjoining this latter to the symmetries
about the origin we get the full group of symmetries of $G_{\lambda}$. A point $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ has order-eight symmetry if and only if

$$
(x, y)=(p t, q t) \quad \text { with } p, q \in \mathbb{Z}
$$

Points of the form ( $\frac{1}{4} p t, \frac{1}{4} q t$ ), for $p+q$ even, are fixed by four symmetries: reflections in diagonal lines and $180^{\circ}$ rotations.

It is also interesting to consider transformations that don't quite leave $G_{\lambda}$ invariant, but act in some simple way. For example, define a semisymmetry of $G_{\lambda}$ as an isometry of $\mathbb{Z} \times \mathbb{Z}$ that interchanges black and white, or, more formally, that conjugates $f$ to $1-f$.

It is trivial to show that, if $\lambda=r / s$ with $r s$ odd, a horizontal or vertical translation by $s=\frac{1}{2} t$ is a semisymmetry. In this case $G_{\lambda}$ has a draughtboard pattern (Figure 4).


| $N$ | $P$ | $N$ | $P$ | $N$ |
| :--- | :--- | :--- | :--- | :--- |
| $P$ | $N$ | $P$ | $N$ | $P$ |
| $N$ | $P$ | $N$ | $P$ | $N$ |
| $P$ | $N$ | $P$ | $N$ | $P$ |
| $N$ | $P$ | $N$ | $P$ | $N$ |

FIGURE 4. Left: Region $[-35,35] \times[-35,35]$ for $\lambda=7 / 15$. Right: In general, for $\lambda=r / s$ with $r s$ odd, $G_{\lambda}$ can be divided into blocks of side $s$, arranged a draughtboard pattern ( $N$ and $P$ denote complementary arrays).

For $r s$ odd, the group of symmetries of $G_{\lambda}$ described above has index two in the group of symmetries and semisymmetries combined. For rs even or $\lambda$ irrational, there are no semisymmetries.

Yet another generalization of symmetries of $G_{\lambda}$ is the following. If $r$ is odd and $s$ is even, every other pixel changes color under a diagonal translation by $\left(\frac{1}{2} t, \frac{1}{2} t\right)$, where $t=s$ is the shortest period. More precisely, this translation acts as a pixelwise exclusive-or with the filter

where the origin combines with 1 (changes color) if $\frac{1}{2} s$ is odd and with 0 if $\frac{1}{2} s$ is even.

## Finding $r$ and $s$ from $G_{\lambda}$

Proposition 3.2 says that a real number $\lambda \in[0,2)$ is uniquely determined from $G_{\lambda}$. Here we assume that $G_{\lambda}$ is periodic and spell out a procedure for finding $\lambda=r / s$.
First, find the shortest period $t$. If $G_{\lambda}$ has the draughtboard structure, $s=\frac{1}{2} t$, otherwise $s=t$.

To find $r$, recall from the discussion preceding Proposition 3.2 that the ( $2 i$-th bit in the binary expansion of $\lambda$ is the color of the pixel ( $2^{i}, 0$ ), and the $(2 i+1)$-th bit is the color of $\left(2^{i}, 2^{i}\right)$. Now choose $j$ such that $2^{j}>s$, and find the bits $a_{0}, \ldots, a_{j}$. Since

$$
\lambda=\frac{r}{s}=\sum_{i=0}^{j} \frac{a_{i}}{2^{i}}+\varepsilon \quad \text { with } 0 \leq \varepsilon<\frac{1}{2^{j}}
$$

and since $s\left(2^{-j}-\varepsilon\right)<1$, we get

$$
\begin{equation*}
r=\left[s\left(\sum_{i=0}^{j} \frac{a_{i}}{2^{i}}+\frac{1}{2^{j}}\right)\right] . \tag{4.1}
\end{equation*}
$$

We remark that this procedure requires the examination of $\left[\log _{2} s\right]+1$ pixels of $G_{\lambda}$.

## 5. THE RINGS

We observe in Figures 1 and 5 the surprising appearance of rings. In both cases we can remark that $\lambda$ is close to a "simple" fraction: $\frac{1}{251}$ is close to $\frac{0}{1}$ and $\frac{72}{251}$ is close to $\frac{2}{7}$. The purpose of this section is to explain the following observation:

Observation. Rings are seen when $\lambda=r / s$ is close to a fraction $a / b$ with small denominator. Main rings have center $(u s /(2 c), v s /(2 c))$, where $u$ and $v$ are integers of same parity as $a b$, and $c=r b-a s$.


FIGURE 5. Region $[-160,160] \times[-160,160]$ for $\lambda=\frac{72}{251}$.
Explanation. Let $r, s, a, b$ be positive integers, $\alpha$ and $\beta$ real numbers, and set $x_{0}=\alpha s, y_{0}=\beta s$, $c=r b-a s$. For any integer $x$ and $y$, define $\xi$ and $\eta$ by $x=x_{0}+\xi$ and $y=y_{0}+\eta$. We have

$$
x^{2}+y^{2}=2\left(x_{0} x+y_{0} y\right)-\left(x_{0}^{2}+y_{0}^{2}\right)+\left(\xi^{2}+\eta^{2}\right),
$$

and so
$\left(x^{2}+y^{2}\right) \frac{c}{s b}=2(\alpha x+\beta y) \frac{c}{b}-\left(\alpha^{2}+\beta^{2}\right) \frac{c s}{b}+\left(\xi^{2}+\eta^{2}\right) \frac{c}{s b}$.
Substituting $c /(s b)=r / s-a / b$, we obtain

$$
\left(x^{2}+y^{2}\right) \frac{r}{s}=A(x, y)+\left(\xi^{2}+\eta^{2}\right) \frac{c}{s b},
$$

where
$A(x, y)=\left(x^{2}+y^{2}\right) \frac{a}{b}+2(\alpha x+\beta y) \frac{c}{b}-\left(\alpha^{2}+\beta^{2}\right) \frac{c s}{b}$.
Let $\left(x_{1}, y_{1}\right) \in \mathbb{Z} \times \mathbb{Z}$ and let $z_{1} \in[0,2)$ be the residue of $A\left(x_{1}, y_{1}\right)$ modulo 2 . Then all $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ satisfying $A(x, y)=z_{1}(\bmod 2)$

- have the same color in every ring limited by consecutive circles with center $\left(x_{0}, y_{0}\right)$ and radii of the form $\sqrt{\left(k-z_{1}\right) s b / c}$, where $k$ is an integer $\geq z_{1}$ if $c>0$ and $\leq z_{1}$ if $c<0$; and they
- change their color when passing from a ring to the next.

The same properties hold for all values of $A(x, y)$ modulo 2. In order to see the rings on the pattern $G_{\lambda}$ it is necessary that the limit circles corresponding to these values be clearly distinct and have big enough radii: for example, the radii of the smallest circles should be $\geq 10$, and the difference between two successive radii should be $\geq 2$. Then

- $s b / c$ must be big ( $>100$ ) and $a / b$ must be close to $r / s$;
- the values of $A(x, y)$ modulo 2 must be few, which requires that $\alpha, \beta$ be rational and $b$ be small.

Namely, in order that $\left(a\left(x^{2}+y^{2}\right)^{2}+2(\alpha x+\beta y) c\right) / b$ take only a few values, we must choose $2 \alpha c$ and $2 \beta c$ to be integers. Then, if $\lambda=r / s$ is close to a fraction $a / b$ with a small denominator, we observe families of concentric rings with center at $(u s /(2 c), v s /(2 c))$ for $u, v \in \mathbb{Z}$.

If we choose $\alpha=u /(2 c)$ and $\beta=v /(2 c)$, we have

$$
\begin{aligned}
\left(x^{2}+y^{2}\right) \frac{r}{s}= & \frac{a\left(x^{2}+y^{2}\right)+(u x+v y)}{b}-\left(\alpha^{2}+\beta^{2}\right) \frac{c s}{b} \\
& +\left(\xi^{2}+\eta^{2}\right) \frac{c}{s b} .
\end{aligned}
$$

Now

$$
\begin{equation*}
\frac{a\left(x^{2}+y^{2}\right)+(u x+v y)}{b}-\left(\alpha^{2}+\beta^{2}\right) \frac{c s}{b} \tag{5.1}
\end{equation*}
$$

varies much faster than the last summand in the preceding equality. This means that near ( $x_{0}, y_{0}$ ) we can obtain $G_{\lambda}$ by modifying the pattern arising from the integer part of (5.1) $(\bmod 2)$ with the help of the term $\left(\xi^{2}+\eta^{2}\right) c /(s b)$. Assume that $a b$ is odd. It is easy to show that the shortest period of (5.1) is $b$ if $u v$ is odd and $2 b$ otherwise. In the second case, the draughtboard structure with a small $b$ gives a general impression of grey, and consecutive rings are indistinguishable: the rings are seen when $a b$ is odd if $u$ and $v$ are odd. Similarly, if $a b$ is even, the rings are seen if both $u$ and $v$ are even.

In the particular case when $r / s$ is small, that is, if $a=0, b=1, c=r$, the expression $2(\alpha x+\beta y) c$ takes only very few values modulo 2 if $\alpha$ and $\beta$ are fractions with the same small denominator. We observe in this case families of rings with center at $(u s / w, v s / w)$, for $u$ and $v$ integers and $w$ a small positive integer (see Figure 3).

Application. Given a $G_{\lambda}$ that shows rings, with $\lambda=$ $r / s$, we can easily find a "simple" fraction $a / b$ close to $r / s$ as follows: count the number $k$ of the most visible systems of rings whose centers belong to a horizontal segment of length $s$; then solve the equation $r y-s x=k$ in integers and select the solution with smallest $|x|$ and $|y|$. These two absolute values are $a$ and $b$.

For example, in Figure 5, with $r=72$ and $s=$ 251, we see that $k=2$. Solving $72 y-251 x=$ 2 gives $x=2+72 m$ and $y=7+251 m$, for $m$ integer. Then $a=2$ and $b=7$. The error in the approximation is $\frac{2}{1757}$.

## 6. DIOPHANTINE APPROXIMATION USING $\mathrm{G}_{\lambda}$

Nearby values of $\lambda$ lead to patterns that differ but little near the origin: we will formalize this assertion shortly. Therefore, if a pattern $G_{\lambda}$ is quasi-periodic-that is, periodic except at some exceptional points - in a neighborhood of the origin, this should mean that $\lambda$ is close to a rational number $r / s$. This rational approximation can be found by the method at the end of Section 4.

We denote by $D(R)$ the open disk with center at $(0,0)$ and radius $R$. Suppose $\lambda \in[0,2)$ satisfies $\lambda=r / s+\varepsilon$, where $r, s$ are positive integers, $r / s \in$ $[0,2)$, and the real number $\varepsilon$ is less than $1 / s$ in absolute value. Let $E_{s}$ be the set of $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ such that $x^{2}+y^{2}=k s$ for some positive integer $k$; this exceptional set is where changes may occur.

For any $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ such that $x^{2}+y^{2}<$ $(|\varepsilon| s)^{-1}$, we have
$\left[\left(x^{2}+y^{2}\right) \lambda\right]=\left[\left(x^{2}+y^{2}\right) \frac{r}{s}+\left(x^{2}+y^{2}\right) \varepsilon\right]=\left[\left(x^{2}+y^{2}\right) \frac{r}{s}\right]$
unless $\varepsilon<0$ and $(x, y) \in E_{s}$. Therefore:

- If $\varepsilon>0$ and $R^{2}<(\varepsilon s)^{-1}, G_{\lambda}$ is identical to $G_{r / s}$ in $D(R)$.
- If $\varepsilon<0$ and $R^{2}<-(\varepsilon s)^{-1}, G_{\lambda}$ is identical to $G_{r / s}$ in $D(R) \backslash E_{s}$.

Thus $G_{\lambda}$ is quasiperiodic in $D(R)$. We note that $D(R) \cap E_{s}$ is small, since the number of integer solutions of the equation $x^{2}+y^{2}=n$ for integer $n$ is

$$
4 \sum_{\substack{d \mid n \\ d \text { odd }}}(-1)^{(d-1) / 2}
$$

(see, for example, [Landau 1958, p. 138]), and this number is $O\left(n^{\alpha}\right)$ for any $\alpha>0$ [Hua 1982, p. 120].

To allow the detection of a quasiperiod of a pattern $G_{\lambda}$, the window under examination should
contain at least two shortest periods $t$ of $G_{r / s}$, so that $G_{\lambda}$ is identical to $G_{r / s}$ in $[-t, t]^{2} \backslash E_{s}$. This would require $2 s^{3}|\varepsilon|<1$ if $t=s$ and $8 s^{3}|\varepsilon|<1$ if $t=2 s$. But experience shows that in most cases one can guess $t$ when $s^{3}|\varepsilon|<1$. In this case one can also conclude that $r / s$ is a convergent of the continued fraction expansion of $\lambda$, since $|\lambda-r / s|<s^{-3}<\frac{1}{2} s^{-2}$ for $s>2$ (for the continued fraction criterion, see [Hua 1982, p. 262], for example).

Given a pattern $G_{\lambda}$ quasiperiodic around the origin, the shortest quasiperiod $t$ can be easily measured, and from it $s$ can be deduced. Finally, $r$ can be computed using the method at the end of Section 4. So even if $\lambda$ is not known one can use $G_{\lambda}$ to find a rational approximation.


FIGURE 6. Regions $[-125,125] \times[-125,125],[-18,18] \times[-18,18]$ and $[0,4] \times[0,4]$, for $\lambda=\sin 0.807$. The figure under high magnification shows the pixels relevant to the computation of the binary expansion of $\lambda$.


FIGURE 7. Regions $[-125,125] \times[-125,125],[0,16] \times[0,16]$ and $[-10,10] \times[-10,10]$, for $\lambda=\pi-3$.

Examples. Figure 6 shows $G_{\lambda}$ for $\lambda=\sin 0.807$. From the top right diagram we see that $t=18$, and so $s=18$ since $G_{\lambda}$ does not have the draughtboard structure. Since $2^{4}<18$ and $2^{5}>18$, we need the bits $a_{0}, \ldots, a_{5}$ of the binary expansion of $\lambda$ in order to compute $r$. From the bottom right diagram we read $a_{0}=0, a_{1}=1, a_{2}=0, a_{3}=1$, $a_{4}=1, a_{5}=1$. Consulting (4.1) we then have $r=13$. The difference $\lambda-r / s$ is in fact less than $s^{-4}$ in this case.

Figure 7 shows $G_{\lambda}$ for $\lambda=\pi-3$, with the fairly large quasiperiod $t=113$. Again, $s=t$, and $r$ is computed by a binary calculation to have the value 16 , and $\lambda-r / s<\frac{1}{2} s^{-3}$. We recover the wellknown rational approximation $\pi=3 \frac{16}{113}=\frac{355}{113}$. Moreover, if we look near the origin we see another quasiperiodicity (Figure 7 , bottom right), showing
the draughtboard pattern. Here $s=7$ and $r=1$ with $\lambda-r / s<\frac{1}{2} s^{-3}$, again yielding a famous rational approximation for $\pi$.

## 7. GENERALIZATIONS

Similar results can be developed replacing the modulus 2 by any modulus $p>2$, and using $p$ different colors to draw the pattern. As an example we give without proof the result about the periodicity of the pattern.

We denote by $V_{2}(n)$ the exponent of 2 in the factorization of a positive integer $n$ into primes.

Theorem 7.1. For $\lambda$ a real number and $p \geq 2$ an integer, let $g$ be the function defined on $\mathbb{Z} \times \mathbb{Z}$ by

$$
g(x, y)=\left[\left(x^{2}+y^{2}\right) \lambda\right] \quad(\bmod p)
$$

Then $g$ is periodic if and only if $\lambda$ is rational. If $\lambda=r / s$ with $r, s$ relatively prime positive integers, the shortest period $t$ of $g$ is

$$
t=c \frac{p s}{\operatorname{gcd}(p s, 2 r)}
$$

where

$$
c= \begin{cases}1 & \text { if } V_{2}(p s) \neq V_{2}(2 r), \\ 2 & \text { if } V_{2}(p s)=V_{2}(2 r) .\end{cases}
$$

Surprisingly, the situation in one dimension is more complicated than in two:

Theorem 7.2. For $\lambda$ a real number and $p \geq 2$ an integer, let $h$ be the function defined on $\mathbb{Z}$ by

$$
h(x)=\left[x^{2} \lambda\right] \quad(\bmod p) .
$$

Then $h$ is periodic if and only if $\lambda$ is rational. If $\lambda=r / s$ with $r, s$ relatively prime positive integers, the shortest period $t$ of $h$ is given by the same formula as in the preceding theorem, except for the following combinations of $p, r, s$ :

| $p$ | $s$ | $r(\bmod p s)$ | $t$ |
| :---: | :---: | :---: | :---: |
| 2 | 2 | 1 | 1 |
| 2 | 3 | 2 | 1 |
| 2 | 3 | 5 | 2 |
| 2 | 6 | 11 | 3 |
| 2 | 12 | 11 or 23 | 4 |
| 3 | 4 | 3 | 1 |
| 3 | 4 | 7 or 11 | 3 |

## ACKNOWLEDGEMENT

I am greatly indebted to Dr. Silvio Levy for a correction, remarks and help in the preparation of the final version of this paper.

## REFERENCES

[Dewney 1986] A. K. Dewdney, "Wallpaper for the mind: computer images that are almost, but not quite, repetitive", Scientific American, September 1986.
[Landau 1958] E. Landau, Elementary Number Theory, Chelsea, New York, 1958.
[Hua 1982] Hua Loo-Keng, Introduction to Number Theory, Springer, Berlin, 1982.

Pierre Goetgheluck, Université de Paris-sud, Mathématiques, Bâtiment 425, 91405 Orsay CEDEX, France (goetghe@iut-orsay.fr)

