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For A real, we consider the pattern given by the value modulo
2 of the integer part of A(z? + y?), where (z,y) € Z x Z.
We study the periodicity and other geometric properties of this
pattern, and show that it can provide, by visual inspection
and an elementary computation, a diophantine approximation
for A\. We conclude with similar results for other moduli.

1. INTRODUCTION

Fresnel zones arise from diffraction. They con-
sist of alternating light and dark concentric rings
whose radii increase as /n, for n a positive inte-
ger. In nature the boundary between the rings is
not sharp—the brightness varies continuously with
distance from the center—but we will consider the
all-or-nothing approximation that appears on the
left.

To describe this brightness function f(z,y) we
choose a scale coeflicient, denoted VX for conve-
nience. Then

0 if V2n < VAVE2 + 32 <20+ 1,
1 ifv2n+1<VA/22+92 <2n+2,

for some positive integer n. Equivalently,

f(xay) = {

fl@y)=[="+y")A (mod2), (.1

where the brackets denote the floor function: [a] is
the greatest integer not exceeding a.

To plot the Fresnel zones on a computer screen,
we must discretize the domain. From now on we
regard f as a function defined on Z x Z, and color a
pixel (z,y) white if f(z,y) = 0, black if f(z,y) = 1.
We let G denote the pattern obtained in this way.

The figures on the next two pages, which show
G, for several rational values of ), contain some
surprises. We get not one but several families of
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FIGURE1. Region [—100,300]x [—100,300] for A = 555.

Fresnel rings (Figures 1 and 2); the pattern is pe-
riodic (Figures 1 and 3); and secondary systems of
rings appear (Figures 1 and 2). The aim of this
paper is to explain these phenomena.

In Section 3, we prove that G, is periodic if and
only if X\ is rational, and find its shortest period.
In Section 4, we describe the geometrical structure
of G. In Section 5, we explain why secondary sys-
tems of rings arise, and where they are located. In
Section 6, we show that one can find a rational ap-
proximation of A by visual inspection of G and an
elementary calculation. Section 7 concludes with
some generalizations.

Dewdney [1986] has discussed similar patterns,
but to my knowledge there has been no mathemat-
ical treatment of them.

2. NOTATION AND CONVENTIONS

For A\ a real number, we define f by (1.1), and
denote by G, the associated pattern. When neces-
sary we write f, instead of f. Clearly fi = fiiz,
so by adding or subtracting a positive integer we
can assume that A € [0,2) as far as f is concerned.

FIGURE2. Region [—100,300]x [—100,300] for A = 557

Convention. Whenever we write A = r/s we assume
that  and s are relatively prime positive integers.

If there exists a positive integer T' such that

we say that f and G, are periodic of period T'. In
this case f is also periodic of period T in y, since f
is symmetric. The shortest period of f (or of G)
is the smallest integer T such that f is periodic of
period T

Any real number 6 € [0, 2) can be written in base
2 in the form 6 = ay.a,a5a3 ..., where a; = 0 or 1
for all 4. This is the same as writing

0

Convention. If # is of the form k277 for integers
j > 0 and k, there are two binary expansions for 6,
one of the form ...a,_1a,1000... and the other of
the form...a), ,a,0111.... We will always use the
former expansion: in other words, there is never an
integer 7o such that a; = 1 for all ¢ > 4.

for all z,y € Z,
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FIGURE 3. Region [—43,43] x [—43,43] for A = &.

3. UNIQUENESS AND PERIODICITY

Lemma 3.1. Let A\ be a real number. Then f is
identically zero if and only if \ is an even integer.

Proof. As already observed, we can assume that
A € ]0,2). Suppose that f, vanishes identically, so
that [(p® + ¢*)A\] = 0 (mod 2) for all p,q € Z. Let
A = ag.aiasa;3 . .. be the binary expansion of A\. For
an arbitrary positive integer j, we plug in p = 27
and q = 0; then

@+ =[22G| =] (mod )

where for the second equality we have used the
convention that there is never a position beyond
which all the a; = 1. We conclude that a,; = 0 for
all j. Then we plug in p = 29 and ¢ = 27; this gives

[e o]

. a;
[(pZ + qZ))\] = |:22]+1 Z §:| = [a2j+1] (mod 2)7
0
so that, likewise, as;41 = 0 for all j. This shows
that A = 0. O

This argument actually shows that the whole bi-
nary expansion ag.a;asas . .. of a number A € [0,2)
can be recovered from fy: namely, ax; = f1(27,0)

and agj11 = f(27,27). We thus have proved:

Proposition 3.2. G, = G, (equivalently, f\ = f.) if
and only if A and u differ by an even integer. [
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Remark. It is still possible to have G coincide with
G, after a translation, for distinct A, p € [0,2).
This happens when A = r/s with 7 odd and s is a
multiple of four: then G,y is a translate of G by
the vector (%s, %s), as a straightforward calculation
shows.

Proposition 3.3. G, is periodic if and only if A is
rational.

Proof. If X = r/s, we easily verify that 2s is a
period of f. Conversely, assume that f is periodic
of period T'. This means that

[((z+pT)* + (y+qT)*)A] = [(2° + y*)A]

for any integers p,q. Taking x = 0 and y =

shows that fr, is identically zero, so T2\ is an
even integer by Lemma 3.1. Since T is an integer,
A is rational. O

(mod 2)

Theorem 3.4. If A\ = r/s, the shortest period of G
is 2s if rs is odd, and s if rs is even. (Recall that
r and s are relatively prime positive integers.)

Lemma 3.5. Let o, € R be such that

o+ 8] = [o]

Then B is an even integer.

(mod 2) for any k € Z. (3.1

Proof. Again we can obviously reduce to the case
B € [0,2). We prove that 8 = 0 by contradiction.

If 8 =1 then [a+ f] = [a] + 1, contradicting
(3.1). If 0 < B < 1, let n be the largest integer such
that [ +nf] = [a]. Then [a+ (n+1)5] = [a] + 1,
again contradicting (3.1). Finally, if 1 < § < 2,
the same reasoning applied to 2 — 8 contradicts
the equality

[ = k(2= )] = [a]
which is equivalent to (3.1). O

(mod 2) for any k € Z,

Proof of the theorem. We know that f is periodic of
period 2s; let ¢t be the shortest period. The proof of
Proposition 3.3 shows that At? is an even integer.
We substitute © = 1 and y = 0 in the equation

((w+kt)* +4°)" = (2 +3°)=  (mod 2),
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where k is any integer, and expand the square.
Taking into account that (r/s)t? is an even inte-
ger, we obtain

5+ k@] =[5] (moa2)

s s s

for all £ € Z, and by Lemma 3.5 this implies that
2rt/s is an even integer. Since r and s are relatively
prime, s divides t. But 2s is a period, and so a
multiple of £. Therefore t = s or ¢ = 2s. Finally,
the equality

(@+s)7+9)=| = |@® +9") = +7s| (mod 2),

obtained by expanding (z + s)?, shows that s is a
period if and only if rs is even. O

4. SYMMETRIES AND OTHER GEOMETRIC REMARKS

We now turn to the symmetries of G,. We start by
observing that there are always eight symmetries
fixing the origin: four rotations by multiples of 90°,
and four reflections in the coordinate axes and in
the diagonals x =y and z = —y.

When A is irrational, G, has no other symme-
tries.

When ) is rational, let ¢ be the shortest period
of Gy. We already know that the translations (¢, 0)
and (0,t) preserve G,.

When rs is even, these two translations gener-
ate the group of translational symmetries of G,.
Adjoining the symmetries about the origin we ob-
tain the full group of symmetries of G,. Thus a
point (z,y) € Z x Z has order-eight symmetry if
and only if

(z,y) = (3pt, 3qt) with p,q € Z and p + q even.

Points of the form (3pt, 1qt), for p + ¢ odd, are
fixed by four symmetries: reflections in horizontal
and vertical lines, and 180° rotations.

When rs is odd, (¢,0) and (0,¢) generate only a
subgroup of index two in the group of translational
symmetries of G; the translation (3, 1¢) is also a
symmetry. Adjoining this latter to the symmetries

about the origin we get the full group of symme-
tries of G. A point (z,y) € Z x Z has order-eight
symmetry if and only if

(z,y) = (pt,qt) with p,q € Z.

Points of the form (;pt, 1qt), for p + ¢ even, are
fixed by four symmetries: reflections in diagonal
lines and 180° rotations.

It is also interesting to consider transformations
that don’t quite leave G invariant, but act in some
simple way. For example, define a semisymmetry
of G, as an isometry of Z x Z that interchanges
black and white, or, more formally, that conjugates
ftol—f.

It is trivial to show that, if A\ = r/s with rs odd,
a horizontal or vertical translation by s = %t is a
semisymmetry. In this case G, has a draughtboard
pattern (Figure 4).

N P N P N

FIGURE 4. Left: Region [—35,35] x [—35, 35] for
A = 7/15. Right: In general, for A = r/s with
rs odd, G can be divided into blocks of side s,
arranged a draughtboard pattern (N and P denote
complementary arrays).

For rs odd, the group of symmetries of G, de-
scribed above has index two in the group of symme-
tries and semisymmetries combined. For rs even
or A irrational, there are no semisymmetries.

Yet another generalization of symmetries of G
is the following. If 7 is odd and s is even, every
other pixel changes color under a diagonal transla-
tion by (3¢, 3t), where ¢ = s is the shortest period.
More precisely, this translation acts as a pixelwise
exclusive-or with the filter



01010
1010 1
01010,
1010 1
01010

where the origin combines with 1 (changes color)
if s is odd and with 0 if s is even.

Finding r and s from G,

Proposition 3.2 says that a real number A € [0, 2)
is uniquely determined from G,. Here we assume
that G, is periodic and spell out a procedure for
finding A = r/s.

First, find the shortest period ¢. If G, has the
draughtboard structure, s = %t, otherwise s = t.

To find r, recall from the discussion preceding
Proposition 3.2 that the (2¢)-th bit in the binary
expansion of \ is the color of the pixel (2¢,0), and
the (2i+1)-th bit is the color of (2%,2%). Now choose
J such that 27 > s, and find the bits ay,...,a;.
Since

AT

J
a; . 1
SZZE—FE Wlth0§€<§

=0

and since s(277 —¢) < 1, we get

N ST 4.1)
T= 1S 2 27: 2] . .

We remark that this procedure requires the exam-
ination of [log, s|] + 1 pixels of G,.

5. THE RINGS

We observe in Figures 1 and 5 the surprising ap-

pearance of rings. In both cases we can remark

that X is close to a “simple” fraction: 25% is close
0 2

72 . .
to 7 and 55 is close to . The purpose of this

section is to explain the following observation:

Observation. Rings are seen when A\ = r/s is close
to a fraction a/b with small denominator. Main
rings have center (us/(2¢),vs/(2c)), where u and v
are integers of same parity as ab, and ¢ = rb — as.
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FIGURES.

Region [—160, 160] x [—160, 160] for A = 2.

Explanation. Let r, s, a, b be positive integers, «
and B real numbers, and set o = as, yo = Ps,
¢ = rb — as. For any integer z and y, define £ and
nby x =z + € and y = yo + 1. We have

>+ y? =2(zoz + yoy) — (=g +v5) + (£ + 1),

and so
2,,2y¢ _ C 2, 02,68 2,2y ¢
(@ +y") 5 = 2(az+By)y — (@ +67) -+ (E+n") .

Substituting ¢/(sb) = r/s — a/b, we obtain
(2 +37) = Aw,y) + (€ + 7)<,

where

Aw,y) = (@ +9°) 5 +2(0x +By) - (0 + ).

Let (z1,y1) € ZXZ and let z; € [0,2) be the residue
of A(zy,y1) modulo 2. Then all (z,y) € Z x Z
satisfying A(z,y) = z; (mod 2)

e have the same color in every ring limited by con-
secutive circles with center (zy,y) and radii of

the form +/(k — 21)sb/c, where k is an integer

>z if ¢ > 0 and < z; if ¢ < 0; and they
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e change their color when passing from a ring to
the next.

The same properties hold for all values of A(z,y)
modulo 2. In order to see the rings on the pattern
G, it is necessary that the limit circles correspond-
ing to these values be clearly distinct and have big
enough radii: for example, the radii of the smallest
circles should be > 10, and the difference between
two successive radii should be > 2. Then

e sb/c must be big (> 100) and a/b must be close
to r/s;

e the values of A(z,y) modulo 2 must be few,
which requires that «,3 be rational and b be
small.

Namely, in order that (a(z?+y?)?+2(az +By)c)/b
take only a few values, we must choose 2ac and
28c to be integers. Then, if A\ = r/s is close to
a fraction a/b with a small denominator, we ob-
serve families of concentric rings with center at
(us/(2¢),vs/(2c)) for u,v € Z.

If we choose a = u/(2c¢) and B = v/(2c), we have

r a(@®+y?) + (uz + vy)

2 T 2 2\ €8
2 2 ¢
Now

a(z® + y?) + (uz + vy)
b

varies much faster than the last summand in the
preceding equality. This means that near (zg,yo)
we can obtain G, by modifying the pattern aris-
ing from the integer part of (5.1) (mod 2) with the
help of the term (&2 +n?)c/(sb). Assume that ab is
odd. It is easy to show that the shortest period of
(5.1) is b if uv is odd and 2b otherwise. In the sec-
ond case, the draughtboard structure with a small
b gives a general impression of grey, and consecu-
tive rings are indistinguishable: the rings are seen
when ab is odd if v and v are odd. Similarly, if
ab is even, the rings are seen if both u and v are
even. D

— (o + 62)6—; (5.1)

In the particular case when r/s is small, that is, if
a=0,b=1, ¢ =r, the expression 2(az + fy)c
takes only very few values modulo 2 if « and ( are
fractions with the same small denominator. We
observe in this case families of rings with center at
(us/w,vs/w), for u and v integers and w a small
positive integer (see Figure 3).

Application. Given a G, that shows rings, with A =
r/s, we can easily find a “simple” fraction a/b close
to r/s as follows: count the number k of the most
visible systems of rings whose centers belong to a
horizontal segment of length s; then solve the equa-
tion 7y — sz = k in integers and select the solution
with smallest |z| and |y|. These two absolute val-
ues are a and b.

For example, in Figure 5, with » = 72 and s =
251, we see that k¥ = 2. Solving 72y — 251z =
2 gives ¢ = 2+ 72m and y = 7 + 251m, for m
integer. Then a = 2 and b = 7. The error in the

2

approximation is 1.

6. DIOPHANTINE APPROXIMATION USING G,

Nearby values of A lead to patterns that differ but
little near the origin: we will formalize this asser-
tion shortly. Therefore, if a pattern G, is quasi-
periodic—that is, periodic except at some excep-
tional points—in a neighborhood of the origin, this
should mean that A is close to a rational number
r/s. This rational approximation can be found by
the method at the end of Section 4.

We denote by D(R) the open disk with center
at (0,0) and radius R. Suppose X € [0, 2) satisfies
A =r/s+ ¢, where r, s are positive integers, /s €
[0,2), and the real number ¢ is less than 1/s in
absolute value. Let E, be the set of (z,y) € Z x Z
such that 2% + y? = ks for some positive integer k;
this exceptional set is where changes may occur.

For any (z,y) € Z X Z such that z® + y* <
(lels)™*, we have

@+ = [(@y2) S+ @2 +y7)e]| = [(@*+97) 7]

unless € < 0 and (z,y) € E;. Therefore:



e Ife >0and R? < (es)™!
in D(R).

e Ife <0and R? <
Gr/s in D(R) \ E,.

, Gy is identical to G,/

—(es)™t, G, is identical to

Thus G, is quasiperiodic in D(R). We note that
D(R) N E; is small, since the number of integer
solutions of the equation z? + y? = n for integer n

is
LY
d|n
d odd

d—1)/2

(see, for example, [Landau 1958, p. 138]), and this
number is O(n*) for any a > 0 [Hua 1982, p. 120].

To allow the detection of a quasiperiod of a pat-
tern Gy, the window under examination should
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contain at least two shortest periods ¢ of G, /,, so
that G, is identical to G,/, in [—¢,t]* \ E,. This
would require 2s*le|] < 1 if ¢ = s and 8s*|¢| < 1
if £ = 2s. But experience shows that in most
cases one can guess t when s®le] < 1. In this
case one can also conclude that r/s is a conver-
gent of the continued fraction expansion of A, since
A —r/s| < s73 < 3572 for s > 2 (for the contin-
ued fraction criterion, see [Hua 1982, p. 262], for
example).

Given a pattern GG, quasiperiodic around the ori-
gin, the shortest quasiperiod ¢ can be easily mea-
sured, and from it s can be deduced. Finally, r
can be computed using the method at the end of
Section 4. So even if A is not known one can use
G, to find a rational approximation.

@f...%ﬁg
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FIGURE 6. Regions [—125,125] x [—125,125], [—18,18] x [—18,18] and [0,4] x [0,4], for A = sin0.807. The
figure under high magnification shows the pixels relevant to the computation of the binary expansion of A.
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FIGURE 7.

Examples. Figure 6 shows G, for A = sin0.807.
From the top right diagram we see that t = 18,
and so s = 18 since G does not have the draught-
board structure. Since 2* < 18 and 2° > 18, we
need the bits aq, ..., as of the binary expansion of
A in order to compute r. From the bottom right
diagram we read ap = 0, a; = 1, a3 = 0, a3 = 1,
ag = 1, as = 1. Consulting (4.1) we then have
r = 13. The difference A\ — r/s is in fact less than
s~* in this case.

Figure 7 shows G, for A = 7 — 3, with the fairly
large quasiperiod ¢t = 113. Again, s = ¢, and r
is computed by a binary calculation to have the
value 16, and A —r/s < 5. We recover the well-
known rational approximation = = 3% = %
Moreover, if we look near the origin we see another
quasiperiodicity (Figure 7, bottom right), showing

Regions [—125,125] x [—125,125], [0,16] x [0,16] and [-10,10] x [—10,10], for A = 7 — 3.

the draughtboard pattern. Here s = 7 and r = 1
with A —r/s < %3_3, again yielding a famous ra-
tional approximation for 7.

7. GENERALIZATIONS

Similar results can be developed replacing the mod-
ulus 2 by any modulus p > 2, and using p different
colors to draw the pattern. As an example we give
without proof the result about the periodicity of
the pattern.

We denote by V,(n) the exponent of 2 in the
factorization of a positive integer n into primes.

Theorem 7.1. For X\ a real number and p > 2 an
integer, let g be the function defined on 7 x 7 by

g9(z,y) = [(&* +y*)A] (mod p).



Then g s periodic if and only if A is rational. If
A =r/s with r, s relatively prime positive integers,
the shortest period t of g is

pSs
e PS
ged(ps, 2r)’

where

o= {1 #¥ie 2 it

2 if Va(ps) = Va(2r).
Surprisingly, the situation in one dimension is more
complicated than in two:

Theorem 7.2. For A a real number and p > 2 an
integer, let h be the function defined on 7Z by

h(z) = [z2)] (mod p).

Then h is periodic if and only if \ is rational. If
A =r/s with r, s relatively prime positive integers,
the shortest period t of h is given by the same for-
mula as in the preceding theorem, except for the
following combinations of p,r, s:
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p| s | r(modps) | t
2 2 1 1
2 3 2 1
2 3 ) 2
2 6 11 3
2| 12 11 or 23 4
3 4 3 1
3 4 7or 11 3
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