
Received May 30, 2020, accepted July 21, 2020, date of publication July 24, 2020, date of current version August 4, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3011744

Fret: Functional Reinforced Transformer

With BERT for Code Summarization

RUYUN WANG 1, (Student Member, IEEE), HANWEN ZHANG 1,

GUOLIANG LU 2, (Member, IEEE), LEI LYU 1, AND CHEN LYU 1
1School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China
2School of Mechanical Engineering, Shandong University, Jinan 250061, China

Corresponding author: Chen Lyu (lvchen@sdnu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61602286 and Grant 61976127; in part

by the Shandong Key Research and Development Program under Grant 2018GGX101003; and in part by the Shandong Province Higher

Educational Science and Technology Program under Grant J16LN09.

ABSTRACT Code summarization has long been viewed as a challenge in software engineering because of

the difficulties of understanding source code and generating natural language. Some mainstream methods

combine abstract syntax trees with language models to capture the structural information of the source

code and generate relatively satisfactory comments. However, these methods are still deficient in code

understanding and limited by the long dependency problem. In this paper, we propose a novel model

called Fret, which stands for Functional REinforced Transformer with BERT. The model provides a new

way to generate code comments by learning code functionalities and deepening code understanding while

alleviating the problem of long dependency. For this purpose, a novel reinforcer is proposed for learning

the functional contents of code so that more accurate summaries to describe the code functionalities can be

generated. In addition, a more efficient algorithm is newly designed to capture the source code structure. The

experimental results show that the effectiveness of ourmodel is remarkable. Fret significantly outperforms all

the state-of-the-art methods we examine. It pushes the BLEU-4 score to 24.32 for Java code summarization

(14.23% absolute improvement) and the ROUGE-L score to 40.12 for Python. An ablation test is also

conducted to further explore the impact of each component of our method.

INDEX TERMS BERT language representation model, software engineering, source code summarization,

transformer network.

I. INTRODUCTION

Programmers are keyboard pianists who write beautiful

pieces of code by striking keys. They create great software

through efficient collaboration and program optimisation.

In most cases, development does not happen overnight. More

precisely, programmers need to update and maintain code

over a long period. Iterations of functionality are often based

on existing code. A high-quality code comment can point out

key functions directly and enable programmers to innovate

efficiently, whereas a piece of messy codewith a useless com-

ment may force our pianists to improvise. For fast code com-

ment generation, researchers have begun to explore methods

of source code summarization.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaobing Sun .

Deep neural networks are actively used in various fields,

such as recurrent neural networks (RNNs) [1] and long

short-term memory (LSTM) [2]. In 2014, Sutskever et al. [3]

proposed the sequence-to-sequence (Seq2Seq) model, which

pushed the field of neural machine translation (NMT) to a

new height. In 2017, Transformer [4] became the new state

of the art in the area of NMT and solved one of the most

challenging problems: long-term dependency. Bidirectional

encoder representations from Transformers (BERT) [5] used

the mask mechanism to address the problem of polysemy and

deepen the understanding of natural language (NL).

A. MOTIVATION

Recent studies show that by combining and innovating exist-

ing NMT technologies, code comments can be generated

based on extensive training. Due to their strong relevance to

machine translation, Seq2Seq and the attention mechanism

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 135591

https://orcid.org/0000-0002-7113-3017
https://orcid.org/0000-0003-3461-2972
https://orcid.org/0000-0003-4843-2841
https://orcid.org/0000-0001-9521-6039
https://orcid.org/0000-0002-5044-1459
https://orcid.org/0000-0001-5165-5080

R. Wang et al.: Fret: Functional Reinforced Transformer With BERT for Code Summarization

are extensively applied to code summarization tasks, such as

those discussed in [6], [7], and [8]. However, these authors

found that a ‘‘flat’’ neural architecture cannot capture struc-

tural information well, and researchers have therefore tried

to introduce other mechanisms for the task of code summa-

rization. Allamanis et al. [9] used a convolutional attention

network to generate code comments, which addressed the

problem of multi-threaded computation. Moore et al. [10]

also used convolutional neural networks (CNNs) to summa-

rize source code. Some studies have indicated that pure NL

models cannot understand the structural information of code,

so researchers have introduced abstract syntax trees (ASTs)

into the NMT model to capture code structure and generate

comments; examples of this strategy include [11], [14]–[18],

and [19]. Furthermore, Hu et al. [16] regarded the application

program interface (API) as another factor worth considering,

and they parsed an API with a tree as well. Wei et al. [20]

proposed the dual model, considering code summarization

and code generation as mutually compatible goals, so that

both tasks could be performed by one model. After repeated

improvements by researchers, the performance of machine

code summarization models has dramatically improved.

Nevertheless, the existing models still face three chal-

lenges, which create bottlenecks in improving the quality of

code comments:

1) Limitation by the long dependency problem. The

length of code is uncertain. A piece of code can easily

be hundreds or even thousands of words long, and a

code element may depend on another element many

tokens away.

2) Lack of effective guidance. It is inefficient to train

models aimlessly on large amounts of data. Existing

methods aim to improve the effectiveness of code sum-

marization in various ways, such as by using CNNs

rather than LSTM, embedding ASTs, or adding atten-

tion mechanisms. However, these methods do not aim

directly at improvement.

3) Lack of code understanding. Deep understanding of

programs has always been a challenge in the field of

code summarization. The current mainstream approach

obtains word maps mechanically, but performance still

encounters bottlenecks due to a lack of code under-

standing.

The Transformer model [4] is skilled in solving the prob-

lem of long dependency. However, the original architecture

of Transformer was not designed for programs, which means

that it cannot capture the structural information of programs,

not to mention understanding the code.

B. CONTRIBUTION

In this paper, we propose a code summarization model called

Fret, which stands for Functional REinforced Transformer

with BERT. The overall workflow is depicted in Fig. I-A. For

this model, we developed a novel reinforcer for learning the

code functionalities, through which Fret can generate more

FIGURE 1. The overall workflow of our code summarization approach.

functionally clear, accurate, and comprehensive descriptions

of the code. The code is input into the functional reinforcer

and the encoder, and then a comment is generated by the

decoder. To be more specific, the architecture we propose

can be described as a ‘‘reinforcer-encoder-decoder’’ form.

Fret combines the reinforcer with Transformer and BERT to

bridge the gap between source code and NL. In this way,

our model can tackle the three challenges previously men-

tioned, namely, alleviating the problem of long dependency,

gaining effective guidance, and deepening code understand-

ing. The reinforcer integrates a token-segmented functional

emphasis mechanism to strengthen the functional under-

standing of code. The main functionalities of code snippets

are already extracted and condensed into the names of the

snippets by programmers (e.g., ‘‘render_to_file()’’

and ‘‘test_story_three_response(),’’ which have

a high probability of performing the task that their names

represent.) Additionally, using segmented tokens can reduce

the dictionary size and the probability that uncommon tokens

are replaced by ‘‘〈UNK〉’’ as discussed in [17]. In addition,

to capture the code’s structural information, we designed

a new sentence-level structure encoding algorithm that can

embed structural information in a more efficient way.

In summary, the contributions of this paper are as described

below.

• We propose Fret, a novel model using a functionally

reinforced Transformer with BERT, which introduces

functional guidance into code summarization, alleviat-

ing the problem of long dependencies while also deep-

ening the understanding of the code. The most essential

idea of this approach is that, through functional guid-

ance, Fret can generate more functionally clear, accu-

rate, and comprehensive descriptions of the code.

• We propose a more comprehensive functionality-

reinforced source code representation method, which

reinforces the functionality into code embedding by

using the newly proposed functional reinforcer and

structure encoding.

• We conducted a series of experiments including quanti-

tative and qualitative comparisons that demonstrate the

superiority of Fret compared with other state-of-the-art

methods.

135592 VOLUME 8, 2020

R. Wang et al.: Fret: Functional Reinforced Transformer With BERT for Code Summarization

C. ORGANISATION

The remainder of this paper is organised as follows: Section II

covers related work in code summarization. Section III

describes the detailed design of our model. Sections IV and V

show the experiments and the results of our method on the

Java and Python datasets compared to those of other state-of-

the-art methods. Finally, the discussion and conclusion are

given in Sections VI and VII.

II. RELATED WORK

A. CODE REPRESENTATION

The first step of understanding code in depth is to repre-

sent it appropriately. In recent years, researchers have made

continuous efforts in this area. They have achieved excel-

lent results and put forward many impressive algorithms.

Researchers have borrowed approaches from the field of

natural language processing (NLP) [21]–[23], ranging from

statistical machine translation [24], [25] to deep neural net-

work learning [3], to serve the purpose of summarizing the

language in programs. Tung et al. [26] proposed a statisti-

cal semantic language model for source code that merges

semantic information into code tags. It also merges local

contexts in semantics and global technical capabilities into

an n-gram topic model. Recent studies have preferred the

application of neural network learning. Gu et al. [27] used

an RNN encoder-decoder model [3] that encodes a user

query sequence of words into a fixed-length context vec-

tor to generate a context-based API sequence. In the work

of Piech et al. [28], a method of embedding preconditions

and postconditions simultaneously in a shared Euclidean

space was proposed to encode programs as a linear mapping.

Mou et al. [29] took code structure information into account

by incorporating a syntax structure tree into the code rep-

resentation. Because a program contains rich, explicit, and

complex structural information, a convolution kernel was

designed on top of the program’s AST to capture structural

information. In the field of code searching, researchers have

proposed new ways to tackle the problem of code represen-

tation. Yao et al. [30] proposed a model called MMAN to

address the problem of code retrieval. They developed a com-

prehensive multimodal representation, considering ASTs and

CFGs to represent the unstructured and structured features

of the source code. Gu et al. [31] proposed a model called

CODEnn, which creatively embeds code and NL descrip-

tions jointly into a high-dimensional vector space. They

divided code into three parts, which are the method name,

API sequence, and token, and then obtained the code vector

by inputting these parts into an RNN and MLP for fusion.

Lv et al. [32] proposed CodeHow, a code search model that

could recognise potential APIs by applying the extended

Boolean model. This model searches code based on both

code text and name matching and then identifies and returns

relevant APIs after ranking. Allamanis et al. [34] proposed

a model that tackles the retrieval problem between NL and

source code by combining the techniques of source code

statistical modelling with bimodal modelling of images and

natural language. A probabilistic context-free grammar and

neuroprobabilistic language-based model was proposed by

Maddison and Tarlow [33], which aims to generate a struc-

ture for natural source code. Both Allamanis et al. [34]

and Maddison and Tarlow [33] considered source code as

a tree. Our proposed approach differs significantly from

the abovementioned model in terms of code representation:

beyond taking code features into account, Fret also incor-

porates the extraction of functional information and imple-

ments an efficient algorithm to extract structural information.

Furthermore, we present a new technique, using the

Hadamard product, to integrate these new features that can

contribute to improved performance.

B. CODE SUMMARIZATION

As a branch of software engineering, source code summa-

rization has long been viewed as a challenge. There are

many different methods for automatically summarizing code,

including manually crafted templates [35], [36], information

retrieval [37], [38], and deep neural network learning [6],

[14], [17]–[19]. Manual template matching is one method

of code summarization. McBurney and Mcmillan [35]

located the most important context-based methods with

PageRank and collected relevant keywords with SWUM.

Wong et al. [36] proposed a general approach that used a

context-sensitive text similarity technique to find similar code

snippets and annotated them to describe other similar snip-

pets. Methods based on information retrieval and codematch-

ing are also applied in this task. Haiduc et al. [37] proposed a

text retrieval (TR) technique for lexical and structural infor-

mation in code to solve the code summarization problem.

Haiduc et al. [38] used the combination of a term’s location

in a program and the TR technique to capture the meaning

of methods and classes. In other words, they used automatic

text summarization techniques to generate source code com-

ments. Iyer et al. [6] proposed a CODE-NN model that uses

LSTM networks and attention mechanisms to summarize the

code from noisy online programming websites. Hu et al.

[17], [18] proposed a model called DeepCom that uses

NLP technology to analyse the structural information of

Java methods through a deep neural network. It gener-

ates comments from learned features. Wan et al. [19] pre-

sented the actor-critic model, in which a mixed attention

layer, an AST-based LSTM layer and other LSTM layers

integrate the structure and sequential content of the code.

Shido et al. [14] proposed an extension of Tree-LSTM based

on the work of Tai et al. [11]. The model constructed a

distributed representation of ordered trees so that Tree-LSTM

could handle any number of ordered children. Shen et al. [12]

proposed an automatic summarization model with the aim

of adapting to source code changes. Liu et al. [13] used

latent semantic indexing and clustering to group source arti-

facts with similar vocabularies, extracted topics composed of

the vectors of independent words based on latent semantic

indexing, and then used Minipar to generate summaries.

VOLUME 8, 2020 135593

R. Wang et al.: Fret: Functional Reinforced Transformer With BERT for Code Summarization

FIGURE 2. An overview of our proposed model, Fret, for code summarization.

Unlike the above models, Fret uses Transformer to bridge the

gap between code and NL. The code embedding generated by

BERT and the structural information are utilised to perform

code summarization.

III. MODEL ARCHITECTURE

Fret is composed of three parts: the functional reinforcer, code

encoder, and decoder. An overview of our model is shown

in Fig. 2. The reinforcer emphasises the functional keywords,

and it guides the summarization process with a focus on the

code’s functionality. Similar to many NMT models, Fret also

relies on an encoder-decoder architecture to bridge the gap

between code and NL. For clarity, we specify δ, x, and y

as the data carriers for the reinforcer, encoder, and decoder,

respectively. The subscripts _R(r), _E (e), and _D(d) symbolise

these three parts.

A. FUNCTIONAL REINFORCER

The functional reinforcer is used to extract the most critical

function-indicated tokens in the code and, after integration,

input them into the encoder. We first extract nr keywords

(keyword1, keyword2, · · · , keywordnr) from the code snip-

pets and embed them into the vector (k1, k2, · · · , knr) as

input. The output of the reinforcer ZR is transmitted to the

encoder to await further calculation; this output contains the

functional information of the code snippet.

1) FUNCTIONAL EXTRACTION

Functional extraction is an operation that extracts func-

tional keywords from a code snippet and concatenates

them into a vector called the functional order: order =
(keyword1, keyword2, · · · , keywordnr).

An example of the extraction process is shown in Fig. 3.

The keyword ‘‘resolveRowKey’’ is a word combina-

tion; we first separate it into single words, which yields

FIGURE 3. One example of the functional extraction process.

the sequence ‘‘resolve, row, key,’’ and then splice

this sequence onto the entire order . This is the functional

extraction operation. Later, each keyword keywordi will

be embedded into a vector ki of d dimensions, that is,

(k1, k2, · · · , knr) ∈ R
nr×d .

2) POSITIONAL ENCODING

The positional encoding can incorporate the order informa-

tion PEpos into the keyword embedding (k1, k2, · · · , knr)
with:




PE(pos,2i) = sin(

pos

100002i/d
)

PE(pos,2i+1) = cos(
pos

100002i/d
),

(1)

where PE is the positional encoding, pos is the position of ki,

and d is the embedding size. Since the position information

135594 VOLUME 8, 2020

R. Wang et al.: Fret: Functional Reinforced Transformer With BERT for Code Summarization

is ignored in attention, we add the positional encoding at the

bottom of the reinforcer as is done in [4]. The actual input

of the reinforcer is δ, and each character δi of the input is

calculated according to:

δi = ki + PEpos, (2)

where the input of the reinforcer is δ = (δ1, δ2, · · · , δnr),
δ ∈ R

nr×d , nr indicates the token number, and d denotes the

embedding size. Here, δ retains both functional and positional

information, and it is inputted into the first layer of the

reinforcer; that is, we use multi-head attention.

3) MULTI-HEAD ATTENTION

Multi-head attention provides multiple representation sub-

spaces for the attention layer; hence, it is skilled in learning

word distances. Specifically, it uses three matrices as hidden

layers: the query matrixQ, key matrix K , and value matrix V .

Each of them is calculated from a dot product of the learnable

weight matrix W(·) ∈ R
d×dk :

[Q,K ,V] = [δ1, δ2, · · · , δnr][WQ,WK ,WV]. (3)

We first calculate the self-attention as follows:

Attention(QR,KR,VR) = softmax(
QR · KT

R√
dk

) · VR, (4)

where dk indicates the dimension ofKR. The generated output

tensor is named Z . To counteract the problem of the increas-

ing size of the dot product, the value of (QR · KT
R) is scaled

by 1√
dK

. Next, each head headi applied in attention is com-

puted as:

headi = Attention(QW
Q
Ri,KW

K
Ri ,VW

V
Ri), (5)

where W
Q
Ri ∈ R

d×dk , WK
Ri ∈ R

d×dk , and WV
Ri ∈ R

d×dv . The

weight matrix W
(·)
(·) is learnable and is utilised to generate

multi-head matrices Q
(·)
(·), K

(·)
(·) , and V

(·)
(·) with the dot product.

Then, the output of multi-head attention can be computed by:

ZR = MultiHead(QR,KR,VR)

= Concat(head1, head2, · · · , headh) ·WO
R , (6)

where the output concatenated weightWO
R ∈ R

hdv×dk . In this
work, we set h = 12 and dk = dv = d/h = 64. To avoid the

problem of dispersion, residual connection (ZR+δ) is applied

before layer normalisation [39]:

Z̃R = LayerNorm(δ + ZR). (7)

Here, LayerNorm can be calculated by:

µi =
1

m

m∑

i=1
xij, (8)

σ 2
j =

1

m

m∑

i=1
(xij − µj)

2, (9)

LayerNorm(x) = α ⊙
xij − µj√
σ 2 + ǫ

+ β, (10)

where α and β prevent excessive loss; ǫ prevents division by

zero.

4) FEED-FORWARD NETWORKS

Fully connected feed-forward networks consist of a ReLU

activation with linear transformations on both sides.

This network is applied to each position separately by the

same method as in [4]. The dimensions of its input and output

are set to d = 768, and the dimension of the inner layer is

dff = 3072. The final output of the reinforcer is ˜̃ZR ∈ R
nr×d

(hereafter referred to as ZR).

B. CODE ENCODER

The code encoder takes two inputs: the output of the rein-

forcer ZR and the sentence-level code embedding vector x.

However, before the encoder operates on them, they undergo

some preprocessing. Considering that BERT excels in sen-

tence understanding and embedding, we implement the input

code at the sentence level.

1) BertC

BertC stands for ‘‘BERT for Code.’’ BERT uses Trans-

former’s encoder as its kernel to capture the bidirectional

information of a sentence. Two tasks are adapted to increase

understanding: a) masked language model, to mask 15% of

the words in the document (80% of which are replaced with

‘‘[mask],’’ 10% with the original word and 10% with a

random word); b) next-sentence prediction.

BERT needs to be pre-trained. The architecture of

ELMo [40] replaces the bidirectional language model with

multi-head attention. In brief, the embedding of a token

depends on its context. Analogously, BERT also needs to

be preprocessed to embed the location information before

serving:

Inputi = Etoken + Eseg + Epos (11)

where Etoken, Eseg, and Epos represent token embeddings,

segment embeddings and position embeddings, respectively.

We set the embedding size dBERT = 768 as recommended

in [5]. The input is processed as follows:

Pre-training We embed the code sentence token by token

and form it into a token-embedding sequence:

[E[CLS],Et1, · · · ,Etn,E[SEP],Etn+1, · · · ,Etn+m,E[SEP]]

where E indicates the embedding vector with dimension d ;

[CLS] is the symbol of the first word; [SEP] is a signal of

clauses; t denotes a token, the first sentence has n tokens, and

the second sentence has m tokens.

Embedding We first segment a code snippet at the sen-

tence level. Each sentence is further embedded by tokens

[Et1,Et2, · · · ,Etn]. It is input into BERT, and its sentence

embedding xsi, xsi ∈ R
dBERT is obtained. As a result,

we obtain a code embedding at the sentence level: xs =
(xs1, xs2, · · · , xsne), where xs ∈ R

ne×dBERT .

2) STRUCTURE ENCODING

Structure encoding can capture the hierarchical relationships

within code. The details of structure encoding are presented

in Algorithm 1.

VOLUME 8, 2020 135595

R. Wang et al.: Fret: Functional Reinforced Transformer With BERT for Code Summarization

Algorithm 1 Structure Encoding Algorithm

Require: Code snippet code; weight w = 1; BERT dimen-

sion dBERT ;

Ensure: Structure encoding SE ;

SE ← ∅;

for each sentence si in code do

if si is a sublayer then

w← w/2;

else if si is a parent layer then

w← w ∗ 2
else

w← w;

end if

SEi← SEi−1.append([w]*dBERT)
end for

return SE

After Algorithm 1, we can obtain the structure encoding

SE . Since the input sequence xs = (xs1, xs2, · · · , xsne)
embedded by BertC is missing structural information, struc-

ture encoding incorporates this essential information into

xs before it is inputted. The matrix xs adds the structure

encoding SE with:

xsstr = xs+ SE, (12)

where xsstr denotes the structure-encoded code sentence

and SE denotes the structure-encoding matrices returned by

Algorithm 1. Thus, here, xsstr ∈ R
ne×dBERT , and we assign

d = dBERT = 768.

3) HADAMARD & NORM

The process by which we perform information fusion is

described in this section. We can obtain the functional order

output ZR ∈ R
nr×d from the final stack of the reinforcer

according to (6):

ZR = MultiHead(QR,KR,VR).

For brevity, we introduce an intermediate variable CR to

represent the reinforcer coefficient:

CR = ZTR · ZR, (13)

where ZR ∈ R
nr×d and thus CR ∈ R

d×d ; the

structure-encoded sequence xsstr ∈ R
ne×dBERT ; nr is the token

number of δ in the reinforcer; and ne is the sentence number

of xsstr in the encoder.

To strengthen the influence of the function code, we multi-

ply each element in (sxsrt ·CR) by its corresponding positional
element in xsstr ; specifically, we take the Hadamard product.

Then, we norm it before inputting it into the encoder:

x = Norm(xsstr ◦ (sxsrt · CR)), (14)

where x = (x1, x2, · · · , xne), x ∈ R
ne×dBERT , is the input

of the code encoder. Then, the code encoder receives the

input x to calculate matrices KE , VE , and QE following (4),

(5), and (6).

C. DECODER

Based on the consideration of both the program and

functional guidance, similar to the models proposed by

Iida et al. [43] and Liu et al. [44], the decoder aims to

generate the target sequence y by sequentially predicting

the probability of a word yt conditioned on the previously

generated words y1, y2, · · · , yt−1. First, the target sequence

(y1, y2, · · · , ynd) is formatted at the token level and fed

into the decoder sequentially for training. During prediction,

we apply two attention layers to integrate the outputs of the

functional reinforcer and code encoder. Token yt at time t is

input into the decoder to generate token yt+1 at the next time

step.

1) BertNL

BertNL stands for ‘‘BERT for Natural Language,’’ which

is distinct from but similar to BertC, described in

section III-B1. The only difference is that the training

of BertC uses the code extracted from datasets, whereas

BertNL is based on a model pre-trained by Google.1 BertNL

can transform a comment into a token-level vector y =
(y1, y2, · · · , ynd), where nd is the token number of y, and its

embedding size is set to d = 768, which is the same as that

of the encoder.

2) PROGRAM ATTENTION

Program attention integrates the information contained in a

code snippet. The essence of program attention is multi-head

attention. From the code encoder, the attention module inher-

its KE and VE , which are computed from the code snip-

pet xs = (xs1, xs2, · · · , xsne). Q is computed from y =
(y1, y2, · · · , ynd) (for the first stack in the decoder) or trans-

mitted by the forward layer (for other stacks of blocks).

According to (6) and (7), the output of program attention Zp
can be calculated as follows:

Zp = MultiHead(Q,KE ,VE), (15)

Z̃p = LayerNorm(Zp). (16)

Simultaneously, the output value is also conveyed to the

next layer, which is functional attention.

3) FUNCTIONAL ATTENTION

Functional attention integrates the information contained in

man-made names. Similar to the way program attention oper-

ates, functional attention receives the matrices KR and VR
from the functional reinforcer. Its Q∗ values are also calcu-

lated (for the first stack of a block) or given by the previous

layer. Here, this kind of attention inherits the importance

information integrated by the functional reinforcer. Similar

to program attention, the output of functional attention Zf is

calculated according to (6) and (7):

Zf = MultiHead(Q∗,KR,VR), (17)

Z̃f = LayerNorm(Zf), (18)

1The code of BERT and its pre-trained models are available at
https://github.com/google-research/bert

135596 VOLUME 8, 2020

R. Wang et al.: Fret: Functional Reinforced Transformer With BERT for Code Summarization

where Q∗ is the query of functional attention and can be

calculated by:

Q∗ = Zp ∗WQ. (19)

Finally, two fully connected layers follow, which extract

features for prediction. Therefore, the output of the decoder

is:

ZD = FFN (Z̃f), (20)

where FFN is a widely used feed-forward neural network;

here, we use ReLU as its activation function.

4) TRAINING AND INFERENCE

The target sequence y can be generated by sequentially

predicting the probability of a token yt conditioned on its

previously generated words y1, y2, · · · , yt−1 as well as its

corresponding code snippet input xs and keywords δ; i.e.,

p(y1, y2, · · · , ynd |δ, xs) =
nd∏

t=1
p(yt |δ, xs), (21)

where p(yt |δ, xs) can be calculated by:

p(yt |δ, xs) = p(yt |y<t , δ, xs). (22)

Among all possible candidates, the token of the code com-

ment is predicted by softmax based on the output from the

decoder. The output ZDt is first input into two fully connected

neural network layers, denoted as linear layers, and then

the probabilities p(yt |δ, xs) of the code description token are

calculated by softmax. The match is determined as follows:

p(yt |y<t , δ, xs) = Softmax(Linear(ZDt)), (23)

where ZDt is the output of the last stack of the decoder at the

current time step and p(yt |y<t , δ, xs) is the probability of the

comment token at the current time step.

In model prediction, we use the output of the decoder at

the previous time step yt = ZDt−1 as the input of the current

time step, i.e., the query. In contrast, during training, we use

the token of the ground-truth sequence y1, y2, · · · , ynd at the

previous time step as the input of the decoder at the current

time step. In addition, the output of the t-query can use all the

previous key-value pairs.

To obtain the real code comment, we need to calculate the

probability p(yt |y<t , δ, xs) by inputting it into softmax, from

which we can obtain its corresponding token by indexing.

The output probabilities are calculated by the softmax layer

as follows:

σi(z) =
ezi

∑T
j=1 e

zj
, (24)

where zi is the ith value of Linear(ZDt),
∑T

i=1 σi(z) = 1; T is

the vocabulary size. Our model is trained by the cross-entropy

loss function, which is defined by the following formula:

loss = −
1

T

T∑

i=1
yilog(σi), (25)

where σi is the ith value of the output vector σ obtained from

softmax. yi ∈ R
T and

∑T
i=1 yi = 1.

After the end of the code is reached (the end symbol

‘‘〈EOS〉’’ is generated or the maximum length is reached),

the output sequence y = (y1, y2, · · · , ynd) constitutes the

comment on its corresponding input source code.

IV. EXPERIMENTS

To evaluate the performance of our model, we conducted

comparative experiments on Java and Python datasets with

various baselines.

A. DATASETS

1) JAVA

The Java dataset we use was collected by Hu et al. [17]; it

contains Java code extracted from GitHub2 at a high quality.

It is composed of code snippets and their corresponding

Javadoc documentation comments. From the statistics of the

dataset, shown in Fig. 4, we can draw two conclusions: a)

most of the code length is concentrated in the same interval,

as (0, 100) contains 90.71% of the items in the Java dataset

formed at the token level; b) the code formed at the token level

is much longer than that at the sentence level. At the sentence

level, the length of the input vector can be reduced by roughly

a third.

FIGURE 4. Statistics of the Java dataset. Although the longest code in the
dataset is very long, most of the code is short and concentrated.

For the sake of fairness, we limit the length of the

token-level method to 100 (90.71%) and the length of the

sentence-level method to 35 (91.74%). A ‘‘token’’ includes

all words and special characters that appear in the code.

A ‘‘sentence’’ includes all sentences and special characters

that occupy a line (e.g., ‘‘{’’ or ‘‘}’’). In training, we replace

tokens in both code and descriptions that occur fewer than

ten times with special characters ‘‘〈UNK〉.’’ In our approach,

to give BERT a better understanding of code, we feed in the

input sentence by sentence (even the overlong parts).

2https://github.com/xing-hu/EMSE-DeepCom

VOLUME 8, 2020 135597

R. Wang et al.: Fret: Functional Reinforced Transformer With BERT for Code Summarization

2) PYTHON

To assess the universality of our model, we selected a Python

dataset for comparative tests. The dataset we used was col-

lected by Miceli-Barone et al. [41] and was extracted from

Python projects on GitHub. The Python dataset contains

108,726 code-comment pairs. We performed the same oper-

ations as for the Java dataset, dividing the dataset into three

parts: training (60%), validation (20%), and testing (20%).

The distribution trend is also very similar to that of the Java

dataset (see Fig. 4), so we do not repeat it here.

B. BASELINES

We compared ourmodel with twoNMTmodels and five other

code summarization models:
• The Seq2Seq [3] model consisting of an encoder-

decoder is capable of dealing with the problem of many-

to-many translations.

• Transformer [4] achieves state-of-the-art performance in

the area of NMT, and it is also an encoder-decoder-based

model. The attention layer improves LSTM’s defects in

gathering bidirectional information from a context.

• CODE-NN [6] uses LSTM networks with an attention

mechanism to summarize code.

• Tree2Seq [42] is an end-to-end syntactic NMT model

that uses a tree-based Seq2Seq model with an attention

mechanism.

• DeepCom [17] is an attention-based Seq2Seq model

that utilises deep neural networks to analyse structural

information.

• Multi-way Tree-LSTM [14] is an AST extension of the

Tree-LSTM model.

• The actor-critic model [19] is an AST structure-based

model that encodes code snippets into a deep reinforce-

ment learning framework.

C. TRAINING DETAILS

BertNL and BertC are set according to BERTBASE ’s recom-

mendations [5], with L = 12, H = 768, and A = 12.

Specifically, BertNL is a model with fine-tuning based on

the pre-trained ‘‘BERT-Base, Uncased’’ model (English

Wikipedia) provided by Google. For Transformer, we set the

learning rate lr = 0.01, the mini-batch size batch_size = 64,

the number of reinforcer units NR = 6, the encoder unit

NE = 6, and the decoder unit ND = 6. We also use the Adam

optimiser [45] with β1 = 0.9, β2 = 0.98 and ǫ = 10−9.
The experiments are performed with Python 3.6,

TensorFlow 1.13.0, and Cuda 10.0. We train our models

on a machine with a 5.0 GHz Intel Core i9-9900K CPU,

64 GB RAM, and 2*NVIDIA RTX-2080ti GPUs, running

OS Ubuntu 16.04.

D. METRICS

To evaluate the performance of our model, we conducted

experiments with four metrics that are widely used in

the area of NMT: BLEU (BLEU-N) [46], METEOR [47],

ROUGE-L [48], and RIBES [49].

BLEU (BLEU-N) is a metric that correlates highly with

human judgements. It calculates n-gram precision between

generated and target sentences. METEOR computes a com-

bined score of unigram precision and unigram recall, which

can evaluate how well-ordered a generated sentence is.

ROUGE-L is based on the length of the longest average

sequence that computes recall scores between two sum-

maries. RIBES is proposed for distant-language translation

based on rank correlation coefficients.

V. RESULTS

A. COMPARED TO BASELINES

To verify the effectiveness of our model in code summariza-

tion tasks, Fret was comparedwith other state-of-the-art mod-

els with experiments that used the Java and Python datasets.

The experimental results are shown in Tables 1 and 2. It can

be seen from the experimental results that our model out-

performs the state-of-the-art models on all metrics: BLEU,

METEOR, ROUGE-L, and RIBES. Our results were 14.23%

higher than the previous best BLEU-4 score, achieved by

the Multi-way Tree-LSTM model, as Table 1 shows. Under

the mainstream metric BLEU-4, which is more in line with

human judgment standards, we achieve better results than

the compared methods, which shows that our model is the

new state-of-the-art method. At the same time, the newmodel

we create based on Transformer performs dramatically better

across all metrics.

The excellent performance of our model on both the Java

and Python datasets demonstrates that our model has broad

generality and can accommodate the characteristics of dif-

ferent programming languages. Its performance on different

metrics shows that our model has distinct advantages in terms

of the order of generated language, word accuracy, and the

rationality of long sentences.

B. ABLATION TEST

We conducted an ablation test on the Java dataset to deter-

mine which mechanism contributes more to our model:

the reinforcer, structure encoding, BertC, and BertNL. The

experimental results are shown in Table 3. With the addi-

tion of BERT, Transformer is greatly improved compared

with the original version (see lines 2 to 3). More notably,

compared with the token level, BertC at the sentence level

shows a small but non-negligible improvement (see line 3).

This positive performance confirms that sentence-level code

embedding has a better presentation effect than token-level

code embedding. We also note that with the functional rein-

forcer, the model’s improvement is compelling (see line 6);

the BLEU-4 score of Transformer is increased by 16.6%.

Finally, the Transformer model combined with the functional

reinforcer, structure encoding, and BertC&NL—i.e., Fret—

achieves the best results (see the last line). In addition,

the experimental results also support our hypothesis that

structure encoding is parallel to AST in terms of functional

effect (see lines 4 to 5), since both of them can support

135598 VOLUME 8, 2020

R. Wang et al.: Fret: Functional Reinforced Transformer With BERT for Code Summarization

TABLE 1. The experimental results of Fret compared to other state-of-the-art approaches with the Java dataset.

TABLE 2. The experimental results of Fret compared to other state-of-the-art approaches with the Python dataset.

TABLE 3. The results of ablation tests conducted with the Java dataset
indicate the effectiveness of our proposed components and mechanisms.

the prediction of code comments based on program struc-

ture. However, structure encoding is more concise and excels

at saving computing resources. The pre-trained language

model, BERT, has a larger training scale; it has a good ability

to embed words but faces difficulties in training. From the

experimental results (see line 7 in Table 3), we can conclude

that the high performance of Fret does not depend simply

on a larger training scale but on the collaboration among all

modules.

Throughout the experiment, we found that the functional

reinforcer provided tremendous support. For example, BertC

could understand every sentence of the programming lan-

guage but lacked the capacity to grasp the critical point,

namely, functional guidance; the reinforcer remedied this

defect. The reinforcer forces the decoder to produce the cor-

rect output by emphasising the parts of the code that are most

essential and functional.

C. PARAMETER ANALYSIS

Different lengths of code contain more or less information.

Likewise, the length of the code description affects the

difficulty of prediction. To explore the effects of code length

and comment length on Java summarization results, we con-

ducted two sets of tests. The results are shown in Figs. 5 and 6.

The other methods use token-level input, while Fret uses

sentence-level code as input. To ensure the fairness of the

comparison experiment, we take the number of sentences

as the measurement index and then separate sub-datasets

according to their code length.

From the experimental results, the code length has rel-

atively little influence on the summary effect, whereas the

comment length has a significant impact. As shown in Fig. 5,

with the increase of the code length, the score of each indi-

cator shows a slight fluctuation, although the overall trend is

downward. Fig. 6 shows quite clearly that as the comment

length increases, the value of each metric drops dramatically.

We looked more closely at the data from the Java dataset

and found that as the code length grows, there is no

clear increasing tendency in the comment length. Therefore,

as shown in Fig. 5(a), when the length of the code grows

from 15 to 18, the prediction result of Fret is slightly better.

In Fig. 5, the downward trend is relatively imperceptible.

When faced with long descriptions, the models seem

to be powerless. We observe that paragraphs vary in text,

and different nuances and different wording can convey the

same meaning. Therefore, it may not be possible to judge

the predictive power of a model from the results alone.

Of course, we cannot rule out the possibility that the model

will start to deviate for various reasons when predicting a long

description.

D. CASE STUDY

Statistics cannot fully show the predictive power of a model,

so we choose examples with relatively good results on

both Java (see Case 1) and Python (see Case 2) datasets

VOLUME 8, 2020 135599

R. Wang et al.: Fret: Functional Reinforced Transformer With BERT for Code Summarization

FIGURE 5. The results of experiments conducted with different metrics and varying code lengths.

FIGURE 6. The results of experiments with different metrics and varying comment lengths.

TABLE 4. Two summarized examples generated by Fret on the Java and Python datasets.

FIGURE 7. The visualised attention thermodynamic chart for
Cases 1 and 2.

for in-depth analysis. The experimental results are shown

in Table 4 and Fig. 7. The code comments generated in

both examples describe the functionality of the code to some

extent. As shown in Table 4, the representation of Case 1 on

the left is very consistent with the code comment given in the

dataset. Case 2, on the right, does not fit so well, but thanks

to the reinforcer, it still generalises the functionality of code

in a way that seems somewhat acceptable. We also introduce

another two state-of-the-art methods, DeepCom and Multi-

way, as comparison, from which we can see that the results

generated by Fret can not only describe the functionality

of the code (e.g., “concatenate the sequence” in

case 2) but also capture more critical information, such as

“markup unicode”, which was not generated by the

other two methods. Another example is that in case 1, both

the words “classified” and “matching” are the most

important functional descriptions in ground truth, which is

successfully generated by Fret. However, Multi-way gener-

ated only the second one, and DeepCom did not capture any

of them.

135600 VOLUME 8, 2020

R. Wang et al.: Fret: Functional Reinforced Transformer With BERT for Code Summarization

A heatmap of code attention in the decoder is shown

in Fig. 7. We used BERT at the sentence level to embed

the input. As seen from the charts, some sentences have

a great influence on the output. For example, the code

in Case 1, ‘‘private boolean matchesMobile4g

(NetworkIdentity ident),’’ is strongly related to the

words ‘‘mobile,’’ ‘‘network,’’ ‘‘4g,’’ and ‘‘matching.’’

This demonstrates the advantages of sentence-level code

embedding: more output can be obtained at less cost

(e.g., computing resources, time). Concerning the perfor-

mance on the Python dataset, Fret also produced accu-

rate results. A program sentence such as ‘‘iterator =

imap(soft_unicode, seq)’’ has a high relevance to

the word ‘‘unicode.’’ From any of the above analyses,

we can conclude that Fret has a strong operational capability

in code summarization tasks.

E. HUMAN EVALUATION

We included the human evaluation to qualitatively analyse

the experimental results. As a task of software engineering,

whether the experimental results can be applied in practise is

one of the criteria for evaluating how good the approach is.

Hence, human evaluation scoring has an irreplaceable role as

one of the indicators in evaluating results.

1) SURVEY PROCEDURE

We invited 6 evaluators to score the generated results; all of

them were postgraduates or PhD students from Shandong

Normal University who majored in computer science with

2-5 years of experience in Java programming and at least

one year of experience in Python. We randomly selected

50 generated results from each of the two datasets and divided

them into 2 groups, each group with 3 individuals indepen-

dently involved in scoring. In addition, the allowable scores

ranged from 0 to 5, with the highest score (5) indicating

that the generated results can accurately describe the code

function and the lowest score (0) indicating that the generated

results are totally irrelevant to the code function. During the

evaluation, ground truth and generated results fromDeepCom

and Multi-way are provided at the same time.

2) RESULTS

We obtained 300 scores from the evaluators, where 150 are

scores of the Java dataset, and another 150 are scores of the

Python dataset. The Kappa statistic [50] is used to ensure

the consistency of the scores across the groups of evaluators,

and the average Kappa statistic is calculated to be 0.72 and

0.67 for the two groups, respectively. Based on the ranking

classification of the Kappa statistic, the consistency of the

scores across the groups was confirmed and can be used for

experimental analysis. The scoring results are shown in Fig. 8.

Not only has Fret done well in quantitative analysis, but qual-

itative analysis also confirms Fret has strong ability in code

summarization. Figs. 8 (a) and (b) show that Fret scored sig-

nificantly higher than Multi-way and DeepCom. At all score

levels, including high (4-5), average (2-3) and low (0-1),

FIGURE 8. Human evaluation score on the Java and Python datasets. The
score for each code comment is calculated by averaging the scores of
three evaluators from the same group.

Fret achieves better results. In addition, Fret’s human scoring

is more concentrated than Multi-way and DeepCom, which

verifies the better robustness of our approach. Moreover,

the Mann-Whitney U test also confirmed that the improve-

ments of Fret are statistically significant over the other

two methods, with p-values not exceeding 0.002 on both

datasets.

VI. DISCUSSION

A. USAGE LIMITATIONS

The reinforcer module can be applied to the great major-

ity of high-level programming languages, depending on a

programmer’s compliance with the code naming convention.

Camel-case naming (e.g., camelCase) and underscore naming

(e.g., under_score) are well-known and widely used naming

conventions in programming. Because these two naming

methods are human-friendly for word segmentation, as pre-

sented previously [51], their use is increasingly promoted.

Moreover, PyCharm3 uses PEP8 (Python Enhancement Pro-

posal) by default [52], and it provides soft tips (yellow wavy

underlines) for naming during the programming process.

The official Python website also has detailed instructions for

3https://www.jetbrains.com/pycharm/

VOLUME 8, 2020 135601

R. Wang et al.: Fret: Functional Reinforced Transformer With BERT for Code Summarization

using PEP8.4 This evidence shows that normative naming

is supported, encouraged, and popularised in the field of

software development.

However, some codes may not comply with such norms.

For instance, code written by beginners, code restricted by

programming languages (such as assembly language), and

code that complies with special development requirements

may not be suitable for use with the proposed method. To fill

this gap, we plan to add a learnable module in follow-up work

to adjust the weight ratio of the reinforcer dynamically; that

is, code with formal naming (respectively, non-formal nam-

ing) will strengthen (respectively, weaken) the guiding role

of the reinforcer. In addition, training for Fret, especially for

BERT, is time consuming, and we plan to incorporate active

learning and incremental learning [53] into future improve-

ments to reduce the training scale. Overall, we believe that

the current solution has apparent advantages, is feasible, and

can be applied to most code.

B. ERROR ANALYSIS

Unsatisfactory generation results can be approximately

classified into the following three categories: a) vague or

inaccurate functional descriptions; b) incorrect variable

descriptions; and c) target missing descriptions. A generated

example of the first defect is the “return check

result if a file path exist,”while the ground

truth is the “Checks device for SuperUser

permission.” We speculate that this may be due

to the use of abbreviations in the code function names

“checkSu()”, where Fret cannot parse it into the form

of “check” “S” “U” at the participle stage, nor can it

associate “S” “U” with “SuperUser”, resulting in unsat-

isfactory generation. We plan to improve the accuracy of the

generation by including such common programming abbre-

viations into the dictionary before embedding. Another gen-

erated example is “return 0 as pad string,”, but

the ground truth is “Return n as padded string.”

This may be due to the ternary operator (i.e., b ? x: y) in

the code“return n < 10 ? “0” + n: n + ““;”

being hard to understand, so that Fret gave a result different

from expectations. Since the essence of the ternary operator

is a simplified ‘‘if-else’’ structure, we plan to recode the

ternary operator back to the form of if-else with the help of

structure encoding. A generated example of the third classifi-

cation is “create an event source impl log.”

However, the ground truth code comment is

“EventSource provides a text-based stream

abstraction for Java”, which describes the purpose

of applying this method. This may be because the invok-

ing subject for code “public EventSourceImpl()

{ LOG.entering(CLASS_NAME, “<init>”); }”

is not invisible to Fret, so Fret cannot conjecture where and

why it is being used. We may address this problem in future

work by taking the invoking subject into account.

4https://www.python.org/dev/peps/pep-0008/

C. THREATS TO VALIDITY

Our proposed model may suffer two threats to validity, as we

identified as follows.

The first is the non-standard or exceptional naming con-

ventions. As we discussed above, the functional extraction

of the reinforcer relies on standard naming, so non-standard

naming or exceptional naming may affect the accuracy of the

reinforcer. We plan to introduce a learnable impact factor to

control the decision weights of the reinforcer to circumvent

some potentially bad influences in the follow-up work.

The second threat to validity is external validity. There

is inevitably some noise in the datasets we use, although

we have tried to discard this noise as much as possible

in the preprocessing. Additionally, in this paper, only Java

and Python programming languages are tested to see how

the model performs, so performance on other programming

languages is not predictable. In the follow-up work, we plan

to test the performance of the model by using more program-

ming languages while collectingmore high-quality code from

GitHub and making our own dataset to minimise noise in the

dataset.

VII. CONCLUSION

In this paper, we propose a novel code summarization

model called Fret, which stands for Functional REinforced

Transformer with BERT. Fret, based on a reinforcer-

transformer architecture, is an effective tool for code sum-

marization by emphasising the function of the code, through

which Fret can generate more functionally clear, accurate,

and comprehensive descriptions of the code. In addition,

with the help of Transformer and BERT, Fret alleviates the

problem of code understanding and long dependency. Exper-

iments with Java and Python datasets show that the code

comments of Fret are significantly better than those of other

state-of-the-art methods. In addition, we conduct an ablation

test to further verify the effectiveness of the mechanisms we

propose. An in-depth discussion of the effects according to

the length of the code and comments also highlights Fret’s

extraordinary ability. Two examples are given to demonstrate

the performance of our model in practise. Overall, our model

is novel. We obtain improvement in terms of dealing with

long dependencies and understanding code, andwe also adopt

a reinforcer to guide generated comments in a more dynamic

functional direction. Generally, Fret achieves remarkable per-

formance in code summarization tasks.

REFERENCES

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning rep-

resentations by back-propagating errors,’’ Nature, vol. 323, no. 6088,

pp. 533–536, Oct. 1986.

[2] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural

Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[3] I. Sutskever, O. Vinyals, and Q. V. Le, ‘‘Sequence to sequence learning

with neural networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2014,

pp. 3104–3112.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.

Neural Inf. Process. Syst., 2017, pp. 5998–6008.

135602 VOLUME 8, 2020

R. Wang et al.: Fret: Functional Reinforced Transformer With BERT for Code Summarization

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training

of deep bidirectional transformers for language understanding,’’ in Proc.

Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Tech-

nol., (Long Short Papers), vol. 1, 2019, pp. 1–16.

[6] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, ‘‘Summarizing source

code using a neural attention model,’’ in Proc. 54th Annu. Meeting Assoc.

Comput. Linguistics (Long Papers), vol. 1, 2016, pp. 2073–2083.

[7] P. Loyola, E. Marrese-Taylor, and Y. Matsuo, ‘‘A neural architecture for

generating natural language descriptions from source code changes,’’ in

Proc. 55th Annu. Meeting Assoc. Comput. Linguistics (Short Papers),

vol. 2, 2017, pp. 1–6.

[8] C. Psarras, T. Diamantopoulos, and A. Symeonidis, ‘‘A mechanism for

automatically summarizing software functionality from source code,’’ in

Proc. IEEE 19th Int. Conf. Softw. Qual., Rel. Secur. (QRS), Jul. 2019,

pp. 121–130.

[9] M. Allamanis, H. Peng, and C. Sutton, ‘‘A convolutional attention network

for extreme summarization of source code,’’ in Proc. Int. Conf. Mach.

Learn., 2016, pp. 2091–2100.

[10] J. Moore, B. Gelman, and D. Slater, ‘‘A convolutional neural network for

language-agnostic source code summarization,’’ in Proc. 14th Int. Conf.

Eval. Novel Approaches Softw. Eng. Setúbal, Portugal: SCITEPRESS,

2019, pp. 1–12.

[11] K. S. Tai, R. Socher, and C. D. Manning, ‘‘Improved semantic represen-

tations from tree-structured long short-term memory networks,’’ in Proc.

53rd Annu.Meeting Assoc. Comput. Linguistics 7th Int. Joint Conf. Natural

Lang. Process. (Long Papers), vol. 1, 2015, pp. 1–11.

[12] J. Shen, X. Sun, B. Li, H. Yang, and J. Hu, ‘‘On automatic summarization

of what and why information in source code changes,’’ in Proc. IEEE

40th Annu. Comput. Softw. Appl. Conf. (COMPSAC), vol. 1, Jun. 2016,

pp. 103–112.

[13] Y. Liu, X. Sun, X. Liu, and Y. Li, ‘‘Supporting program comprehension

with program summarization,’’ in Proc. IEEE/ACIS 13th Int. Conf. Com-

put. Inf. Sci. (ICIS), Jun. 2014, pp. 363–368.

[14] Y. Shido, Y. Kobayashi, A. Yamamoto, A. Miyamoto, and T. Matsumura,

‘‘Automatic source code summarization with extended tree-LSTM,’’ in

Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2019, pp. 1–8.

[15] Q. Chen, H. Hu, and Z. Liu, ‘‘Code summarization with abstract syntax

tree,’’ in Proc. Int. Conf. Neural Inf. Process.Cham, Switzerland: Springer,

2019, pp. 652–660.

[16] X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, ‘‘Summarizing source

code with transferred API knowledge,’’ in Proc. 27th Int. Joint Conf. Artif.

Intell., Jul. 2018, pp. 2269–2275.

[17] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, ‘‘Deep code comment generation,’’

in Proc. 26th Conf. Program Comprehension (ICPC), May/Jun. 2018,

pp. 200–20010.

[18] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, ‘‘Deep code comment generation

with hybrid lexical and syntactical information,’’ Empirical Softw. Eng.,

vol. 25, no. 3, pp. 2179–2217, May 2020.

[19] Y.Wan, Z. Zhao,M. Yang, G. Xu, H. Ying, J.Wu, and P. S. Yu, ‘‘Improving

automatic source code summarization via deep reinforcement learning,’’ in

Proc. 33rd ACM/IEEE Int. Conf. Automated Softw. Eng. (ASE), Sep. 2018,

pp. 397–407.

[20] B. Wei, G. Li, X. Xia, Z. Fu, and Z. Jin, ‘‘Code generation as a dual task

of code summarization,’’ in Proc. Adv. Neural Inf. Process. Syst., 2019,

pp. 6563–6573.

[21] Z. Li, Z. Peng, S. Tang, C. Zhang, and H. Ma, ‘‘Text summarization

method based on double attention pointer network,’’ IEEE Access, vol. 8,

pp. 11279–11288, 2020.

[22] J. Gong, H. Ma, Z. Teng, Q. Teng, H. Zhang, L. Du, S. Chen,

M. Z. A. Bhuiyan, J. Li, and M. Liu, ‘‘Hierarchical graph transformer-

based deep learning model for large-scale multi-label text classification,’’

IEEE Access, vol. 8, pp. 30885–30896, 2020.

[23] Y. Dong, P. Liu, Z. Zhu, Q. Wang, and Q. Zhang, ‘‘A fusion model-based

label embedding and self-interaction attention for text classification,’’

IEEE Access, vol. 8, pp. 30548–30559, 2020.

[24] P. Brown, J. Cocke, S. D. Pietra, V. D. Pietra, F. Jelinek, R. Mercer, and

P. Roossin, ‘‘A statistical approach to language translation,’’ in Proc. 12th

Conf. Comput. Linguistics, vol. 1. Stroudsburg, PA, USA: Association for

Computational Linguistics, 1988, pp. 71–76.

[25] P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer, ‘‘The math-

ematics of statistical machine translation: Parameter estimation,’’ Comput.

Linguistics, vol. 19, no. 2, pp. 263–311, Jun. 1993.

[26] T. T. Nguyen, A. T. Nguyen, H.A.Nguyen, and T.N.Nguyen, ‘‘A statistical

semantic language model for source code,’’ in Proc. 9th Joint Meeting

Found. Softw. Eng. (ESEC/FSE), Aug. 2013, pp. 532–542.

[27] X. Gu, H. Zhang, D. Zhang, and S. Kim, ‘‘Deep API learning,’’

in Proc. 24th ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2016,

pp. 631–642.

[28] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati, M. Sahami,

and L. Guibas, ‘‘Learning program embeddings to propagate feed-

back on student code,’’ in Proc. Int. Conf. Mach. Learn., 2015,

pp. 1–10.

[29] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, ‘‘Convolutional neural

networks over tree structures for programming language processing,’’ in

Proc. 30th AAAI Conf. Artif. Intell., 2016, pp. 1–7.

[30] Y. Wan, J. Shu, Y. Sui, G. Xu, Z. Zhao, J. Wu, and P. Yu, ‘‘Multi-

modal attention network learning for semantic source code retrieval,’’ in

Proc. 34th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Nov. 2019,

pp. 13–25.

[31] X. Gu, H. Zhang, and S. Kim, ‘‘Deep code search,’’ in Proc. 40th Int. Conf.

Softw. Eng., May 2018, pp. 933–944.

[32] F. Lv, H. Zhang, J.-G. Lou, S. Wang, D. Zhang, and J. Zhao, ‘‘CodeHow:

Effective code search based on API understanding and extended Boolean

model (E),’’ in Proc. 30th IEEE/ACM Int. Conf. Automated Softw. Eng.

(ASE), Nov. 2015, pp. 260–270.

[33] C. Maddison and D. Tarlow, ‘‘Structured generative models of natural

source code,’’ in Proc. Int. Conf. Mach. Learn., 2014, pp. 649–657.

[34] M. Allamanis, D. Tarlow, A. Gordon, and Y. Wei, ‘‘Bimodal modelling of

source code and natural language,’’ in Proc. Int. Conf. Mach. Learn., 2015,

pp. 2123–2132.

[35] P. W. McBurney and C. Mcmillan, ‘‘Automatic documentation generation

via source code summarization of method context,’’ in Proc. 22nd Int.

Conf. Program Comprehension (ICPC), 2014, pp. 279–290.

[36] E. Wong, T. Liu, and L. Tan, ‘‘CloCom: Mining existing source code for

automatic comment generation,’’ in Proc. IEEE 22nd Int. Conf. Softw.

Anal., Evol., Reeng. (SANER), Mar. 2015, pp. 380–389.

[37] S. Haiduc, J. Aponte, andA.Marcus, ‘‘Supporting program comprehension

with source code summarization,’’ in Proc. 32nd ACM/IEEE Int. Conf.

Softw. Eng. (ICSE), May 2010, pp. 223–226.

[38] S. Haiduc, J. Aponte, L.Moreno, and A.Marcus, ‘‘On the use of automated

text summarization techniques for summarizing source code,’’ in Proc.

17th Work. Conf. Reverse Eng., Oct. 2010, pp. 35–44.

[39] J. Lei Ba, J. Ryan Kiros, and G. E. Hinton, ‘‘Layer normalization,’’ 2016,

arXiv:1607.06450. [Online]. Available: http://arxiv.org/abs/1607.06450

[40] T. Young, D. Hazarika, S. Poria, and E. Cambria, ‘‘Recent trends in deep

learning based natural language processing,’’ IEEE Comput. Intell. Mag.,

vol. 13, no. 3, pp. 55–75, Aug. 2018.

[41] A. V. Miceli-Barone and R. Sennrich, ‘‘A parallel corpus of Python func-

tions and documentation strings for automated code documentation and

code generation,’’ in Proc. 8th Int. Joint Conf. Natural Lang. Process.

(Short Papers), vol. 2, 2017, pp. 1–5.

[42] A. Eriguchi, K. Hashimoto, and Y. Tsuruoka, ‘‘Tree-to-sequence atten-

tional neural machine translation,’’ in Proc. 54th Annu. Meeting Assoc.

Comput. Linguistics (Long Papers), vol. 1, 2016, pp. 1–11.

[43] R. Iida, C. Kruengkrai, R. Ishida, K. Torisawa, J.-H. Oh, and J. Kloetzer,

‘‘Exploiting background knowledge in compact answer generation for

why-questions,’’ in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019,

pp. 142–151.

[44] C. Liu, S. He, K. Liu, and J. Zhao, ‘‘Curriculum learning for natural

answer generation,’’ in Proc. 27th Int. Joint Conf. Artif. Intell., Jul. 2018,

pp. 4223–4229.

[45] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-

mization,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.

org/abs/1412.6980

[46] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, ‘‘BLEU: A method for

automatic evaluation of machine translation,’’ in Proc. 40th Annu. Meeting

Assoc. Comput. Linguistics (ACL), 2001, pp. 311–318.

[47] S. Banerjee and A. Lavie, ‘‘METEOR: An automatic metric for MT

evaluation with improved correlation with human judgments,’’ in Proc.

ACL Workshop Intrinsic Extrinsic Eval. Measures Mach. Transl. Summa-

rization, 2005, pp. 65–72.

[48] C.-Y. Lin, G. Cao, J. Gao, and J.-Y. Nie, ‘‘An information-theoretic

approach to automatic evaluation of summaries,’’ in Proc. Main Conf.

Hum. Lang. Technol. Conf. North Amer. Chapter Assoc. Comput. Linguis-

tics, Jun. 2006, pp. 463–470.

VOLUME 8, 2020 135603

R. Wang et al.: Fret: Functional Reinforced Transformer With BERT for Code Summarization

[49] H. Isozaki, T. Hirao, K. Duh, K. Sudoh, and H. Tsukada, ‘‘Automatic

evaluation of translation quality for distant language pairs,’’ in Proc. Conf.

Empirical Methods Natural Lang. Process. Stroudsburg, PA, USA: Asso-

ciation for Computational Linguistics, 2010, pp. 944–952.

[50] J. Sim and C. C. Wright, ‘‘The kappa statistic in reliability studies: Use,

interpretation, and sample size requirements,’’ Phys. Therapy, vol. 85,

no. 3, pp. 257–268, Mar. 2005.

[51] B. Sharif and J. I. Maletic, ‘‘An eye tracking study on camelCase and

under_score identifier styles,’’ in Proc. IEEE 18th Int. Conf. Program

Comprehension, Jun. 2010, pp. 196–205.

[52] A. Tosti, N. Cameli, B. M. Piraccini, P. A. Fanti, and J. P. Ortonne,

‘‘Characterization of nail matrix melanocytes with anti-PEP1, anti-PEP8,

TMH-1, andHMB-45 antibodies,’’ J. Amer. Acad. Dermatol., vol. 31, no. 2,

pp. 193–196, Aug. 1994.

[53] Z. Zhou, J. Shin, L. Zhang, S. Gurudu, M. Gotway, and J. Liang, ‘‘Fine-

tuning convolutional neural networks for biomedical image analysis:

Actively and incrementally,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), Jul. 2017, pp. 7340–7351.

RUYUN WANG (Student Member, IEEE) is

currently pursuing the bachelor’s degree with the

School of Information Science and Engineering,

Shandong Normal University, Jinan, China, super-

vised by Chen Lyu. Her research interests include

program comprehension, automatic program

summarization, and component-based software

development.

HANWEN ZHANG received the bachelor’s

degree in computer science and technology

from Shandong Normal University, Jinan, China,

in 2018, where she is currently pursuing the mas-

ter’s degree in software engineering, supervised by

Chen Lyu. Her current research interests include

software reuse, natural language processing, and

automatic code comment generation.

GUOLIANG LU (Member, IEEE) received the

bachelor’s and master’s degrees in mechatronic

engineering from Shandong University, Jinan,

China, in 2006 and 2009, respectively, and the

Ph.D. degree in computer science from the

Graduate School of Information Science and Tech-

nology, Hokkaido University, Sapporo, Japan,

in 2013. He is currently an Associate Professor

with the School of Mechanical Engineering,

Shandong University. His research interests

mainly include time series analysis, natural language processing, and

intelligent software engineering.

LEI LYU received the Ph.D. degree in computer

application technology from the University of

Chinese Academy of Sciences, in 2013. He is

currently an Associate Professor with the

School of Information Science and Engineering,

Shandong Normal University, Jinan, China. His

current research interests include software engi-

neering and programming languages, including

automated software analysis and software

evolution.

CHEN LYU received the Ph.D. degree from

the Institute of Computing Technology, Chinese

Academy of Sciences, Beijing, China, in 2015.

He is currently an Associate Professor with the

School of Information Science and Engineering,

Shandong Normal University, Jinan, China. His

research interests include program comprehen-

sion, software maintenance and evolution, and

source code summarization.

135604 VOLUME 8, 2020

	INTRODUCTION
	MOTIVATION
	CONTRIBUTION
	ORGANISATION

	RELATED WORK
	CODE REPRESENTATION
	CODE SUMMARIZATION

	MODEL ARCHITECTURE
	FUNCTIONAL REINFORCER
	FUNCTIONAL EXTRACTION
	POSITIONAL ENCODING
	MULTI-HEAD ATTENTION
	FEED-FORWARD NETWORKS

	CODE ENCODER
	BertC
	STRUCTURE ENCODING
	HADAMARD & NORM

	DECODER
	BertNL
	PROGRAM ATTENTION
	FUNCTIONAL ATTENTION
	TRAINING AND INFERENCE

	EXPERIMENTS
	DATASETS
	JAVA
	PYTHON

	BASELINES
	TRAINING DETAILS
	METRICS

	RESULTS
	COMPARED TO BASELINES
	ABLATION TEST
	PARAMETER ANALYSIS
	CASE STUDY
	HUMAN EVALUATION
	SURVEY PROCEDURE
	RESULTS

	DISCUSSION
	USAGE LIMITATIONS
	ERROR ANALYSIS
	THREATS TO VALIDITY

	CONCLUSION
	REFERENCES
	Biographies
	RUYUN WANG
	HANWEN ZHANG
	GUOLIANG LU
	LEI LYU
	CHEN LYU

