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Abstract. The use of deep networks has improved the state of the art
in various domains of AI, making practical applications possible. At the
same time, there are increasing calls to make learning systems more
transparent and explainable, due to concerns that they might develop
biases in their internal representations that might lead to unintended
discrimination, when applied to sensitive personal decisions. The use of
vast subsymbolic distributed representations has made this task very
difficult. We suggest that we can learn a lot about the biases and the
internal representations of a deep network without having to unravel its
connections, but by adopting the old psychological approach of analysing
its slips of the tongue. We demonstrate in a practical example that an
analysis of the confusion matrix can reveal that a CNN has represented
a biological task in a way that reflects our understanding of taxonomy,
inferring more structure than it was requested to by the training algo-
rithm. In particular, we show how a CNN trained to recognise animal
families, contains also higher order information about taxa such as the
superfamily, parvorder, suborder and order for example. We speculate
that various forms of psycho-metric testing for neural networks might
provide us insight about their inner workings.

Keywords: deep learning, taxonomy, computer vision, explainable AI, black-
box testing

1 Introduction

Deep neural networks deliver state of the art performance in different areas of
AI [14, 21, 23], particularly in computer vision, and promise to be deployed in
many further domains [19]. However, for all their convenience, they do attract
the criticism that they operate as black boxes [1]: that they can only pick up
correlations, with no regard for causality or other theoretical frameworks that
humans would consider more explainable. This criticism is often summarised as
“correlation trumps causation”, based on the observation that there is no clear
way to interpret the internal configurations of weights learnt by the network,
and that they are trained to perform a specific prediction task, and not directly
rewarded for developing a higher level understanding of the problem at hand.



This criticism is not necessarily true though, as there are many reasons to believe
that our own theoretical frameworks respond (also) to criteria of economy, and
therefore that black box machine learning algorithms might find it useful to
represent data in the same way [22].

Indeed, it has been known for a long time [5] that there is no real reason for
a neural network to prefer an elegant representation of reality that can capture
some higher level understanding of the problem, being trained only to perform
correct predictions. Yet we, as humans, tend to prefer simpler and structured
representations, often invoking Occam’s razor.

This drives at a problem that has been considered for many years, of making
AI explainable, but which has recently found new urgency, amid concerns that
machines are going to soon be making decisions about us that we will unable
to understand and for which they can offer no explanation [8, 10, 11]. This
problem goes to the heart of the old question of how can we interpret the inner
representations of reality that are inferred by a neural network, as a way to
understand if it contains any unintended biases?

The direct reaction of the engineer has always been that of opening up the
network and tackling the mess of connections and neurons [18], much like a
surgeon performing brain surgery (a phrase sometimes applied to deep neural
networks [12]). However, there is another way to reveal information about the
internal structure of these networks, loosely analogous to that of Sigmund Freud,
who was trying to understand the internal world view of a black box not by its
successes (which after all are what it was trained for) but by its errors and
mistakes. Far from being random, these errors resulting from machine learning
tasks, much like slips of the tongue, might reveal hidden biases and aspects of
how the neural network represents the world internally. A systematic study of
the errors made by deep–networks might reveal useful information about their
hidden biases and assumptions without the need to unravel the role of each
internal connection.

We suggest these “Freudian slips” may offer a promising alternative to other
black-box approaches [3, 16] to analysing the internal organisation of a network
without surgery, and perform a first experiment to demonstrate the method.
Our analysis of errors shows that a deep convolutional neural network can learn
more structure than it is specifically asked to.

As a testing ground, we selected the domain of biology, where there is already
a fundamental framework, that of evolution and therefore of taxonomy, in which
we can assess whether the network is learning a similar representation of the
world to humans. For instance, since animal species are not uncorrelated but
have evolved over time from one another, there could be benefits for a neural
network to learn more than just its minimal task of recognising different taxa, but
to internally represent information about the phylogenetic taxonomic structure.
For instance, this can be seen in the way that phylogenetic taxonomies are
inferred from data using maximum parsimony [7].

We start with the task of teaching a network to assign images of mammals
curated from the web to one of 54 animal families, where we have 540,000 images



Fig. 1: Example hierarchy of the major taxa in the NCBI taxonomy of living
species. Image by Annina Breen (Own work) [CC BY-SA 4.0], via Wikimedia
Commons.

of individual animals, belonging to 3585 species, organised in 54 distinct families,
themselves organised into 27 orders, all within the Mammalian class. We train
a deep convolutional neural network to recognise the 54 families, an interesting
task in and of itself [2, 9], and perform an analysis on the errors it makes in
order to learn about its internal representations.

Of course, there is still not a systematic framework to connect the “slips of
the tongue” made by a CNN with its internal representations, but we claim that
this might be worth developing, as we look for ways to make these systems more
transparent, in the face of their inherently subsymbolic nature.

2 Methodology

2.1 Taxonomic Identification of Animals

Animal species are organised according to a standardised taxonomic system that
divides them into seven major taxa: species, genera, families, orders, classes,
phylums and kingdoms, as shown in Fig. 1, along with further subdivision into
minor taxa (i.e. superfamilies, suborders, superorders, subclasses and so on).
Using this taxonomy, we can define a distance between any two animals based
upon how far apart they are in the phylogenetic tree, where we represent each
node as a minor taxon. For example, if we were to only consider the seven major
taxa, the distance between two carnivores, such as a Red Fox (Vulpes vulpes)
and a Red Panda (Ailurus fulgens), would be at the Order level, giving them a
distance of 3 (Species → Genus → Family → Order).



Table 1: List of the 54 Mammalian families, along with their common names
used in the study.
Family name Common name example Family name Common name example

Aotidae Night monkeys Lemuridae Ring-tailed lemurs
Atelidae New world monkeys Lepilemuridae Sportive lemurs
Bathyergidae Mole-rats Leporidae Rabbits and Hares
Canidae Dogs Macropodidae Kangaroos
Caviidae Guinea pigs Macroscelididae Elephant shrews
Cebidae Capuchin monkeys Manidae Pangolins
Cercopithecidae Baboons Molossidae Free-tailed bats
Cheirogaleidae Dwarf lemurs Muridae Mice
Cricetidae Hamsters Mustelidae Otters
Ctenomyidae Tuco-tuco Nesomyidae Climbing mice
Dasyuridae Quoll Ochotonidae Pika
Delphinidae Dolphins Octodontidae Rock rats
Didelphidae Opossums Otariidae Eared seals
Dipodidae Jerboa Phalangeridae Cuscus
Echimyidae Spiny rats Phocidae Earless seals
Emballonuridae Sac-winged bats Phyllostomidae Leaf-nosed bats
Equidae Horses Pitheciidae Titis
Erethizontidae New world porcupines Pteropodidae Fruit bats
Erinaceidae Hedgehogs Rhinolophidae Horseshoe bats
Felidae Cats Sciuridae Squirrels
Geomyidae Gophers Soricidae Shrews
Gliridae Dormice Spalacidae Bamboo rats
Herpestidae Mongeese Talpidae Moles
Heteromyidae Kangaroo rats Tupaiidae Treeshrews
Hipposideridae Old world bats Vespertilionidae Common bats
Hylobatidae Gibbons Viverridae Civets
Indriidae Lemurs Ziphiidae Beaked whales

This builds on recent work that has so far been done to assign the image
of an animal to its correct species [2, 9], while we focus here on the class of
mammalians, and attempt to correctly assign each image of an animal to its
appropriate family classification.

2.2 Data Curation

We aimed to select a number of mammalian families from the National Center
for Biotechnology Information (NCBI) taxonomy [6] to obtain a representative,
but broad coverage of all the species belonging to the mammalian class. Within
the mammalian taxonomic tree, we found a total of 27 nodes at the Order level,
and 140 nodes at the Family level. After filtering the species names to remove
those containing special characters (‘.’ or ‘/’) or with additional information,
we compiled a list of every mammalian family containing at least 15 different



(a) CNN distance matrix (b) Phylogenetic distance matrix

Fig. 2: Comparison of the distance matrix calculated from the CNN confusion
matrix and the phylogenetic distance matrix computed from the NCBI taxon-
omy.

species. Table 1 lists each of the 54 families resulting from this process, with an
example of the common name for some of the animals that belong to the family.

Each family was additionally annotated with all of its child species from
the NCBI taxonomy, along with the common names for the species, obtained
by taking the title of the Wikipedia page after redirection from https://en.

wikipedia.org/wiki/<species_name>. For example, the page for Vulpes vulpes
(https://en.wikipedia.org/wiki/Vulpes_vulpes) redirects to the page en-
titled “Red fox”.

Using the list of 3585 species and their common names for each of the 54
family categories, we queried for images from a popular search engine, retrieving
an average of 98 images per query. We split the data for training and testing
by assigning 100 randomly selected images per family to the hold-out test set.
Following this, we performed data augmentation for any families which did not
contain a minimum of 10,000 images in the training set. This included using
a common technique in computer vision [15, 17] of horizontally flipping and
rotating images by [-15,-10,-5,5,10,15] degrees in order to increase the number
available images for training a classifier. In total, the “Family look” dataset
contains 540,000 training and 5,400 test images, labelled by family. This dataset
of labelled images, along with the NCBI taxonomy used, are available online at
http://thinkbig.enm.bris.ac.uk/family-look

2.3 Learning a “Family Look” Classifier

Following the pre-processing steps in [13, 17], each image in the “Family look”
dataset was resized so the shortest length became 256 pixels. We took a center



crop of size 256× 256 from each image, ensuring the images were of a consistent
size, before randomly cropping the images into 224 × 224 pixel patches for the
training set, or taking the center 224 × 224 pixel patch for testing. Using the
18-layer ResNet CNN architecture proposed in [13] for object recognition and
used in [9] for animal species identification1, we trained the network on the
540,000 animal training images. The CNN model was trained from scratch using
Stochastic Gradient Descent. We trained for 50 epochs using a mini-batch size
of 64, an initial learning rate of 0.1 that decreased every 20 epochs by a factor
of 0.1, along with a moment and weight decay being applied of 0.9 and 0.0001
respectively.

After training the CNN, we evaluated our model on the held-out test set
of 5,400 test images, computing both an overall accuracy for the model and
a classifier confusion matrix detailing specifically which family categories the
model confused with one another for further analysis.

2.4 Constructing a Tree Representation

Once we had a trained classifier for discriminating between the different family
categories in animal images, we wished to construct a tree representation of the
mistakes made by the model. To construct a tree from the confusion matrix, we
first needed to convert the matrix from a similarity matrix to a distance matrix,
performed by subtracting each value in the confusion matrix from the maximal
value. This distance matrix was then used to generate a tree of the mistakes
by performing a furthest neighbour agglomerative hierarchical clustering [4],
implemented using the seqlinkage command with the complete linkage option
from the Bioinformatics toolbox [20]. The resulting tree represents each family
category as a leaf node in the tree, with each internal node representing a cluster
of animal families based upon how often they are mistaken for each other. In
doing so, we can compare the categories which the model confused with each
other with the taxonomic tree coming from the NCBI taxonomy [6] based upon
taxonomic distance.

3 Results

In this experiment, we found that our deep CNN model could correctly classify
the animals in our test set at the family level 53.22% of the time, well above
the baseline of 1.85% one could trivially expect for a 54 category classification
task. More interestingly, we find that there is a significant correlation (ρ = 0.53,
p < 0.0001) between the family-similarities (as measured by error probability
between them) and the taxonomic tree distance as indicated by the NCBI tax-
onomy [6], and shown in Fig. 2.

1 The ResNet CNN used in their paper had the same architecture, but was much
deeper. We trained a similar 152-layer network to [9] but found no clear difference
with our 18-layer model, which aimed to strike a better balance between the depth
of the network and the associated computational load.



Fig. 3: Histogram showing the ratio of mistakes to the total pairs of animals at
each phylogenetic distance. Values above 1 mean more mistakes were made at
this taxonomic rank that we should expect, with values below 1 meaning less
mistakes were made than expected.

Considering this in terms of our Freudian slip concept, there was no reason
for the network to learn any relation among these categories, and the expectation
would be that there should be no correlation, unless the network learns weights
corresponding with quantities that correlate at a higher taxon level than that
of the family taxon, something that was not taught to it nor available from the
data it has seen.

Probing deeper into the types of mistakes that the classifier made, we anal-
ysed how the distribution of errors made by the Neural Network over the 11
possible types of errors compared what would be expected if we were to assign
the categories to the images uniformly at random. The ratio between the actual
number of errors made by the network, and that expected under this null-model,
is represented in Fig. 3, where values below 1 show that the network makes less
mistakes than expected by chance, with those above 1 indicating the opposite.

We can immediately see that the classifier is not making mistakes uniformly
across the 54 categories, but is making many more mistakes between animals
sharing a taxonomic rank of Order or below, and making less mistakes than
we should expect between animals sharing a taxonomic rank above that of the
Order rank. With the notable exception of Suborder, we can also see that as
the phylogenetic distance increase, we are less likely to confuse two animals



Fig. 4: Family tree built from the confusion matrix of the neural network showing
the mammalian families which are most often mistaken for one another. We can
see that this reflects the actual phylogenetic tree (Fig. 5) to some extend, mostly
for relationships between animals below the Order rank.

with each other, suggesting that the network is indeed learning some internal
representation of the phylogenetic taxonomy.

Finally, examining the tree built from the confusion matrix (Fig. 4) and
comparing this with the phylogenetic tree (Fig. 5), we can see that there is
some taxonomic structure reflected in the mistakes of the network. For instance,
we can see that the different families of microbats (Rhinolophidae, Vespertilion-
idae, Hipposideridae, Molossidae, Phyllostomidae) are grouped together with the
megabat family (Pteropodidae). Similarly, the phylogenetic tree structure for the



Fig. 5: Phylogenetic tree showing the taxonomic relationship between different
mammalian families as recorded in the NCBI taxonomy [6]. Each level in the
phylogenetic tree indicates a different major or minor taxon shared between
animal families in the taxonomy.

families of lemurs (Cheirogaleidae, Lepilemuridae, Indriidae, Lemuridae), seals
(Phocidae, Otariidae), and marsupials native to Australia (Dasyuridae, Macrop-
odidae, Phalangeridae) are also represented. While we can find many examples of
this type, it is mostly only up to the Order rank, with no higher level taxonomic
structure.



4 Discussion

While the question of understanding the internal representations in neural net-
works remains an important one, and it will probably be addressed by both
surgery and theory, we think that our approach provides a simple way to ex-
amine the internal work representation of the network, just like the method of
Freudian slips attempted to recognise internal structures based on the errors
that a person made while speaking.

By no means do we think that this experiment settles the problem, but more
that it points to a different way to organise a search for interpretable AI, one
that can respect the inherently sub-symbolic and distributed representations that
have made deep-networks so useful, while also respecting our need to understand
how the network represents its knowledge.

Our representation of the world is also “deep”, in the sense that it relies on
a hierarchy of theoretical concepts, and communication between people requires
that those concepts are shared by both. While this may be an elusive task in ev-
eryday experience, it is more simply demonstrated in certain scientific domains,
such as taxonomy. But the general point about trying to match the abstractions
used by humans with those used by deep networks might be more general than
taxonomies.

Once we start developing methods to test certain properties of the internal
knowledge representation, we are in a domain akin to ‘psycho-metrics’, and there
is a lot of expertise that might be shared from that field. It would be useful
to involve philosophers of science and psychologists in the discussions about
readable AI.

One possible side-effect of this approach could be that – as we learn how to
make sure that the network respects at least some of the internal constraints
that we value, in our representation of the world – we might even be able to add
this to the cost function used in training.
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