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Abstract. Natural Language Interfaces are increasingly relevant for in-
formation systems fronting rich structured data stores such as RDF and
OWL repositories, mainly because of the conception of them being intu-
itive for human. In the previous work, we developed FREyA, an interac-
tive Natural Language Interface for querying ontologies. It uses syntactic
parsing in combination with the ontology-based lookup in order to inter-
pret the question, and involves the user if necessary. The user’s choices
are used for training the system in order to improve its performance
over time. In this paper, we discuss the suitability of FREyA to query
the Linked Open Data. We report its performance in terms of precision
and recall using the MusicBrainz and DBpedia datasets.

Keywords: Natural language interfaces, ontologies, question-answering,
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1 Introduction

With the rapid growth of the Linked Open Data (LOD) cloud1 the effective
exploitation becomes an issue largely because of the complexity and syntactic
unfamiliarity of the underlying triple models and the query languages built on
top of them. Natural Language Interface (NLI) systems become increasingly
relevant for information systems fronting rich structured data stores such as
RDF and OWL repositories, mainly because of the conception of them being
intuitive for human.

According to [8], a major challenge when building NLIs is to provide the in-
formation the system needs to bridge the gap between the way the user thinks
about the domain of discourse and the way the domain knowledge is structured
for computer processing. This implies that in the context of NLIs to ontolo-
gies, it is very important to consider the ontology structure and content. Two
ontologies describing identical domains (e.g., music) can use different modelling
conventions. For example, while one ontology can use a datatype property artist-
Name of class Artist, the other one might use instances of a special class to model
1 http://linkeddata.org
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the artist’s name2. A portable NLI system would have to support both types of
conventions without sacrificing performance. Portable NLIs are those that can be
adapted easily to new domains (or new ontologies covering the same domains).
Constructing such systems poses a number of technical and theoretical prob-
lems because many of the techniques developed for specialised systems preclude
automatic adaptation to new domains [8].

Ontologies can be constructed to include sufficient lexical information to sup-
port a domain-independent query analysis engine. However, due to different
processes used to generate ontologies, the lexicon might be of varying quality. In
addition, some words might have different meanings in two different domains or
context. For example, How big might refer to height, but also to length, area, or
population – depending on the question context, but also on the ontology struc-
ture. This kind of adjustments – or mappings from words or phrases to ontology
concepts/relations, is usually performed during the customisation of NLIs.

Many NLIs for querying ontologies have been developed in recent years.
Challenges related to Natural Language understanding such as ambiguity and ex-
pressiveness are balanced by constraining the supported language, e.g. by using
a Controlled Natural Language, such as in AquaLog [14], or ORAKEL [1]. While
NLI systems with a good performance require customisation (such as in the case
of ORAKEL), several systems have been developed for which the customisation is
not mandatory (e.g., AquaLog, PANTO [17], Querix [10], NLP-Reduce [10], Ques-
tIO [5]). However, as reported in [14] the customisation usually improves recall.
On the other hand, the complexity of supported questions differs from one sys-
tem to another. While systems such as NLP-Reduce or QuestIO process queries
without deep grammar analysis, the other systems (such as ORAKEL) support
compositional semantic constructions such as quantification and negation.

With regards to portability, most of these systems are tested in the closed-
domain scenario with ontologies which cover different, but narrow domains, with
the exception of PowerAqua [15], the system that evolved from AquaLog aiming
to serve as a Question-Answering system for the Semantic Web. PowerAqua was
evaluated in the open-domain scenario [12] (e.g. through querying the ontologies
indexed by Watson [6]). Portability of the majority of other NLIs to ontologies
is tested by demonstrating that all that is required to port the system is the on-
tology URI – the system automatically generates the domain lexicon by reading
and processing ontology lexicalisations.

With the availability of Linked Open Data, portability gained a new dimen-
sion bringing up the open-domain scenario where the context is multiple do-
mains/ontologies on the contrary to the previously considered closed-domain.
Having more than one ontology describing exactly the same domain, or hun-
dreds of domains in one huge dataset requires support for heterogeneity, re-
dundancy and incompleteness which comes with this multi-billion dataset. In
other words, the system now needs to deal not only with how to map certain
terms to the ontology concepts but it also needs to disambiguate and decide

2 See for example how class Alias is used in the Proton System Module ontology:
http://proton.semanticweb.org/
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which ontology should provide the best answer (should Where be mapped to
http://purl.org/dc/terms/Location, http://dbpedia.org/ontology/locationCity or
any other). On the other hand, availability of such enormous knowledge base
gives the possibility to merge experience which has been collected for decades
by researching open-domain Question-Answering systems, NLIs to databases,
and dialog systems in order to successfully accomplish what has been a great
challenge for such a long time: answering questions automatically using the dis-
tributed sources on the Web. This has not been possible with databases as they
are distributed and not interoperable, while Question-Answering systems use
methods from Information Retrieval to locate documents in which the answer
may appear. Information Retrieval methods although scale well, do not often
capture enough semantics - relevant documents could be easily disregarded if
the answer is hidden in a form which is not in-line with the expected patterns.

In this paper, we discuss requirements and suitability for querying the Linked
Open Data using the system called FREyA. FREyA is named after Feedback,
Refinement and Extended VocabularY Aggregation [4], as it aims to investigate
whether user interaction coupled with deeper syntactic analysis and usability
methods such as feedback and clarification dialogs can be used in combination
to improve the performance of NLIs to ontologies. FREyA has previously shown
a good performance (recall and precision reaching 92.4% [4]) on the Mooney
GeoQuery dataset which is extensively used for the evaluation of NLIs in recent
years. We report the performance of FREyA using the MusicBrainz and DBpedia
datasets provided within the QALD-1 challenge3 and discuss how we begin to
address the problem of querying the linked data in the open-domain scenario.

2 FREyA

FREyA is an interactive Natural Language Interface for querying ontologies
which combines usability enhancement methods such as feedback and clarifi-
cation dialogs in an attempt to: 1) improve recall by enriching the domain
lexicon from the user’s vocabulary (see [2]) 2) improve precision by resolv-
ing ambiguities more effectively through the dialog. The suggestions shown to
the user are found through ontology reasoning and are initially ranked using
the combination of string similarity and synonym detection (using WordNet[7]).
The system then learns from the user’s selections, and improves its performance
over time. In what follows we give a brief overview of FREyA, followed by the
requirements for using the system with different datasets and challenges raised
by using it with the linked data.

Figure 1 shows the workflow starting with a Natural Language (NL) ques-
tion (or its fragment), and ending when the answer is found. The syntactic
parsing and analysis generates a parse tree using Stanford Parser [11] and
then uses several heuristic rules in order to identify Potential Ontology Concepts
(POCs). POCs refer to question terms/phrases which can but not necessarily
have to be linked to Ontology Concepts (OCs). POCs are chosen based on the
3 http://www.sc.cit-ec.uni-bielefeld.de/qald-1
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Fig. 1. FREyA Workflow

analysis of the syntactic parse tree, however this analysis does not require strict
adherence to syntax and works on ill-formed questions and question fragments
as well as on the grammatically correct ones. For example, nouns, verbs, or WH-
phrases such as Where, Who, When, How many are expected to be found by
our POC identification algorithm. This algorithm is based on the identifi-
cation of prepreterminals and preterminals in the parsed tree, and also on their
part-of-speech tags (see [4]).

The ontology-based lookup links question terms to logical forms in the on-
tology which we call Ontology Concepts (OCs) without considering any context
or grammar used in the question (apart from morphological analysis, see [5]).
Ontology Concepts refer to instances/individuals, classes, properties, or datatype
property values such as string literals. By default, the system assumes that
rdfs:label property is used to name the specific Ontology Concept. However, for
ontologies which use different naming conventions (such as using dc:title inside
the MusicBrainz dataset), it is possible to predefine which properties are used
for names. This will enable the system to make the distinction between making
a datatype property value element and an instance element. This distinction is
important as different elements are used differently during the Triple Generation
and SPARQL generation steps.

The consolidation algorithm aims at mapping existing POCs to OCs au-
tomatically. If it fails, the user will be engaged in the dialog. In the query Give
me all former members of the Berliner Philharmoniker., the POC identifica-
tion algorithm will find that the Berliner Philharmoniker is a POC, while the
ontology-based lookup will find that Berliner Philharmoniker is an OC, re-
ferring to an instance of mm:Artist. As the only difference in the POC and the
OC text is a determiner (the), the consolidation algorithm will resolve this POC
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automatically by removing it, and by verifying that this noun phrase refers to
the OC with dc:title Berliner Philharmoniker.

When the system fails to automatically generate the answer (or when it is
configured to work in the forceDialog mode, see Section 2.1) it will prompt the
user with a dialog. There are two kinds of dialogs in FREyA. The disambigua-
tion dialog involves the user to resolve identified ambiguities. The mapping
dialog involves the user to map a POC to the one of the suggested OCs. While
the two types of dialogs look identical from the user’s point of view, there are
differences which we will highlight here. Firstly, we give a higher priority to the
disambiguation dialog in comparison to the mapping dialog. This is because our
assumption is that the question terms which exist in the graph (OCs) should
be interpreted before those which do not (POCs). Note that FREyA does not
attempt to interpret the whole question at once, but it does it for one pair of
OCs at the time. In other words, one resolved dialog can be seen as a pair of
two OCs: an OC to which a question term is mapped, and the neighbouring
OC (context). Secondly, the way the suggestions are generated for the two types
of dialogs differ. The disambiguation dialog includes only the suggestions with
Ontology Concepts that are the result of the ontology-based lookup (unless it is
extended using the forceDialog mode, see Section 2.1). The mapping dialog, in
contrast, shows the suggestions that are found through the ontology reasoning
by looking at the closest Ontology Concepts to the POC (the distance is cal-
culated by walking through the parsed tree). For the closest OC X, we identify
its neighbouring concepts which are shown to the user as suggestions. Neigh-
bouring concepts include the defined properties for X, and also its neighbouring
classes. Neighbouring classes of class X are those that are defined to be 1) the
domain of the property P where range(P)=X, and 2) the range of the property
P where domain(P)=X. Finally, the sequence of disambiguation and mapping
dialogs themselves controlled differently for these two kinds of dialogs:

– The disambiguation dialogs are driven by the question focus or the answer
type, whichever is available first: the closer the OC to be disambiguated
to the question focus/answer type, the higher the chance that it will be
disambiguated before any other. The question focus is the term/phrase which
identifies what the question is about, while the answer type identifies the type
of the question such as Person in the query Who owns the biggest department
store in England?. The focus of this question would be the biggest department
store (details of the algorithm for identifying the focus and the answer type
are described in [3]). After all ambiguities are resolved the FREyA workflow
continues to resolve all POCs through the mapping dialogs.

– The mapping dialogs are driven by the availability of the OCs in the neigh-
bourhood. We calculate the distance between each POC and the nearest OC
inside the parsed tree, and the one with the minimum distance is the one to
be used for the dialog before any other.

After all OCs are disambiguated and no POCs remain to be resolved, the system
proceeds to finding the answer. First, it identifies the answer type, and then
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combines OCs into triples, which are then used to generate the SPARQL query.
Unlike other approaches which start by identifying the question type followed by
the identification of the answer type, our approach tries to interpret the majority
of the question before it identifies the answer type. The reason for this is that
in FREyA there is no strict adherence to syntax, and the approach heavily
relies on the ontology-based lookup and the definitions in the RDF structure.
Hence, it can only identify the answer type after all relevant mappings and
disambiguations are performed. Note however, that there are cases when the
answer type is identified before the whole question is interpreted, and in this
case it is used to drive the remaining mappings, if any (as described above).

An important part of FREyA is its learning mechanism. Our goal is to
learn the ranking of the suggestions shown to the user so that after sufficient
training the system can automatically generate the answer by selecting the best
ranked options. In order to make the model as generic as possible, we do not
update our learning model per question, but per combination of a POC/OC and
the neighbouring OC (context). We also preserve a function over the selected
suggestion such as minimum, maximum, or sum (applicable to datatype property
values). This way we may extract several learning rules from a single question,
so that if the same POC/OC appears in the same context, we can reuse it. The
algorithm has previously shown a good performance on the Mooney GeoQuery
dataset improving the initial suggestion rankings by 6% on a random sample of
103 questions (see [4]).

An Example Figure 2 shows the syntax tree for the query what is the popu-
lation of New York. As New York is identified as referring to both geo:State and
geo:City, we first ask the user to disambiguate (see Figure 2 a.)). If he selects for
example geo:City, we start iterating through the list of remaining POCs. The
next one (population) is used, together with the closest OC geo:City, to generate
suggestions for the mapping dialog. Among them there will be geo:cityPopulation
and after the user select this from the list of available options, population is
mapped to the datatype property geo:cityPopulation (see Figure 2 b.)). Note
that if the user selected that New York refers to geo:State, suggestions would be
different, and following his selection, population would probably be mapped to
refer to geo:statePopulation as the closest OC would be geo:State.

2.1 Querying Linked Data with FREyA

FREyA can be easily ported to work with a different ontology, or a set of ontolo-
gies. It can either preload the ontologies into its own repository which is based
on OWLIM4, or connect to an already existing repository, which can be local or
remote.

In order to perform the ontology-based lookup at the query processing time,
FREyA requires extracting ontology lexicalisations, processing them, and adding
them to an index. The extraction of ontology lexicalisations requires reading the
whole repository through a set of SPARQL queries. The number of SPARQL

4 http://ontotext.com/owlim
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Fig. 2. Validation of potential ontology concepts through the user interaction

queries depends on the size of the schema which describes the dataset. Nowa-
days, the data are distributed over various types of servers, which often allow
access through SPARQL endpoints. However, depending on the repository which
is used underneath, some SPARQL queries can be highly unoptimised and slow.
Alternative solution is to use services such as Watson [6] or Sindice [16] which
index ontologies on the Web, in order to remove the burden of the system ini-
tialisation which can be large for large datasets. However, the downside of this
approach is the lack of control over these services. As pointed out in [12], the
resources on the open Web that can be accessed through Watson seem to have
quality issues: there are many redundant, noisy and incomplete data (for exam-
ple, the schema could be missing or ontologies might not be populated). These
problems are partially addressed by approaches for assessing the quality through
tracking the provenance (e.g.,[9]), however, much more needs to be done in the
years to come in order to use and query the Web of Data effectively.

Most of the recently developed NLIs to ontologies (including our own QuestIO
[5]) are built with the assumption that ontologies are perfect :

– each concept/relation in the ontology has the human lexicalisation which
describes it – not necessarily a definition, but rather a term which a human
would use to refer to this concept/relation;

– each concept/relation is positioned carefully in the taxonomy: super-concepts
and super-relations are more generic, and sub-concepts and sub-relations are
more specific.

The availability of Linked Open Data changed this assumption as encouraging
people to publish their data resulted in the large amount of RDF graphs being
made available and interlinked with each other. None of these are perfect –
lexicalisations do exist, but not often they reflect “a term which a human would
use to refer to a concept”. In addition, the flat structure is dominant. One of
the reasons for this is scalability: tractable reasoners do not scale well if the
structure of the ontology is complex. The assumptions based on which NLIs to
ontologies have been developed had to adapt to the new challenges, the main one
being that ontologies are not perfect, and that tools which work with them must
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take this into consideration. In addition, the scale becomes an issue, and also
incompleteness, heterogeneity, and noise inherent in these data. A huge number
of ontologies interlinked with each other means a high probability that there is
a redundant information, which needs to be filtered out by the systems querying
these data.

FREyA does not require a strict adherence to syntax, however, it relies on
the ontology-based lookup. Trying a sample query What is the capital of France?
with FREyA initialised with a superset of DBpedia (accessed through
http://www.factforge.net/sparql repository) revealed that according to the
extracted lexicon, each word in the question refers to at least one Ontol-
ogy Concept. If there were no automatic disambiguation nor heavy grammar
analysis, the system would model the first dialog asking: What is ‘what’? Is
‘what’ related to: LIST OF URIs. A similar dialog would be modelled for ‘is’:
the system would ask the user whether is is related to: be, was, or were. And
so on, for each word in the question. These situations must be resolved either
by performing automatic disambiguation (which might be expensive for datasets
with billions of triples) or by constraining the supported language and allowing
the user to type in only a limited set of question types. In case of the system
failing to automatically interpret the question, it can prompt the user with the
dialog as is the case with FREyA. The fine balance is in the combination of these
approaches: disambiguate as much as possible and use the ranking mechanisms
(e.g., those that exist in FREyA, or any other methods for effective ranking such
as [13]), and correct them if necessary using the interactive features of FREyA.

When trying any dataset with FREyA for the first time, it is advisable to use
the dialog as much as possible in order to check the system interpretations and
correct them if necessary. In that regard, there are several modes that can be
used, among which the most important are:

– Automatic mode. The system will simulate selection of the best ranked
option(s) for each attempt to map a question term to an OC. This mode
is used when the confidence is high that the ranking is effective, or the
system has been trained enough and can make the decisions correctly. For
the example previously described in Figure 2, the automatic mode would
return both statePopulation of new york state and cityPopulation of new
york city in the results initially as the initial ranking would assign the equal
score to bothnew york city and new york state.

– ForceDialog mode generates the dialog for each attempt to map a question
term to an OC.

The mode can be changed easily and without the need to reinitialise the system
hence if the user uses FREyA in the automatic mode and discovers non-satisfying
results, he can immediately switch to the force dialog mode in order to investigate
the mappings. His input will then improve the system for the next user. Note
that for the true ambiguities the automatic mode might not be the best choice
even in the perfectly trained system. For instance, if somebody asks about How
big is new york state? we might be unable to decide whether How big refers
to state area or state population automatically. In this situation, as the system

http://www.factforge.net/sparql
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learns from the user’s suggestions, the automatic mode would work in favour of
majority of the users. However, if the majority of users refer to state area when
talking about size, the minority still have chance to get the correct answer by
using FREyA in the forceDialog mode and mapping big to state population.

3 Evaluation

In this section we report the performance of FREyA using the MusicBrainz
and DBpedia datasets provided within the QALD-1 challenge. We preloaded
the data into our local repository (BigOWLIM 3.4, on the top of Sesame5) and
then initialised the system using the SPARQL queries. Another option was to
connect to the SPARQL endpoint provided by the QALD-1 challenge organisers6,
however, this was a difficult path due to the limited server timeout, which was
not sufficient for executing all required queries.

Generating the index which is required for performing the ontology-based
lookup is a mandatory step but is done once per dataset, although it might be
time-consuming depending on the size of the data. Table 1 shows the statistics of
loading the two datasets into the OWLIM repository and generating the index.

Table 1. Initialisation of the system and the size of datasets

MusicBrainz DBpedia

#explicit statements 14 926 841 328 318 709

#statements 19 202 664 372 110 845

#entities 5 490 237 96 515 478

#SPARQL queries executed 30 361623

initialisation time 1380s (0.38h) 182779s (50.77h)

After the index is generated, it is used at the query execution time. We first
ran 50 training queries for both datasets and measured the overall precision,
recall and f-measure. We then repeat the process with 50 test questions for each
dataset. This experiment was conducted with FREyA in the forceDialog mode.
Results are shown in Table 27. MusicBrainz was a challenging dataset due to the
existence of properties beginDate and endDate, which do not have any domain
defined, and moreover, which are used extensively throughout the ontology and
especially in the combination with the blank nodes. Several failures were due to
the misfunction of the Triple Generator when these two properties were mapped
to the wrong entity. For example, Since when is Tom Araya a member of Slayer?
resulted in generating the following triples:

?joker1 - beginDate - Tom Araya (Artist)
Tom Araya (Artist) - member of band - ?joker2
?joker2 - toArtist - Slayer (Artist)

5 http://openrdf.org
6 http://greententacle.techfak.uni-bielefeld.de:5171/sparql
7 Demos showing FREyA answering the QALD-1 challenge questions are available

from http://gate.ac.uk/sale/dd/

http://openrdf.org
http://greententacle.techfak.uni-bielefeld.de:5171/sparql
http://gate.ac.uk/sale/dd/
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Table 2. Performance of FREyA using QALD-1 datasets: the left figures exclude while
the right figures include the questions correctly answered after reformulation. The num-
ber of dialogs per question includes only the questions that could be answered correctly
with or without reformulation. Not supported questions include those that could not
be correctly mapped to the correct SPARQL query due to the limited language cov-
erage. For example, questions requiring negation, temporal reasoning such as Which
bands were founded in 2010? or quantification such as in Which locations have more
than two caves?. Partially correct questions are those that have returned a portion or
a superset of the correct results.

MusicBrainz DBpedia

Training Testing Training Testing

Precision 0.75/0.77 0.66/0.8 0.74/0.85 0.49/0.63

Recall 0.66/0.68 0.54/0.66 0.58/0.66 0.42/0.54

F-measure 0.70/0.74 0.59/0.71 0.67/0.72 0.45/0.58

# questions not supported 6 9 11 7

# reformulated questions 1 6 4 6

avg.#dialogs per question 3.4 3.65 2.7 2.85

# partially correct questions 1 1 3 12

and the corresponding SPARQL resulted in retrieving the birthday of Tom
Araya, and not the date when he joined the group which is the correct answer.

Other challenges related to the ontology design in MusicBrainz include exis-
tence of the property trackList which has a container of type rdf:Seq as range.
In addition, the statements with releaseType property use subclasses of class
Type and not instances of that class which caused several failures. For example,
the question Who is the creator of the audiobook the Hobbit? requires retrieving
instances with lexicalisation the Hobbit, which are at the same time related to
the class TypeAudiobook using the releaseType property, while FREyA expects
that they are related using the rdf:type relation.

The main challenge with DBpedia was a selection of the property to use,
due to the large number of suggestions that have always been present. For ex-
ample, Who created English Wikipedia? could be mapped to ?joker dbp:created
dbpedia:English Wikipedia while the correct answer is returned only after using
dbo:author relation, instead of dbp:created8. In addition, there are many qual-
ity issues such as in the question Who designed the Brooklyn Bridge? where
designed was mapped to dbp:architect instead of dbp:designer which resulted
in retrieving http://dbpedia.org/resource/John_Augustus_Roebling, while
using dbp:designer the result is http://dbpedia.org/page/John_A._Roebling.
However, as no mapping exist between the two URIs, the former URI is not the
same as the latter, and hence this is marked as an incorrect answer. Interestingly,
the former URL is redirected to the latter, which indicates that the two URIs
should also be connected using the property sameAs in the dataset.

8 We use dbp for http://dbpedia.org/property and dbo for
http://dbpedia.org/ontology namespaces.

http://dbpedia.org/resource/John_Augustus_Roebling
http://dbpedia.org/page/John_A._Roebling
http://dbpedia.org/property
http://dbpedia.org/ontology
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Another challenge specific to DBpedia was the lack of the domain and range
classes for properties. Therefore, some questions could not be correctly mapped
to the underlying Ontology Concepts. In some cases, the reformulation of queries
could help (such as using spouse instead of married to). However, reformulation
was not always sufficient. For example, in Which states border Utah?, border needs
to be mapped to the eight properties: dbp:north, dbp:south, dbp:east, dbp:west,
dbp:northwest, dbp:northeast, dbp:southwest, and dbp:southeast. As none of these
have any domain or range, they did not appear in the suggestions and hence the
only way to answer the question using FREyA is to ask eight questions such as
Which states are north of Utah?, Which states are south of Utah, and so on for
each property. It is interesting to observe that 12 incorrectly answered questions
using the DBpedia test questions were indeed partially correct. The correct map-
pings could only be placed if we were more familiar with the knowledge structure
inherent in the dataset. This also explains the difference in the performance of
FREyA using the training and the testing set of DBpedia.

Failures that were common for both datasets are related to the equal treat-
ment of the datatype property values. For example, the question How many jazz
compilations are there? failed to be answered correctly due to FREyA finding
all compilations that had the user defined tag ‘jazz’ which is case insensitive (us-
ing FILTER REGEX(str(?var), “^jazz$”,“i”). Therefore, it included also ‘Jazz’
which lead to the incorrect answer. On the other hand, some entries were missed
when the fuzzy matching was necessary such as in Which companies are in the
computer software industry? that requires finding not only companies with the
property industry ‘computer software’ but also ‘computer hardware, software’,
‘computer software and engineering’, and the like. At the moment, the datatype
property values in FREyA are supported by including the exact match (case
insensitive) only. In future, we might extend our approach to support more so-
phisticated treatment of strings so that the treatment differs depending on the
context.

Several reformulations for both datasets resulted in a significant increase of
the precision and recall, e.g. adding quotes such as in Which artists performed the
song “Over the Rainbow?”. Without quotes, Over was parsed as a preposition,
and the whole question failed to be answered, while with quotes this was a part
of the Noun Phrase which lead to the correctly answered question.

Learning. To measure the effect of the learning mechanism, we run the exper-
iment in two iterations: we first answered 50 testing questions using an empty
learning model and then using the system trained with 50 training questions.
Results are shown in Table 3.

The learning mechanism improved the overall ranking of suggestions for 0.05
for MusicBrainz, and only 0.02 for DBpedia. The reason is the size of the datasets
and the relatively small number of the training questions. However, improvement
of 0.02 is still an achievement considering that DBpedia has almost 100 million
entities.
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Table 3. Mean Reciprocal Rank for the testing set with and without learning

MusicBrainz DBpedia

untrained system trained system untrained system trained system

MRR 0.63 0.68 0.52 0.54

Execution time for queries that could be answered correctly fluctuates based
on the complexity of questions (e.g. number of the required dialogs). This is due
to our on fly mechanism for finding suggestions which requires executing a large
number of SPARQL queries in order to generate a dialog. Long execution is
also affected by the complexity of the final generated SPARQL which is used
to retrieve the answer. For example, queries which include FILTER statements
over literal strings such as FILTER (regex(?var, “^jazz$”, “i”)) currently can
take more than ten minutes to be executed9. The size of the dataset influences
the execution time as well. For MusicBrainz, the average time per dialog was in
the range from 0.073 to 11.4 seconds, or 8.5 seconds on average per question.
For DBpedia, the execution time was much longer: from 5 to 232 seconds per
dialog, and 36 seconds on average per question. This is quite slow, however, it
can be optimised (e.g. by using the caching mechanisms for suggestions).

4 Conclusion and Future Work

We discussed the requirements and suitability of the Natural Language Interface
– FREyA, to be used with different ontologies and for querying the Linked Open
Data. The evaluation using the DBpedia and MusicBrainz testing datasets leads
to the f-measure of 0.58 and 0.71 respectively which favourably compares to the
other tested systems that participated in the QALD-1 challenge (PowerAqua
0.5 using DBpedia, SWIP 0.66 using MusicBrainz). More importantly, FREyA
was the only system that is tested with both MusicBrainz and DBpedia datasets
which demonstrates the portability. The learning mechanism improved the re-
sults for 5% and 2% for the MusicBrainz and DBpedia datasets respectively.
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