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Abstract

This work deals with the tribological performance of karanja oil trimethylolpropane ester (KOTMPE) biolubricant base oil 
for its probable application as automotive lubricant. The biolubricant was synthesized by transesteri�cation of karanja oil 
methyl ester with trimethylolpropane (TMP) under acid catalyst. The study was made with Ducom TR30L four-ball tester 
at 1200 rev min−1 speed and 75 °C temperature over 60 min duration under normal loads of 15 kg and 40 kg as per ASTM 
D 4172-94 A and B standard test method. Principal results at two loads are given here: Coe�cient of friction (CoF) 0.100 
and 0.042, wear scar diameter (WSD) 0.30 mm and 0.44 mm, �ash temperature parameter (FTP) 80.932 and 126.249, and 
thermal energy (TE) 0.054 J and 0.060 J, respectively. The study found that KOTMPE has lowest CoF than any vegetable oil, 
TMP ester or commercial lubricant. Similarly, the WSD was lowest among all the vegetable oil based lubricants and was 
at par with SAE 20W-50 and SAE 40 commercial lubricants. FTP was better compared to any vegetable oil or TMP ester. 
Finally, the energy e�ciency of KOTMPE was better than that of other vegetable oils, TMP esters and mineral lubricants. 
The synthesized ester demonstrated the outstanding performance in terms of friction and wear characteristics along 
with high thermal stability and energy e�ciency worthy of comparison with multiple lubricating products reported by 
di�erent research groups in available literature during last two decades.
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1 Introduction

One-third of fuel energy in a typical passenger car and 
heavy duty vehicle is utilized in overcoming friction. These 
frictional losses emerge from the crankshaft, piston assem-
bly, valve train, auxiliary components, and tires and brakes 
of vehicles. Holmberg et al. reported that only 21.5% and 
34% of total fuel energy is used to run the car and heavy 
duty vehicle, respectively. The reduction in friction losses 
might bring about three-fold improvement in fuel econ-
omy for both classes of vehicles [1, 2]. This can be made 
possible by use of state of the art high e�ciency engines 
in vehicles and further by reducing frictional losses in 
engines by applying alternate low viscosity and low shear 
lubricants [3].

Lubrication is a complex process in which a sub-
stance called lubricant is applied between two or more 
interacting surfaces that are in relative motion to each 
other [4]. The primary function of a lubricant is to main-
tain a thin layer of lubrication between these interact-
ing surfaces so as to prevent their direct contact and 
thus suppress the friction and wear between them. This 
lubricating function is largely relying on fluid viscosity 
and therefore makes it the major parameter for selec-
tion and application of a lubricant [5]. The viscosity of a 
lubricant should be high enough to maintain a thick film 
between the moving components even at extreme tem-
perature and pressure conditions and simultaneously 
low enough to retain the fluidity of the lubricant around 
each engine component part [6]. But the viscosity alone 
is not sufficient to figure out the all round performance 
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of a lubricant. Henceforth, the tribology of the lubricant 
should also be investigated to assess its effectiveness, 
particularly in field conditions [7]. Tribology is defined 
as the science and technology of interacting surfaces 
in relative motion and is usually concerned with study 
of friction, wear and lubrication [8]. Lubrication is the 
most efficient method for reducing friction and control-
ling wear between two interacting surfaces in relative 
motion.

Vegetable oil-based lubricant formulations are becom-
ing increasingly popular not only because of severe envi-
ronmental concerns associated with use of conventional 
mineral oil-based lubricants [9], but also due to excellent 
lubricating properties of the former ones. Vegetable oil-
based lubricants possess numerous desirable properties 
typically required in a high performance lubricant such 
as high viscosity index, elevated �ash and �re point, low 
volatility and vapor pressure, and high lubricity leading to 
good anti-wear and friction reducing character [10]. The 
environmentally generous properties are accelerated bio-
degradability, recyclability, and low toxicity [11].

Vegetable oils are mostly triesters of glycerol with 
various short and long chain fatty acids and are usually 
referred to as triglycerides. Most vegetable oils are amphi-
philic in nature comprising distinctly separated polar and 
non-polar groups in the same molecule. The amphiphilic 
nature of vegetable oils makes them e�ective for use in all 
three lubrication regimes, namely hydrodynamic, mixed, 
and boundary [11–13]. Several researchers are working 
on analysis and improvement of the friction properties of 
vegetable oils and their derived biolubricants for poten-
tial application as automotive lubricants [6, 13–28], metal 
working �uids [29–32], industrial �uid [33], food grade 
lubricant [34], chain saw, brake �uid, and transmission oil 
[35].

Studies have been undertaken to investigate the fric-
tion and wear properties of avocado oil [29], Calophyl-

lum inophyllum oil [16], canola (rapeseed) oil [17, 25, 29, 
36–38], coconut oil [26], corn oil [29], cotton seed oil [30], 
jatropha oil [13, 19–24, 31, 39], jojoba oil [12], Lunaria 

annua oil [40], olive oil [29], palm oil [6, 15, 18, 22, 28, 34, 
41], peanut oil [25, 29], rice bran oil [14], rubber tree seed 
oil [10, 32], sa�ower oil [12, 29], sesame oil [29], soybean 
oil [25, 29, 33, 42–44], and sun�ower oil [27, 43, 45, 46], or 
their chemically modi�ed derivatives. Friction and wear 
behaviors of direct fatty acids derived synthetic esters 
have also been examined for their potential application 
as alternate lubricants [4, 35, 47, 48]. Table 1 reports tribo-
logical studies carried out in last two decades by di�erent 
research groups on variety of natural and/or chemically or 
thermally modi�ed vegetable oils (doped with additives 
in few studies for improved performance) and fatty acids 
based synthetic ester biolubricants.

The work reported here intends to characterize the tri-
bological performance of karanja oil derived triester biolu-
bricant for automotive application. Karanja oil is selected 
as feedstock for biolubricant synthesis as it is non-edible 
for human and animal consumption due to presence of 
certain toxic compounds and it can be grown on most soil 
types under harsh climatic conditions without much care. 
Such studies are necessary to assess the lubricity of syn-
thesized biolubricant prior to its introduction as a quality 
product.

2  Experiment

In our previous work, as a �rst step karanja oil methyl ester 
(KOME) was synthesized from feedstock by two-stage 
esteri�cation/transesteri�cation process (acid-catalyzed 
esteri�cation followed by base-catalyzed transesteri�ca-
tion). In second step karanja oil trimethylolpropane ester 
(KOTMPE) biolubricant was synthesized by transesteri�ca-
tion of KOME with trimethylolpropane (TMP) under acid 
catalyst. The viscous �ow behavior of KOTMPE was ana-
lyzed at high temperature and high shear rate conditions 
appearing commonly in automotive engines and multi-
tudes of industrial operations [5]. Further the Arrhenius 
equation and the Ostwald-deWaele power law model 
were applied to these data for �ow characterization [49]. 
The thermal stability was analyzed by thermogravimetric 
analysis (TGA) whereas the oxidation stability was deter-
mined by Rancimat test [50]. The present work is in con-
tinuation of our previous works. Here the friction and wear 
characteristics of KOTMPE biolubricant are analyzed using 
Ducom TR30L four-ball tester at rotational speed of 1200 
rev  min−1 and 75 °C temperature over 60 min test dura-
tion under normal loads of 15 kg and 40 kg as per ASTM 
D 4172-94 A and B method. Tests are run in duplicate and 
the average values are reported.

2.1  Four‑ball test machine

Four-ball tribotester is essential equipment in lubricant 
research and industry to study tribological properties 
of lubricating oils and greases [13]. Figure 1 shows the 
schematic diagram of the equipment. The main compo-
nents of the equipment are ball pot cum oil cup, lock 
ring, collet, rotating spindle, heating plate, thermocou-
ple, and torque arm [41]. The equipment uses four iden-
tical steel balls: three at the bottom and the fourth on 
the top. The bottom balls are held together in station-
ary condition in ball pot cum oil cup with the help of 
lock ring and the top ball is clamped above them with 
collet connected at the lower end of vertical spindle of 
constant speed electric motor. The bottom balls make 
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Table 1  Tribological studies on di�erent natural and synthetic biolubricants

Test �uid Equipment Test conditions Reference

Epoxidized rapeseed oil Four-ball tribotester 40 kg, 30 min, 1450 ± 50 rpm [36]

Coconut oil Four-ball tribotester 40 kg, 60 min, 75 °C, 1200 rpm [26]

Soybean oil derivatives Four-ball tribotester 40 kg, 15 min, 22 °C, 1200 rpm [44]

Oleic acid based triester Four-ball tribotester 40 daN, 60 min, 1200 rpm [48]

Chemically modi�ed rapeseed oil Four-ball tribotester 40 kg, 60 min, 75 °C, 1200 rpm [17]

Oleic acid-based triester Four-ball tribotester 40 daN, 60 min, 1200 rpm [35]

RBD palm olein oil Four-ball tribotester 30–60 kg, 60 min, 75 °C, 1200 rpm [41]

Palm oil Four-ball tribotester 40 kg, 10 min, 40 °C, 100 rpm [28]

Palm oil-based TMP ester Four-ball tribotester 40 kg, 60 min, 75 ± 2 °C, 1200 rpm [6]

Palm oil-based TMP ester with  TiO2 nano-
particles

Four-ball tribotester 40–160 kg, 10 min, room temperature, 
1200 rpm

[18]

Ricinoleic acid-based tetraesters Four-ball tribotester 40 kg, 15 min, 22 °C, 1200 rpm [4]

Calophyllum inophyllum based TMP ester Four-ball tribotester 40 kg, 60 min, 50–100 °C, 1200 rpm [16]

Jatropha oil-based TMP ester Four-ball tribotester 40 kg, 60 min, 75 °C, 1200 rpm [31]

Rice bran oil Four-ball tribotester 2574 MPa, 60 min, 75 °C, 1200 rpm [14]

Rubber tree seed oil Four-ball tribotester 40 kg, 60 min, 75 °C, 1200 rpm [10]

Ricinoleic acid diesters Four-ball tribotester 40 daN, 60 min, 1200 rpm [47]

Jatropha oil blended with SAE 40 Four-ball tribotester 80 kg, 10 s, 27 ± 7 °C, 1200 rpm [21]

Sun�ower oil blended with DLC coating Four-ball tribotester 40 kg, 60 min, 75–100 °C, 1200 rpm [27]

Jatropha oil blended with SAE 40 Four-ball tribotester 15 and 40 kg, 60 min, 75 °C, 1500 rpm [20]

Jatropha oil blended with DLC coating Four-ball tribotester 40 kg, 60 min, 100 °C, 1200 rpm [13]

Jatropha oil-based TMP ester Four-ball tribotester 40 kg, 60 min, room temperature, 1200 rpm [19]

Lunaria annua seed oil-based TMP ester Four-ball tribotester 40 kg, 60 min, 100 °C, 1200 rpm [40]

Palm oil-based PE ester Four-ball tribotester 40 kg, 30 min, 50–100 °C, 1200 rpm [34]

Palm oil-based PE and TMP ester Four-ball tribotester 40 kg, 60 min, room temperature, 1200 rpm [15]

Epoxidized soybean oil Ball-on-disc tribotester 181.44 kg, 25 °C, 5 rpm [42]

Jojoba, sa�ower, methyl oleate, methyl 
palmitate

Ball-on-disc tribotester 181.44 kg, 15 min, 25 ± 2 °C, 5 rpm [12]

Sun�ower oil Ball-on-disc tribotester 33.4 N, 150 min, 50 °C, 100 rpm, 12 mm 
stroke

[45]

Modi�ed soybean oil with additives Ball-on-disc tribotester 181.44 kg, 15 min, 25 ± 2 °C, 5 rpm [33]

Soybean oil derivatives Ball-on-disc tribotester 181.44 kg, 15 min, 25 ± 2 °C, 5 rpm [44]

Epoxidized soybean and sun�ower oils with 
zinc oxide and copper oxide nanoparticles

High frequency reciprocating rig 10 N, 60 min, 50 °C, 20 Hz, 1 mm stroke [43]

Methyl oleate and canola biodiesel derived 
TMP triesters

High frequency reciprocating rig 75 min, 50 Hz [37]

Palm oil-based TMP ester High frequency reciprocating rig 10 N, 60 min, 10 Hz [6]

Lunaria annua seed oil-based TMP ester High frequency reciprocating rig 1 kg, 60 min, 100 °C, 50 Hz [40]

Palm and jatropha biodiesel blended with 
diesel fuel

High frequency reciprocating rig 160 N, 120 min, 70 °C, 240 rpm, 84 mm 
stroke

[22]

Canola, peanut, soybean, and chicken fat 
biodiesels blended with SAE 15 W-40

Pin-on-disc tribotester 19.2 N, 1 h 51 min, 17–19 °C [25]

Jatropha oil blended with SAE 40 Pin-on-disc tribotester 30 N, 60 min, 2000 rpm [23]

Jatropha oil blended with SAE 40 Pin-on-disc tribotester 30 N, 60 min, 2000 rpm [21]

Jatropha oil blended with SAE 40 Pin-on-disc tribotester 30 N, 60 min, 2000 rpm [24]

Cottonseed and SAE 40 oil Pin-on-disc tribotester 10–30 N, 300–900 rpm [30]

Avocado, canola, corn, olive, peanut, saf-
�ower, sesame, and soybean oils

Pin-on-disc tribotester 10 N, 23.2 h, ambient temperature, 21.5 rpm [29]

Canola oil with boron nitride additives Pin-on-disc tribotester 10 N, 50.5 min, ambient temperature, 
21.5 rpm

[38]
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three-point contact with the top ball. The stationary 
bottom balls are immersed in the lubricant being tested 
and pressed against the top ball. The appropriate load 
is applied on the balls from the bottom and the top ball 
is made to rotate at required speed for a fixed length of 
time [4, 44].

2.2  Ball material

The balls used in the experiment are made of AISI 52100 
chrome steel with following specifications: diameter 
12.7 mm, hardness 64–66 HRC, high surface finish grade 
25, density 7.8334 g/cm3, tensile strength 2241 MPa, 
and yield strength 2034 MPa. The chemical composi-
tion of AISI 52100 steel is given in Table 2.

2.3  Test procedure

Four new identical steel balls were taken in each experi-
ment. The balls and the ball pot cum oil cup were thor-
oughly cleaned with toluene and then wiped using a fresh 
lint free industrial wipe until they were completely dry 
prior to each experiment. 10 ml test lubricant was poured 
into the oil cup to cover the bottom stationary balls to a 
depth of at least 3 mm. The ball pot components were then 
assembled in the four-ball tribotester and the lubricant 
was heated to the desired temperature. When the desired 
temperature was achieved, the electric motor was started 
to drive the top ball at set constant speed and the requi-
site load was applied gradually to avoid shock loading. At 
the end of pre-determined test period, the equipment was 
turned o� and the stationary balls were analyzed under 
scanning electron microscope to measure the wear scar 
produced. Each test was run in duplicate and the average 

Table 1  (continued)

Test �uid Equipment Test conditions Reference

Rubber seed oil Ring compression test on Califor-
nia Bearing Ratio compressing 
machine

10 N, 30 °C [32]

Sun�ower oil based oleogels/greases Tribology cell 3 N, 20 min, 25 °C, 100 rpm [46]

Fig. 1  Schematic diagram of 
four-ball tribotester

Table 2  Chemical composition 
of AISI 52100 chrome steel

Element C Cr Si Mn P S Fe

AISI 52100 steel (%) 0.95–1.10 1.30–1.60 0.15–0.30 0.25 (Max) 0.03 (Max) 0.025 (Max) Balance
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values are reported as WSD [6, 16, 20]. The frictional torque 
applied on three bottom balls during the course of experi-
ment was measured by the torque arm connected with 
friction recording device through spring [21].

2.4  CoF evaluation

The magnitude of friction between two rubbing bod-
ies or surfaces is expressed by a dimensionless number 
called the CoF. It is the ratio between the force of friction 
between two bodies and the normal force pressing those 
together [16]. CoF plays an important role in determining 
the transmission e�ciency of a lubricated system. Low 
value of CoF corresponds to low friction between the two 
rubbing surfaces and hence the transmission e�ciency 
will be higher as less force is required for sliding [19, 34]. 
The CoF in four-ball experiment is calculated using the fol-
lowing equation [13, 23]:

where f = CoF (dimensionless), T = frictional torque (kg-
mm), r = distance from the centre of the contact sur-
face on the lower balls to the axis of rotation (mm), and 
W = applied load (kg). The value of r is determined to be 
3.67 mm in most studies.

2.5  Flash temperature parameter

The concept of �ash temperature parameter (FTP) was 
introduced by T.B. Lane in 1957 to assess the possibility of 
lubricant breakdown in operation [51]. This parameter has 
now acquired a status of recognition in engineering opera-
tions such as cutting and forming tools and is weighed at 
the time of lubricant selection for industrial applications. 
The frictional heat generated in contact area between 
two rubbing surfaces is responsible for development of 
localized heat zones that in turn raise the temperature of 
surrounding lubricant. FTP is a mathematically calculated 
number that indicates the lowest temperature at which a 
lubricant can vaporize to form an ignitable mixture with 
air [52].

Shahabuddin et al. [21], Habibullah et al. [16, 20], Rah-
man et al. [53], and several other researchers have used 
following relation to determine FTP. The relation was origi-
nally proposed by Lane for four-ball tribotester.

where W = applied load (kg) and d = mean WSD (mm) at 
this applied load.

(1)f =
T
√

6

3rW

(2)Flash Temperature Parameter (FTP) =
W

d1.4

Equation 2 exhibits inverse relationship between FTP 
and WSD at constant load [52]. Therefore, a lubricant 
should have higher FTP for better performance as the 
lubricant will not evaporate at low temperature and the 
�lm thickness will be high to prevent friction and wear; 
whereas a lubricant with low FTP is more susceptible to 
undergo �lm break down at low temperature leading to 
partial or total loss of lubrication [53].

2.6  Energy consumption

Habibullah et al. [16] gave following expression, derived 
from energy conservation equation, for analysis of energy 
consumption in a four-ball tribotester.

where TE = thermal energy (J), f = CoF (dimensionless), 
W = applied load (kg), g = gravitational acceleration  (ms−2), 
and r = distance from the centre of the contact surface on 
the lower balls to the axis of rotation (mm) that is found 
to be 3.67 mm.

3  Results

The average CoF at 15 kg and 40 kg loads under test con-
ditions of 75 °C temperature, 1200 rev  min−1 speed and 
60  min test duration were computed to be 0.100 and 
0.042, respectively using Eq. 1 from frictional torque data 
recorded by four-ball tribotester (Fig. 2a and b). The mean 
WSDs at two loads were observed to be 0.30 mm and 
0.44 mm (Fig. 3a and b), respectively. FTPs at two loads 
were evaluated using Eq. 2 as 80.932 and 126.249, respec-
tively. Similarly, the energy consumption was evaluated in 
terms of thermal energy using Eq. 3 and the values were 

0.054 J and 0.060 J, respectively.

4  Discussion

Table 3 presents the average CoF and WSD data for sev-
eral vegetable oils, TMP esters, and commercial lubricants 
with their respective test conditions as reported by di�er-
ent research groups. FTP and TE data were calculated by 
this author. Test results of present study have also been 
included for the purpose of comparison.

4.1  CoF analysis

According to Aravind et al. [10], the CoF values for vegeta-
ble oils range from 0.06 to 0.09 and according to Habibul-
lah et al. [16], the CoF values for lubricants range from 

(3)Thermal energy (TE) =
fWgr

1000
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0.05 to 0.14 for wide automotive applications. In present 
study, the CoF for synthesized KOTMPE at 40 kg load is 
lowest among all the lubricants tested and even less than 
the lower limit mentioned in available literature. The low 
CoF for KOTMPE shows that the lubricant �lm formed at 
the rubbing surface is exceptionally e�ective with high 
lubricity at high temperature. The test results are quite in 
agreement with high viscosity index of 206 for KOTMPE 
lubricant base oil.

4.2  Wear scar diameter analysis

Aravind et al. [10] mentioned the WSD range for commod-
ity oils as 0.51–0.87 mm. WSD data in Table 3 show that 
the synthesized KOTMPE has the lowest WSDs among all 

the vegetable oils and their derived biolubricants and the 
values are comparable to that of commercial mineral lubri-
cants SAE 20W-50 and SAE 40. The low WSD for KOTMPE 
indicates presence of a stable lubricant �lm between the 
interacting surfaces even at higher loads.

The low anti-friction (CoF) and anti-wear (WSD) 
performance of KOTMPE is largely attributed to ester 
and fatty acid components of biolubricant. The ester 
groups represent the polar segment of vegetable oil 
based lubricants, whereas the fatty acid chains with 
varying length, degree of unsaturation, and stereo-
chemistry represent the non-polar segment [12]. The 

Fig. 2  a Frictional torque for KOTMPE biolubricant at 15  kg load 
under test conditions of 75  °C temperature and 1200 rev  min−1 
speed, b Frictional torque for KOTMPE biolubricant at 40  kg load 
under test conditions of 75  °C temperature and 1200 rev  min−1 
speed

Fig. 3  a Wear scar diameter for KOTMPE biolubricant at 15 kg load 
under test conditions of 75  °C temperature and 1200 rev  min−1 
speed, b Wear scar diameter for KOTMPE biolubricant at 40 kg load 
under test conditions of 75  °C temperature and 1200 rev  min−1 
speed
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lubricant molecules orient themselves with the polar 
ester end adsorbed strongly onto the metal surface and 
the non-polar fatty acid end extended away from the 
metal surface. The ester groups principally strengthen 
the binding of the molecules increasing the strength 
of the lubricant film and thus provide strong resistance 
to shear forces [6, 19]. The fatty acid components make 
closely packed mono- or multi-molecular surface lay-
ers that prevent the direct metal-to-metal contact and 
progression of pits and spalling on the metal surfaces 
[4, 34, 44].

In general, the WSD increases with increase in normal 
load. As the normal load is increased, the two rolling 
surfaces move closer to each other due to high surface 
pressure and thus lead to increased WSD [20, 41]. Tem-
perature has same effect on WSD as normal load. With 
increase in temperature, the viscosity of the lubricant 
decreases thinning the lubricant film between the two 
surfaces. The two surfaces come closer as under effect 
of high load and the WSD increases. Under conditions 
of excessive load or temperature, the lubricant film may 
completely wear out leading to welding of two surfaces.

4.3  Flash temperature parameter analysis

The FTP measurements for synthesized KOTMPE at 15 
and 40 kg loads followed the general trend of increase 
in FTP with increase in load [20]. The FTP of test sample 
at 40 kg load is substantially higher than other vegetable 
oils and their derived biolubricants, and is only smaller 
than commercial mineral lubricants. The high FTP for 
KOTMPE corresponds to increased possibility of synthe-
sized lubricant film sustaining at higher temperatures 
without being destroyed between the two surfaces in 
relative motion.

FTP signi�es the critical temperature below which the 
lubricant �lm between two rubbing surfaces can perform 
without thermal breakdown [16]. Equation 2 shows the 
dependence of FTP on applied load and WSD. In general, 
when the applied load is increased, the FTP is increased 
[20]. In case, the applied load is constant, FTP is higher 
for lower WSD and lower for higher WSD [21]. Regard-
ing dependence on temperature, the FTP decreases with 
increase in temperature due to degradation of lubricant at 
high temperature [16].

Table 3  Average CoF and WSD, and calculated FTP and TE values for several vegetable oils, biolubricants, and commercial lubricants

Sample CoF WSD (mm) FTP TE (J) Test parameter Reference

Coconut oil 0.070 0.540 94.778 0.101 40 kg, 60 min, 75 °C, 1200 rpm [26]

0.092 0.797 54.956 0.133 40 kg, 60 min, 75 °C, 1200 rpm [10]

0.101 0.601 81.589 0.146 40 kg, 60 min, 75 °C, 1200 rpm [14]

Lesquerella 0.045 0.857 49.646 0.065 40 kg, 60 min, 75 °C, 1200 rpm [54]

Pennycress 0.054 0.769 57.778 0.078 40 kg, 60 min, 75 °C, 1200 rpm [54]

Rapeseed oil 0.078 0.630 76.381 0.112 40 kg, 60 min, 75 °C, 1450 ± 50 rpm [36]

0.090 0.660 71.565 0.130 40 kg, 60 min, 75 °C, 1200 rpm [17]

Rice bran oil 0.073 0.585 84.731 0.105 40 kg, 60 min, 75 °C, 1200 rpm [14]

Rubber seed oil 0.089 0.690 67.247 0.128 40 kg, 60 min, 75 °C, 1200 rpm [10]

RBD palm olein oil 0.068 0.828 52.098 0.098 40 kg, 60 min, 75 °C, 1200 rpm [41]

Sun�ower oil 0.060 0.616 78.822 0.086 40 kg, 60 min, 75 °C, 1200 rpm [14]

0.078 0.882 47.687 0.112 40 kg, 60 min, 75 °C, 1200 rpm [10]

Waste cooking oil 0.065 0.610 79.909 0.094 40 kg, 60 min, 75 °C, 1200 rpm [55]

CI TMP ester 0.075 0.895 46.721 0.108 40 kg, 60 min, 70 °C, 1200 rpm [16]

Jatropha TMP ester 0.060 0.565 88.959 0.086 40 kg, 60 min, room temp, 1200 rpm [19]

Karanja TMP ester 0.100 0.300 80.932 0.054 15 kg, 60 min, 75 °C, 1200 rpm Present study

0.042 0.440 126.249 0.060 40 kg, 60 min, 75 °C, 1200 rpm Present study

Lunaria Ann. TMP ester 0.080 0.530 97.291 0.115 40 kg, 60 min, 100 °C, 1200 rpm [40]

Palm TMP ester 0.078 0.777 56.947 0.112 40 kg, 60 min, 75 ± 2 °C, 1200 rpm [6]

Epoxy rapeseed oil 0.055 0.710 64.610 0.079 40 kg, 60 min, 75 °C, 1450 ± 50 rpm [36]

SAE 20W-40 0.106 0.575 86.801 0.153 40 kg, 60 min, 75 °C, 1200 rpm [10]

0.117 0.549 92.610 0.168 40 kg, 60 min, 75 °C, 1200 rpm [14]

SAE 20W-50 0.080 0.360 167.200 0.115 40 kg, 60 min, 75 °C, 1200 rpm [26]

SAE 40 0.068 0.491 216.559 0.196 80 kg, 10 s, 27 ± 7 °C, 1200 rpm [21]
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4.4  Energy consumption analysis

The synthesized KOTMPE a�ords the lowest energy con-
sumption as compared to other lubricants analyzed under 
similar test conditions. Studies reveal that lubricant tem-
perature does have a primary e�ect on energy consump-
tion because the viscosity of the lubricant decreases with 
increase in temperature making it easier for lubricant to 
�ow and form a �lm between the rolling surfaces. This 
results in reduced energy consumption [16].

4.5  Biolubricant composition and lubricating 
properties

The lubricating properties of vegetable oils are considera-
bly governed by their chemical composition. For instance, 
a triglyceride molecule with small unsaturation has bet-
ter oxidative stability than a molecule having signi�cant 
unsaturation [12]. The fatty acid carbon chain regulates 
the friction and wear properties of vegetable oils. The long 
carbon chain provides high strength to lubrication �lm 
and low frictional properties. As the acid value and iodine 
value of vegetable oil increases, the coe�cient of friction 
(CoF) decreases and wear increases. This behavior can be 
explained in the following manner. The acid value of the 
oil expresses the free fatty acid content in the sample, 
whereas the iodine value indicates the degree of unsatura-
tion of the constituent fatty glycerides. The increased acid 
value thus signi�es more free fatty acids causing CoF to 
reduce. With increase in iodine value, the unsaturation as 
well as the free fatty acid forming capacity of oil increases 
and thus the CoF reduces. As the unsaturation increases, 
the free fatty acid content in oil increases, but the oxida-
tive stability of oil and wear of metal surfaces decreases. 
The high wear of vegetable oils is believed to be due to 
the chemical wear initiated by the presence of high free 

fatty acids. The high saponi�cation value of certain veg-
etable oils and formation of peroxides at high tempera-
ture also contribute signi�cantly to high wear [14]. Here 
in this experiment the acid value of KO after two-stage 
esteri�cation/transesteri�cation process was reduced to 
1.64 from 11.52 mg KOH/g (KOME synthesis) and further to 
1.04 mg KOH/g after transesteri�cation process (KOTMPE 
synthesis).

The tribological performance of KOTMPE biolubricant 
base oil is not a stand-alone property and is associated 
fairly with viscous �ow and thermal stability behaviors of 
test sample discussed elsewhere [5, 50] by this research 
group. Results of these previous studies are reproduced 
here to carry this discussion further.

The viscous �ow behavior of KOTMPE was �rst analyzed 
at constant shear rates of 10, 100 and 1000 s−1 in tempera-
ture range of 10–70 °C. In general, the viscosity was found 

to decease with increase in temperature. The viscosity 
�rst decreased sharply between 10 and 20 °C followed by 
smaller decrease between 20 to 60 °C. Thereafter there was 
a small increase in viscosity after 60 °C due to gelation. This 
gain in viscosity was more evident at low shear rates as 
compared to high shear rates simply because of smaller 
torque applied on KOTMPE at low shear rate. Next, the 
�ow behavior was analyzed at constant temperatures of 
27, 60 and 90 °C under shear rates varying between 100 to 
1000 s−1. The viscosity was found to increase with increase 
in shear rate at given temperature. KOTMPE biolubricant 
displayed shear rate thickening behavior which is a desir-
able property for lubricants intended for high tempera-
ture and high shear rate applications. Such lubricants will 
maintain their viscosity and subsequently the required 
lubricity between rolling engine components at high 
temperature and high shear rate. Further, the shear stress 
versus shear rate behavior was studied at 10, 25 and 50 °C 
temperatures. The KOTMPE demonstrated Newtonian �uid 
behavior at selected experimental temperatures. The study 
proved the ability of synthesized KOTMPE biolubricant 
base oil in sustaining its viscosity at high temperatures [5].

TGA thermogram of KOTMPE in inert nitrogen atmos-
phere shown in Fig. 4 produced 1% weight loss in sample 
at 180.36 °C, 50% weight loss at 312.53 °C and 90% weight 
loss at 451.11 °C. The onset and o�set decomposition tem-
peratures were obtained at 248 °C and 470 °C, respectively. 
The maximum decomposition temperature appeared at 
445.73 °C with 0.07448 mg weight loss. The temperature 
plateau initiating at 485.69 °C displayed no further consid-
erable weight loss.

The high thermal e�ciency of KOTMPE is accredited to 
formation of ester groups at sites of unsaturation in fatty 
acid chains through successive chemical modi�cations as 
asserted by the Fourier-transform infrared (FTIR) spectros-
copy. The FTIR spectrums of feedstock KO, intermediate 
KOME biodiesel and the �nal KOTMPE biolubricant base 
oil are shown in Fig. 5. The peaks at wavelengths 3473 
and 3464 cm−1 in KO and KOME spectrums, respectively, 
correspond to alcohol group (–OH) (3500–3100  cm−1) 
stretching. The absence of –OH group in KOTMPE spec-
trum con�rmed the successful realization of esteri�cation 
reaction. The peaks at wavelength 3006 cm−1 correspond 
to aliphatic C=C double bond bending vibration, while 
the peaks at wavelengths 2925–2854 cm−1 represent the 
stretching vibration of aliphatic  CH2 and  CH3 in three speci-
mens. The peaks at wavelengths 1746–1743 cm−1 mark the 
stretching vibration of ester carbonyl (C=O) in specimens. 
The total disappearance of C=C double bonds at wave-
length 1604 cm−1 in KO and appearance of C–O–C bands 
in KOME and KOTMPE at 852 and 822 cm−1, respectively, 
pointed out the conversion of most of double bonds in 
feedstock. The peaks at wavelengths 1196 and 1201 cm−1 
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in KOME and KOTMPE spectrums, respectively, speci�ed 
the presence of C–O bond as an outcome of ester forma-
tion. The peaks at 1118 and 1116 cm−1 in KO, KOME, and 
KOTMPE spectrums are assigned to C–O stretching ester. 
The three spectrums further exhibited absorption bands at 
723 cm−1 distinctive of aliphatic C–H group vibration [50].

5  Conclusion

The tribological behavior of KOTMPE was investigated in 
this study. The following conclusions can be drawn on the 
basis of the experimental study and the obtained results:

• KOTMPE has the lowest CoF compared to any other 
vegetable oil, TMP ester or commercial mineral lubri-

cant under test conditions of 40 kg load, 75 °C tempera-
ture, 1200 rev  min−1 speed and 60 min test duration. 
The CoF data at 15 kg load for other vegetable oils, TMP 
esters and commercial mineral lubricants are not avail-
able for comparison.

• KOTMPE has the lowest WSD among all the vegetable 
oil based lubricants considered in this study. Its perfor-
mance is even much better than SAE 20W-40 commer-
cial mineral lubricant and is at level with SAE 20W-50 
and SAE 40 lubricants.

• The low CoF and WSD for KOTMPE is due to combined 
e�ect of increase in number of polar ester functional 
groups (triester) in the oil structure through chemical 
modi�cation and dense fatty acid layer caused by high 
percentage of oleic acid in karanja oil.

• KOTMPE has FTP higher than vegetable oils, other TMP 
esters and SAE 20W-40 commercial mineral lubricant, 
however, it is lower than SAE 20W-50 and SAE 40 com-
mercial lubricants.

• KOTMPE has excellent performance in terms of lowest 
energy consumption compared to any vegetable oil, 
TMP ester or commercial mineral lubricant under simi-
lar test conditions.

Results of this experimental study are quite encourag-
ing for favorable applications of synthesized karanja oil 
TMP ester on account of its excellent performance in terms 
of friction and wear characteristics along with high ther-
mal stability and energy e�ciency.
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Fig. 4  TGA/DSC thermogram 
of KOTMPE biolubricant in 
inert nitrogen atmosphere

Fig. 5  FTIR spectrums of KO, KOME and KOTMPE specimens
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