
 Open access  Journal Article  DOI:10.1007/S00220-012-1564-2

Friction in a Model of Hamiltonian Dynamics — Source link 

Jürg Fröhlich, Zhou Gang, Avy Soffer

Institutions: ETH Zurich, Rutgers University

Published on: 15 Sep 2012 - Communications in Mathematical Physics (Springer-Verlag)

Topics: Bose gas

Related papers:

 Emission of Cherenkov radiation as a mechanism for Hamiltonian friction

 Some Hamiltonian models of friction II

 A Hamiltonian Model for Linear Friction in a Homogeneous Medium

 Some Hamiltonian Models of Friction

 Ballistic motion of a tracer particle coupled to a Bose gas

Share this paper:    

View more about this paper here: https://typeset.io/papers/friction-in-a-model-of-hamiltonian-dynamics-
2tdwj2kkhr

https://typeset.io/
https://www.doi.org/10.1007/S00220-012-1564-2
https://typeset.io/papers/friction-in-a-model-of-hamiltonian-dynamics-2tdwj2kkhr
https://typeset.io/authors/jurg-frohlich-1g181bto7c
https://typeset.io/authors/zhou-gang-2i4hk0vtu3
https://typeset.io/authors/avy-soffer-2usnnbszr5
https://typeset.io/institutions/eth-zurich-2cbshymp
https://typeset.io/institutions/rutgers-university-3kld8wdd
https://typeset.io/journals/communications-in-mathematical-physics-yhgkzntp
https://typeset.io/topics/bose-gas-2drqhjzi
https://typeset.io/papers/emission-of-cherenkov-radiation-as-a-mechanism-for-2tdeq5mi7w
https://typeset.io/papers/some-hamiltonian-models-of-friction-ii-1qsf9p93tc
https://typeset.io/papers/a-hamiltonian-model-for-linear-friction-in-a-homogeneous-1myz22ay4r
https://typeset.io/papers/some-hamiltonian-models-of-friction-40v2ud6ssu
https://typeset.io/papers/ballistic-motion-of-a-tracer-particle-coupled-to-a-bose-gas-1qgnjzvo70
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/friction-in-a-model-of-hamiltonian-dynamics-2tdwj2kkhr
https://twitter.com/intent/tweet?text=Friction%20in%20a%20Model%20of%20Hamiltonian%20Dynamics&url=https://typeset.io/papers/friction-in-a-model-of-hamiltonian-dynamics-2tdwj2kkhr
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/friction-in-a-model-of-hamiltonian-dynamics-2tdwj2kkhr
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/friction-in-a-model-of-hamiltonian-dynamics-2tdwj2kkhr
https://typeset.io/papers/friction-in-a-model-of-hamiltonian-dynamics-2tdwj2kkhr


ETH Library

Friction in a Model of Hamiltonian
Dynamics

Journal Article

Author(s):
Fröhlich, Jürg; Gang, Zhou; Soffer, Avy

Publication date:
2012-10

Permanent link:
https://doi.org/10.3929/ethz-b-000056095

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Communications in Mathematical Physics 315(2), https://doi.org/10.1007/s00220-012-1564-2

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000056095
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s00220-012-1564-2
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Digital Object Identifier (DOI) 10.1007/s00220-012-1564-2

Commun. Math. Phys. 315, 401–444 (2012)
Communications in

Mathematical
Physics

Friction in a Model of Hamiltonian Dynamics

Jürg Fröhlich1, Zhou Gang1, Avy Soffer2

1 Institute for Theoretical Physics, ETH Zurich, 8093 Zürich, Switzerland. E-mail: juerg@itp.phys.ethz.ch;
zhougang@itp.phys.ethz.ch

2 Department of Mathematics, Rutgers University, New Jersey 08854, USA. E-mail: soffer@math.rutgers.edu

Received: 8 December 2010 / Accepted: 12 June 2012
Published online: 15 September 2012 – © Springer-Verlag 2012

“A moving body will come to rest as soon as the force pushing it no longer acts on

it in the manner necessary for its propulsion.”—— Aristotle

Abstract: We study the motion of a heavy tracer particle weakly coupled to a dense ideal
Bose gas exhibiting Bose-Einstein condensation. In the so-called mean-field limit, the
dynamics of this system approaches one determined by nonlinear Hamiltonian evolution
equations describing a process of emission of Cerenkov radiation of sound waves into
the Bose-Einstein condensate along the particle’s trajectory. The emission of Cerenkov
radiation results in a friction force with memory acting on the tracer particle and causing
it to decelerate until it comes to rest.
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1. Introduction

On the basis of abundant everyday experience, Aristotle formulated a naive dynamical
law, which, roughly speaking, says that the velocity of a moving body is proportional to
the external force acting on it and that it approaches a state of rest as soon as the force that
has propelled it no longer acts on it. This law captures the phenomenon of friction. We
have learnt from the discoveries of Galileo, Newton and their followers that Aristotle’s
law is not the right starting point for the development of analytical mechanics. It is the
acceleration rather than the velocity of a body moving in empty space that is propor-
tional to the force acting on it. Yet, particle motion with friction caused by dissipative
processes is an omni-present phenomenon. It is thus of considerable interest to analyze
how this type of motion emerges from the Hamiltonian dynamics of particles coupled
to a dispersive environment.

The problem of constructing the effective dynamics of a particle coupled to disper-
sive reservoirs has previously been studied, e.g. in [1,2,6,8] and references given there.
In [5], we have introduced a family of quantum mechanical models describing tracer
particles moving through a Bose gas exhibiting Bose Einstein condensation. We have
identified a regime in which the dynamics of this system approaches one governed by
classical Hamiltonian evolution equations. Similar equations have also been considered
in [7]. This so-called “mean field regime” is characterized as follows:

(i) The mass of the tracer particle is chosen to be Mp = N M, M > 0, and the
potential of external forces acting on it is Vp(X) = N V (X), where X is the
particle position, and N is a parameter ranging over the interval [1,∞).

(ii) The mean density of the Bose gas is chosen to be ρ = N
ρ0

g2 , ρ0 > 0, where g is

a real parameter. The coupling constant of two-body forces between atoms in the
Bose gas is chosen to be λ = κ

N
, κ ≥ 0. The two-body forces are derived from a

potential φ(x − y) assumed to be spherically symmetric, of short range and of
positive type, (i.e., the two-body force is repulsive in average); x and y denote
the positions of two atoms in the Bose gas. The mass of an atom is denoted by m.

(iii) The interaction between the tracer particle and an atom in the Bose gas is described
by a two-body potential gW (x − X), where the coupling constant g is the same
parameter as the one introduced in (ii) and W is spherically symmetric and of
short range.

The mean-field regime corresponds to the limit

N → ∞. (1.1)

Remark 1. If the two-body Schrödinger operator − 1
2m

�x + gW (x) has bound states and
the coupling constant κ is strictly positive then the “effective mass” of the tracer particle
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can be argued to be proportional to Nm, because it forms a bound state with O(N ) atoms
of the Bose gas. In this situation, the assumption that Mp = N M , see (i), is presumably
superfluous; see [5].

Heuristic arguments (see [5]), which can be made rigorous, mathematically, for ideal
Bose gases (κ = 0) indicate that, in the mean-field limit (1.1), the dynamics of the system
is described by the following classical, nonlinear Hamiltonian evolution equations:

Ẋ t = Pt

M
, Ṗt = −∇X V (X t ) + g

∫
∇x W (X t − x)

(
|αt (x)|2 − ρ0

g2

)
dx, (1.2)

i α̇t (x) =
(

− 1

2m
� + gW (X t − x)

)
αt (x) + κφ ∗

(
|αt (y)|2 − ρ0

g2

)
αt (x). (1.3)

In Eqs. (1.2) and (1.3), X t ∈ R3 and Pt ∈ R3 are the position and momentum of the
tracer particle, respectively, at time t , and αt (x) is the Ginzburg-Landau order-param-
eter field describing the state of the Bose gas at time t (in the mean-field limit). The
interpretation of |αt (x)|2 is that of the density of atoms at the point x of physical space
R3, at time t; the global phase of αt is not an observable quantity. The symbol ∗ in (1.3)
denotes convolution.

We impose the conditions that ∇αt is square-integrable in x and that |αt |2 − ρ0

g2 is

integrable. This defines an affine space of complex-valued functions denoted by ŴBG

whose tangent space can be chosen to be some weighted Sobolev space. We define Ŵ to
be the Cartesian product of R6 (the tracer particle’s phase space) with ŴBG . The space
Ŵ is the phase space of the system. It is equipped with the standard symplectic form

ω =
3∑

n=1

d Xn ∧ d Pn − i

∫
dᾱ ∧ dα. (1.4)

Equations (1.2) and (1.3) then turn out to be the Hamiltonian equations of motion cor-
responding to the Hamilton functional

H(X, P, α, ᾱ) = P2

2M
+ V (X)+

∫
dx{ 1

2m
|∇α(x)|2 + gW (X − x) (|α(x)|2− ρ0

g2
)}dx

+
κ

2

∫ ∫
dxdy (|α(y)|2 − ρ0

g2
) φ(y − x) (|α(x)|2 − ρ0

g2
). (1.5)

This functional is sometimes called the “Gross-Pitaevskii functional.” It exhibits a global
U (1) symmetry,

α(x) → eiθα(x), ᾱ(x) → e−iθα(x), (1.6)

where θ is an x−independent phase. This symmetry is broken by a choice of boundary
conditions at ∞. In this paper, we choose zero-vorticity boundary conditions,

α(x) −−−−→
|x |→∞

√
ρ0

g2
.

We introduce a “fluctuation field”, β, by setting

α(x) :=
√

ρ0

g2
+ β(x), (1.7)
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with β(x) → 0, as |x | → ∞. The equations of motion then read

Ẋ t = Pt

M
, Ṗt =−∇X V (X t )+g

∫
∇x W (X t − x)

(
|βt (x)|2+2

√
ρ0

g2
Reβt (x)

)
dx,

(1.8)

i β̇t (x) =
(

− 1

2m
� + gW (X t − x)

)
βt (x) +

√
ρ0W (X t − x)

+ κ

(
φ ∗

(
|βt |2 + 2

√
ρ0

g2
Reβt

))
(x)

(
βt (x) +

√
ρ0

g2

)
. (1.9)

The Hamilton functional giving rise to these equations is obtained from (1.5) after insert-
ing the substitution (1.7). Equations (1.8) and (1.9) have stationary (time-independent)
solutions, and if the external force vanishes (V ≡ 0) they have traveling wave solutions,
provided the speed of the particle is smaller than or equal to the speed of sound in the
condensate; see [5]. If the initial speed of the particle is larger than the speed of sound of
the condensate a non-zero friction force is generated, because the particle emits sound
waves into the condensate (Cerenkov radiation) and hence loses energy until its speed
drops to the speed of sound, whereupon it continues to move ballistically, accompanied
by a “splash” in the order-parameter field β. (Quantum mechanically, this splash cor-
responds to a coherent state of gas atoms and causes decoherence in particle-position
space, allowing for an essentially “classical” detection of the particle trajectory.)

The following models are of interest; see [5]:

B -Model: κ = 0 (ideal Bose gas), g → 0, see [4].
C -Model: κ = 0 and g �= 0; see [3].
E -Model: κρ0/g2 = µ =const., and g, κ → 0
G -Model: κ > 0 and g �= 0.

The B− model is a special case of the E-model (µ = 0). The C-model is a little
harder to analyze than the B-model, and one must assume that the operator − 1

2m
�+ gW

does not have bound states or zero-energy resonances. (Bound states would cause an
instability in the C− model and would presumably lead to “run-away” solutions; see
[5]). Work on the E− model is in progress.

For further discussions of the physics background of these models, special solutions
of the equations of motion and references to other studies of related problems we refer
to [5].

In this paper, we focus our attention on the simplest model, the B−model, with
V ≡ 0. The equations of motion are then given by

Ẋ t = Pt

M
, Ṗt = 2

√
ρ0 Re〈∇x W X t , βt 〉; (1.10)

i β̇t (x) = − 1

2m
�βt +

√
ρ0W X t , (1.11)

where

W X (x) := W (X − x), 〈 f, g〉 :=
∫

f̄ (x)g(x) dx . (1.12)

The corresponding Hamilton functional is given by

H(X, P; β̄, β) := |P|2
2M

+
1

2m

∫

R3
|∇β|2dx + 2

√
ρ0

∫

R3
W X Reβdx . (1.13)
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The main result established in this paper says that if the initial kinetic energies of
the particle and of the fluctuations in the Bose gas, as described by β, are small enough,
as compared to ρ0

∫
dx W (x), (and if βt=0 decays sufficiently rapidly at ∞) then the

solutions of (1.10), (1.11) have the properties that

|Pt | ց 0, integrably fast in time t,

X t → X∞, and (1.14)

βt → 2m
√

ρ0�
−1W X∞ , as t → ∞.

By scaling time t, space x and the fluctuation field β, denoting the new variables again
by t, x and β, we can write the equations of motion of the B− model in the form

Ẋ t = Pt , Ṗt = νRe〈∇x W X t , βt 〉; (1.15)

i β̇t (x) = −1

2
�βt + W X t , (1.16)

with

|Ŵ (0)| = (2π)−
3
2 |

∫
d3x W (x)| = 1. (1.17)

Henceforth, we study (1.15) and (1.16), with the normalization condition (1.17) imposed.
Technically, the main difficulty surmounted in our paper is to construct solutions of

a certain semi-linear integro-differential equation, (see (3.8) below) whose linearization
(in P) takes the form

∂t qt = Z Re〈W, ei �
2 t W 〉

∫ t

0

qsds − Z Re〈W,

∫ t

0

ei �
2 (t−s) qs ds W 〉, (1.18)

where qt is a component of Pt , and Z > 0 is a positive constant. Using properties of
the solution of (1.18), we reformulate the original semi-linear integro-differential equa-
tion in such a way that a fixed-point theorem becomes applicable to construct solutions,
provided that the initial conditions are small enough.

Our paper is organized as follows: in Sect. 2 we carefully state our main result, The-
orem 2.1. In Sect. 3 we rewrite (1.15) and (1.16) in a more convenient form. This leads
to an equation for Pt containing a linear part and a higher-order nonlinear part. The
linearized equation is then carefully studied in Sect. 4, which, technically, is the core
of the present paper. The proof of our main result is completed in Sect. 5. In several
appendices (Appendices A through E) some auxiliary technical results are established.

2. The Main Theorem

In this section, we summarize our main results concerning the solutions of the equations
of motion (1.15) and (1.16). For this purpose, we define a certain interval I ⊂ (0, 1) of
real numbers, δ, as follows:

I := {δ |δ > 0,

∫ 1

0

1

1 + (1 − r)
1
2

(1 − r)−
1
2 [ 1

1 − 2δ
(r− 1

2 − r−δ) + r
1
2 −δ] dr < π}.

(2.1)
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Numerical evaluation of the integral on the right-hand side of (2.1) on a computer shows
that I is non-empty, with

Isup := sup
δ

{δ| δ ∈ I } ≈ 0.66.

The following theorem is the main result established in this paper.

Theorem 2.1. Suppose that the two-body potential W in (1.13), (1.15) and (1.16) is

smooth, spherically symmetric and of fast decay at infinity with (2π)−
3
2 |

∫
dx W (x)| =

1, and that the constant ν in (1.15) is O(1). Then, given any δ ∈ I, there exists ǫ0 = ǫ0(δ)

such that if

‖〈x〉4β0‖2, |P0| ≤ ǫ0,

then

|Pt | ≤ ct−
1
2 −δ as t → ∞, (2.2)

for some constant c = c(δ, ǫ0) < ∞. Moreover,

lim
t→∞

‖βt + 2(−�)−1W X t ‖∞ = 0. (2.3)

Here the norms ‖ · ‖p, 1 ≤ p ≤ ∞, are understood as follows: for any function
f : Rn → C,

‖ f ‖p := [
∫

Rn

| f |p dx]
1
p , 1 ≤ p < ∞,

and

‖ f ‖∞ = sup{t | µ[x | | f (x)| ≥ t] > 0},

where µ is the Lebesque measure in Rn .
The main theorem will be proven in Sect. 5. In Sect. 3, we derive a law/equation

describing the effective dynamics of the tracer particle after eliminating the degrees of
freedom of the Bose gas, and, in Sect. 4, we study the effective particle dynamics and,
in particular, analyze its linearization, which represents a key ingredient of our analysis.
Some heuristic arguments indicating what the true decay of the particle momentum Pt

in time t might be are presented in Appendix E.2.

3. Effective Particle Dynamics, and Local Wellposedness

To begin with, we recast Eqs. (1.15) and (1.16) in a form amenable to precise mathe-
matical techniques. We start with transforming Eq. (1.15) into a convenient form. We
introduce a new field, δt , by

βt =: 2�−1W X t + δt . (3.1)

The first term on the right-hand side of (3.1) describes a “splash” in the Bose gas (a
depletion if W is repulsive, and an accretion if W is attractive), while the field δt describes
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the emission of sound waves into the Bose gas by the tracer particle. In terms of the field
δt the equations of motion (1.15) and (1.16) are seen to be

Ẋ t = Pt , Ṗt = νRe〈∇x W X t , δt 〉,

i δ̇t (x) = −1

2
�δt + 2i�−1 Pt · ∇x W X t ,

(3.2)

with

δ0 = −2�−1W X0 + β0, (3.3)

where, in contrast to the term −2�−1W X0 , β0 has good decay at infinity. Using Duha-
mel’s principle, we obtain for δt ,

δt = −2ei �
2 t (�)−1W X0 + ei �

2 tβ0 + 2

∫ t

0

ei �
2 (t−s)(�)−1 Ps · ∇x W Xs ds. (3.4)

Plugging this equation into the equation for Pt , we find that

Ṗt = νRe〈∇x W X t , δt 〉

= νRe〈∇x W X t , ei �
2 tβ0〉

+ 2νRe〈∇x W, ei �
2 t (−�)−1W X0−X t 〉

− 2νRe〈∇x W,

∫ t

0

ei �
2 (t−s)(−�)−1 Ps · ∇x W Xs−X t ds〉, (3.5)

where we have used that 〈 f X , gY 〉 = 〈 f, gY−X 〉. Next we use that

W Y−X t = W Y−X0 −
∫ t

0

Ps · ∇x W Y−Xs ds,

to arrive at

Re〈∇x W, ei �
2 t (−�)−1W X0−X t 〉

= Re〈∇x W, ei �
2 t (−�)−1[W X0−X t − W ]〉

= Re〈∇x W, ei �
2 t (−�)−1

∫ t

0

Ps · ∇x W ds〉

+ Re〈∇x W, ei �
2 t (−�)−1

∫ t

0

Ps · ∇x [W X0−Xs − W ] ds〉;

and

Re〈∇x W,

∫ t

0

ei �
2 (t−s)(−�)−1 Ps · ∇x W Xs−X t ds〉

= Re〈∇x W,

∫ t

0

ei �
2 (t−s)(−�)−1 Ps · ∇x W ds〉

+ Re〈∇x W,

∫ t

0

ei �
2 (t−s)(−�)−1 Ps · ∇x [W Xs−X t − W ] ds〉.
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Plugging these identities into (3.5), we find that

Ṗt = FP + 2νRe〈∇x W, ei �
2 t (−�)−1

∫ t

0

Ps ds · ∇x W 〉

− 2νRe〈∇x W,

∫ t

0

ei �
2 (t−s)(−�)−1 Ps · ∇x W 〉 ds, (3.6)

where

FP := B0 + B1 + B2 (3.7)

with

B0 := νRe〈∇x W X t , ei �
2 tβ0〉,

B1 := 2νRe〈∇x W, ei �
2 t (−�)−1

∫ t

0

Ps · ∇x [W X0−Xs − W ] ds〉

and

B2 := −2νRe〈∇x W,

∫ t

0

ei �
2 (t−s)(−�)−1 Ps · ∇x [W Xs−X t − W ] ds〉,

the time argument, t, being omitted in Bi = Bi (t). Note that only B0 depends on the
initial condition, β0, of the Bose gas.

Equation (3.6) can be simplified somewhat as follows. Using that W is spherically
symmetric, we have that

〈∂k W, ei �
2 t (−�)−1 Ps · ∇x W 〉 = 〈∂k W, ei �

2 t (−�)−1 p(k)
s ∂k W 〉

= 1

3
p(k)

s 〈W, ei �
2 t W 〉, k = 1, 2, 3,

where ∂k := ∂
∂xk

, Ps = (p
(1)
s , p

(2)
s , p

(3)
s ) ∈ R3.

Equation (3.6) is then seen to be equivalent to the following equation (or law):

Ṗt = L(P)(t) + FP (t), (3.8)

where L is a linear operator on the space of momentum trajectories {Ps}0≤s<∞ given by

L(P) :=
(

L(p(1)), L(p(2)), L(p(3))

)

with

L(h)(t) := 2

3
νRe〈W, ei �

2 t W 〉
∫ t

0

hs ds − 2

3
νRe〈W,

∫ t

0

ei �
2 (t−s)hs ds W 〉, (3.9)

for an arbitrary function h : R+ ∪ {0} → R. Equation (3.8) is the law describing the
effective dynamics of the tracer particle.

Next, we study the well-posedness of Eq. (3.8). Our results are summarized in the
following theorem.
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Theorem 3.1. Equation (3.8) is locally well-posed: for P0 ∈ R3 and 〈x〉4β0 ∈ L2, there

exists a positive time T (|P0|, ‖〈x〉4β0‖2) such that a solution Pt of Eq. (3.8) exists for

any time t, with 0 < t ≤ T .

In particular, for an arbitrary T > 0, there exists a constant ǫ0(T ) such that if |P0|,
‖〈x〉4β0‖2 ≤ ǫ0(T ), then Pt is bounded by

|Pt | ≤ T −2, for any t ∈ [0, T ]. (3.10)

Proof. The local well-posedness of Eq. (3.8) is proven by standard techniques: One
converts (3.8) into an integral equation for Pt that can be solved by iteration, as long as
time t is small enough. The second part of Theorem 3.1 follows from the (proof of the)
first part and the observation that if P0 = 0 and β0 = 0 then Pt = 0 is a global solution
to (3.8). ⊓⊔

4. Global Solution of (3.8)

In this section we establish global well-posedness of (3.8). We transform (3.8) to a
more convenient form (see Eq. (4.14), below). For the new equation, we prove global
existence of solutions by applying a fixed-point theorem on a suitably chosen Banach
space of momentum trajectories.

To arrive at the new form of (3.8), we introduce a “propagator”, K , solving the
following Wiener-Hopf equation:

K̇ = −Z Re〈W,

∫ t

0

ei �
2 (t−s)K (s) ds W 〉 (4.1)

with

K (0) = 1.

The constant Z is given by Z := 2
3
ν, where ν > 0 is the constant appearing in Eqs. (1.15)

and (3.2). Some properties of the function K (t) are described in the following propo-
sition.

Proposition 4.1. The function K : R+ → R is continuous and satisfies

Z K (t) = 1

4
π− 5

2 t−
1
2 + CK t−1 + O(t−

3
2 ), (4.2)

as t → ∞, for some constant CK ∈ R.

A detailed proof of this proposition forms the contents of Appendix A. On a formal
level, the idea of the proof is straightforward. By taking Fourier transforms of both sides
of (4.1) in the time variable t one obtains that

∫ ∞

0

eikt K (t) dt = − 1

ik + ZG(k + i0)
, (4.3)

where the function G : R → C is given by

G(k + i0) := −i lim
ǫ→0+

(〈(−� + 2k + iǫ)−1W, W 〉 + i〈(−� − 2k − iǫ)−1W, W 〉).

(4.4)
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Thus,

K (t) = −(2π)−1

∫ ∞

−∞

1

ik + ZG(k + i0)
e−ikt dk

= − 1

π

∫ ∞

−∞
Re

1

ik + ZG(k + i0)
coskt dk.

The function G(k + i0) is smooth on R\{0}; in a neighborhood of k = 0 we have that

G(k + i0) is an analytic function of k
1
2 , and there exists a constant C �= 0 such that

G(k + i0) = Ck
1
2 + O(|k|). (4.5)

Formula (4.2) follows by finding the exact value for C .
Next, Lemma A.4 enables us to rewrite Eq. (3.8) in the following form:

Pt = K (t)P0+ Z

∫ t

0

K (t − s)Re〈W, ei �
2 s W 〉

∫ s

0

Ps1 ds1 ds+

∫ t

0

K (t − s)FP (s) ds.

(4.6)

In order to prove our main result on the decay of Pt in t , see inequality (2.2) of Theo-
rem 2.1, we require more precise information on Pt than the one provided by (4.6). The

problem is that all three terms on the right-hand side of (4.6) are O(t−
1
2 ), as t → ∞.

This decay is inadequate to prove inequality (2.2). We thus have to exhibit cancelations
between the terms on the right-hand side of (4.6) that kill the leading terms. Our strategy
to accomplish this is to resort to a second equation for Pt equivalent to (4.6) and then
take a suitable linear combination of the two equations. To find the second equation we
simply integrate both sides of (3.8) over time from 0 to t and arrive at

Pt = P0 + Z

∫ t

0

Re〈W, ei �
2 s W 〉

∫ s

0

Ps1 ds1ds

−2Z Re〈W, (i�)−1

∫ t

0

ei �
2 (t−s) Ps ds W 〉 +

∫ t

0

FP (s) ds, (4.7)

where the third term on the right-hand side of (4.7) derives from

−Z

∫ t

0

Re〈W,

∫ s

0

ei �
2 (s−s1) Ps1 ds1dsW 〉

by integrating by parts in s and using that Re〈W, (i�)−1W 〉 = 0.

Multiplying both sides of (4.7) by K (t) and subtracting the resulting equation
from (4.6), we obtain that

[1 − K (t)]Pt = Z

∫ t

0

[K (t − s) − K (t)]Re〈W, ei �
2 s W 〉

∫ s

0

Ps1 ds1ds

+2Z K (t)Re〈W, (i�)−1

∫ t

0

ei �
2 (t−s) Ps ds W 〉

+

∫ t

0

[K (t − s) − K (t)] FP (s) ds. (4.8)
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The first term on the right-hand side of (4.8) is rewritten as follows: for any function
q : [0,∞) → R,

∫ t

0

[K (t − s) − K (t)]Re〈W, ei �
2 s W 〉

∫ s

0

qs1 ds1ds

= −
∫ t

0

[K (t − s) − K (t)]Re〈W, ei �
2 s W 〉

∫ t

s

qs1 ds1ds

+

∫ t

0

K (t − s)Re〈W, ei �
2 s W 〉ds

∫ t

0

qs1 ds1

− K (t)

∫ t

0

Re〈W, ei �
2 s W 〉ds

∫ t

0

qs1 ds1

= −
∫ t

0

[K (t − s) − K (t)]Re〈W, ei �
2 s W 〉

∫ t

s

qs1 ds1ds

+

∫ t

0

K (t − s)Re〈W, ei �
2 s W 〉ds

∫ t

0

qs1 ds1

− 2K (t)Re〈W, (i�)−1ei �
2 t W 〉

∫ t

0

qs1 ds1.

Plugging this expression into the right-hand side of (4.8), we find that

[1 − K (t)]Pt = −Z

∫ t

0

[K (t − s) − K (t)]Re〈W, ei �
2 s W 〉

∫ t

s

Ps1 ds1ds

+ Z

∫ t

0

K (t − s)Re〈W, ei �
2 s W 〉ds

∫ t

0

Ps1 ds1

+ 2Z K (t)Re〈W, (i�)−1

∫ t

0

[ei �
2 (t−s) − ei �

2 t ] Ps ds W 〉

+

∫ t

0

[K (t − s) − K (t)]FP(s) ds

=: A(P)(t) +

∫ t

0

[K (t − s) − K (t)]FP(s) ds, (4.9)

thus

Pt = 1

1 − K (t)
A(P)(t) +

1

1 − K (t)

∫ t

0

[K (t − s) − K (t)]FP(s) ds, (4.10)

where A is the linear operator on the space of momentum trajectories {Ps}0≤s<∞ defined
by (4.9).

Equation (4.10) has the desired form. We will show that, if the trajectories {Ps}0≤s<∞
belong to an appropriate Banach space, then a fixed-point theorem can be applied that
implies global existence of solutions of (4.10). The main heuristic ideas underlying our
approach are discussed in Appendix E.

Next, we introduce a family of Banach spaces of momentum trajectories: For an
arbitrary δ ∈ I, where I is the interval defined in (2.1), and any T > 0, we define the
space

Bδ,T := {h : [T,∞) → R |t 1
2 +δh ∈ L∞[T,∞)} (4.11)
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equipped with the norm

‖h‖δ,T := sup
t∈[T,∞)

t
1
2 +δ|h|(t). (4.12)

The function h(t) has the interpretation of being a component of Pt . The definition of
Bδ,T can be extended to vector-valued functions Pt : [T,∞) → R3 in the obvious way.

Below, it will be proven that the operator A in (4.9) and (4.10) maps the space Bδ,T

into itself, for T large enough; (see (4.2)). It appears to be difficult to show that Pt ∈ Bδ,T ,
for some δ > 0, by starting directly from (4.6). However, in the analysis of (4.10), a
new difficulty appears: Since K (0) = 1, the operator 1

1−K (t)
A(·)(t) is unbounded on

L∞[0,∞). The new difficulty is circumvented by “waiting long enough until K (t)

becomes small”. We therefore divide the time axis [0,∞) into two subintervals, [0, T ]
and [T,∞), where T is chosen such that |K (t)| ≪ 1 when t ≥ T . For t ∈ [0, T ],
a unique strong solution, Pt , to the equation of motion (3.8) corresponding to a given
initial condition Pt=0 = P0 exists, provided |P0| and β0 are small enough, depending
on T , as shown in Theorem 3.1. For t ∈ [T,∞), we show that a solution Pt exists
and belongs to the space Bδ,T by proving that the operator 1

1−K (t)
A : Bδ,T → Bδ,T is

a contraction on a sufficiently small ball in Bδ,T centered at the origin; evidently this
forces us to require that |PT | is small enough, which, by Theorem 3.1, is guaranteed if
|P0| and ‖〈x〉4β0‖2 are chosen to be sufficiently small.

In what follows, we convert this discussion into rigorous mathematics. We define

χT (t) :=
{

1 if 0 ≤ t < T

0 if t ≥ T,
(4.13)

and rewrite Eq. (4.10) as

Pt = ϒ(P)(t) + G(t), (4.14)

where G(t) is the contribution to the right-hand side of (4.10) only depending on
{Pt }0≤t<T , i.e., independent of (1 − χT )P ,

G(t) := 1

1 − K (t)
{A(χT Pt ) +

∫ t

0

[K (t − s) − K (t)]FχT P (s) ds}, (4.15)

and ϒ(P) contains terms of first order in (1 − χT )P and higher order in P and is given
by

ϒ(P)(t) := 1

1 − K (t)
{A((1 − χT )P)

+

∫ t

0

[K (t − s) − K (t)][FP(s) − FχT P (s)] ds}. (4.16)

In Theorem 3.1, we have shown that if the initial conditions P0 and β0 are sufficiently
small (|P0|, ‖〈x〉4β0‖2 ≤ ǫ0(T )) then there exists a unique solution Pt , t ∈ [0, T ], with
maxt∈[0,T ] |Pt | ≤ T −2. In order to continue this solution to the interval [T,∞) and to
show that {Pt }T ≤t<∞ belongs to the Banach space Bδ,T we propose to use a fixed-point
theorem, which can be applied, provided two conditions are fulfilled:

(1) The nonlinear map ϒ(·)+G maps a small ball, B, in the Banach space Bδ,T centered
at 0 into itself, in particular, ‖G‖δ,T is small enough, and
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(2) ϒ(·) is a contraction on B in the norm ‖ · ‖δ,T of Bδ,T introduced in (4.12).

We begin by verifying that ϒ(·) is a contraction on B if B is chosen small enough.
We define a function � : [0, 1] → R+ by

�(δ) :=
∫ 1

0

1

1 + (1 − r)
1
2

(1 − r)−
1
2 [ 1

1 − 2δ
(r− 1

2 − r−δ) + r
1
2 −δ] dr, (4.17)

(see Eq. (2.1)). A key result is the following theorem.

Theorem 4.2. There exists a constant T0 < ∞ such that if T ≥ T0 and if δ is chosen

such that π−1�(δ) < 1 then the map ϒ(·) introduced in (4.16) maps Bδ,T into itself

and is a contraction on a sufficiently small ball B ⊂ Bδ,T centered at 0. The two terms

on the right-hand side of (4.16) defining ϒ(·) satisfy the following estimates:

(1) The linear operator A((1 − χT )·) satisfies

| 1

1 − K (t)
A((1 − χT )h)(t)| ≤ t−

1
2 −δ[ 1

π
�(δ) + ǫ(T )]‖h‖δ,T , (4.18)

where ǫ(T ) is a small constant satisfying limT →∞ ǫ(T ) = 0.

(2) Let ǫ0(T ) be the constant introduced in Theorem 3.1. Suppose that Q1, Q2 :
[0,∞) → R3 are any two vector-valued functions satisfying the following two

conditions:

Q1(t) = Q2(t) = Pt , t ∈ [0, T ],
where Pt is the solution of Eq. (3.8)/ (4.10) constructed in Theorem 3.1, for 0 ≤
t ≤ T and |P0|, ‖〈x〉4β0‖2 ≤ ǫ0(T ); and

‖Q1‖δ,T , ‖Q2‖δ,T ≪ 1.

Then

| 1

1 − K (t)

∫ t

0

[K (t − s) − K (t)][FQ1 − FQ2 ](s) ds|

� t−
1
2 −δ‖Q1 − Q2‖δ,T [‖Q1‖δ,T + ‖Q2‖δ,T ]. (4.19)

Inequality (4.18) will be reformulated as Proposition 4.4, below, and proven in Appen-
dix B. Inequality (4.19) is proven in Appendix C.

Next, we present an estimate on the term G(t) on the right-hand side of (4.14) defined
in (4.15). This term only depends on the solution, Pt , of (3.8)/ (4.10) for t ∈ [0, T ],
which has been constructed in Theorem 3.1.

Theorem 4.3. Suppose that |P0|, ‖〈x〉4β0‖2 ≤ ǫ0(T ) and that the parameter δ is cho-

sen as in Theorem 4.2. Then G belongs to the Banach space Bδ,T and ‖G‖δ,T can be

made arbitrarily small by choosing T large enough; (see Theorem 3.1).

More specifically, we have that, for any t ≥ T,

| 1

1 − K (t)

∫ t

0

[K (t − s) − K (t)]FχT P (s) ds| ≤ ǫ(T )t−
1
2 −δ, (4.20)

and

| 1

1 − K (t)
A(χT Pt )| ≤ ǫ(T )t−

1
2 −δ, (4.21)

with ǫ(T ) → 0 as T → ∞.
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Remark 2. The constant ǫ0(T ) is chosen as in Theorem 3.1.

The proof of this theorem is contained in Appendix D.
In the remainder of this section, we discuss the strategy used to prove Theorem 4.2.

(The proof of Theorem 4.3 is easier than the one of Theorem 4.2 and is therefore not
discussed here.) We recall that the map ϒ(·) is the sum of two maps appearing on the

right-hand side of (4.16). The map A((1 − χT )·)(t) is linear, while 1
1−K (t)

∫ t

0 [K (t −
s) − K (t)][FP(s) − FχT P (s)] ds contains higher-order terms, besides depending on
the initial conditions, β0, of the Bose gas. Since we are attempting to construct small

solutions of (3.8)/(4.10), and because β0 can be chosen as small as needed, it is fairly
easy to control the second map. We therefore focus our attention on the ideas needed to
estimate the first (linear) map. For this purpose, we write the operator A((1 − χT )·) as
a sum of three terms:

A((1 − χT )h)(t) =
3∑

k=1

Ŵk(t), Ŵk(t) ≡ Ŵk((1 − χT )h)(t), (4.22)

where

Ŵ1(t) := −Z

∫ t

0

ds [K (t − s) − K (t)]Re〈W, ei �
2 s W 〉

∫ t

s

ds1 hs1 [1 − χT (s1)],

Ŵ2(t) := Z

∫ t

0

ds K (t − s)Re〈W, ei �
2 s W 〉

∫ t

0

ds1 hs1[1 − χT (s1)],

and

Ŵ3(t) := 2Z K (t)Re〈W, (i�)−1

∫ t

0

ds [ei �
2 (t−s) − ei �

2 t ] hs [1 − χT (s)] W 〉, (4.23)

see Eqs. (4.9) and (4.13).
Before estimating Ŵk(t), k = 1, 2, 3, we introduce two functions:

�1(δ) := 1

(1 − 2δ)π

∫ 1

0

1

1 + (1 − r)
1
2

(1 − r)−
1
2 [r− 1

2 − r−δ] dr,

and (4.24)

�2(δ) := 1

π

∫ 1

0

1

1 + (1 − r)
1
2

(1 − r)−
1
2 r

1
2 −δ dr,

see also (4.17).
Control of the terms Ŵk(t), k = 1, 2, 3, is provided in the following proposition.

Proposition 4.4. There exists a function ǫ̃(T ), 0 < T < ∞, with limT →∞ ǫ̃(T ) = 0,

such that, for an arbitrary function h ∈ Bδ,T ,

|Ŵ1(t)| ≤ t−
1
2 −δ[�1(δ) + ǫ̃(T )]‖h‖δ,T , (4.25)

|Ŵ3(t)| ≤ t−
1
2 −δ[�2(δ) + ǫ̃(T )]‖h‖δ,T , (4.26)

and

|Ŵ2(t)| ≤ ǫ̃(T )t−
1
2 −δ‖h‖δ,T , (4.27)

where Bδ,T and ‖ · ‖δ,T are as in (4.11) and (4.12) respectively.



Friction in a Model of Hamiltonian Dynamics 415

This proposition will be proven in Appendix B. Obviously it implies inequality (4.18) in
Theorem 4.2, (1), with ǫ(T ) = 3ǫ̃(T ). The ideas underlying the proof of Proposition 4.4
are as follows. The arguments needed to estimate Ŵ1(t) and Ŵ3(t) are very similar, so
we only consider Ŵ1(t) and Ŵ2(t). The trickiest estimate is (4.27). The crucial step is to
control the factor

I (t) :=
∫ t

0

K (t − s)Z Re〈W, ei �
2 s W 〉 ds

in Ŵ2(t). We propose to show that

I (t) = O((1 + t)−
3
2 ), as t → ∞, (4.28)

which implies (4.27) by straightforward arguments.

Estimate (4.28) does not follow by just using that K (t) = O(t−
1
2 ) and 〈W, ei �

2 t W 〉 =
O((1 + t)−

3
2 ). These estimates, by themselves, only imply that |I (t)| ≤ const t−

1
2 . In

order to conclude the improved estimate claimed in (4.28), we Fourier-transform the con-

volution of K with Re〈W, ei �
2 t W 〉χ0, with χ0(k) = 1, for k ≥ 0, and = 0, otherwise,

which yields

I (t) = Z

2π

∫ ∞

−∞
K̂ (k)

̂
Re〈W, ei �

2 t W 〉χ0(k)e−ikt dk.

From (4.1), (4.3) and (4.4) we derive by inspection that
̂

Re〈W, ei �
2 t W 〉χ0(k) =

−G(k + i0), hence

I = − Z

2π

∫ ∞

−∞

G(k + i0)

ik + ZG(k + i0)
e−ikt dk, (4.29)

with G(k + i0) as in (4.4). The function G(k+i0)
ik+ZG(k+i0)

is smooth in k on R\{0}. It is

therefore its behavior near k = 0 that determines the decay of I (t) in t. We recall that

G(k + i0) = ck
1
2 + O(k), for |k| small, where c is some non-zero constant; see (4.5).

Thus

− Z
G(k + i0)

ik + ZG(k + i0)
= −1 +

1

ic
k

1
2 + O(k), for |k| small. (4.30)

Furthermore G(k+i0)
ik+ZG(k+i0)

decays rapidly in k at infinity. Thus, in Eq. (4.29), we can inte-

grate by parts in the variable k, and this yields the desired decay estimate on I (t); (note
that the constant term on the right-hand side of (4.30) yields a subleading contribution).

Next, we turn to estimating Ŵ1; see (4.25). For this purpose, we peel off the main con-

tributions to the functions K (t) and Re〈W, ei �
2 t W 〉 : By explicit calculation, see (4.2)

and (A.26), one finds that, as t → ∞, K (t) = 1
4Z

π− 5
2 t−

1
2 + O(t−1); see (4.2), and

Re〈W, ei �
2 t W 〉 = CW t−

3
2 + O((1 + t)−

5
2 ). We define an approximation, Ŵ̃1(t), of Ŵ1(t)

by

Ŵ̃1 := −1

4
π− 5

2 CW

∫ t

0

ds [(t − s)−
1
2 − t−

1
2 ]s− 3

2

∫ t

s

ds1 hs1 [1 − χT (s1)].
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Recalling the definition of the Banach space Bδ,T and changing variables, s = tσ and
s1 = tσ1, we find that

|Ŵ̃1| ≤ t−
1
2 −δ 1

4
CW

∫ 1

0

[(1 − σ)−
1
2 − 1]σ− 3

2

∫ 1

σ

σ
− 1

2 −δ

1 dσ1dσ ‖h‖δ,T

≤ t−
1
2 −δ�1(δ)‖h‖δ,T .

To complete our estimate on Ŵ1 we are left with estimating (Ŵ1 − Ŵ̃1)(t), which is a

straightforward task. In fact Ŵ1(t) − Ŵ̃1(t) decays in t faster than Ŵ̃1(t).

Further details of our estimates needed to prove Proposition 4.4 can be found in
Subsect. B.2 of Appendix B.

5. Proof of the Main Result, Theorem 2.1

We use the subdivision of the time axis

[0,∞) = [0, T ) ∪ [T,∞)

into two parts, for an appropriately chosen T . Existence and uniqueness of a solution
Pt , of Eqs. (3.8)/(4.10), for t ∈ [0, T ), assuming that the initial conditions P0 and β0

are small enough (depending on T ), has been proven in Theorem 3.1.
To continue such a solution to the interval [T,∞), we apply a standard fixed-point

theorem to Eq. (4.14). Thanks to Theorems 4.2 and 4.3, the hypotheses of the fixed-point
theorem are valid, provided T is chosen appropriately, and |P0|, ‖〈x〉4β0‖2 are small
enough. We thus conclude that a global solution Pt , t ∈ [0,∞), to (3.8)/(4.10) exists,
with (1 − χT )Pt ∈ Bδ,T , for any δ in the interval I defined in (2.1), provided |P0| and
‖〈x〉4β0‖2 are chosen small enough. This proves estimate (2.2) of Theorem 2.1.

In order to prove Eq. (2.3) in Theorem 2.1, we show that the field δt introduced in
(3.1) decays to 0, as t → ∞, in the sense that

‖δt‖∞ → 0, as t → ∞. (5.1)

To establish (5.1) we apply the norm ‖ · ‖∞ to both sides of (3.4), which yields

‖δt‖∞ ≤ const.{‖ei �
2 t (−�)−1W X0‖∞ + ‖ei �t

2 β0‖∞

+

∫ t

0

‖ei �
2 t (−�)−1 Ps∇x W Xs ‖∞ ds}.

Using the estimates

‖ei �
2 t (−�)−1‖L1→L∞ ≤ const t−

1
2

and

‖ei �
2 t‖L1→L∞ ≤ const t−

3
2

and our estimate on Pt , see (2.2), we find that

‖δt‖∞ ≤ const t−
1
2 + t−

3
2 ‖β0‖L1

which, under our assumption on β0, yields (5.1).
This completes the proof of Theorem 2.1. Some hard technicalities now follow in

several appendices. ⊓⊔
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A. Proof of Proposition 4.1

We start with deriving an explicit formula for K , see (4.1).
We define a function G : R → C by

G(k + i0) := −i〈(−� + 2k + i0)−1W, W 〉 + i〈(−� − 2k − i0)−1W, W 〉. (A.1)

Next, we relate G to the function K .

Proposition A.1. The function K in (4.1) is continuous and takes the form

K (t) = −(2π)−1

∫ ∞

−∞

1

ik + ZG(k + i0)
e−ikt dk, (A.2)

in particular

K (t) = 0 for t < 0. (A.3)

The function K can be transformed to a convenient form

K (t) = − 1

π

∫ ∞

−∞
Re

1

ik + ZG(k + i0)
coskt dk. (A.4)

This proposition is proven in Subsects. A.2 and A.3. The basic ideas in the proof are
not difficult. On a formal level, Eq. (A.2) is obtained by Fourier transformation, as men-
tioned after Proposition 4.1. In Subsect. A.3 we will make it rigorous. Equation (A.3)
follows from the facts that 1

i z+ZG(z)
is analytic in the set I m z > 0 and its absolute value

is sufficiently small when |z| is large. Hence

K (t) = −(2π)−1

∫ ∞

−∞

1

i(k + ia) + ZG(k + a)
e−i(k+ia)t dk

for any a > 0, and moreover K (t) → 0, as a → ∞, if t < 0. We obtain the last
identity (A.4) by manipulating the expression in (A.2).

To prove Proposition 4.1 it suffices to derive a decay estimate for K (t) from (A.4)
using the oscillatory nature of coskt . Since the function Re 1

ik+ZG(k+i0)
: R → R is

smooth on the open set (−∞,∞)\{0}, it is the lowest order term in the Taylor-expan-
sion of the function in a neighborhood of k = 0 that determines the decay in t .

Lemma A.2. The function G(k + i0) defined in (A.1) satisfies the estimate

G(k + i0) =

⎧
⎨
⎩

2
3
2 (i − 1)π2k

1
2 + Ck + O(|k| 3

2 ) if k > 0

2
3
2 (−i − 1)π2|k| 1

2 + Ck + O(|k| 3
2 ) if k < 0,

(A.5)

where C is some constant.

This lemma is proven in Subsect. A.1, by Taylor-expanding the function G(k + i0)

in k
1
2 .

Now we are ready to prove Proposition 4.1:
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Proof of Proposition 4.1. The fact K is a continuous function has been shown in Prop-
osition A.1.

For the other parts, to simplify matters we decompose K (t) into two parts, according
to the integration regions

K (t) = K+(t) + K−(t), (A.6)

with

K+ := − 1

π

∫ ∞

0

Re
1

ik + ZG(k + i0)
coskt dk

and

K− := − 1

π

∫ 0

−∞
Re

1

ik + ZG(k + i0)
coskt dk.

We first estimate K+. Since the leading order is determined by Taylor expansion of the
integrand Re 1

ik+ZG(k+i0)
coskt around k = 0; it is natural to begin with studying this

function. We define a new function g : R+ → R by

|k|− 1
2 g(|k| 1

2 ) := Re − 1

π

1

ik + ZG(k + i0)
.

By direct computation, using the result in (A.5), we find that, in a neighborhood of
k = 0,

|k|− 1
2 g(|k| 1

2 ) = − 1

π Z

ReG

( k
Z

+ I mG)2 + (ReG)2
= 1

2
5
2 π3 Z

|k|− 1
2 [1 + O(k

1
2 )],

where, in the last step, the result in (A.5) was used. The other important observations
are that the function g : R+ → C is smooth on [0,∞) and satisfies the estimate

|g(ρ)| ≤ C(1 + ρ)−3.

Expanding g(k) around k = 0 we obtain

K+(t) =
∫ ∞

0

|k|− 1
2 g(|k| 1

2 ) coskt dk

= 2

∫ ∞

0

g(ρ)cos(ρ2t) dρ

= 2g(0)

∫ ∞

0

cos(ρ2t) dρ + D,

where D is given by

D := 2

∫ ∞

0

[g(ρ) − g(0)]cos(ρ2t) dρ.

The first term on the right-hand side is the dominant one,

2g(0)

∫ ∞

0

cos(ρ2t) dρ = 2g(0)t−
1
2

∫ ∞

0

cosx2 dx = 1

8
π− 5

2 Z−1t−
1
2 , (A.7)

using the Fresnel integral (A.30).
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The second term, D, is of the form

D =
∫ ∞

0

H(ρ)cos(ρ2t)ρ dρ,

where the function H = 2(g(ρ)−g(0))
ρ

is smooth and is bounded uniformly by C(1+ρ)−1.

By standard techniques we find that

D = O(t−
3
2 ). (A.8)

This together with (A.7) implies that

K+ = 1

8
π− 5

2 Z−1t−
1
2 + O(t−

3
2 ). (A.9)

For K−, we obtain, using almost identical arguments,

K− = 1

8
π− 5

2 Z−1t−
1
2 + O(t−

3
2 ).

These two results, together with (A.6), obviously imply Proposition 4.1. ⊓⊔

In the next three subsections we prove Lemma A.2 and Proposition A.1.
In what follows we often use Fourier transform. Its definition and properties are

standard. Since constants are important in the present paper, we quote some of them

explicitly. For a function f : Rd → C, its Fourier transformation f̂ is defined as

f̂ (k) := (2π)−
d
2

∫

Rd

eik·x f (x) dx,

and the inverse transform as

f̌ (x) := (2π)−
d
2

∫

Rd

e−ik·x f (k) dk.

Moreover, for arbitrary functions f, g : Rd → C,

f̂ g = (2π)−
d
2

∫

Rd

f̂ (x − y)ĝ(y)dy. (A.10)

A.1. Proof of Lemma A.2.

Proof. By Fourier-transformation and introducing polar coordinates we find that G(k +
i0) takes the convenient form

G(k + i0) = −i〈(ρ2 + 2k + i0)−1Ŵ , Ŵ 〉 + i〈(ρ2 − 2k − i0)−1Ŵ , Ŵ 〉

= i8πk[
∫ ∞

0

(ρ2 + 2k + i0)−1|Ŵ (ρ)|2dρ

+

∫ ∞

0

(ρ2 − 2k − i0)−1|Ŵ (ρ)|2dρ]. (A.11)

We expand |Ŵ (ρ)|2 in a neighborhood of ρ = 0. The fact that the function W :
R3 → R is smooth, spherically symmetric and decays rapidly at ∞ implies that the
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function Ŵ is smooth in the variable ρ2, or, equivalently, that there exists a smooth and
rapidly decaying function F : R+ → R such that

|Ŵ (ρ)|2 = 1 + ρ2 F(ρ2). (A.12)

Here the condition that |Ŵ (0)| = 1, in (1.17), is used. Plugging (A.12) into (A.11)
we find that

G(k + i0) = G0(k) + G1(k) + G2(k)

with

G0(k + i0) := i8πk[
∫ ∞

0

(ρ2 + 2k + i0)−1dρ +

∫ ∞

0

(ρ2 − 2k − i0)−1dρ],

G1(k + i0) := 8iπk

∫ ∞

0

F(ρ2) dρ,

and

G2(k + i0) := −16iπk2[
∫ ∞

0

(ρ2 + 2k + i0)−1 F(ρ2) dρ

−
∫ ∞

0

(ρ2 − 2k − i0)−1 F(ρ2) dρ].

Next we estimate the three terms.
The estimate on G1 is evident:

G1(k + i0) = O(k). (A.13)

The function G0(k + i0) has an explicit expression: For any k ∈ C\R−, we observe
that

∫ ∞

0

(ρ2 + 2k)−1dρ = π

2
√

2
k− 1

2 , (A.14)

where k− 1
2 = |k|− 1

2 , for k ∈ R+. The proof consists in observing that if k > 0 then

∫ ∞

0

(ρ2 + 2k)−1dρ = 1√
2

k− 1
2

∫ ∞

0

(ρ2 + 1)−1dρ = π

2
√

2
k− 1

2 .

Consequently

G0(k + i0) =

⎧
⎨
⎩

2
3
2 (i − 1)π2k

1
2 if k > 0

2
3
2 (−i − 1)π2|k| 1

2 if k < 0.

(A.15)

To estimate G2 it is sufficient to show that if a function φ decays sufficiently fast at
∞ then, for any small k,

∫ ∞

−∞
(ρ2 ± 2k ± i0)−1φ(ρ) dρ = O(|k|− 1

2 ). (A.16)
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Indeed, we use Fourier transformation to relate (ρ2 ± 2k ± i0)−1 to (−∂2
x ± 2k ± i0)−1

and find that

(−∂2
x ± 2k ± i0)−1φ̂|x=0 = C

∫ ∞

−∞
(ρ2 ± 2k ± i0)−1φ(ρ) dρ

for some constant C �= 0. The operator (−∂2
x + 2k), k ∈ C\R−, has an integral kernel

C1k− 1
2 e−k

1
2 |x−y|, where C1 is a constant. This yields

|
∫ ∞

−∞
(ρ2 ± 2k ± i0)−1φ(ρ) dρ| � |k|− 1

2 ‖φ‖L1 ,

which is the desired estimate (A.16).
Collecting the estimates above we complete our proof. ⊓⊔

A.2. Proof of (A.3) of Proposition A.1. We start by extending the domain of the function
G from k ∈ R to I m k > 0. By Fourier transformation we find that G(k + i0) takes the
form

G(k + i0) = −i〈(ρ2 + 2k + i0)−1Ŵ , Ŵ 〉 + i〈(ρ2 − 2k − i0)−1Ŵ , Ŵ 〉. (A.17)

Its extension is the function G : {k|I mk > 0} → C defined by

G(k) := 8iπk[
∫ ∞

0

(ρ2 + 2k)−1|Ŵ (ρ)|2dρ +

∫ ∞

0

(ρ2 − 2k)−1|Ŵ (ρ)|2dρ].

It is easy to see that this function is analytic in k, I mk > 0, and G(k + i0), k ∈ R, is
its limit on the real line.

Equation (A.3) follows by contour integration. To guarantee its applicability, we have
to verify several criteria.

We start with the following result.

Lemma A.3. In the complex region I mk > 0, the function 1
ik+ZG(k)

eikt is analytic in k

for any (fixed) t, and

lim
|k|→∞

| 1

ik + ZG(k)
| → 0. (A.18)

Proof. Equation (A.18) is implied by the fact that G(k) → 0, as |k| → ∞.

It is easy to see that the function ik + ZG(k) is analytic, in the region I mk > 0,

because the operator (−� ± 2k)−1 is well defined and analytic in k. To prove analyticy
of eikt 1

ik+ZG(k)
we only need to prove that the denominator does vanish anywhere, i.e.

|ik + ZG(k)| �= 0 when I mk > 0. (A.19)

For this purpose we rewrite the expression of G(k) in (A.24) to obtain

ik + ZG(k) = ik[1 + 8Zπ

∫ ∞

0

ρ2(ρ4 − 4k2)|Ŵ (ρ)|2 dρ]. (A.20)

In what follows we consider two cases, Rek = 0 and Rek �= 0 separately.
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(A) If Rek = 0 then, by the fact that I mk > 0, we find that −k2 > 0, hence ρ4−4k2 >

0, and this implies (A.19).

(B) If Rek �= 0, the key observation is that
∫ ∞

0 ρ2(ρ4−4k2)|Ŵ (ρ)|2 dρ has a non-van-

ishing imaginary part. Indeed −4k2 can be written in the form −4k2 = a + ib, with
b �= 0. We rewrite (ρ4 −4k2)−1 as (ρ4 −4k2)−1 = [(ρ4 +a)2 +b2]−1(ρ4 +a− ib).

Hence

I m

∫ ∞

0

ρ2(ρ4 − 4k2)|Ŵ (ρ)|2 dρ = −b

∫ ∞

0

[(ρ4 + a)2 + b2]−1|Ŵ (ρ)|2 dρ �= 0.

This together with (A.20) implies (A.19). ⊓⊔

We continue to prove (A.3). The fact that 1
ik+ZG(k)

eikt is analytic on the domain

I mk > 0 and the decay estimate in (A.18), proven in Lemma A.3, imply that, for any
a > 0,

F(t) :=
∫ ∞

−∞

1

ik + ZG(k + i0)
e−ikt dk

=
∫ ∞

−∞

1

i(k + ia) + ZG(k + ia)
e−i(k+ia)t dk

= eat

∫ ∞

−∞

1

i(k + ia) + ZG(k + ia)
e−ikt dk.

If t < 0 it is easy to see that F(t) = 0 by letting a → +∞. This is (A.3).
We turn to (A.4). The definition of G(k + i0) implies that G(k + i0) = −G(−k − i0).

Moreover, by changing variables k → −k, we find that, for any t > 0,

F(t) =
∫ ∞

−∞

1

−ik − ZG(k − i0)
eikt dk

and

F(−t) =
∫ ∞

−∞

1

−ik − ZG(k − i0)
e−ikt dk = 0.

These identities, together with (A.3) and the observation that G(k + i0) = −G(k − i0),

imply

F(t) = 1

2

∫ ∞

−∞
[ 1

ik + ZG(k + i0)
+

1

−ik − ZG(k − i0)
][eikt + e−ikt ] dk

= 2

∫ ∞

−∞
Re

1

ik + ZG(k + i0)
coskt dk.

The desired result follows by using the definition of F(t). ⊓⊔
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A.3. Proof of (A.2) of Proposition A.1. The idea underlying the proof is simple, at least
on a formal level: By Fourier transforming both sides of (4.1) one obtains an explicit
expression for

∫ ∞
0 eikt qt dt. Then, by inverse Fourier transformation, one arrives at the

desired result. The setback is that the Fourier transformation and its inverse are defined
on L2, and the fact that the function K �∈ L2 makes things a little harder. In what follows,
we begin with another result and show that it implies (4.1).

The result is

Lemma A.4. Suppose the function q̃t : R+ → R satisfies the estimate |q̃t | ≤ C1(1+t)−2

and is the solution to the equation

∂t q̃t = −Z Re〈W,

∫ t

0

ei �
2 (t−s)q̃s ds W 〉 + h(t), (A.21)

where the function h : R+ → R decays like |h(t)| ≤ c2(1 + t)−
3
2 . Then q̃t also satisfies

the equation

q̃t = K (t)q̃0 +

∫ t

0

K (t − s)h(s) ds. (A.22)

This lemma will be proven shortly.
We now prove (A.2) by assuming Lemma A.4.

Proof of (A.2). By the local wellposedness of the equation it is easy to see that the
function K is smooth.

To prove the rest we apply Lemma A.4 by defining a new smooth function u : R+ →
R with the properties

ut = K (t) if t ≤ T, and |ut | ≤ C(1 + t)−2

for some constant C. This function is well defined, because, in any finite time interval
[0, T ], the solution K to the linear equation (4.1) exists. By direct computation we find
that u satisfies the equation

∂t ut = −Z Re〈W,

∫ t

0

ei �
2 (t−s)us ds W 〉 − ft , (A.23)

where the function f is defined by

ft := −Z Re〈W,

∫ t

0

ei �
2 (t−s)us ds W 〉 − ∂t ut : R

+ → R

and satisfies the estimates

ft = 0 if t ≤ T, and | ft | ≤ Cu(1 + t)−
3
2 .

These estimates are obtained easily, hence we omit the details.
Applying Lemma A.4 to (A.23) and using the fact that ft = 0 if t ≤ T, we find that

if t ≤ T then ut = K (t) takes the desired form. Since T is arbitrary, this equation holds
for any time. ⊓⊔
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Proof of Lemma A.4. We Fourier-transform both sides of (A.21) to derive an expression
for

∫ ∞
0 eikt q̃t dt :

∫ ∞

0

eikt∂t q̃t dt = −q̃0 − ik

∫ ∞

0

eikt q̃t dt

= −Z

∫ ∞

0

eikt Re〈W,

∫ t

0

ei �
2 (t−s)q̃sds W 〉 dt +

∫ ∞

0

eikt h(t) dt.

An important observation is that the first term on the right-hand side admits a simpler
expression:

−
∫ ∞

0

eikt Re〈W,

∫ t

0

ei �
2 (t−s)q̃sds W 〉dt = G(k + i0)

∫ ∞

0

eikt q̃t dt, (A.24)

where the function G(· + i0) : R → C is defined in (A.1).
Collecting the identities above we find that

∫ ∞

0

eikt q̃t dt = − 1

ik + ZG(k + i0)
q0 − 1

ik + ZG(k + i0)

∫ ∞

0

eikt h(t) dt.

Inverse-Fourier transform of both sides of the equation yields

q̃t = −(2π)−1

∫ ∞

−∞

1

ik + ZG(k + i0)
e−ikt dk q̃0 +

1

2π

∫ ∞

−∞
e−ikt H(k) dk,

where H(k) is defined as

H(k) := − 1

ik + ZG(k + i0)

∫ ∞

0

eikt h(t) dt.

By applying Fourier transformation, using (A.10) and the fact that K (t) = 0, for t < 0,

we obtain that

1

2π

∫ ∞

−∞
e−ikt H(k) dk =

∫ t

0

K (t − s)h(s) ds. (A.25)

Collecting the estimates above we complete the proof. ⊓⊔

A.4. Some decay estimates. In this part, we collect some estimates used in the main part
of the paper.

Lemma A.5. If W is a smooth, spherically symmetric and rapidly decaying function

satisfying the condition |Ŵ (0)| = 1 then, as t → ∞,

Re〈W, ei �
2 t W 〉 = −2t−

3
2 π

3
2 + O(t−

5
2 ),

2Re〈W, (i�)−1ei �
2 t W 〉 = 4t−

1
2 π

3
2 + O(t−

3
2 ).

(A.26)
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Proof. We start with proving the first equation. By Fourier transformation, introducing
polar coordinates, and integrating by parts we find that

Re〈W, ei �
2 t W 〉 = Re〈Ŵ , e−i

|k|2
2 t Ŵ 〉

= 4π

∫ ∞

0

ρ2cos(
1

2
ρ2t)|Ŵ (ρ)|2dρ

= −4π

t

∫ ∞

0

sin(
1

2
ρ2t)|Ŵ (ρ)|2dρ

−4π

t

∫ ∞

0

sin(
1

2
ρ2t)ρ∂ρ[|Ŵ (ρ)|2]dρ

= −4π

t
[
∫ ∞

0

sin(
1

2
ρ2t)dρ +

∫ ∞

0

sin(
1

2
ρ2t)F(ρ) dρ], (A.27)

where F(ρ) is defined by

F(ρ) := |Ŵ (ρ)|2 − 1 + ρ∂ρ |Ŵ (ρ)|2.

By rescaling ρ( t
2
)

1
2 → ρ it is easy to see that the first term on the right-hand side takes

the form

− 4π

t

∫ ∞

0

sin(
1

2
ρ2t) dρ = −4

√
2π t−

3
2

∫ ∞

0

sin(ρ2) dρ = −2π
3
2 t−

3
2 . (A.28)

Here the fact that
∫ ∞

0 sinx2dx = (π
8
)

1
2 is used; (see (A.30)).

Now we turn to the second term. Define a new function, F̃(ρ), by F̃(ρ) := ρ−2 F(ρ).

This changes our expression to
∫ ∞

0

sin(
ρ2t

2
)F(ρ) dρ =

∫ ∞

0

ρ2sin(
ρ2t

2
)F̃(ρ) dρ.

Thanks to the fact that F(ρ) = O(ρ2), in a neighborhood of ρ = 0 and because of

smoothness, we obtain that F̃ is a smooth function. By standard techniques it is seen
that

∫ ∞

0

sin(
ρ2t

2
)F(ρ) dρ = O(t−

3
2 ). (A.29)

This together with (A.28) implies the first estimate in (A.26).
By similar arguments we obtain the second estimate in (A.26). ⊓⊔
The following identity has been used in the proof:

∫ ∞

0

cos(x2) dx =
∫ ∞

0

sin(x2) dx = (
π

8
)

1
2 . (A.30)

Proof. The key observation is that the function ei z2 = cosz2 + isinz2 : C → C is an
entire function. This together with the fact that in the region Rez, I mz > 0 the function
decays rapidly, at |z| → ∞, enables us to use the method of contour integration to obtain
∫ ∞

0

ei z2

dz =
∫

z∈{ 1√
2

x+i 1√
2

x | x∈[0,∞)}
ei z2

dz =(
1√
2

+
1√
2

i)

∫ ∞

0

e−z2

dz =
√

π√
8

+

√
π√
8

i.

This obviously implies (A.30). ⊓⊔
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B. Proof of Proposition 4.4

In the following we prove the three estimates in Proposition 4.4, in three different
subsections. In various places we have to consider separately two cases: δ < 1

2
, where

functions in the Banach spaces Bδ,T , see (4.11), are not necessarily integrable in time

on the interval [T,∞), and δ > 1
2

, where functions in Bδ,T are integrable. In order not

to clutter our arguments with too much details, we only consider the cases δ < 1
2

. The

analysis for δ > 1
2

is similar and is considered in [3], where a slightly harder problem
is solved.

Recall the ideas we presented after Proposition 4.4. In what follows we carry out the
ideas in details.

B.1. Proof of (4.27). It is easy to estimate the second factor in the definition of Ŵ2 :
Recall that we only consider the case δ < 1

2
,

|
∫ t

0

(1 − χT (s1)) qs1 ds1| � (1 + t)
1
2 −δ‖q‖δ,T . (B.1)

The crucial step is to prove that

|Z
∫ t

0

K (t − s)Re〈W, ei �
2 s W 〉 ds| � (1 + t)−

3
2 . (B.2)

Estimates (B.1) and (B.2) obviously imply (4.27).
In what follows we prove (B.2). Using the fact that K (t) = 0, for t < 0, in (A.3),

applying Fourier transformation, using (A.10) and applying inverse Fourier transforma-
tion we find that

I :=
∫ t

0

K (t − s)Z Re〈W, ei �
2 s W 〉 ds (B.3)

=
∫ ∞

0

K (t − s)Z Re〈W, ei �
2 s W 〉 ds (B.4)

= 1

2π

∫ ∞

−∞

F(k)

ik + ZG(k + i0)
e−ikt dk, (B.5)

where F(k) is defined by

F(k) := Z

∫ ∞

0

eiks Re〈W, ei �
2 s W 〉 ds

= Z

2

∫ ∞

0

eiks[〈W, ei �
2 s W 〉 + 〈W, e−i �

2 s W 〉] ds

= −Z [〈(−i� + 2ik − 0)−1W, W 〉 + 〈(i� + 2ik − 0)−1W, W 〉]
= −ZG(k + i0),

and G(k + i0) is defined in (A.1).

By (A.5) the function ZG(k+i0)
ik+ZG(k+i0)

is smooth on R\{0}, and around k = 0 it has the

expression

ZG(k + i0)

ik + ZG(k + i0)
= −1 + C

1

Z
k

1
2 + O(k)
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for some constant C . Putting this into (B.3), and integrating by parts in the variable k,
we obtain

|I | = 1

2π
t−1|

∫ ∞

−∞
e−ikt∂k[

ZG(k + i0)

ik + ZG(k + i0)
] dk|

≤ 1

2π
t−1[A1 + A2 + A3] (B.6)

with

A1 := |
∫ ∞

−∞
e−ikt 1

ik + ZG(k + i0)
dk|,

A2 := |
∫ ∞

−∞
e−ikt k

[ik + ZG(k + i0)]2
dk|,

A3 := |
∫ ∞

−∞
e−ikt Zk∂k G(k + i0)

[ik + ZG(k + i0)]2
dk|.

It is easy to see that 1
ik+ZG(k+i0)

= O(|k|− 1
2 ), k

[ik+ZG(k+i0)]2 = O(1) and Zk∂k G(k+i0)

[ik+ZG(k+i0)]2 =
O(|k|− 1

2 ), in a neighborhood of k = 0. This implies that

3∑

k=1

Ak = O(t−
1
2 ), or equivalently, I = O(t−

3
2 ), (B.7)

which, together with the estimates above, yields the desired estimate (B.2). ⊓⊔

B.2. Proof of (4.25). Recall the asymptotic forms of K (t) and Re〈W, ei �
2 t W 〉 in (4.2)

and (A.26), respectively. We define functions K̃ , M̃ and Ŵ̃1 to approximate these func-
tions and Ŵ1:

Z K̃ (t) := t−
1
2

1

2
π− 5

2 ,

M̃(t) := −2t−
3
2 π

3
2

(B.8)

and

Ŵ̃1(t) := −Z

∫ t

0

[K̃ (t − s) − K̃ (t)]M̃(s)

∫ t

s

qs1 [1 − χT (s1)] ds1 ds. (B.9)

In the following we prove a sharp estimate on Ŵ̃1 and prove that Ŵ1 − Ŵ̃1 is negligibly
small because it decays faster. Recall the definition of �1(δ) in (4.24), and recall that
we only consider the case δ < 1

2
.

Lemma B.1. The function Ŵ̃1 is estimated by

|Ŵ̃1|(t) ≤ t−
1
2 −δ�1(δ)‖qt‖δ,T , (B.10)

and there exists a constant ǫ(T ), with limT →∞ ǫ(T ) = 0 such that

|Ŵ̃1 − Ŵ1|(t) ≤ t−
1
2 −δǫ(T )‖qt‖δ,T . (B.11)
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Proof. We first prove (B.10). By direct computation we find

|Ŵ̃1| ≤ 1

2π

∫ t

0

[(t − s)−
1
2 − t−

1
2 ]s− 3

2

∫ t

s

|qs1 | ds1ds

≤ 1

(1 − 2δ)π

∫ t

0

[(t − s)−
1
2 − t−

1
2 ]s− 3

2 (t
1
2 −δ − s

1
2 −δ) ds ‖qt‖δ,T

= 1

(1 − 2δ)π

∫ t

0

(t − s)−
1
2 t−

1
2

1

(t − s)
1
2 + t

1
2

s− 1
2 (t

1
2 −δ − s

1
2 −δ)ds ‖qt‖δ,T .

Here (t − s)−
1
2 − t−

1
2 has been rewritten as

(t − s)−
1
2 − t−

1
2 = (t − s)−

1
2 t−

1
2

s

(t − s)
1
2 + t

1
2

.

Changing variable, s = tr, we see that

|Ŵ̃1| ≤ t−
1
2 −δ�1(δ) ‖qt‖δ,T .

We proceed to estimating Ŵ1 − Ŵ̃1 and prove (B.11). We divide Ŵ1 − Ŵ̃1 into three
parts, according to the integration regions:

Ŵ1 − Ŵ̃1 = I1 + I2 + I3, (B.12)

with Ik, k = 1, 2, 3, defined by

I1 := Z

∫ T
1
3

0

[K (t − s) − K (t)]Re〈W, ei �
2 s W 〉

∫ t

s

(1 − χT (s1))qs1 ds1ds

−Z

∫ T
1
3

0

[K̃ (t − s) − K̃ (t)]M̃(s)

∫ t

s

(1 − χT (s1))qs1 ds1ds,

I2 := Z

∫ t−T
1
3

T
1
3

[K (t − s) − K (t)]Re〈W, ei �
2 s W 〉

∫ t

s

(1 − χT (s1))qs1 ds1ds

−Z

∫ t−T
1
3

T
1
3

[K̃ (t − s) − K̃ (t)]M̃(s)

∫ t

s

(1 − χT (s1))qs1 ds1ds

= Z

∫ t−T
1
3

T
1
3

[(K (t − s) − K (t)) − (K̃ (t − s) − K̃ (t))]Re〈W, ei �
2 s W 〉

×
∫ t

s

(1−χT (s1))qs1 ds1ds+ Z

∫ t−T
1
3

T
1
3

[K̃ (t−s)− K̃ (t)][Re〈W, ei �
2 s W 〉−M̃(s)]

×
∫ t

s

(1 − χT (s1))qs1 ds1ds,

and

I3 := Z

∫ t

t−T
1
3

[K (t − s) − K (t)]Re〈W, ei �
2 s W 〉

∫ t

s

(1 − χT (s1))qs1 ds1ds

−Z

∫ t

t−T
1
3

[K̃ (t − s) − K̃ (t)]M̃(s)

∫ t

s

(1 − χT (s1))qs1 ds1ds.
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We first analyze I1. When s ≤ T
1
3 and t ≥ T we use (4.2) to obtain

|K (t − s) − K (t)|, |K̃ (t − s) − K̃ (t)|

� t−
1
2 (t − s)−

1
2

s

t
1
2 + (t − s)

1
2

+ [(t − s)−1 − t−1] + (t − s)−
3
2

� t−
3
2 (1 + s).

Consequently

|K (t − s) − K (t)||Re〈W, ei �
2 s W 〉| + |K̃ (t − s) − K̃ (t)||M̃(t)| � t−

3
2 s− 1

2 .

Plugging this into the definition of I1, we obtain

|I1| � t−1−δ

∫ T
1
3

0

s− 1
2 ds ‖q‖δ,T = t−1−δT

1
6 ‖q‖δ,T ≤ T − 1

3 t−
1
2 −δ‖q‖δ,T . (B.13)

Now we turn to I2. In the region [T 1
3 , t − T

1
3 ] the functions K̃ (t) and M̃(t) are good

approximations of K (t) and Re〈W, ei �
2 t W 〉. Specifically

|K (t − s) − K̃ (t − s)| � (1 + t − s)−1

|K (t) − K̃ (t)| � (1 + t)−1

|Re〈W, ei �
2 s W 〉 − M̃(s)| � s− 5

2 .

By direct computation,

I2 � t−1−δ‖q‖δ,T ≤ T − 1
6 t−

1
2 −δ‖q‖δ,T . (B.14)

Concerning I3, it is easy to find that in the region s ≥ t − T
1
3 and t ≥ T ,

〈W, ei �
2 s W 〉 = O(t−

3
2 ). Hence

|I3| �

∫ t

t−T
1
3

(|t − s|− 1
2 + t−

1
2 ) ds t−1−δ‖q‖δ,T

� T
1
6 t−1−δ‖q‖δ,T

≤ T − 1
3 t−

1
2 −δ‖q‖δ,T . (B.15)

We complete the proof by collecting the estimates above and adopting an appropriate
definition of ǫ(T ). ⊓⊔

B.3. Proof of (4.26). Similarly as for Ŵ1, we start with retrieving the ‘main’ contribution

to Ŵ3. We define a new function Ṽ to approximate the function 2Re〈W, (i�)−1ei �
2 t W 〉

when t is large (see (A.26)):

Ṽ := 4t−
1
2 π

3
2 .

We then define an approximation, Ŵ̃3, of Ŵ3 by setting

Ŵ̃3 := Z K̃ (t)

∫ t

0

[Ṽ (t − s) − Ṽ (t)](1 − χT (s))qs ds, (B.16)

where, K̃ (t) has been defined in (B.8).
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Recall the definitions of ‖q‖δ,T and �2(δ) in (4.12) and (4.24), respectively, and

recall that we only consider δ < 1
2

.

Proposition B.2. There exists a time T > 0 such that, for any t ≥ T ,

|Ŵ̃3| ≤ t−
1
2 −δ�2(δ)‖q‖δ,T . (B.17)

The remainder Ŵ3 − Ŵ̃3 is estimated by

|Ŵ3 − Ŵ̃3| ≤ t−
1
2 −δǫ(T )‖q‖δ,T , (B.18)

where ǫ(T ) is a small constant satisfying lim
T →

ǫ(T ) = 0.

Proof. We start with a proof of (B.17). By direct computation

|Ŵ̃3| ≤ t−
1
2

1

π

∫ t

0

[(t − s)−
1
2 − t−

1
2 ]s− 1

2 −δ ds‖q‖δ,T

= t−1 1

π

∫ t

0

s

(t − s)
1
2 + t

1
2

(t − s)−
1
2 s− 1

2 −δ ds‖q‖δ,T .

Changing variables s := tr we obtain the desired estimate

|Ŵ̃3| ≤ t−
1
2 −δ 1

π

∫ 1

0

(1 − r)−
1
2

1

1 + (1 − r)
1
2

r
1
2 −δ dr‖q‖δ,T

= t−
1
2 −δ�2(δ)‖q‖δ,T .

To prove (B.18) we transform Ŵ3 − Ŵ̃3 into a more convenient form:

Ŵ3 − Ŵ̃3 = Z [K (t) − K̃ (t)]
∫ t

0

[V (t − s) − V (t)](1 − χT (s))qs ds

+Z K̃ (t)

∫ t

0

[V (t − s) − Ṽ (t − s)](1 − χT (s))qs ds

+Z K̃ (t)[Ṽ (t) − V (t)]
∫ t

0

(1 − χT (s))qs ds, (B.19)

where the function V (t) is defined by

V (t) := 2Re〈W, (i�)−1ei �
2 t W 〉.

By arguments almost identical to the proof of (B.11) we conclude that (B.18) holds. ⊓⊔

C. Proof of (4.19)

In this section we prove inequality (4.19) in Theorem 4.2. As in Appendix B, we only
consider the case δ < 1

2
. The case δ > 1

2
is considered in [3].
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Proposition C.1. Let Q1 and Q2 be defined in Theorem 4.2, and recall the definitions

of F(P) and Bk, k = 0, 1, 2, in (3.7).
If |P0| ≤ T −3, then

|B0(Q1) − B0(Q2)|(t) ≪ (1 + t)−1−δ‖Q1 − Q2‖δ,T , (C.1)

and, for k = 1, 2,

|Bk(Q1) − Bk(Q2)|(t) � (1 + t)−1−δ‖Q1 − Q2‖δ,T (‖Q1‖δ,T + ‖Q2‖δ,T ). (C.2)

This proposition is proven below.
Now we use this result to prove the desired estimate (4.19).

Proof of (4.19). We start by estimating K (t − s) − K (t). Using (4.2), we obtain

|K (t − s) − K (t)| � |(1 + t − s)−
1
2 − (1 + t)−

1
2 | + (1 + t − s)−1 − (1 + t)−1

+ (1 + t − s)−
3
2

= (1 + t − s)−
1
2 (1 + t)−

1
2

s

(1 + t)
1
2 + (1 + t − s)

1
2

+ s(1 + t − s)−1(1 + t)−1 + (1 + t − s)−
3
2

≤ (1 + t − s)−
1
2 (1 + t)−1s + (1 + t − s)−

3
2 . (C.3)

Plugging this estimate, as well as (C.1) and (C.2) into
∫ t

0 |K (t −s)−K (t)||Bk(Q1)−
Bk(Q2)|(s) ds, k = 0, 1, 2, we obtain the desired estimate (4.19). ⊓⊔

C.1. Proof of (C.1). By direct computation and our estimate on‖ei �
2 t‖L1→L∞ , we obtain

that

|B0(Q1) − B0(Q2)|(t) � t−
3
2 ‖β0‖L1‖∂x W

∫ t
T [Q1(s)−Q2(s)]ds − ∂x W‖L1

� t−
3
2 ‖〈x〉4β0‖L2‖∂x W

∫ t
T [Q1(s)−Q2(s)]ds − ∂x W‖L1 .

The right-hand side vanishes when t ≤ T . This, together with T ≫ 1, implies that

|B0(Q1) − B0(Q2)|(t) = (1 + t)−
3
2 ‖〈x〉4β0‖L2‖

∫ t

T

∂s∂x W
∫ s

T [Q1(s1)−Q2(s1)]ds1 ds‖L1

� (1 + t)−
3
2 ‖〈x〉4β0‖L2‖∂x W‖L1

∫ t

T

|Q1(s) − Q2(s)| ds

≪ (1 + t)−1−δ‖Q1 − Q2‖δ,T .

Here the hypothesis of smallness of ‖〈x〉4β0‖L2 in Theorem 2.1 is used, and we recall

that only the case δ < 1
2

is considered. ⊓⊔



432 J. Fröhlich, Z. Gang, A. Soffer

C.2. Proof of (C.2). In what follows we only estimate the contributions to B2; the esti-
mate of B1 is similar and easier, hence omitted.

We start with transforming B2. Using the formula

W Xs−X t − W = −
∫ t

s

∂s1 W Xs1
−X t ds1 =

∫ t

s

[Ps1 · ∂x ] W Xs1
−X t ds1,

we obtain

B2(P) = −2νRe〈∇x W,

∫ t

0

ei �
2 (t−s)(−�)−1[Ps · ∂x ]

∫ t

s

[Ps1 · ∂x ]W Xs1
−X t ds1ds〉

= −2νRe〈∇x W,

∫ t

0

ei �
2 (t−s)(−�)−1[Ps · ∂x ]

×
∫ t

s

[Ps1 · ∂x ][W Xs1
−X t − W ] ds1ds〉

= −2νRe〈∇x W,

∫ t

0

ei �
2 (t−s)(−�)−1[Ps · ∂x ]

∫ t

s

[Ps1 · ∂x ]

×
∫ t

s1

[Ps2 · ∂x ]W Xs2
−X t ds2ds1ds〉. (C.4)

Here the fact that the function W is spherically symmetric has been used to see that
various terms vanish.

Next, we prove (C.2) for k = 2. Among many terms in its expression we only consider

B̃ := −2νRe〈∇x W,

∫ t

0

ei �
2 (t−s)(−�)−1[Q1(s) · ∂x ]

∫ t

s

[Q1(s1) · ∂x ]

×
∫ t

s1

[Q1(s2) · ∂x ][W Xs2
−X t − W X̃s2

−X̃ t ] ds2ds1ds〉,

where X t := X0 +
∫ t

0 Q1s and X̃ t := X0 +
∫ t

0 Q2(s) ds. We rewrite W Xs2
−X t −W X̃s2

−X̃ t

as follows:

W Xs2
−X t − W X̃s2

−X̃ t = −
∫ t

s2

∂z W Xz−X t −X̃z+X̃s2 dz

=
∫ t

s2

(Q1(z) − Q2(z)) · ∇x W Xz−X t −X̃z+X̃s2 dz.

Consequently

B0 = −2νRe〈∇x W,

∫ t

0

ei �
2 (t−s)(−�)−1[Q1(s) · ∂x ]

∫ t

s

[Q1(s1) · ∂x ]

×
∫ t

s1

[Q1(s2) · ∂x ]
∫ t

s2

(Q1(z) − Q2(z)) · ∇x W Xz−X t −X̃z+X̃s2 dzds2ds1ds〉.

To obtain a decay estimate we have to consider a function I4 defined by

I4 := 〈∇x W, ei �
2 (t−s)(−�)−1(

∏

kl∈{1,2,3}, l=1,2,3

∂xkl
)W Y (t,s2,z)〉

= 〈∇x W, ei �
2 (t−s)+Y (t,s2,z)·∂x (−�)−1(

∏

kl∈{1,2,3}, l=1,2,3

∂xkl
)W 〉,
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where Y (t, s2, z) ∈ R3 is defined by Y (t, s2, z) := Xz − X t − X̃z + X̃s2 , with s2 ∈ [s, t]
and z ∈ [s2, t]. It is easy to transform I4 to a form where Proposition C.2, below, applies,
which yields

|I4| � (1 + t − s)−3, for any t and s ≤ t. (C.5)

Now it is easy to see that, for some constant C ,

|B̃| �

∫ t

0

(1 + t − s)−3s− 1
2 −δ

∫ t

s

s
− 1

2 −δ

1

∫ t

s1

s
− 1

2 −δ

2

×
∫ t

s2

s
− 1

2 −δ

3 ds3ds2ds1ds‖Q1‖3
δ,T ‖Q1 − Q2‖δ,T (C.6)

= C[t 3
2 −3δ

∫ t

0

(1 + t − s)−3s− 1
2 −δ ds − 3t1−2δ

∫ t

0

(1 + t − s)−3s−2δ ds (C.7)

+3t
1
2 −δ

∫ t

0

(1 + t − s)−3s
1
2 −3δ ds −

∫ t

0

(1 + t − s)−3s1−4δ ds] (C.8)

×‖Q1‖3
δ,T ‖Q1 − Q2‖δ,T . (C.9)

To estimate the integrals above we divide the interval [0, t] into two subintervals:
[0, 1

2
t] and [ 1

2
t, t], and denote the corresponding contributions by D1 and D2 respec-

tively.

(1) Concerning D1, it is easy to see that

D1 � t−1−4δ‖Q1‖3
δ,T ‖Q1 − Q2‖δ,T ,

using the fact that (1 + t − s)−3 = O((1 + t)−3) and direct computation.
(2) In the second interval we Taylor-expand the functions sα = tα[1 − α t−s

t
+

O([ t−s
t

]2)], with α = − 1
2

− δ, −2δ, 1
2

− 3δ, and find that the leading terms
cancel each other. This implies that

D2 � t−1−4δ

∫ t

1
2 t

(1 + t − s)−1 ds‖Q1‖3
δ,T ‖Q1 − Q2‖δ,T

� t−1−4δlnt‖Q1‖3
δ,T ‖Q1 − Q2‖δ,T .

Collecting the above estimates we conclude that

B̃(t) � t−1−2δ‖Q1‖3
δ,T ‖Q1 − Q2‖δ,T . (C.10)

To remove the non-integrable singularity at t = 0, we use the fact that B̃(t) = 0, for
t < T, with T ≫ 1. ⊓⊔
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C.3. Some decay estimates. The following result has been used in (C.5).

Proposition C.2. Suppose that the functions f : R+ → C, h : [0, 2π ] → C and

y : R+ → R are smooth and satisfy the conditions:

|y(t)|t− 1
2 ≤ ǫ0, for some small constant ǫ0 > 0;

|∂k
ρ f (ρ)| ≤ ake−c0|ρ|, for any k ∈ N, where ak, c0 > 0 are constants.

Then there exist constants Cl , l ∈ N, such that

|
∫ 2π

0

h(θ)

∫ ∞

0

eiρ2t eiρcosθ y(t)ρl f (ρ2) dρdθ | ≤ Cl(1 + t)−
l+1
2 . (C.11)

Proof. If y ≡ 0 the proof is standard, (integration by parts). In the present situation we
use integration by parts and the fact that y(t) is appropriately small.

For notational purposes, we define functions Il by

Il(t) :=
∫ 2π

0

h(θ)

∫ ∞

0

eiρ2t eiρcosθ y(t)ρl f (ρ2) dρ dθ.

We prove by induction that

|Il | ≤ Cl(1 + t)−
l+1
2 .

Step 1. For l = 0, we change variables, ρ2t =: r, to obtain

I0 = 1

2
t−

1
2

∫ 2π

0

h(θ)

∫ ∞

0

r− 1
2 eir eir

1
2 cosθy(t)t

− 1
2

f (t−1r) drdθ

= 1

2
t−

1
2 [J1 + J2] (C.12)

with

J1 :=
∫ 2π

0

h(θ)

∫ 1

0

r− 1
2 eir eir

1
2 cosθy(t)t

− 1
2

f (t−1r) drdθ

and

J2 :=
∫ 2π

0

h(θ)

∫ ∞

1

r− 1
2 eir eir

1
2 cosθy(t)t

− 1
2

f (t−1r) drdθ.

J1 is clearly bounded.

To bound J2 an obvious obstacle is that the function r− 1
2 �∈ L1[0,∞). The way out

is to integrate by parts, using that

−i
1

1 + 1
2
r− 1

2 cosθy(t)t−
1
2

∂r [eir eir
1
2 cosθy(t)t

− 1
2 ] = eir eir

1
2 cosθy(t)t

− 1
2
,

and to use that the function

g(r, θ) := −i
1

1 + 1
2
r− 1

2 cosθy(t)t−
1
2
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is uniformly bounded, for r ≥ 1, as follows from the hypotheses of the proposition.
Then

|J2| ≤
∫ 2π

0

|h(θ)||g(1, θ)|| f (t−1)| dθ

+

∫ 2π

0

|h(θ)|
∫ ∞

1

|∂r [r− 1
2 g(r, θ) f (t−1r)]| dr dθ.

The first term on the right-hand side is obviously bounded. For the second term, it is not
difficult to derive that

|∂r [r− 1
2 g(r, θ) f (t−1r)]| � r− 3

2 + t−1r− 1
2 | f

′
(t−1r)|.

Using our assumptions on the function f we find that

t−1

∫ ∞

1

r− 1
2 | f

′
(t−1r)| dr � t−

1
2 .

Collecting the estimates above, |J2| is seen to be bounded. This, together with (C.12)
and the fact J1 is bounded, implies the desired result.

Step 2. In the second step of the induction we assume that (C.11) holds for any k ≤ l.
Now we estimate Il+1. The idea is to represent Il+1 into a linear combination of Il−1

and Il by performing integration by parts on certain variables; (with I−1 = 0).

Integrating by parts, and using the identity − i
2

t−1∂ρeiρ2t = ρeiρ2t , we find that

Il+1 = i t−1

∫ π

0

h(θ)

∫ 2∞

0

eiρ2t∂ρ[eiρcosθ y(t)ρl f (ρ2)] dρdθ

= t−1 y(t)K1 + t−1 K2

with

K1 := −1

2

∫ 2π

0

cosθh(θ)

∫ ∞

0

eiρ2t eiρcosθ y(t)ρl f (ρ2) dρdθ

and

K2 := i

2

∫ 2π

0

h(θ)

∫ ∞

0

eiρ2t eiρcosθ y(t)∂l [ρl f (ρ2)] dρdθ.

Notice K1 and K2 are of the form of Il or Il−1 (if l ≥ 1), after defining appropriate
functions fnew(ρ2) and hnew(θ). Hence the induction hypotheses on Ik, k ≤ l imply
that

|Il+1| � |t−1 y(t)|t− l+1
2 + t−

l+2
2 � t−

l+2
2 ,

which is the desired estimate on Il+1.

Thus, (C.11) holds for any l ∈ Z+. ⊓⊔



436 J. Fröhlich, Z. Gang, A. Soffer

D. Proof of Theorem 4.3

We reformulate this theorem in the form of the following lemma. Recall the constant
ǫ0(T ) in Theorem 3.1 and the definition of FχT P in (3.7).

Lemma D.1. If T is sufficiently large and |P0|, ‖〈x〉4β0‖2 ≤ ǫ0(T ) then, for any time

t ≥ T,

|A(χT P)| ≤ ǫ(T )(1 + t)−
1
2 −δ; (D.1)

|
∫ t

0

(K (t − s) − K (t)) B0(χT P)(s) ds| � ǫ(T )(1 + t)−
3
2 ‖〈x〉4β0‖2; (D.2)

and, for k = 1, 2,

|
∫ t

0

(K (t − s) − K (t)) Bk(χT P)(s) ds| ≤ ǫ(T )t−1−2δ, (D.3)

where ǫ(T ) is a small constant satisfying limT →∞ ǫ(T ) = 0.

Proof. We start with proving (D.1). By its definition in (4.10), the function A(χT P)

takes the form

A(χT P) = −Z

∫ t

0

[K (t − s) − K (t)]Re〈W, ei �
2 s W 〉

∫ t

s

Ps1 χT (s1) ds1 ds

+Z

∫ t

0

K (t − s)Re〈W, ei �
2 s W 〉ds

∫ t

0

Ps1χT (s1) ds1

+2Z K (t)Re〈W, (i�)−1

∫ t

0

[ei �
2 (t−s) − ei �

2 t ] Ps χT (s) ds W 〉.

Using (3.10) we obtain

|A(χT P)| ≤ Z T −1[
∫ T

0

|K (t − s) − K (t)||Re〈W, ei �
2 s W 〉| ds

+|
∫ t

0

K (t − s)Re〈W, ei �
2 s W 〉ds|

+|K (t)|
∫ T

0

|Re〈W, (i�)−1[ei �
2 (t−s) − ei �

2 t ]W 〉| ds]. (D.4)

As proven in (B.2), the second term on the right-hand side is of order t−
3
2 .

We now turn to the remaining two terms. For Re〈W, (i�)−1[ei �
2 (t−s) − ei �

2 t ]W 〉, in
the last line, we use estimates similar to (C.3) to conclude that

|Re〈W, (i�)−1[ei �
2 (t−s) − ei �

2 t ]W 〉| � (1 + t − s)−
1
2 (1 + t)−1s + (1 + t − s)−1.

Putting this and (C.3) back into (D.4), we obtain

|A(χT P)| ≤ T −1[(1+t)−1

∫ T

0

(1+t−s)−
1
2

s

(1 + s)
3
2

ds +

∫ t

0

(1 + t − s)−1(1 + s)−
3
2 ds

+(1 + t)−
3
2

∫ T

0

(1 + t − s)−
1
2 s ds + (1 + t)−

1
2

∫ T

0

(1 + t − s)−1 ds]

≤ T − 1
3 (1 + t)−

1
2 −δ,

where, to obtain the last line, we consider two regimes, t ∈ [T, 2T ] and t ≥ 2T .
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The proof of (D.1) is completed by setting ǫ(T ) = T − 1
3 .

To prove (D.2) we use standard arguments to conclude that

|B0(χT P)| � ‖〈x〉−4e−i�t∇x W χT P‖2‖〈x〉4β0‖2 � (1 + t)−2‖〈x〉4β0‖2.

This, together with (C.3) and the fact t ≥ T , implies (D.2).
To prove (D.3) we only estimate B1, the estimate on B2 being very similar.
Recall the definition of Pt . Applying the formula

W X0−Xs − W =
∫ s

0

∂s1 W X0−Xs1 ds1 =
∫ s

0

[Ps1 · ∂x ]W X0−Xs1 ds1,

we rewrite the expression for B1 :

B1(P) = 2νRe〈∇x W, ei �
2 t (−�)−1

∫ t

0

[Ps · ∂x ]
∫ s

0

[Ps1 · ∂x ]W X0−Xs1 ds1ds〉.

Define

X̃ t := X0 +

∫ t

0

χT Ps ds.

Then

B1(χT P)

= 2νRe〈∇x W, ei �
2 t (−�)−1

∫ t

0

[Ps · ∂x ]
∫ s

0

[Ps1 · ∂x ]W X0−X̃s1 ds1ds〉.

By the estimate on χT Pt in (3.10), it is easy to see that

∫ t

0

χT |Ps | ds =
∫ T

0

χT |Ps | ds ≤ T −1. (D.5)

By a similar argument as in (C.5), we may apply Proposition C.2 to find that

|〈∇x W, ei �
2 t (−�)−1∂xk

∂xl
W X0−X̃s1 〉| � (1 + t)−2,

for any s1 ∈ [0, t]. This, together with (3.10), implies that

|B1(χT P)| � (1 + t)−2T −2,

which, together with (C.3), implies (D.3). ⊓⊔

E. Some Heuristic Ideas Underlying (4.9)

We emphasize that the non-rigorous discussions in this subsection are NOT used in any
other parts of the paper.

In this section we present the ideas underlying Eq. (4.9), which is the key equation
in our proof of the most important result, Theorem 4.2.

To save space we only consider the linear part of (3.8), which corresponds to the
following equation:
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q̇t = Z Re〈W, ei �
2 t W 〉

∫ t

0

qs ds − Z Re〈W,

∫ t

0

ei �
2 (t−s) qs ds W 〉,

q0 = 1.

(E.1)

By repeating the arguments used to prove Theorems 4.2 and 4.3 we prove that the
solution qt belongs to the Banach space Bδ,T .

We divide our discussion into two parts: In Subsect. E.1, we present the ideas behind

constructing (4.9), assuming that |qt | ≤ const t−
1
2 −δ for some δ > 0. In Subsect. E.2,

we present a heuristic argument to show that |qt | ≤ const t−
1
2 −δ, for some δ > 0.

E.1. Ideas underlying (4.9). Recall that (4.9) is obtained by subtracting from (4.6) the
product of (4.7) with the function K (t).

We define a constant

C0 := q0 − 2Z

∫ ∞

0

Re〈W, (i�)−1ei �
2 s W 〉 qs ds.

Lemma E.1. If the function q of (E.1) satisfies the estimate |qt | ≤ ct−
1
2 −δ, for some

δ > 0, then

C0 = 0. (E.2)

This lemma will be proven shortly.

For technical reasons, it is hard to prove that |qt | ≤ Ct−
1
2 −δ, even after imposing

C0 = 0 on (4.6). Instead we search for a new equation containing C0. A natural candi-
date is (4.7), which is obtained by integrating both sides of (3.8) from 0 to t . The key
observation is:

Lemma E.2. If the function q satisfies the estimate |qt | ≤ ct−
1
2 −δ, for some δ > 0, then

(4.7) can be rewritten as

qt = C0 + O(t−δ). (E.3)

The proof of this lemma is almost identical to that of Lemma E.1.
By Lemmas E.1 and E.2 it is natural to consider Eq. (4.9), as we did.

Proof of Lemma E.1. The key point in proving the lemma is to show that
∫ t

0

K (t − s)Re〈W, ei �
2 s W 〉

∫ s

0

qs1 ds1ds

= K (t)

∫ t

0

Re〈W, ei �
2 s W 〉

∫ s

0

qs1 ds1ds + O(t−
1
2 −δ). (E.4)

Suppose this holds. Then by integrating by parts in the variable s and the assumption

that |qt | ≤ Ct−
1
2 −δ, we find

∫ t

0

K (t − s)Re〈W, ei �
2 s W 〉

∫ s

0

qs1 ds1ds

= −2K (t)

∫ t

0

Re〈W, (i�)−1ei �
2 s W 〉 qs ds + O(t−

1
2 −δ)

= −2K (t)

∫ ∞

0

Re〈W, (i�)−1ei �
2 s W 〉 qs ds + O(t−

1
2 −δ)
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which, together with (E.1) and the estimate Re〈W, (i�)−1ei �
2 t W 〉 = O(t−

1
2 ) proved

in (A.26), obviously implies (E.2).
Now we turn to (E.4). Define a function f : [0,∞) → R by

f (t) := Re〈W, ei �
2 t W 〉

∫ t

0

qs1 ds1.

Our assumption on qt and the estimate Re〈W, ei �
2 t W 〉 = O(t−

3
2 ) in (A.26) imply that

there exists a constant C1 such that

| f (t)| ≤ C1(1 + t)−1−δ.

To prove (E.4) it is sufficient to prove that

∫ t

0

|K (t − s) − K (t)|| f (s)| ds = O(t−
1
2 −δ). (E.5)

To see this we use the asymptotics of the function K in (4.2) and obtain that

∫ t

0

|K (t − s) − K (t)|| f (s)| ds �

∫ t

0

[(t − s)−
1
2 − t−

1
2 ](1 + s)−1−δ ds

+

∫ t

0

[(1 + t − s)−
3
2 + (1 + t)−

3
2 ](1 + s)−1−δ ds.

The second term on the right-hand side is of order t−1−δ. For the first term, we use the
observation that

0 < (t − s)−
1
2 − t−

1
2 = (t − s)−

1
2 t−

1
2

s

(t − s)
1
2 + t

1
2

≤ t−1(t − s)−
1
2 s.

A direct computation then shows that it is of order t−
1
2 −δ.

Hence (E.5) is proved. ⊓⊔

E.2. Best decay estimate. Here we consider the decay estimate for the solution of the lin-
ear integro-differential equation (E.1). Recall that Z is a positive constant, W : R3 → R

is spherically symmetric and of rapid decay.
We consider two possibilities: The solution q decays faster and slower than t−1,

respectively. In the first case we have the following result.

Theorem E.3. Suppose that the solution q : R+ → R of (E.1) satisfies the asymptotic

form

qt = Ct−1−δ + O(t−1−δ−ǫ), as t → ∞, (E.6)

for some δ ∈ (0, 1
2
) and ǫ > 0. Then the constant δ must satisfy the equation

∫ ∞

0

e−t t−δ dt = 1√
π(1 + 2δ)

∫ ∞

0

e−t t−
1
2 −δ dt. (E.7)

Remark 3. Concerning (E.7), by computer simulation there exists exactly one solution
δ, which belongs to the interval (0.15, 0.17).
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In the second case we have the following result.

Theorem E.4. There does not exist δ ∈ (0, 1
2
) such that the solution q : R+ → R of

Eq. (E.1) has the asymptotic form

qt = Ct−
1
2 −δ + O(t−

1
2 −δ−ǫ), (E.8)

for some ǫ > 0. Equivalently, there is no δ ∈ (0, 1
2
) such that the following equation

holds:

1

δ(1 − 2δ)
√

π

∫ ∞

0

e−t t−δ dt =
∫ ∞

0

e−t t−
1
2 −δ dt. (E.9)

The two theorems will be proven in Sects. E.2.1 and E.2.2.
The general ideas of the proofs are simple. We Fourier-transform both sides of (E.1)

and look for possible values of δ consistent with that equation.
To prepare for the proof we begin with deriving a convenient expression for qt . By

Fourier transformation we find that

(A)
∫ ∞

0

eikt q̇t dt = −1 − ik

∫ ∞

0

eikt qt dt. (E.10)

(B)

−
∫ ∞

0

eikt Re〈W,

∫ t

0

ei �
2 (t−s)qs ds W 〉dt = G(k + i0)

∫ ∞

0

eikt qt dt

(E.11)

where G(· + i0) : R → C is the function defined in (A.1).

Define a function � : R → C by

�(k) :=
∫ ∞

0

eikt Re〈W, ei �
2 t W 〉

∫ t

0

qs dsdt. (E.12)

Then the computations above and (E.1) imply that
∫ ∞

0

eikt qt dt = − 1 + Z�(k)

ik + ZG(k + i0)
.

To simplify this equation the following observation is useful.

Lemma E.5. If |qt | ≤ c(1 + t)−
1
2 −ǫ for some positive constants c and ǫ, then we have

that

1 + Z�(0) = 0. (E.13)

Proof. By the definition of � it is enough to prove that
∫ T

0

Re〈W,

∫ t

0

ei �
2 (t−s)qs ds W 〉dt → 0,

as T → ∞. To see this we use simple integration by parts in the variable t to find
∫ T

0

Re〈W,

∫ t

0

ei �
2 (t−s)qs ds W 〉dt = Re〈W, ei �

2 T (i�)−1W 〉
∫ T

0

qs ds.

The lemma follows from the observation that 〈W, ei �
2 T (i�)−1W 〉 = O(T − 1

2 ). ⊓⊔
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This result implies that

∫ ∞

0

eikt qt dt = − Z [�(k) − �(0)]
ik + ZG(k + i0)

. (E.14)

In the following we prove the two theorems, using Eq. (E.14).

E.2.1. Proof of Theorem E.3. We assume that k > 0. This suffices thanks to the condi-
tions that the positive k and the negative k differ by just a complex conjugation of (E.14).

We first analyze the term � in (E.14). By direct computation,

�(k) =
∫ ∞

0

eikt Re〈W, ei �
2 t W 〉

∫ t

0

qs dsdt

=
∫ ∞

0

eikt Re〈W, ei �
2 t W 〉dt

∫ ∞

0

qs ds −
∫ ∞

0

eikt Re〈W, ei �
2 t W 〉

∫ ∞

t

qs dsdt.

(E.15)

Notice
∫ ∞

0

eikt Re〈W, ei �
2 t W 〉dt = −G(k + i0),

where the function G is defined in (A.1).

Next, observe that part of the integrand, Re〈W, ei �
2 t W 〉

∫ ∞
t

qs ds, in the second term
is integrable on [0,∞),

−
∫ ∞

0

eikt Re〈W, ei �
2 t W 〉

∫ ∞

t

qs dsdt

=
∫ ∞

0

eikt∂t [
∫ ∞

t

Re〈W, ei �
2 s W 〉

∫ ∞

s

qs1 ds1ds] dt

= −
∫ ∞

0

Re〈W, ei �
2 s W 〉

∫ ∞

s

qs1 ds1ds

−ik

∫ ∞

0

eikt [
∫ ∞

t

Re〈W, ei �
2 s W 〉

∫ ∞

s

qs1 ds1ds] dt. (E.16)

The second term on the right-hand side vanishes when k = 0. This, together with the
fact G(0 + i0) = 0 and (E.15), implies that

−
∫ ∞

0

Re〈W, ei �
2 s W 〉

∫ ∞

s

qs1 ds1ds = �(0).

Collecting these estimates we find that

�(k) − �(0) = −G(k + i0)

∫ ∞

0

qs ds + Y (k), (E.17)

where the function Y is defined by

Y (k) := −ik

∫ ∞

0

eikt [
∫ ∞

t

Re〈W, ei �
2 s W 〉

∫ ∞

s

qs1 ds1ds] dt.
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Expressions (A.26) show that

−
∫ ∞

t

Re〈W, ei �
2 s W 〉

∫ ∞

s

qs1 ds1ds = C
2

δ
π

3
2

1
1
2

+ δ
t−

1
2 −δ + t−

1
2 −δ−ǫ, as t → ∞,

where the constants C and ǫ are the same as those in Theorem E.3.
For positive, and small k, the function Y in (E.17) has the form

Y (k) = C
i

1
2

+ δ

2

δ
π

3
2 k

1
2 +δ

∫ ∞

0

ei t t−
1
2 −δ dt + correction.

By deformation of the integration contour we find that

∫ ∞

0

ei t t−
1
2 −δ dt =

∫ i∞

0

ei t t−
1
2 −δ dt = i

1
2 −δ

∫ ∞

0

e−t t−
1
2 −δ dt. (E.18)

Hence

Y (k) = − C
1
2

+ δ

2

δ
π

3
2 i−

1
2 −δk

1
2 +δ

∫ ∞

0

e−t t−
1
2 −δ dt + correction. (E.19)

For the term on the left-hand side of (E.14) we use the assumption in Theorem E.3
to arrive at

∫ ∞

0

eikt qt dt = −
∫ ∞

0

eikt∂t

∫ ∞

t

qs dsdt

=
∫ ∞

0

qs ds + ik

∫ ∞

0

eikt

∫ ∞

t

qs dsdt.

By the assumption on q in Theorem E.3, we find

∫ ∞

0

eikt qt dt =
∫ ∞

0

qs ds + C
ik

δ

∫ ∞

0

eikt t−δ dt + correction

=
∫ ∞

0

qs ds − C
i−δkδ

δ

∫ ∞

0

e−ss−δ ds + correction, (E.20)

where in the last step we deform the contour of integration as in (E.18).
We now return to (E.14). Observe that the term

∫ ∞
0 qs ds appears on both sides.

Hence they cancel each other. Next, we compare the terms of order kδ . Recall that

G(k + i0) = (i −1)π2k
1
2 + O(k) in (A.5). This, together with (E.17), (E.19) and (E.20),

implies that if (E.14) holds then we must have that

(i − 1)

∫ ∞

0

e−t t−δ dt + i−
1
2

1√
2π( 1

2
+ δ)

∫ ∞

0

e−t t−
1
2 −δ dt = 0.

Using that i
1
2 = 1√

2
(1 + i), we conclude that Theorem E.3 holds.
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E.2.2. Proof of Theorem E.4. We start with Eq. (E.14). It is enough to consider the case
k > 0.

Recall the definition of � in (E.12). By direct computation

�(k) = −
∫ ∞

0

eikt∂t

∫ ∞

t

Re〈W, ei �
2 s W 〉

∫ s

0

qs1 ds1 dsdt

=
∫ ∞

0

Re〈W, ei �
2 s W 〉

∫ s

0

qs1 ds1 ds

+

∫ ∞

0

ikeikt

∫ ∞

t

Re〈W, ei �
2 s W 〉

∫ s

0

qs1 ds1 dsdt. (E.21)

We observe that the second term on the right-hand side vanishes at k = 0. Hence the
first term, which is a constant, must be �(0).

We now evaluate the second term. The assumption on q in Theorem E.4 and the

asymptotic form for Re〈W, ei �
2 t W 〉 in (A.26) imply that

Re〈W, ei �
2 t W 〉

∫ t

0

qs ds = − 2C
1
2

− δ
π

3
2 t−1−δ + O(t−1−δ−ǫ), as t → ∞;

hence

∫ ∞

t

Re〈W, ei �
2 s W 〉

∫ s

0

qs1 ds1ds = − 2C

δ( 1
2

− δ)
π

3
2 t−δ + O(t−δ−ǫ). (E.22)

Plugging this into (E.21) we find that, for k > 0 small,

�(k) − �(0) = − 2iC

δ( 1
2

− δ)
π

3
2 kδ

∫ ∞

0

ei t t−δ dt + correction

= 2C

δ( 1
2

− δ)
i−δπ

3
2 kδ

∫ ∞

0

e−t t−δ dt + correction. (E.23)

For the term on the left-hand side of (E.14),

∫ ∞

0

eikt qt dt = Ck− 1
2 +δ

∫ ∞

0

ei t t−
1
2 −δ dt + correction

= Ci
1
2 −δk− 1

2 +δ

∫ ∞

0

e−t t−
1
2 −δ dt + correction. (E.24)

Identity (E.14) and (E.23), (E.24), (A.5) imply that

1

δ( 1
2

− δ)

∫ ∞

0

e−t t−δ dt − 2π
1
2

∫ ∞

0

e−t t−
1
2 −δ dt = 0,

which is Theorem E.4.
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