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Abstract 

In this paper friction induced limit cycles are predicted for a simple motion system of a single motor-driven inertia subjected to friction and 
a PID-controlled regulator task. The two friction models used, i.e., (i) the dynamic LuGre friction model and (ii) the static Switch friction 
model, are compared with respect to the so-called hunting phenomenon. Analysis tools originating from the field of nonlinear dynamics will 
be used to investigate the friction induced limit cycles. For a varying controller gain, stable and unstable periodic solutions are computed 
numerically which, together with the stability analysis of the closed-loop fixed points, result in a bifurcation diagram. For both friction 
models, the bifurcation analysis indicates the disappearance of the hunting behaviour for controller gains larger than the gain corresponding 
to the cyclic fold bifurcation point. 

Key words: Friction; Limit Cycles; PID control; Stability Analysis. 

1 Introduction 

Friction is to some extent present in all mechanical systems. In servo or tracking systems friction can severely limit the per- 
formance in terms of increasing tracking errors and the occurrence of limit cycles, i.e., periodic solutions of the nonlinear 
autonomous system. Especially, limit cycling is an undesirable phenomenon in controlled servo systems because of its oscilla- 
tory and persistent behavior. Limit cycling is mainly caused by the combination of the difference in static and Coulomb friction 
and integral action in the control loop. A regulator task might end up in a stick-slip oscillation around the reference position, 
which is called hunting [I]. 

To predict and simulate the hunting behaviour in servo systems, an appropriate friction model has to be chosen. Here, the so- 
phisticated LuGre friction model [4] and the Switch friction model [15] are compared with respect to the hunting phenomenon. 
This comparison will be on a qualitative basis since we are interested in the computationally most convenient and simple 
friction model without violating the properties of the phenomenon. 

Commonly used analysis tools to predict the existence of the hunting limit cycles are: (i) the Describing Function Analysis 
(DFA), (ii) the Phase Plane Analysis (PPA); for references see [I] and (iii) exact analysis performed both numerically and 
algebraically. 
The DFA for the LuGre friction model is performed in [9] and resulted in a qualitative prediction of the limit cycles. The idea 
of the DFA is to divide the closed-loop autonomous system in a linear part y = H(s)x with transfer function H(s) = $# 
and a nonlinear part a: = cp(y). A major drawback of the DFA is the assumption that the input of the nonlinear part x is close 
to a nonbiased sinusoid, which assumption is often not justified. 
A PPA technique is used to compare different friction models with respect to the hunting behaviour in [20]. It states that suitable 
stick-slip friction models are those which have a damping function that drops for non-zero velocity from the static friction force 
level, either continuously or discontinuously, to a lower value than the static level. A one-dimensional mapping technique is 
used to find solely stable periodic solutions. The search for unstable limit cycles and the stability analysis of the equilibrium 

Email addresses: R . H .A. Hensengtue . nl (R.H.A. Hensen), M. J . G . v . d . Molengraf t@tue . nl (M.J.G. van de Molengraft), 
M. Steinbuchgtue . nl (M. Steinbuch). 

DCT 2001.21 



points are not performed. 
An exact analysis of limit cycles caused by friction is performed by [18]. The period and amplitude of the limit cycle, induced 
by a simplified friction model, are computed numerically by solving nonlinear equations. Conditions for local stability of the 
periodic solution are obtained and stable solutions are found for various controller settings. 
An exact algebraic analysis is compared to the DFA for a PID controlled system in the presence of static friction in [2]. The 
paper states that for Coulomb friction combined with a larger static friction the controlled system will lead to a friction induced 
limit cycle for all stabilizing controllers. The authors conclude that their result is inadequate to practically observed behaviour 
where hand-tuned PID controllers indeed eliminate stick-slip oscillations. Hence, the use of a more complete dynamic friction 
model is advised by [2] and that will be the focus here. 

To obtain a qualitatively and quantitatively good prediction of limit cycles generated by more general friction models, like 
the d y ~ i ~ ~ i c  LUGe 2cd static Switch fricti~c =ede!, we wi!! use zcz!ysis tm!s crigifizthg fr=m mdinezr dycz~Acs, i.e., 
bifurcation theory, shooting methods and path-following techniques [I 11. Limit cycles, that are searched for with shooting 
methods [15], will be tested for stability by means of the Floquet multipliers [l l] .  Branches of stable and unstable periodic 
solutions, found by path-following techniques [XI, result in a bifurcation diagram. The advantage of this approach is that 
even for sophisticated friction models exact predictions of the limit cycles are obtained and information on the local stability is 
provided. Furthermore, the possible disappearance of the limit cycle for certain controller settings is illustrated in the bifurcation 
diagram. 

The outline of this paper is as follows. In Section 2, we will give a description of the hunting phenomenon. A qualitative 
comparison with respect to hunting between the LuGre model and the Switch model will be given in Section 3. The numerical 
methods used to compute the bifurcation diagram and the stability test performed will be discussed in Section 4. The bifurcation 
diagram in terms of the controller gain K for the two nonlinear autonomous systems will be obtained by means of path- 
following techniques in Section 5. In Section 6 the paper will be concluded and future research topics will be addressed. 

2 Hunting 

Consider a simple motion system consisting of a single motor-driven inertia subjected to friction: 

where F is the friction torque, c, the motor constant and u the input motor torque. For a regulator task, the desired angle Od 
is constant in time. The use of a PD controller would lead to a steady state error due to the presence of friction. Therefore, a 
PID-type controller will be used here. 

Here, a fixed controller structure C(s)  is used composed of a lead-lag controller Cll ( s )  and integral controller part Ci(s) 

where only the controller gain K can be altered. The controller shape, determined by ~i = and = L, is fixed with 
2 r f d  

fi = fd = 1 [Hz] and is shown inFigure 1 for K = (0.04,O.l). 

Frequency Response of Controller C(s) 

2 

Angular Frequency (radlsec) 

Figure 1. Fixed controller shape. 
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In the time-domain this controller turns into 

and the closed-loop system becomes 

For kLe Eiiek- system -*$hou: fi;lction a s:2bipCj: coi;&i:ion fGr :he c!osed-!oq system ca;: ';e o';+x;;:ed bjr the Redth-EG;wi+z 
criterion that resu!ts in K > We assuae that this lower bound is also applicable to the non-linear system, since 

c m r d ( r d + r ; )  . 
the friction force will dissipate energy from the system. In the sequel of this paper the fixed controller shape will be utilized, 
i.e., ~i = r d  = &. 

In an experimental setup as described in [13], this controller is used to perform a regulator task with ed = 1 [rad] and 
K = 0.04. In Figure 2, the angular displacement 8, angular velocity 8, integral term ~ i ( 8  - 8d)dt and the control effort u are 
depicted. The response of the system enters a hunting behavior and will not reach the desired angular position. The phenomenon 
can be characterized in various ways and one way is to determine the amplitude and frequency of the periodic motion. Due to 
direction-dependent, position-dependent and time-varying friction behaviour, the limit cycle is not symmetric and its frequency 
not constant in time. Hence, the amplitude and frequency are obtained by averaging the properties over consecutive periods. 
For this closed-loop system the hunting response can be described by an average amplitude of 18 - 8dl = 0.061 [rad] and an 
average frequency of f = 0.122 [Hz]. 

Integral Term int (8-Bd) [rad.sec] 
0.2, 1 

Angular Dlsplacernent 0 [rad] Angular Veloc~ty 0 [radlsec] 

0 :E 
-2 

0 20 40 60 80 100 
Tune [sec] 

0.5 

Control Effort u [V] 
0.1, I 

- 

Figure 2. Hunting limit cycling. 

0 20 40 60 80 100 
Tme [sec] 

3 Friction Model Comparison with respect to Hunting 

In this section two friction models, i.e., the LuGre model and the Switch model, will be discussed in terms of the resulting 
closed-loop autonomous system and the hunting behaviour. 

3.1 The dynamic LuGre friction model 

In the past decade, the interest in dynamic friction models increased [4], [3], [12] resulting in a number of dynamic friction 
models based on the Dahl model [7]. The LuGre model is such a dynamic friction model and exhibits a rich behaviour of 
friction phenomena, e.g., presliding displacement, frictional lag and varying break-away force, which have all been observed 
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in practice. Hence, the LuGre model will be used to predict and simulate hunting limit cycles. The friction force is described 
as 

where z is an extra state representing the average microscopic deflection of the so-called bristles located between the two 
didiiig jui-hces [12j, 8 the relative velocity between the mo'iiag pziis, g(d) :he Skibeck c'rirve, GO the stifffiess of the brist!es, 
pi the damping of the bristles and a2 ~e viscous friction coefficie~t. For ease throughout the paper, the sbtes of the closed-!oop 
system are redefined as 

The autonomous system can be written as a set of continuous non-smooth stiff differential equations, i.e., 

3.2 The static Switch friction model 

In contrast to the dynamic friction model mentioned above, the Switch model [15] is a static friction model that can be consid- 
ered as a modified version of the Karnopp model [14]. The Switch model distinguishes three situations: (i) the slip phase, (ii) 
the stick phase and (iii) the transition phase. The latter describes the transition from stick to slip or velocity reversals without 
stiction. As for the Karnopp friction model, the different phases are described by ordinary differential equations (ODES) and a 
narrow band around zero velocity is introduced. In this narrow band, the system can be in the stick phase or in the transition 
phase as illustrated in Figure 3. In this figure the narrow stick band is shown together with possible vectorfields belonging to 
the three phases. The friction force is given by 

where u is the applied control effort, Fs is the static friction, q represents the narrow stick band around x2 = 0 with q << 1 
and g(x2) is again the Stribeck curve as described for the LuGre friction model. The closed-loop state equations for the Switch 
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Intersection of state space for a negative angular displacement x, 
0.015 

0.01 

-0.01 

-O.Ol5 -8 -6 -4 -2 0 2 4 6 8x1Q6 

Angular Velocity x2 [racUsec] 

Figure 3. Intersection of state space for a negative angular displacement XI. 

model read 

%= f ~ w i t c h ( ~ )  

I Vlxzl 577 and lul > Fs 

where the applied control effort u = 2Kc,xl + *xz + K2iic,x3 and the acceleration term -ax2 in the stick phase forces 
the velocity xz to zero for a: > 0. This acceleration term ensures that the ODE belonging to the stick phase does not suffer 
from numerics! instabi!ities as in the Karmopp friction model. In this paper the Switch model will be regarded as a Discrete 
Event System. Hence, the time instances at which the system switches from one phase to another are detected exactly and the 
ordinary differential equation corresponding the next phase is used to proceed. 

3.3 Parameter identification 

The identification of the friction models is not the subject of this paper. However, it is very important to identify the various 
friction parameters accurately to obtain good quantitative predictions. The friction models have been identified with an odd 
Stribeck curve g(xz)  to simplify both the estimation and analysis of the closed-loop systems. The Stribeck curve describes a 
continuous drop from the static friction level F, to a lower Coulomb friction level Fc. This decrease in friction is necessary to 
obtain limit cycles as shown in [20], [2] and can be modeled as 

where v, is the so-called Stribeck velocity, which determines the speed of decrease for the friction curve. The identification of 
the LuGre model has been performed as described in [5] and the estimated Stribeck curve is also used in the Switch model. 
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3.4 Comparison of the hunting behaviour 

To compare both models in terms of the hunting behaviour, the same regulator task Bd = 1 [rad] as for the experimental setup 
in Section 2 is considered. The closed-loop responses for both models end up in a hunting limit cycle. Contrary to the time- 
varying hunting behaviour of the experimental setup the predicted limit cycles are symmetric and the closed-loop dynamics 
is time-invariant. Hence, a good comparison with experimental data is difficult, but one period of the response in Figure 2, 
i.e., from f 75 [sec] to id35 [sec], is approximately symmetric. In Figure 4, this period of the limit cycle (-) is compared 

0 1 Angular D~splacernent xl [rad] 

0 
)I 

.1 a 
-0 i o  2 4 6 8 10 12 

0.5, 
Angular Velocity x2[rad/sec] 

I 

Integral Term x,[rad.sec] 
0.2, I 

x 
I 0" Bristle Displacement x,[rad] 

I I 

Phase Portrait of Hunting Limit Cycle 

Figure 4. Hunting limit cycle. 

with (i) the LuGre system (- -) and (ii) the Switch system (:). The time responses of the system states are shown in Figure 
4 (a) and their phase portraits of the first three states are depicted in Figure 4 (b). The experimentally observed cycle can be 
predicted with reasonable accuracy by both models whereas the difference between the two predicted cycles is negligible. The 
sophisticated LuGre adds no extra frictional behaviour essential to the hunting phenomenon. The LuGre system has an extra 
state in comparison with the Switch system and the stiffness of the LuGre system is considerably larger. On the other hand, the 
treatment of a Discrete Event System introduces additional computational effort for the Switch system. To evaluate the Switch 
model, the integration process is halted on the transition between the slip and stick phase of the system (and visa versa), the 
discontinuity is found by an iterative process and the integration is restarted. Furthermore, the investigation on the change of 
system characteristics (bifurcation diagram) might be influenced by the choice of a discontinuous model such as the Switch 
model. A discontinuous system can introduce discontinuous bifurcations [16], which can never occur for the continuous LuGre 
model. Hence, in the following section the determination of the bifurcation diagram will be performed for both models. 

4 Bifurcation Diagram 

The bifurcation diagram is obtained by using analysis tools originating from the field of nonlinear dynamics. Fixed points or 
equilibria are tested on local stability and periodic solutions are sought with a shooting method. The local stability of the limit 
cycles is investigated by examining its Floquet multipliers. For varying controller gain K, periodic solutions are found with 
path-following techniques resulting in a bifurcation diagram. 

4.1 Fixed points and local stability 

The equilibrium points or fixed points of autonomous systems satisfy the condition 
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and the local stability of these fixed points is determined by the eigenvalues of the Jacobian matrix. First of all, it is important 
to realize that the equilibrium points of interest are those for which the position error xl and velocity error x2 are zero. The 
integral term x3 for either model and, additionally for the LuGre model, the bristle deflection x4 should not necessarily be zero, 
since it involves a regulator task. 

The fixed points of interest for the LuGre system are located on a hyperplane spanned by 

where la1 5 2 if the initial state 1x4(0)1 < [4]. This invariant set means that the force produced from a non-zero bristle 
deflection is compensated by the integral action. Hence, one eigenvalue of the Jacobian matrix in :LuGre should be zero with 
an eigenvector equal to [0 0 - Kl&, 1IT. Due to the non-smoothness of the LuGre model, i.e., the absolute function 1x2 I in 
the differential equations, the derivation of this Jacobian matrix needs special attention. The notion of generalized dzzerentials 
[6] is essential and states that the generalized derivative of f at x is declared as any value f;(x) included between its left and 
right derivatives. The closed convex hull of the derivative extremes is called the generalized differential of f at x. 

Now, the generalized differential of the vector field fLuGTe (:) with respect to g can be regarded as the generalized Jacobian 5: 

where J- and J+ are respectively the Jacobian matrices from below and above xa = 0. The generalized Jacobian in :LuGTe is 

The three non-zero eigenvalues have to be in the open left-half plane for all 0 < q 5 1 and la1 5 % to guarantee the local 
stability of the fixed points. Hence, the characteristic equation 

belonging to this eigenvalue problem has one eigenvalue equal to zero and the remaining polynomial should have 

coefficients larger than zero, which results in the condition that all system parameters, including the controller gain K, 
should be positive and 
a sufficient condition can be constructed from the Routh-Hurwitz criterion as follows: 

which together with the first condition results in 
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The fixed points of interest for the autonomous system concerning the Switch model are located on the line 

Again an invariant direction where the applied control effort u = Kcm27rx,* is compensated by an equivalent portion of the 
static friction F, and results in exactly the same equilibrium points as for the first three states of the LuGre closed-loop system. 
The local stability of such an invariant set is not trivial. The idea used here is that in the vicinity of the equilibrium points there 
should be a region for which all solutions, starting within this region, stay within this domain and finally end up in the stick 
phase, i.e., 1x2 I 5 q and Iz; + m 3  1 < &. First, the convergence to the stick phase is investigated and 2 bomc! on the states 
is obtained. For the slip phase, i.e., 1x2 1 > 77, the equation of motion can be written as: 

which has a similar structure as the equations generally derived in sliding controllers, i.e., xi + hisgn(xi) = 0. For this kind of 
systems it can be shown that for positive hi V xi the state xi converges to zero. To obtain this form, the righthand side of Eq. 
(1) should be bounded by I F x l  + -23 I < w. Namely, in this case the righthand side of Eq. (1) can be written as: 

with - 9 < a(x2 )  < 9. Substitution of (2) in (1) gives 

with 0 < (9 + ( ~ ( 2 ~ ) )  = /3(x2) < 2 9 ,  i.e., /3(x2) represents a positive-valuedvariable for g(x2) > 0 Vz2 and J > 0. 
Hence, stability can be shown with the candidate Lyapunov function 

and its derivative 

Within the bound 1-q + 9 z 3 1  < 9, convergence to the stick phase 1x21 < 77 is guaranteed. In Figure 5, an 
example of this bound on the states is depicted for various angular displacements X I .  The actual region of attraction to the 
stick phase is determined by those solutions which, initialized within the obtained bound, stay within this bound for all time. 
Due to the nonlinear frictional Stribeck curve algebraic solutions of the motion in slip phase are not derivable and the actual 
attraction regime can not be computed. Numerical investigation of this problem is even more complicated, since infinite many 
initial conditions should be evaluated, which will not be performed here. However, if there exists such a region of attraction 
and the system enters the stick phase, the position error xl should be in the regime of attraction of the fixed points which is 
determined by the bifurcation diagram. 

For both models, the desired position of the regulator task is a fixed point of the autonomous system. In the sequel, the local 
stability condition for the LuGre equilibrium points will be checked and the local stability of the invariant set for the Switch 
model will be investigated by examination of the bifurcation diagram. 
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Figure 5. Bounds on the states for various angular displacements XI. 

4.2 Periodic solutions and Floquet multipliers 

Hunting limit cycles, as given in Figures 4 (a-b), can be regarded as a fixed point of a PoincarC map P on a Poincark section. 
For the Switch closed-loop system, a PoincarC section might be the plane XI = 0 in Figure 4 (b). The stability of a periodic 
solution is determined by its Floquet multipliers A, (i = 1, . . . , n), which are the eigenvalues of the fundamental solution 
matrix 2 ( T  + to, to) [ I l l ,  where T is the period time of the solution. For local stability analysis of periodic solutions, the 
Floquet multipliers are the generalization of the eigenvalues at a fixed point. For the autonomous systems considered here, a 
perturbation along the solution will give the same, however time-shifted, periodic solution. This means that one of the Floquet 
multipliers equals unity. The periodic solution is stable if all Floquet multipliers, that are not associated with the phase, lie 
within the unit circle. If one or more Floquet multipliers lie outside the unit circle, then the periodic solution is unstable. The 
periodic solution, as well as its Floquet multipliers, changes as a parameter of the closed-loop system, e.g., the controller gain 
K, is altered. The limit cycle changes from stable to unstable or vise versa when the largest Floquet multiplier passes through 
the unit circle. 

For smooth systems, the fundamental solution matrix *(T+to, to),  which is also known as the monodromy matrix eT after one 
period time T, can be computed by solving the variational equation [19]. However, the models used are non-smooth and the 
variational equation is not applicable as demonstrated by [15], [16]. Here, the monodromy matrix is obtained by a sensitivity 
analysis [15], where an initial state vector is perturbed component-wise and the system is integrated over the period time T .  
The differences between the unperturbed final state vector g, and the perturbed final state vectors g$ ( j  = 1, . . . , n) are used 
to compute the elements of the monodromy matrix. 

To find either stable or unstable periodic soliitions for the non-smooth autonoiilous system as described in Section 3, the 
monodromy matrix obtained by the sensitivity analysis is used in a (single) shooting method [19]. The advantage of this 
two-point boundary value problem (BVP) solver is the ability to find unstable periodic solutions. Furthermore, the shooting 
method is used in a pat!!-followir,g algorithm [S] to investigate the icfluence of 2 parmeter of the closed-loop system on the 
periodic solution. Here, the algorithm calculates a branch of periodic solutions for the varying controller gain K and a so-called 
bifurcation diagram is obtained. 

5 Numerical Results 

The system parameters used to perform the stability test for the fixed points and to obtain stable and unstable branches of 
periodic solutions are given in Table 1. The controller gain K is the closed-loop system parameter to be changed and the 
Routh-Hurwitz stability criterion as described in Section 2, i.e., K > CmTd;d+Ts) = 0.0321 will be used as a lower bound. 
The hunting limit cycles will be characterized with the maximal angular displacement, i.e., max Ixl ( t )  I \d 0 < t < T ,  and the 
period time T .  Stable branches are depicted with solid lines (-) and unstable branches with dashed lines (- -). 
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5.1 The bifurcation diagram for the LuGre system 

For the LuGre closed-loop system it is possible to check the local stability conditions for the fixed points as described in Section 
4.1. The system parameters, as given in Table 1, together with the Routh-Hurwitz lower bound on K are all positive, so the 
first condition is satisfied. Since the second condition 

is also satisfied, the fixed points are locally stable and the branch XI = 0 is stable as shown in Figure 6 (a). In this figure 

Inertia 

Motor Gain 

Static Friction 

Coulomb Friction 

Stribeck Velocity 

Viscous Damping 

Stick Band 

Time Constant 

LuGre Bristle Stiffness 

LuGre Bristle Damping 01 = 7.58 [N.m.s/rad] 
Table 1 
Closed-loop system parameters. 

-0.01 1 I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Controller Gain K 
lob 0:l 0:2 0:3 0:4 0:5 0:6 ( 

Controller Gain K 

a) Amplitude versus controller gain K b) Period time versus controller gain K 

Figure 6. Bifurcation diagram for the LuGre closed-loop system. 

both the amplitude and period time of the periodic solutions are depicted. The path-following is started on the stable branch for 
K = 0.0321 and terminated on the unstable branch at K = 0.615. The algorithm is halted due to the extensive computational 
effort needed to follow the path and the fact that we are mainly interested in the bifurcation point that is given by the intersection 
of the stable and unstable branch at K = 0.620. However, investigation of the bifurcation diagram, as given in Figure 6 (a), 
shows locally stable fixed points together with locally stable periodic solutions for controller gains smaller than the bifurcation 
point and an unstable branch might be expected in between. 

Figure 7 show the Floquet multipliers X i ,  i = 1, . . . ,4,  where all multipliers are on the real axis. Floquet multiplier XI is 
equal to one due to the phase of the limit cycles. Two multipliers are close to zero and one multiplier X2 varies as the controller 
gain K changes. The Floquet multiplier X2 predicts a bifurcation point since it passes the value +1 at K = 0.620. Hence, 
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Cydlc Fold Bifurcation 

0 606 0.622 

Figure 7. Floquet multipliers for the LuGre closed-loop system. 

this bifurcation point is a so-called cyclic fold bifurcation point [XI. Furthermore the bifurcation point is continuous since the 
Floquet multiplier does not jump through the unit circle [17]. 

The fixed points, stable and unstable limit cycles for the LuGre system with a controller gain K = 0.615 are shown in Figure 
8. Only the first three states are plotted to visualize the cycles and to compare the behaviour with the cycles obtained for the 

Phase Portrait of Hunting Limit Cycles 

Figure 8. Stable and unstable limit cycles for the LuGre closed-loop system and K = 0.615. 

Switch system in the next section. 

5.2 The bifircation diagram for the Switch system 

Secondly, the bifurcation diagrams for the Switch closed-loop system are constructed. In Figure 9, the stable and unstable 
branches are shown for both the amplitude and the period time of the periodic solutions. The path-following algorithm is again 
started on the stable branch at K = 0.0321 and terminated on the unstable branch at K = 0.634. The algorithm is halted due 
to the same reasons as given for the LuGre closed-loop system. However, for K = {0.0321,0.2,0.4,0.6} the unstable periodic 
solutions are computed with a single shooting method and depicted by a circle. 

The autonomous system is of order n = 3 and therefore the number of Floquet multipliers is 3 where one should be equal to 
unity corresponding the phase shift. The Floquet multipliers, which are all elements of the real axis, are depicted in Figure 10, 
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-0.01; I 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 
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a) Amplitude versus controller gain K b) Period time versus controller gain K 

Figure 9. Bifurcation diagram for the Switch closed-loop system. 

Cychc Fold Blfurcatlon 

0 65 

Figure 10. Floquet multipliers for the Switch closed-loop system. 

where indeed one Floquet multiplier XI is equal to unity. One multiplier X3 is equal to zero and X2 varies as the gain is altered 
and passes through the value +I for K = 0.647, which again detects a cyclic fold continuous bifurcation. 

The fixed points, stable and unstable limit cycles for K = 0.634 are depicted in Figure 11. The region of attraction of the fixed 
points in zl-direction is bounded by the amplitude of the mstable periodic solution, i.e., all trajectaries starting in the stick 
plane and lxl 1 < max Ixynstable ( t )  I will end up in an equilibrium point. Hence, the branch z l  = 0 in the bifurcation diagram 
of Figure 9 (a) is locally stable for perturbations in xl-direction. It should be emphasized that the stick plane is implemented 
as a stick volume where in x2-direction the narrow volume is 217 = 2e-6 [rads] thick. 

5.3 Remarks on the closed-loop systems 

For both systems the nonlinear dynamics are totally described by the second Floquet multiplier in the vicinity of the periodic 
solutions. For the Switch system, this is due to the fact that state perturbations g(t)  + 6g in the slip phase reduce in the stick 
phase to a xl,  x3 perturbation and not in x2-direction. Furthermore, the perturbation in x3-direction turns into a phase shift 
and is therefore not interesting for the dynamics. Moreover, this is not only locally valid around the periodic solutions but for 
all trajectories that enter the stick phase. Hence, the complex dynamics of this three-dimensional, autonomous, discontinuous 
Switch system might be described by means of an equivalent one-dimensional map as demonstrated in [20], [lo]. [20] shows 
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Phase Portrait of Hunting Limit Cycles 

Angular Velocity x,[ra@sec] 0 . 0 w  Angular Displacement x, [rad] 

Figure 11. Stable and unstable limit cycles for the Switch closed-loop system and K = 0.634. 

that this Phase Plane Analysis (PPA) is able to find stable limit cycles, however did not search for unstable limit cycles 
that should also be able to be constructed with this technique. A two degree-of-freedom stick-slip system is used in [lo] to 
demonstrate the ability to construct such an equivalent one-dimensional event map for a fourth order, autonomous, non-smooth 
system. 

The path-following techniques, used in the previous sections, has been halted on the unstable branch due to the computation- 
ally expensive shooting method for unstable systems. For the Switch system, the unstable branch is extended by searching 
intermediate unstable periodic solutions, since only good initial estimates on the state XI and period time T are needed. This is 
more difficult for the LuGre system due to the necessary good estimates on the entire state (dimension 4) and period time. 

6 Conclusions and Future Research 

The numerical analysis of the friction induced limit cycles presented in this paper shows the disappearance of the limit cycles 
for certain system parameters. The tools used enable us to follow branches of stable and unstable periodic solutions. Together 
with the stability analysis of the equilibrium points, bifurcation diagrams are constructed for both the static Switch friction 
model and the dynamic LuGre friction model. The resulting diagrams are both qualitatively and quantitatively very much 
alike, where for both systems cyclic fold continuous bifurcation points are found for a varying controller gain. The location 
of the bifurcation point is almost the same and the underlying dynamics of the two systems are comparable, since the Floquet 
multipliers XPZtCh, X i u G T e  for the periodic solutions, describing the closed-loop dynamics, show equivalent behaviour as 
a function of the control parameter K (compare Figure 7 and 10). Furthermore, the differences of the limit cycles between 
the LuGre system and the Switch system, as depicted in Figures 4 (b), 8, 11, are small and the cycles are qualitatively the 
same. Hence, the use of the more sophisticated dynamic LuGre friction model over the static Switch friction model seems not 
necessary to describe the hunting behaviour properly. The Switch system with its lower order is favorable from a computational 
point of view and is more easy to visualize and interpret. Moreover, the computational effort to solve the stiff non-smooth 
continuous LuGre system is more demanding than the effort needed to solve the Discrete Event discontinuous Switch system. 

Future research will focus on event mapping techniques to describe the three-dimensional, autonomous, non-smooth Switch 
system with a one-dimensional map. The event maps can be used to construct a bifurcation diagram such as demonstrated in 
this paper with shooting and path-following methods. An extension will be to follow the bifurcation point by varying more 
than one system parameter. 
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