
 

 

 

  

Abstract— Concentric tube robots are a novel class of 

continuum robots that are constructed by combining pre-

curved elastic tubes such that the overall shape of the robot is a 

function of the relative rotations and translations of the 

constituent tubes. Frictionless kinematic and quasistatic force 

models for this class of robots have been developed that 

incorporate bending and twisting of the tubes. Experimental 

evaluation of these models has revealed, however, a directional 

dependence of tube rotation on robot shape that is not 

predicted by these models. To explain this behavior, this paper 

models the contributions of friction arising from two sources: 

the distributed forces of contact between the tubes along their 

length and the concentrated bending moments generated at 

discontinuities in curvature and at the boundaries. It is shown 

that while friction due to distributed forces is insufficient to 

explain the experimentally observed tube twisting, a simple 

model of frictional torque arising from concentrated moments 

provides a good match with the experimental data. 

I. INTRODUCTION 

ONCENTRIC tube robots are currently being designed 

for a broad range of minimally invasive surgeries since 

they can be constructed with diameters of several 

millimeters and lengths of 20-30 cm. Several specific 

applications are intracardiac surgery, neurosurgery and lung 

surgery [10]. They can be easily designed and constructed to 

navigate along 3D curves through body lumens as well as 

tissue and can manipulate tip-mounted tools. Fig. 1 depicts 

an example composed of three tubes with tip-mounted 

forceps. 

In the last few years, substantial progress has been made 

in developing this technology [1]-[7]. Mechanics models 

have been derived for computing the kinematics [1]-[3] and 

deformation due to external loading [4],[5]. Solution of the 

anatomically-constrained inverse kinematic problem has 

been considered in [9],[10]. Real-time implementations of 

position control [2],[6], and stiffness control [7],[7] have 

been demonstrated in the laboratory and in beating-heart 

intracardiac animal trials. 

In all publications relating to kinematics, however, a 

variety of phenomena have been neglected in order to 

simplify the modeling, but with the acknowledgement that 

these effects are not necessarily negligible [1],[2]. An 

important member of this group is friction, and the evidence 

suggesting its importance can be seen in experimental data 

measuring the relative twist of a pair of tubes of equal 

curvature and stiffness. While the frictionless model predicts 
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a single twist angle, experimental results reveal an envelope 

of twist angles whose boundaries are produced by different 

directions of relative rotation [1],[2]. Neglecting the 

existence of this envelope can produce tip position errors of 

about 10% of the length of the tube pair. For 20 cm long 

tubes, this is a tip error of 2 cm, which would be 

unacceptable for most medical applications. 

The kinematic models [1]-[3] predict two types of 

interactions forces between the tubes of the robot. The first 

consists of the distributed forces along the lengths of the 

tubes. The second type consists of concentrated moments 

that are applied between the tubes at their ends and at points 

of pre-curvature discontinuity. These moments force all 

tubes to share a common central axis – an assumption that is 

only exact as the clearance between the tubes goes to zero. 

Both types of interaction forces can be sources of friction. 

The contributions of this paper are as follows. First, 

Coulomb friction torque due to the inter-tube distributed 

contact forces is incorporated into the kinematic model. 

Second, it is demonstrated that this frictional torque is 

bounded and is insufficient to explain the experimentally 

observed tube twisting. Third, while detailed analysis of 

friction due to concentrated moments must incorporate the 

inter-tube clearances and is beyond the scope of this paper, 

an approximate lumped Coulomb-type model is proposed 

and is shown to provide a good match of experimental 

results. Furthermore, this model can be efficiently 

implemented in a controller and is appropriate for practical 

robot designs comprised of telescoping arrangements of 

fixed and variable curvature sections as proposed in [2]. 

 
Fig. 1 - Concentric tube robot composed of three telescoping sections with 

tip-mounted forceps.  

The paper is arranged as follows. The next section 

presents the friction models. First, the frictionless model is 

summarized. It is then modified to include the Coulomb 

friction torque arising from the distributed contact forces 

between the tubes. Its effect on tube twisting is examined in 

the subsequent subsection. Finally, a lumped model is 

proposed for friction torque due to concentrated moments 

that enters the distributed model as a boundary condition. 
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The third section presents an experimental evaluation of the 

lumped model. Conclusions appear in the final section. 

II. FRICTION MODELING 

There are many possible friction models that can be 

employed in the control of robotic systems. Selection of the 

appropriate model depends both on the machine and its 

operating conditions [11]. As currently used in surgical 

procedures, concentric tube robots possess lubricated sliding 

interfaces that experience mm-scale displacements at low 

velocities. Thus, it is likely that a Coulomb model will 

provide sufficient accuracy for current tasks and such a 

model is assumed in this paper. 

The kinematic models are derived here using the notation 

of the frictionless model presented in [1],[2]. It includes 

bending and torsion for an arbitrary number of tubes whose 

curvature and stiffness can vary with arc length. Effects that 

are neglected include shear of the cross section, axial 

elongation and nonlinear constitutive behavior. It is also 

assumed here that no external loads are applied to the robot.  

 In the remainder of the paper, subscript indices 

1, 2,...,i n  are used to refer to individual tubes with tube 1 

being outermost and tube n being innermost.  Arc length, s, 

is measured such that s = 0 at the proximal end of the tubes. 

The total length of each tube is designated by Li. 

As illustrated in Fig. 2, insertion of one tube inside the 

other causes each to bend and twist along their length. For 

each tube, material coordinate frames for each cross section 

can be defined as a function of arc length s  along tube i  by 

defining a single frame at the proximal end, (0)iF , such that 

its z axis is tangent to the tube’s centerline. Under the 

unrestrictive assumption that the tubes do not possess initial 

material torsion, the frame ( )iF s  is obtained by sliding 

(0)iF  along the tube centerline without rotation about its z

axis (i.e., a Bishop frame [12]). As the tubes move, bend and 

twist, these material frames act as body frames tracking the 

displacements of their cross sections. It is also useful to 

define a reference frame, 0 ( )F s , which displaces with the 

cross sections but does not rotate about its z axis under tube 

torsion.  

As the thi  tube’s coordinate frame ( )iF s slides down its 

centerline, it experiences a body-frame angular rate of 

change per unit arc length given by 

( ) ( ) ( ) ( )
T

i ix iy izu s u s u s u s                  (1) 

in which ( , )ix iyu u are the  components of curvature due to 

bending and izu is the curvature component due to torsion. A 

circumflex on a curvature component is used to designate 

the initial pre-curvature of a tube.  

The kinematic input variables consist of the rotation and 

translation of each tube about and along the common 

centerline of the combined tubes. The rotation angle, ( )i s , 

is defined as the z -axis rotation angle from frame 0 ( )F s  to 

frame ( )iF s . The translation variable, il , is defined as the 

arc length distance from frame 0 (0)F  to the initially 

coincident frame (0)iF . In the rest of the paper, all vector 

quantities associated with tube i , e.g., ( )iu s , are written 

with respect to frame ( )iF s .  

In the subsection below, the frictionless kinematic model 

of [1],[2] is summarized. The two friction models are then 

developed in the context of this model. 

A. Frictionless Model 

The frictionless kinematic equations can be derived by 

combining four equations – (1) a constitutive model relating 

bending moments to changes in curvature of individual 

tubes, (2) a compatibility equation relating the individual 

curvatures of the assembled tubes to their combined 

curvature, (3) the equilibrium of bending moments and shear 

forces on the cross sections of the assembled tubes, and (4) a 

differential equation that expresses how shear force and 

bending moment propagate along a curved rod. These are 

summarized below along with the resulting model from 

[1],[2]. 

 
Fig. 1. Tube coordinate frames are denoted ( )

i
F s . The relative z-

axis twist angle between tube frame 
0
( )F s and frame ( )

i
F s  is ( )

i
s . 

 (1) Constitutive Model: When a tube with initial 

curvature ˆ ( )iu s is deformed to a different curvature ( )iu s , a 

bending moment is generated. Assuming linear elastic 

behavior, the bending moment vector ( )im s at any point s  
along tube i  is given by 

 ( )ˆ( ) ( ) ( )i i i im s K u s u s= −  (2) 

 Given the coordinate frame convention described above, all 

vectors are expressed with respect to frame ( )iF s , and iK  is 

the frame-invariant stiffness tensor given by 

 

0 0 0 0

0 0 0 0

0 0 0 0

ix i i

i iy i i

iz i i

k E I

K k E I

k J G

   
   = =   
      

 (3) 

in which iE  is the modulus of elasticity, iI is the area 

moment of inertia, iJ  is the polar moment of inertia and iG  

is the shear modulus of tube i. 

(2) Compatibility of Deformations: Assuming that the 

clearance between each pair of adjacent tubes is just 
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sufficient to enable relative motion, all tubes must conform 

to the same final x-y (bending) curvature. For this to be true, 

we assume that concentrated moments are generated over 

negligibly short lengths at discontinuities in pre-curvature 

and at the ends of tubes.  

Each tube is free, however, to twist independently about 

its z axis. The z component of curvature, ( )i z
u s , equates to 

the rate of change of twist angle with respect to arc length, 

( )i sθ , 

 ( ) ( )i i z
s u sθ = . (4) 

The resulting bending curvatures can be equated when 

written in the same frame. Expressing tube curvatures in 

terms of the robot frame curvature, 0u , results in 

 0( ) ( ) ( ) ( )T

i z i i zu s R u s s eθ θ= +   (5) 

in which ( ) (3)z iR SOθ ∈ is a rotation about the z axis by 

angle iθ  and [ ]0 0 1
T

ze = . 

(3) Equilibrium of Bending Moments: On each cross 

section, the bending moments in each tube must sum to the 

robot’s net bending moment, 0 ( )m s , which is zero absent 

external loading. 

 0

1

( ) ( ) ( ) 0
n

z i i

i

m s R m sθ
=

= =∑  (6) 

As in (5), ( )z iR θ is used to transform tube bending moments 

from frame ( )iF s to frame 0 ( )F s . 

(4) Propagation of Shear Force and Bending Moment: The 

equilibrium equation of the special Cosserat rod model [13]-

[15] provides body-frame equations for a curved rod 

undergoing distributed loading of 3  torque per unit 

length and 
3f  force per unit length. It can be applied to 

each tube. 

 
( ) ( ) [ ( )] [ ( )] ( )

( ) ( ) 0 [ ( )] ( )

i i i i i

i i i i

m s s u s v s m s

n s f s u s n s

τ       
= −       

       




 (7) 

Derivatives are with respect to arc length along the rod, s , 

and 
3,i im n  are the bending moment and shear force 

vectors acting on the tube’s cross section. Here, and in the 

remainder of the paper, the square brackets on any vector
 

denotes the skew-symmetric form 

 

0

[ ] 0

0

iz iy

i iz ix

iy ix

u u

u u u

u u

 −
 = − 
 − 

 (8) 

Consistent with the previous notation, 
3( ), ( )i iu s v s   are 

the angular and linear strain rates per unit arc length, 

respectively, experienced by the tube's cross section. Thus, 

as described previously, ( )iu s has the units of curvature. 

Similarly, the x and y components of ( )iv s are the shear 

strain components of the cross section while the z 

component is 1iz izv ε= +  in which izε is the longitudinal 

strain. Given the assumptions of negligible shear and 

longitudinal strain, 

 [ ]( ) 0 0 1
T

iv s =  (9) 

In (7), the frictionless assumption together with the tight-

clearance assumption used in compatibility constrain the 

interaction forces and torques that the tubes can exert on 

each other along their length. The distributed force, ( )if s , 

exerted between a pair of tubes must be directed radially 

with respect to the cross section and so ( ) 0izf s  . 

Furthermore, the tubes cannot apply distributed moments to 

each other and so ( ) 0i s  . Recall, however, the 

compatibility does require the existence of concentrated 

moments generated over negligibly short lengths at 

discontinuities in pre-curvature and at the ends of tubes. 

These concentrated moments enter (7) as boundary 

conditions. 

Combining (2)-(9) results in the following second order 

system of differential equations in the n  twist angles, i , of 

the individual tubes.  

 
 

( ) ( )

ˆ ˆ( ) (1 ) ( ) ( )

i i z

iz ix iy iy ix

s u s

u s u s u u s u







  




 (10) 

For simplicity it is assumed that neither the initial curvatures 

nor the stiffnesses vary with tube length.  In (10), the 

bending curvatures of the tubes are described by the 

algebraic equations, 
1

0 ,

1 1
,

0, ,

ˆ( ) ( ) ( ( )) ( ) ( )

( ) ( ) ( ) .

n n

i z i i ix y

i i
x y

T

i z ix y x y

u s K s R s K s u s

u s R u s







 


   
   
      



 
        (11) 

The boundary conditions for the state variables { , }i i   are 

split between the proximal and distal ends of the robot. 

 
(0)  actuator positions

( ) 0

i

i L







                     (12) 

The boundary condition ( ) 0i L   indicates that no torques 

are applied to the distal ends of the tubes.  

Note that when referring to a robot consisting of only two 

tubes it is occasionally convenient to use the values: 

 
2 1

2 1

α θ θ

α θ θ

= −

= − 
 (13) 

B. Modeling Friction Torque Due to Distributed Forces 

We consider here the effect of frictional forces associated 

with rotation of the tubes. Fig. 3 shows the distributed forces 

and torques applied to a tube by its outer neighbor. With 

respect to (7), the total distributed force ( )if s is given by 

 ( ) ( ) ( )i ni fif s f s f s   (14) 

The normal contact force ( )nif s  is the only force that the 

tube experiences in the frictionless case. 

 For ease of exposition, the notation for the remainder of 

the paper will not reference the arc length (s) in variables.   

Assuming that the relative rotation of tube i with respect 

to tube 1i  is about the z -axis, Coulomb friction 

introduces both a force and torque at the interface given by 
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  1sgn [ ]

0 0

fi i i ni

T

fi fi

f v f

r f

  



 

    

 
 (15) 

 

Fig. 2 -  Distributed forces and torques applied to tube i by outer neighbor 

tube 1i .   

Given this description, the distributed forces and torques 

have the following nonzero components. 

 0
T

i ix iyf f f      (16) 

  0 0
T

i iz   (17) 

Combining equations (14) ,(15) and taking the magnitude, 

 2( ) 1i nif s f    (18) 

Thus (15) can be rewritten purely in terms of if : 

  1
2

sgn
1

fiz i i i ir f


  


 


   (19) 

To modify the governing equations to include the friction 

force and torque, we need to incorporate their effect into the 

expression for ( )izu s in (10).   

     From [1] and [2], this expression was obtained using the 

z component of the moment equation in (7) with im  and 

im replaced by iu  and iu , respectively obtained from the 

constitutive model (2). This results in  

   ˆ ˆ1iz iz ix iy iy ixu u u u u      (20) 

Substituting iz fizτ τ=  to combine (19) and (20) yields 

 

   

  

1
2

1 sgn
1

ˆ ˆ     1

iz i i i i

ix iy iy ix

u r f

u u u u


  








  



  

 
 (21) 

We now need an expression for computing if . Recall the 

shear force equation from  (7), 

 [ ]i i i in f u n= −  (22) 

In this equation we first solve for in using the rearranged 

moment equation of (7), 

  ˆ[ ] [ ]i i i i i i i iv n K u u K u u     (23) 

Due to the fact that in here is premultiplied by [ ]v , this 

equation only yields explicit values for ixn and iyn .  The 

value of izn  can be found by integrating the z component of 

the shear force equation, 

 iz ix iy iy ixn u n u n   (24) 

using the values of ixn and iyn found above.  Note that this 

adds a new state variable per tube to the overall integration. 

 We now solve for if  
by premultiplying (22) by  v , 

        ,i i i iv n v f v u n   (25) 

taking the derivative with respect to arc length of (23), 

        ˆ
i i i i i i i i i iv n K u u K u u u K u        (26) 

and finally setting the right-hand sides equal to yield: 

           ˆ
i i i i i i i i i i i iv f K u u K u u u K u v u n        (27) 

Note that only the x and y components of iu  are required to 

solve for if and recall that the curvature at a give cross-

section is given by 

  
1

0 ,
1 1

,

ˆ
n n

j z j j jx y
j j

x y

u K R K u


 

 
   
 
   (28) 

Using the formula for the rotation matrix derivative about z, 

      ,z z z

d
R e R

dt
     (29) 

the derivative with respect to arc length of (28) is 

    
1

0 ,
1 1

,

ˆ
n n

j j z z j j jx y
j j

x y

u K e R K u 


 

 
   
 
    (30) 

and the second derivative is: 

   

       
1

22

0 ,

1 1
,

ˆ ˆ
n n

j j z z j j j j z z j j jx y

j j
x y

u K e R K u e R K u   


 

 
         
     (31) 

The value in the i
th

 tube’s own frame is: 

 
   

     

0 0, , ,

0 0 0, , , ,
2

T T

i z i z ix y x y x y

T T T

i z i z i z ix y x y x y x y

u R u R u

u R u R u R u

 

  

 

  

 

   
 (32) 

Substituting  (31)-(32) into (27) gives an equation for if  in 

which the only unknown is izu .  When combined with (21), 

the result is an implicit equation in izu  that must be solved 

(presumably by root-finding) at each step of the integration. 

C. Effect of Distributed-force Friction on Tube Twisting 

Simulation was used to evaluate the frictional kinematic 

model derived above for pairs of tubes comparable to those 

described in the experiments of section III. These tubes are 

of equal pre-curvature and bending stiffness. Consequently, 

their combined curvature varies between the pre-curvature 

value and zero as they are rotated with respect to each other. 

It was found that as frictional torque due to distributed 

forces is varied ( 0 µ≤ ≤ ∞ ), there is little change in the 

twisting of the tubes.  

 As an example, the tube parameters of tube pair B given 

in Table 1 and Table 2 were used to compute the 

configuration in which the tubes are rotated by 2π with 

respect to each other at their base. As shown in Fig. 3 for the 

frictionless case, the distributed forces between the tubes are 

close to their maximum values and, consequently, the effect 

of friction due to these forces should also be maximized. 
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Fig. 3. – Distributed force magnitude at s L versus relative rotation angle 

at 0s  for tube pair B. 

Using the equations from section II.B, the total distributed 

force, 1f , distributed normal force, 1nf , and distributed 

friction torque, 1zτ , were computed and their magnitudes are 

plotted as a function of friction coefficient in Fig. 4. It can 

be observed that, as the friction coefficient µ is increased, 

the distributed normal force magnitude asymptotically 

approaches zero while the distributed friction torque 

asymptotically approaches a finite value. Surprisingly, the 

total distributed force magnitude remains constant. 

 
Fig. 4 – Numerically computed values of distributed friction torque, 

3

1
10

z
  (dashed line), total distributed force,

1
f (solid black line) and 

normal distributed force,
1n

f (grey line), versus friction coefficient  .  

Values are for the tip of tube pair B  s L when rotated to  0 / 2  . 

Examining the normal and tangential components of the 

distributed force vector reveals that, as the friction 

coefficient increases, the components vary so as to maintain 

the direction and magnitude of the total distributed force 

vector on the cross section. This is depicted in Fig. 5. 

Further study of the simulation data revealed that the 

distributed friction torque when integrated over the length of 

the tubes was two orders of magnitude less than the torque 

applied at 0s =
 
to produce the tube rotation  0 / 2  . 

This is illustrated in Fig. 6 that plots tube twist rate,  s , 

(proportional to cross sectional torque) as a function of arc 

length. Despite an unrealistically large friction coefficient of 

510µ = , the change in twist rate produced by friction is 

negligible. 

 
Fig. 5 - Distributed normal, tangent, and total forces on a cross section for 

two values of friction coefficient. Total force direction and magnitude is 
preserved.  

 
Fig. 6 – Simulated tube twist rate, ( )sα , without friction (solid) and with 

friction (dashed, 
5

10µ = ) versus arc length, s, for  0 / 2  . Tube 

parameters are from experimental tube pair B.  

Finally, we numerically examined the effect of large 

distributed frictional torques on the robot’s tip position and 

similarly showed no appreciable difference.  

 In summary, for the tubes pairs considered, the frictional 

torque due to distributed forces has negligible effect on the 

shape of the tubes. This conclusion is reinforced by the 

observation that when manually twisting a pair of tubes of 

equal curvature and stiffness, the maximum friction force is 

experienced at ( ) ( )0 Lα α π= = when the curvatures oppose 

each other and the tubes are straight.  

As shown in Fig. 3, however, the magnitude of the 

distributed force at the tip (also along the entire length of the 

tubes) is zero at this configuration. Recall that the kinematic 

model also prescribes that each tube apply concentrated 

bending moments to the other at their ends. These moments, 

proportional to the change in curvature of a tube, take on 

their maximum values when the tubes are straight.   

D. Lumped Model for Frictional Torques Due to 

Concentrated Moments 

The second potential source of friction torques are the 

concentrated moments that arise from the compatibility 

condition at the boundaries of the tubes and at points of 

discontinuous pre-curvature. A concentrated bending 

moment is, of course, an idealization that follows from the 

modeling assumptions. As shown in Fig. 7 for the end of a 

tube pair ( s L= ), a concentrated bending moment can be 
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produced by a force couple acting over a small length of the 

tubes.  

 ( )m L Fε=  (33) 

In the limit of zero clearance between the tubes, the force 

goes to infinity and the moment arm goes to zero such that 

the product produces a finite bending moment given by (33). 

 Each of these concentrated forces will produce a 

concentrated frictional torque acting on the tubes. The 

magnitudes of both are inversely proportional to changes in 

the moment arm, ε . To accurately solve for both F and ε
would involve modeling the finite clearances between the 

tubes and solving for where along the length contact occurs 

between the tubes. 

 A simpler alternative approach is to make the assumptions 

that the moment arm ε is both small and approximately 

constant as the tubes are rotated. The force magnitudes can 

then be taken as proportional to the bending moment. This 

results in a very simple formulation for computing friction 

torque arising from the concentrated bending moments 
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Since this torque is applied at the ends of the tubes and at 

points of discontinuous curvature, it enters the equations as a 

boundary condition with the second equation of (12) 

replaced by 
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θ τ
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As with standard friction coefficients, the value of 'iµ  

should be estimated from experimental data.  

 
Fig. 7 – Distal end of tube pair showing concentrated moment modeled as a 
force couple. 

III. EXPERIMENTS 

A sequence of experiments was performed to compare the 

predictions of the frictionless model with the lumped friction 

model of section II.D. Two tube pairs of nearly equal 

curvature and stiffness were used as depicted in Fig. 9. The 

diameters of the tubes are given in Table 1 and the 

dimensions of the fabricated tubes are given in Fig. 8 and 

Table 2. To solve the forward kinematics, [1],[2] require the 

bending and torsional stiffnesses of the tubes. Given that the 

tubes are of the same alloy and were processed similarly, the 

stiffness of the tubes should be computable from moments of 

inertia and the Young’s modulus. Stacking the tolerances for 

inner and outer diameters of tube pairs, however, produces 

large variations in stiffness ratio. Instead, the stiffnesses of 

the outer tubes were computed as above and the stiffnesses 

for the inner tubes were calculated from the calibrated 

stiffness ratios.  These calibrated stiffness ratios were 

computed by measuring the individual tube pre-curvatures 

and the pair-wise combined curvature for ( )i s   using a 

camera measurement system (Vision Appliance, Dalsa, 

Inc.).  

TABLE 1. TUBE STOCK USED IN EXPERIMENTS. 

Tube 1 2 

Outer Diameter (mm) 2.77+/-0.01 2.41+/-0.01 

Inner Diameter (mm) 2.55+/-0.01 1.97+/-0.01 

 
Fig. 8 - Dimensions of tube pairs 

TABLE 2. TUBE PAIR PARAMETERS. 

Tube Pair A B 

r1 (mm) 231 154 

r2 (mm) 243 154 

Stiffness  

(tube 1 / tube 2) 
0.0334/0.0427 0.0334/0.0511 

 
Fig. 9 - Tube pair showing graduated disk, twist pointer and tangent pointer. 

 For these tube dimensions, tip deflection due to gravity (< 

0.3 mm) was within the measurement error of the camera 

system  ( 0.5 mm) and so its effects were neglected in the 

experiments. 

Experiments were performed on two tube pairs (labeled A 

and B) of identical cross sections (Tube 1 and 2 stock) and 

length, but of different pre-curvatures as shown in Fig. 8 and 

described in Table 2. Each tube is glued into a collar as 

shown and mounted in the motor drive system as shown in 

Fig. 9.  Motor positioning accuracy is better than 0.1 

degrees. It is necessary to relate 
2 (0)  measured at the 

proximal end of the curved portion of the tubes to the 
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relative angle measured by the motor encoders at the tube 

collars, 
2m . This is given by 

   2 2 2 1 1 2(0) (0) 18 mm /m z z zk k k          (36) 

To measure the twist at the distal end of the tubes, 
2 ( )L , 

a circular graduated disk was attached over the last 2 mm of 

the outer tube (Fig. 9). A 2 cm long straight wire was 

attached to the tip of the inner tube to enable measurement 

of the tip tangent direction. A twist pointer was attached 

perpendicular to this wire adjacent to the disk for twist 

measurement and zeroed for the configuration in which the 

curvature of the tubes is aligned. The error in measuring tip 

angle was estimated to be 2 degrees.  

The relative error of the models in predicting tube tip 

position and tangent direction was measured using a stereo 

camera system (Vision Appliance, Dalsa, Inc.) during the 

twist experiments described above. The tangent direction at 

the tip was computed from the coordinates of the points at 

the base and tip of the tangent pointer of Fig. 9. 

Experimental data for tip twisting, position, and orientation 

was collected by rotating the tube pairs quasistatically 

through a complete revolution in the positive and negative 

directions at steps of  2 0 ,10 ,20 ...m     . 

Poisson’s ratio   controls how flexible the tubes are in 

bending versus torsion. This value is commonly reported  as 

0.3-0.35 for solid Nitinol specimens.  It was determined, 

however, that a value of 0.6   provides a much better fit 

to the frictionless torsional model as shown in Fig. 10 and so 

this value was used for the evaluation of the friction model. 

 
Fig. 10 – Effect of Poisson’s ratio on relative torsional twist angle versus 
motor angle. Calculated using the frictionless kinematic model for Tube 

pair B. 0.6  (solid black line) and 0.3  (dashed line). 

A. Torsional Twisting of the Tubes 

Fig. 11 and Fig. 12 show the collected data and model 

predictions for the torsional twisting from the base to the tip 

of the tubes. The frictional model is dependent on the 

direction of rotation, and thus produces a pair of s-shaped 

‘envelope’ curves. These predictions match well the 

experimental envelope that is also shown in the figures. 

These figures clearly demonstrate the predictive capability 

of the frictional model in comparison to the frictionless 

torsional model. They also validate that the experimental 

‘envelope’ can be explained in large part by tip friction. 

 
Fig. 11 – Effect of boundary friction modeling on relative torsional twist 

angle versus motor angle for tube pair A.  Circles are data collected with 
clockwise rotation, diamonds are data collected with counterclockwise 

rotation.  The middle solid s-curve represents the frictionless torsional 

model and the lower and upper dashed lines represent the frictional model 
with clockwise and counterclockwise rotation respectively. 

 
Fig. 12 - Effect of boundary friction modeling on relative torsional twist 

angle versus motor angle for tube pair B. Data and curves as in Fig. 11. 

B. Tip Position and Tangent Direction 

Table 3 reports position and tangent direction error for the 

two sets of tubes at six values of 
2m . The mean, standard 

deviation and maxima are also reported for the complete 

data sets of Fig. 11 and Fig. 12. To visualize the workspace 

of the tube pairs, Fig. 13 depicts the torsionally rigid 

solutions [2] for Tube Pair B at the six values of 
2m

reported in the table. 

As can be seen from Table 3, the frictional and 

frictionless models are in agreement at 
2 0m  , while they 

diverge significantly at 
2m  where the concentrated 

bending moments at the tips of the tubes, and hence friction, 

are largest.  Note also that the frictional model shows both a 

larger absolute and relative improvement over the 

frictionless model in tube pair B (which has a larger pre-

curvature). 
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TABLE 3. TUBE PAIR TIP POSITION AND TANGENT ERROR. NOTE THAT 

“ALL” REFERS TO ALL POINTS IN FIG. 11 AND FIG. 12 

  Tube Pair A 

___frictionless model error__ 

friction  model error 

Tube Pair B 

___frictionless model error__ 

friction model error 

Point 
α2m 

(deg) 

Position  

(mm) 

Tangent 

 (degrees) 

Position  

(mm) 

Tangent 

(degrees) 

1 0 
__1.1__ 

1.1 

__2.4__ 

2.4 

__2.4__ 

2.4 

__1.2__ 

1.2 

2 60 
__1.2__ 

1.3 

__3.0__ 

3.2 

__3.2__ 

3.1 

__2.5__ 

2.5 

3 120 
__1.5__ 

1.7 

__0.8__ 

1.7 

__5.0__ 

4.6 

__4.0__ 

3.5 

4 180 
__2.2__ 

0.7 

__2.9__ 

1.0 

_13.4 _ 

2.2 

 _13.4 _ 

1.7 

5 240 
__1.7__ 

1.1 

__3.7__ 

2.7 

__4.6__ 

2.8 

__4.9__ 

3.1 

6 300 
__1.1__ 

1.1 

__3.4__ 

3.2 

__5.3__ 

5.3 

__4.0__ 

3.9 

All 

(mean) 

 __1.8__ 

1.4 

__3.1__ 

2.7 

__5.4__ 

3.7 

__4.3__ 

2.7 

All 

(std dev) 

 __0.9__ 

0.6 

__1.5__ 

1.3 

__3.3__ 

1.8 

__3.2__ 

1.2 

All 

(max) 

 __4.2__ 

2.9 

__6.0__ 

5.3 

__17.5__ 

7.8 

_18.1__ 

5.6 

 

 

 

Fig. 13 – Illustration of six points shown in Table 3 as calculated by the 

torsionally rigid frictionless model for tube pair B. 

IV. CONCLUSIONS 

In this paper, the frictional contributions of two types of 

tube interaction forces have been studied. It has been shown 

that the frictional torques arising from distributed contact 

forces between the tubes can be included in the kinematic 

model at the expense of solving a root finding problem at 

each step of integration with respect to arc length. It was 

also observed, however, that this source of friction produced 

a negligible amount of tube twisting and so could not 

explain the experimentally observed behavior.  

A second model was also introduced to predict the 

frictional torque associated with concentrated bending 

moments. In this case, the frictional torques are incorporated 

into the kinematic model as boundary conditions. For the 

experimental tube pairs, this model provides an 

improvement in overall position and orientation accuracy, 

and greatly reduces maximum error. 
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