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1 Introduction

Cosmological 1st-order Phase Transitions (1stOPTs) have been the subject of a lot of
interest because they can generate Gravitational Waves (GWs) [2–4], set the abundance
of dark matter [5–15], explain the baryon asymmetry [16–25], generate primordial black
holes [26–31], primordial magnetic fields [32], or topological defects [33–35] and offer a new
access to supersymmetry breaking [36]. A key quantity for the physics of these transitions,
and in turn for most of their applications, is the wall velocity vw, which is set by the
friction pressure on the bubble walls. For example, the primordial GW spectrum resulting
from a 1stOPT [37–42] strongly depends on whether the walls run away or reach a constant
terminal velocity before colliding: in the first case GWs are sourced by scalar field gradient,
while in the latter they are sourced by fluid motion [37, 39].

In the non-relativistic regime, the bubble wall velocity is usually calculated by assuming
local thermal equilibrium in a thermal field theoretic or hydrodynamic approach [43–55].
In the opposite limit where bubble walls are ultra-relativistic, γ = 1/

√
1− v2

w � 1, interac-
tions between particles crossing the wall can be safely neglected [1, 56–58] when computing
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the friction pressure. This limit is most relevant for 1stOPTs with large supercooling,
which are natural predictions of nearly-conformal potentials, and which have attracted a
lot of interest in recent literature (e.g. [5, 8, 11, 12, 15, 23, 59–85]).

In this work we make progress on the computation of the friction pressure on relativistic
bubble walls. In section 2, as a warm-up we compute the retarding pressure coming from
particles acquiring a mass in the broken phase, as initially derived in BM ’09 [56], and
recover their results. In section 3, we review the possibility for the incoming particle
to radiate one gauge boson acquiring a mass m in the broken phase, and again recover
the result from BM ’17 [57], PNLO ∝ g2mγ T 3

nuc, where Tnuc is the bubble nucleation
temperature, g is the gauge coupling constant and µ is the IR cut-off on the transverse
momentum of the emitted boson. In section 3.4, we discuss various possibilities to cure
the IR logarithmic divergence. In table 1, we show that for large supercooling m/Tnuc � 1
and/or large gauge coupling constant α, perturbativity breaks down and we must account
for the possibility to radiate multiple vector bosons.

In section 4, we perform an analytical Sudakov resummation of virtual and real emis-
sions at all leading-log orders (LL). The perturbative splitting probability can then be
used to express the mean exchanged momentum, and thus the pressure, as a resummed
quantity that includes leading-log real and virtual corrections to all orders, see eq. (4.9).
In the limit where the initial energy is large, Ea/m � 1, such that the kinematics of the
multiple emissions can be considered as independent, we find that the pressure is linear
in both the wall Lorentz factor γ and in the order parameter of the transition m, up to
a log. In section 5, we simulate a particle shower using a Monte-Carlo algorithm, and we
confirm the analytical resummation in the limit Ea/m� 1, in which energy depletion due
to multiple emissions can be neglected. In section 6, we deduce the bubble wall Lorentz
factor at collision time and discuss the consequences on the nature of the GW source. We
conclude in section 7.

To keep our paper easier to read, we defer a lot of technical details and complementary
— yet interesting — calculations to a series of appendices. In appendix A we compute the
vertex function for boson emission, in appendix B we compute the particle mode functions
precisely, and discuss the validity of the thin-wall and relativistic-soft-collinear limits, in
appendix C we compute the 3 → 2 boson scattering rate, in appendix D we sketch the
effect of particles reflected multiple times, in appendix E we treat the case of a massless
vector boson, in App F we discuss the discrepancy of our result with the one of [1] that
found a scaling PLL ∝ γ2T 2

nuc, in appendix G we compute the backreaction of successive
boson emissons on the kinematics of the parent particle, and in appendix H we compute
the Lorentz factor of a constantly accelerating bubble wall.

2 LO friction pressure

In this work, we assume that the wall is moving at relativistic velocities γ � 1, such
that we can work in the so-called ballistic regime in which we can neglect the interaction
between neighboring particles during the time when they cross the wall, see e.g. [54]. The
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leading-order pressure comes from the particle getting a mass in the broken phase [56].

PLO =
∑
a

ga

∫
d3p

(2π)3 fa(p)×∆pLO, (2.1)

where ga is the number of internal degrees of freedom. The momentum change is given by

∆pLO = E −
√
E −∆m2 ' ∆m2

2E , (2.2)

where we assumed energy conservation and the relativistic limit E � ∆m. We compute

∫ ∞
0

4πp2dp

(2π)3
1

ep/Tnuc ± 1
∆m2

2p = ∆m2 T 2
nuc

24 ×

 1 boson
1
2 fermion

(2.3)

where Tnuc is the nucleation temperature. Therefore

PLO =
∑
a

gaca
∆m2 T 2

nuc
24 , (2.4)

where ca = 1 (1/2) for bosons (fermions). If the negative pressure due to the vacuum
energy difference of the phase transition ∆V is larger than the LO retarding pressure in
eq. (2.2),

∆V > PLO, (2.5)

then the bubble wall is supposed to be accelerated to larger and larger γ factors until either
it collides with other walls or until soft particle radiation further contributes to the pressure
and eventually stops the wall from accelerating. The rest of the paper is dedicated to the
computation of the latter contribution.

3 The splitting probability at first order

3.1 Transition splitting

In this section we discuss another contribution to the pressure, which arises when a particle
entering the wall radiates a gauge boson which gets mass in the broken phase [57]. The
resulting NLO pressure reads

PNLO =
∑
a

ga

∫
d3pa
(2π)3 fa(pa)

pza
p0
a

×
∑
b,c

∫
dPa→bc ×∆p× [1± fc(pc)][1± fb(pb)], (3.1)

with
∆p = pza − pzb − pzc , (3.2)

where dPa→bc is the differential splitting probability, pa and pb are the momenta of the
incoming particle before and after the splitting while pc is the momentum of the radiated
boson,1 see figure 1. The momentum pa is the momentum in the far past and thus in the

1Note that our notation for ‘a’, ‘b’ and ‘c’ is different from [57] where the roles of ‘b’ and ‘c’ are
interchanged.
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a

b

c

~pa =Ea ẑ

~pb

~pc

⊥

ẑ

Wall

Symmetric phase Broken phase

Figure 1. NLO contribution to the retarding pressure: while approaching the bubble wall, an
incoming particle a radiates a vector boson c which gets a mass in the confined phase.

symmetric phase, while pb and pc are the momenta in the far future and thus in the broken
phase if they are transmitted, or in the symmetric phase if they are reflected by the wall
boundary. We summed over all the species a likely to participate in the process, ga being
their number of degrees of freedom. The Pauli blocking or Bose enhancing factors 1 ± fb
are ' 1, while 1± fc sum to 1 when considering both absorption and emission processes.2

3.2 The momentum exchange

Kinematics. Upon introducing

x ≡ Ec
Ea

, (3.8)

2The interaction Hamiltonian can be written as (see e.g. [86])

Hint =M0a
†
ca
†
baa + h.c., (3.3)

where ax are the usual creation operators in Fock space. Then the transition amplitudes for emission and
absorption read, respectively

Ma→bc = 〈fa − 1, fb + 1, fc + 1|Hint|fa, fb, fc〉 =M0
√
fa
√

1± fb
√

1 + fc, (3.4)

Mbc→a = 〈fa + 1, fb − 1, fc − 1|Hint|fa, fb, fc〉 =M0
√

1± fa
√
fb
√
fc, (3.5)

where +/− refers to boson/fermion statistic. We deduce the interaction rate accounting for both emission
and absorption

|Ma→bc|2 − |Mbc→a|2 = |M0|2 [fa(1± fb) + fc(fa − fb)] . (3.6)

Hence we see that as long as (fa − fb)fc � fa, we have

|Ma→bc|2 − |Mbc→a|2 ' |M0|2fa. (3.7)

As we will see, for non-abelian theories we will cut fc ∼ 1/g2, so our calculation in those cases holds good
as long as |fa − fb| . g2. We leave a more quantitative study for future works.
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we can write

pa =
(
Ea, 0 x̂,

√
E2
a −ma(z)2 ẑ

)
, (3.9)

pb =
(

(1− x)Ea, −k⊥ x̂,
√

(1− x)2E2
a −mb(z)2 − k2

⊥ ẑ

)
, (3.10)

pc =
(
xEa, k⊥ x̂,

√
x2E2

a −mc(z)2 − k2
⊥ ẑ

)
, (3.11)

wherema(z), mb(z) andmc(z) are the masses of the three particles involved in the vertex as
a function of z, and k⊥ ≡ |~k⊥|. As the wall breaks z-translation invariance, the momentum
along ẑ is not conserved. We approximate the wall by a Heaviside function at z = 0

ma(z) =

ma,s if z < 0,

ma,h if z ≥ 0,
mb(z) =

mb,s if z < 0,

mb,h if z ≥ 0,
, mc(z) =

mc,s if z < 0,

mc,h if z ≥ 0,
(3.12)

where the masses with ‘s’ and ‘h’ denote the ones at infinity in the symmetric and Higgs
phase, respectively. As long as the masses in the symmetric phase are small compared to
the ones in the broken phase, we can safely assume that

ma,s = mb,s = 0. (3.13)

We can not make the same simplification for mc because mc,s = 0 implies the existence of
a double (soft and collinear) divergence, see eq. (3.33). Hence, mc,s plays the role of an
IR cut-off which regulates the double singularity, whose possible values are discussed in
section 3.4.

Note that the parameterization of the kinematics in eq. (3.9), (3.10) and (3.11), imposes√
k2
⊥ +mc(z)2

Ea
≤ x ≤ 1−

√
k2
⊥ +mb(z)2

Ea
, (3.14)

0 ≤ k2
⊥ ≤

E2
a

4 −
mb(z)2 +mc(z)2

2 + (mb(z)2 −mc(z)2)2

4E2
a

, (3.15)

and the corresponding allowed region for x and k⊥ is shown in figure 2. Since all the results
derived in this work are UV insensitive, we can simplify the upper boundaries in eq. (3.14)
and (3.15) as √

k2
⊥ +mc(z)2

Ea
≤ x ≤ 1, (3.16)

0 ≤ k⊥ ≤ Ea. (3.17)

The associated correction terms are anyway beyond the soft-collinear approximation, that
we will assume when deriving the phase of the mode function in eq. (3.29) and the vertex
function in eq. (3.26).
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Figure 2. Kinematically allowed region (blue) for x and k⊥/Ea for one emitted boson.

3.3 The splitting probability

Relation between splitting probability and matrix element. The differential split-
ting probability is given by [57]∫

dPa→bc ≡
∫

d3pb
(2π)32Eb

d3pc
(2π)32Ec

〈φ|T |pb, pc〉 〈pb, pc|T |φ〉 , (3.18)

with the properly normalized state |φ〉 for the incoming particle a being defined as

|φ〉 ≡
∫

d3~p

(2π)3
φ(~p)
2E |~p〉 ,

∫
d3~p

(2π)3
|φ(~p)|2

2E = 1, (3.19)

with |~p〉 =
√

2E~p a†~p |0〉. We assume φ(~p) to be sharply localized around ~p = ~pa. The
transition element T can be written in terms of the matrix elementM as

〈~pb, ~pc|T |~pa〉 =
∫
d4x 〈pb, pc|Hint|pa〉 = δ(2)

(∑
~p⊥
)
δ
(∑

E
)
M. (3.20)

Substituting this in the above expression, we get∫
dPa→bc =

∫
~pb

1
2Eb

∫
~pc

1
2Ec

∫
~p′a

1
2E′a

∫
~p′′a

1
2E′′a

φ(~p′a)φ∗(~p′′a)

× δ(2)
(∑

~p′⊥

)
δ
(∑

E′
)
δ(2)

(∑
~p′′⊥

)
δ
(∑

E′′
)
MM∗. (3.21)

Here δ(2) (
∑
~p′′⊥) can be eliminated by the perpendicular direction in ~p′′a integration. Also,

δ (
∑
E′′) can be eliminated by the remaining direction in ~p′′a integration, yielding an extra

factor of (E′′a/p′′za )∫
dPa→bc =

∫
~pb

1
2Eb

∫
~pc

1
2Ec

∫
~p′a

|φ(~p′a)|2

2E′a
1

2p′za
δ(2)

(∑
~p′⊥

)
δ
(∑

E′
)
|M|2. (3.22)
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Next we use the fact that φ is sharply localized around ~pa∫
dPa→bc =

∫
~pb

1
2Eb

∫
~pc

1
2Ec

1
2pza

δ(2)
(∑

~p⊥
)
δ
(∑

E
)
|M|2. (3.23)

We finally perform ~pb integration. Eliminating the perpendicular δ function is trivial. The
remaining δ function can be performed by using pzbdpzb = EbdEb. We also decompose ~c
integration into ~k⊥ and Ec integrations. As a result, we get∫

dPa→bc =
∫
d2k⊥
(2π)2

∫
dEc
2π

1
2pza

1
2pzb

1
2pzc
|M|2. (3.24)

The sums over momenta assume asymptotic initial and final states, which thus are far from
the wall and do not see the Lorentz violation it induces. This Lorentz violation instead
enters the computation of the amplitude in the next paragraph.

Matrix element and vertex function. We next evaluate the matrix element

M≡
∫
dz χa(z)V (z)χ∗b(z)χ∗c(z), (3.25)

where χa, b, c are the mode functions of particles a, b, and c, respectively, and V (z) is the
vertex function. It has been pointed out [57] that the most important process contributing
to the pressure at large Ea is X(pa)→ VT (pc) X(pb) where VT is a transverse vector boson
and X can be a fermion, a scalar and a boson.3 The corresponding vertex function, which
we re-derive in appendix A, is phase-independent, Vh = Vs, and equal to

|V |2 = 4 g2Cabc
k2
⊥
x2 , (3.26)

where g is the gauge coupling constant and Cabc is the corresponding charge factor [1].

Mode functions. In appendix B.1, we show that in the high-energy limit pzc � mc,h

and thin-wall limit, we can approximate the mode function of c by

χc(z) ' exp
(
i

∫ z

0
pzc(z′)dz′

)
' eiEcz exp

(
− i

2Ec

∫ z

0
(m2

c(z′) + k2
⊥) dz′

)
, (3.27)

and idem for a and b, which allows to re-write the triple wave function overlap as a function
of a phase-dependent quantity A,

χa(z)χ∗b(z)χ∗c(z) = exp
(

i

2Ea

∫ z

0
A(z′) dz′

)
, (3.28)

with
−A ' ma(z)2 − mb(z)2 + k2

⊥
1− x − mc(z)2 + k2

⊥
x

' −mc(z)2 + k2
⊥

x
. (3.29)

3The computation of the vertex function for the emission of a longitudinal vector boson possibly involves
subtleties related to the breaking of Lorentz invariance at the wall boundary and the non-applicability of
the Ward Identity. We then leave it for future work, and focus on transverse components in this paper.
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We have assumed relativistic and collinear final momenta pzb �
√
m2
b + k2

⊥, pzc �√
m2
c + k2

⊥ in the first equality and soft emission energy x ≡ Ec/Ea � 1 in the last
equality.

We can now separate the integral over z across the wall in eq. (3.25) into a contribution
from the broken phase and a contribution from the symmetric phase. Therefore, we assume
that the vertices V and phases A on each side of the wall are Heaviside functions and we
denote them by (Vh, Ah) and (Vs, As), such that we obtain

M' Vs
∫ 0

−∞
dz exp

(
iz
As
2Ea

+ εz

)
+ Vh

∫ ∞
0

dz exp
(
iz
Ah
2Ea

− εz
)

= 2iEa
(
Vh
Ah
− Vs
As

)
.

(3.30)
We have regulated the behavior at infinity by introducing an imaginary momentum ±iε,
which we can safely set to 0 in the right-hand side of eq. (3.30) since Ah, As 6= 0.

In appendix B.1.1, we derive the mode function χc(z) in the presence of a finite wall
thickness Lw and we show that it can be neglected up to logarithmic corrections in the
limit, cf. eq. (B.15)

Lw � mc,h/m
2
c,s. (3.31)

Since we expect Lw ∼ m−1
c,h, cf. eq. (B.16), we conclude that the wall thickness can be

neglected as soon as mc,s � mc,h. Note that the validity of using the Heaviside function
is not given by the comparison between the (inverse) wall thickness and the momentum of
individual a, b, or c particles.

In appendix B.1.2, we compute the full mode function valid for any pzc . Particularly,
χc(z) contains a second wave propagating in the opposite direction which implies that in
the limit pzc . mc,h, the particle c is reflected. The full matrixM accounting for reflection
and transmission coefficients is given in eq. (B.24).

Perturbative splitting probability. Therefore, the matrix element in eq. (3.30) be-
comes

|M|2 ' 4E2
a × 4 g2Cabc

k2
⊥
x2 ×

x2 (m2
c,h −m2

c,s)2

(k2
⊥ +m2

c,s)2(k2
⊥ +m2

c,h)2

' 16 g2CabcE
2
a

k2
⊥ (m2

c,h −m2
c,s)2

(k2
⊥ +m2

c,s)2(k2
⊥ +m2

c,h)2 . (3.32)

The splitting probability in eq. (3.24) reduces to

dPa→bc = d2k⊥
(2π)2

dx

(2π)2x
1

(2Ea)2 16 g2CabcE
2
a

k2
⊥ (m2

c,h −m2
c,s)2

(k2
⊥ +m2

c,s)2(k2
⊥ +m2

c,h)2

= ζa
dk2
⊥

k2
⊥

dx

x
Π(k⊥), (3.33)

where Π(k⊥) contains the IR and UV suppression factors

Π(k⊥) ≡
(

k2
⊥

k2
⊥ +m2

c,s

)2(
m2
c,h −m2

c,s

k2
⊥ +m2

c,h

)2

, (3.34)
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and
ζa ≡

α

π

∑
b,c

Cabc, α ≡ g2

4π . (3.35)

Here note that we integrated the radial direction of ~k⊥ as d2k⊥ = πdk2
⊥. The charge factors

Cabc in the SM can be found in [1]. In the rest of the paper we assume mc,h � mc,s.
In eq. (3.33), we have replaced pzi with i = a, b, c in eq. (3.24) by Ei. In appendix B.2, we

investigate the validity of the relativistic-soft-collinear approximation for the phase space
factor 1/pzi , the vertex function V , the phase A of the mode function and the momentum
exchange ∆p and we show that this underestimates the final result by a few percents only
for Tnuc = 10−2Tstart.

Symmetry restoration. The UV suppression factor
(
m2
c,h −m2

c,s

k2
⊥ +m2

c,h

)2

in eq. (3.34), com-

pared to usual splitting functions in collider context [87], vanishes in the limit where the
symmetry is restored mc,h → mc,s or k2

⊥ � m2
c,h. In contrast, as first claimed by [58]

the splitting function used by [1] does not go to zero in the limit where the distinction
between the two phases disappears. We give more details on the origin of this discrepancy
in appendix F.

3.4 The IR cut-off

The splitting probability eq. (3.33) is divergent in the IR, for k2
⊥ → 0. That divergence

is regulated by values of mc,s > 0, via the factor
(
k2
⊥/(k2

⊥ +m2
c,s)
)2
, or by some other

physical process. To encompass both possibilities, we find it convenient to define a general
IR cutoff µ and rewrite eq. (3.33) as

dPa→bc = ζa
dk2
⊥

k2
⊥

dx

x

(
k2
⊥

k2
⊥ + µ2

)2(
m2
c,h −m2

c,s

k2
⊥ +m2

c,h

)2

, (3.36)

where by definition
µ ≥ mc,s. (3.37)

This definition gives us also the possibility to treat µ as a free parameter, so that one could
later account for IR cut-offs which are not relevant for the physical situation of interest for
this paper, or which we simply miss.

Let us start by discussing the case µ = mc,s, for which eq. (3.36) goes back to eq. (3.33).
Values of mc,s > 0 are guaranteed by screening effects in the plasma [88, 89],

m2
c,s '

∑
i

2gi
g2Ci
dA

∫
d3pi

2|~pi|(2π)3 fi(~pi), (3.38)

with the sum running over all species in the plasma i that couple to c, fi being the
occupation number of the i particle, gi the number of relativistic degrees of freedom of
species i, Ci the quadratic Casimir (g2Ci = charge squared for abelian theories) and dA
the dimension of the adjoint representation. We discuss two possible screening effects in
the next two paragraph, and later discuss other possible cut-offs for k⊥.
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Thermal mass. A contribution to f in eq. (3.38) is always given by the particles in
thermal equilibrium. Taking a U(1) and an SU(N) gauge theories as examples, we obtain

U(1) : m2
c,s = Nf

6 g2T 2
nuc, (3.39)

SU(N) : m2
c,s = 1

6

(
N + Nf

2

)
g2T 2

nuc, (3.40)

where Nf is the number of Dirac fermion flavors in the fundamental representation. The
thermal mass in eq. (3.39) and (3.40), which for the sake of simplicity we write as

mc,s ' mth ≡ α1/2Tnuc, (3.41)

constitutes the minimal IR cut-off for abelian and non-abelian gauge theories.

Phase-space saturation. As the occupation number of emitted vector bosons grows in
the IR, it must exist a scale msat below which perturbation theory breaks down and vector
bosons start to act collectively [57].4 Due to the soft-collinear divergence of the splitting
function, the occupation number fc(pc) grows like

fc(pc) =
∑
a

ga

∫
d3pa
(2π)3 fa(~pa)

dPa→bc
d2k⊥dp0

c

'
∑
a

νagaζa
ζ(3)
π2 γT 3

nuc
1
πk2
⊥

1
xEa

Π(k⊥), (3.42)

where we have again used dp0
c ' dpzc in the first equality and eq. (3.33) in the second one,

ga is the number of relativistic degrees of freedom of particle a and νa = 1 (3/4) for bosons
(fermions) assuming fa to be a thermal distribution. From eq. (3.38) and (3.42), we can
see that in the case of non-abelian gauge theories (without loss of generality, we focus on
SU(N) here and for numerical applications we fix N = 3), in the large γ limit, the emitted
vector bosons back-react self-consistently on the screening mass

m2
c,s ' 2Ng2

∫
d3pc

2|~pc|(2π)3 fc(~pc) (3.43)

' 2Ng2∑
a

νagaζa
ζ(3)
π2 γT 3

nuc
1

(2π)32Ea

∫ E2
a

0

dk2
⊥

k2
⊥

∫ 1√
k2
⊥+m2

sat
Ea

dx

x2 Π(k⊥), (3.44)

which implies

m3
c,s ' m3

sat ≡
2ζ(3)
3π5 Nα2γT 3

nuc
∑
a,b,c

νagaCabc. (3.45)

Note that msat increases as γ1/3. Its value at the time of bubble collision depends on
whether the wall runs away or reaches a terminal velocity. Upon plugging typical values

4We thank Dietrich Bodeker and Guy Moore for very useful discussions which helped us writing this
section.
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of the parameters, we obtain5

msat '



0.023 mc,h

(
γ
γrun

1
cw

TeV
〈φ〉

10
β/H∗

N
∑

a,b,c
ga Cabc

10g∗

)1/3 (
α

1/30
∆V

0.1〈φ〉4
)1/6 ( Tnuc

10−4Tstart

)4/3
(run-away walls),

0.12 mc,h

(
γ
γLL

∆V
0.1〈φ〉4

1/30
α

4
κ

N ln 10
3 ln(mc,h/msat)

)1/3
(terminal-velocity walls),

(3.47)
where we have introduced parameters that will be discussed later in the paper: Tstart is the
temperature where vacuum domination starts (eq. (3.60)), H∗ is the Hubble parameter at
the time of the phase transition, β is the time variation of the nucleation rate (eq. (H.17)),
γrun is the Lorentz factor of bubble walls that run away evaluated at the time of collision
(eq. (6.11)), γLL is that of bubble walls where the external pressure compensates the internal
one ∆V (eq. (6.10)), cw is the bubble radius at nucleation in unit of T−1

nuc (eq. (H.15)), and
κ is the exchanged momentum in unit of ζamc,h ln(mc,h/µ) (eq. (4.15)).

The modification of the dispersion relation of vector bosons, that we just derived, relies
on a perturbative particle description. However, as we now sketch, perturbativity breaks
down for pc so low to give roughly the same occupation numbers fc that lead to our cut-off
msat above. Eq. (3.43) can be rewritten as

m2
c,s ∼ g2fc(p∗)p2

∗, (3.48)

where we define p∗ as some IR cut-off of the momentum of the c particle, because the
integrand in eq. (3.43) is peaked in the IR. where p∗ is the typical momentum of the c
particle, which is identified as the IR cut-off because the integrand in eq. (3.43) is peaked
in the IR. Modes with p∗ . mc,s are screened, hence the condition for the vector bosons to
back-react on the dispersion relation can be recast as [57]

g2fc(p∗) > 1. (3.49)

The occupation number fc(p∗) of vector bosons is related to the vector boson wave function
Aµ by

(∂A)2 ∼ p2A2 ∼
∫
p∗
d3p p fc(p) ∼ p4

∗ fc(p∗). (3.50)

5Note that if the screeening mass due to gluon collective behavior, msat in eq. (3.47), becomes larger
than the mass of free gluons in the broken phase mc,h, then the logarithmic divergence in the splitting
probability in eq. (3.33) is replaced by a 1/k4

⊥ divergence and the friction pressure becomes [57]

msat & mc,h =⇒ 〈∆p〉 ' 0.3 ζamsat

(
mc,h

msat

)4
∝ γ−3/7 =⇒ PNLO ∝ γ4/7. (3.46)

This change of scaling γ → γ4/7, which is enough to prevent bubble walls to run-away, should only occurs
for large latent heat ∆V & 〈φ〉4, small gauge coupling α . 0.01, and at the end of the bubble expansion
stage in the friction dominated regime γ ' γLL.
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We deduce that the hierarchy between the 3 terms in the Lagrangian

L ⊃ ∂A∂A+ gAA∂A+ g2AAAA , (3.51)

which is essential for perturbation theory to apply, breaks down as soon as we enter the
regime of eq. (3.49), or equivalently, as soon as p∗ < msat in eq. (3.47). Therefore, a
treatment beyond perturbation theory would be needed to determine the friction pressure
for momenta below msat. We leave such an interesting study for future work, and here for
simplicity we conservatively choose to still interpret msat as an IR cut-off.

Let us finally comment on abelian gauge theories. In those cases both previous argu-
ments do not apply, because they rely on the existence of gauge self-interactions, so that
one cannot use the cutoff msat in eq. (3.47). This motivates the use of the naive thermal
cutoff in eq. (3.41), with one potential limitation that we now comment upon. In the
abelian case we expect an IR cut-off to arise from the presence of fermions and scalars
originating from the splitting of the soft gauge bosons, themselves radiated from the in-
coming energetic quanta. This splitting of soft gauge bosons into softer fermions or scalar
pairs is not enhanced, however one has many soft gauge bosons to start with, so that the
IR cutoff induced by the produced fermions and scalars may perhaps be larger than the
thermal mass. Determining this IR cut-off goes beyond the purpose of this paper, where we
just content ourselves with pointing out this potential limitation of using the naive thermal
mass of eq. (3.41) in the abelian case.

Other cutoffs. Below we discuss processes that may regulate the IR divergence of
eq. (3.33) at values µ > mc,s. We anticipate that, in the physics case of our interest,
we find that the thermal mass and the phase-space saturation discussed above provide IR
cutoffs that are stronger than the effects we discuss next.

� 3-to-2 boson scattering. In the IR limit k2
⊥ → 0, the occupation number of emitted

vector bosons diverges. At some point, in the case of non-abelian gauge theories, we
could expect the occupation number of emitted vector bosons to be large enough to
trigger 3-to-2 scatterings. In that case, the population of emitted vector bosons is
depleted and the pressure stops growing. In appendix C, we compute the resulting
value of the IR cut-off µ3→2 at tree level, and find that µ3→2 < msat for typical values
of the parameters. We then consider msat as the effective IR cut-off of our emissions.6

� Energy-momentum conservation. Successive boson emissions lower the energy
and momentum of the parent particle (Eb, pb). The impossibility to radiate more
energy and momentum than what is initially available, therefore, tames the IR di-
vergence even when the cut-offs discussed so far go to zero. To describe this effect,
we rely on a numerical Monte-Carlo simulation which we describe in section 5 and
appendix G. We find that the number of emissions and the resulting 〈∆p〉 saturate
in the IR, see figure 16 of appendix G. This leads to an effective IR cut-off which

6Moreover, for f & 1, one would expect a Bose enhancement of 2 → 3 transitions, further jeopardising
the validity of the cut-off µ3→2. Given that msat > µ3→2, we do not need to quantitatively investigate this
issue.
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depends on the initial energy Ea. However we find that the corresponding IR cut-off
is smaller than the thermal mass and backreaction can be neglected.

Prescription for calculations. In the remaining part of the text, we consider the IR
cut-off µ in eq. (3.36) as a free parameter. For numerical applications, we will consider
two benchmark scenarios according to whether the IR cut-off is set, in the case of abelian
gauge theory, by the thermal mass µ = α1/2Tnuc in eq. (3.41) or, in the case of non-abelian
gauge theory, by the screening length µ = msat in eq. (3.47) resulting from phase space
saturation

µ = mc,s '


mth = α1/2Tnuc (abelian gauge theory),

Max [mth, msat] (non-abelian gauge theory).
(3.52)

3.5 Perturbativity breakdown

Integrated perturbative splitting probability. We integrate x in eq. (3.33) over the
range defined in eq. (3.16) with mc(z)→ mc,s. We obtain the probability to emit a vector
boson with transverse momentum k⊥ in the collinear limit

dPE(k⊥) ' ζa
2
dk2
⊥

k2
⊥

(
k2
⊥

k2
⊥ + µ2

)2 (
m2
c,h −m2

c,s

k2
⊥ +m2

c,h

)2

ln E2
a

k2
⊥ +m2

c,s

. (3.53)

The last integration over k2
⊥, eq. (3.17), is logarithmically dependent on the IR cut-off µ.

Upon identifying µ = mc,s and in the limit µ � mc,h � Ea, the integrated vector boson
emission probability becomes

PE(µ) ' 2ζa ln
mc,h

µ
ln Ea
mc,h

+ ζa ln2mc,h

µ
. (3.54)

We recover the standard double logarithm for integrated probability of vector boson radi-
ation (see e.g. [90–93]). The soft-collinear divergence is here regularized by the IR cut-off
µ, which is not the energy threshold of some particle detector like in a collider context, be-
cause here all emitted vector bosons contribute to the observable 〈∆p〉 and so are physical.
We take the IR cut-off in our context from processes due to the existence of (high) particle
densities, see section 3.4 for more details.

Numerical estimates in physical scenarios. We now evaluate the emission proba-
bility PE , for different benchmark values in table 1. The incoming energy is given by the
thermal energy 3Tnuc [94] boosted in the wall frame

Ea ' 3γTnuc. (3.55)

We assume that the bubble wall Lorentz factor γ is set by its value evaluated at the time
of bubble collision, see eq. (6.12)

γ = γcoll. (3.56)

Without much loss of generality, we choose

Cabc = 1. (3.57)
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Emission probability

PE at LO in α

Tnuc
Tstart

= 0.1 Tnuc
Tstart

= 10−3 Tnuc
Tstart

= 10−6

µ ' α1/2Tnuc

(thermal mass)

α = 0.03

α = 0.3

0.6

3.2 & 1

2.8 & 1

24.5� 1

4.1� 1

38.3� 1

µ = msat

(phase space saturation)

α = 0.03

α = 0.3

0.2

1.7

0.5

5.5� 1

2.0 & 1

17.3� 1

Table 1. Values of the probability for radiating a single soft vector boson PE in eq. (3.54), for
different amount of supercooling, coupling constant α and IR cut-off µ, see section 3.4. We can see
that for large supercooling Tstart/Tnuc or large coupling constant α, perturbativity, which we define
by PE . 1, breaks down and the Sudakov logarithms of the fixed-order calculation in eq. (3.54)
must be resummed. We have fixed cvac = 0.1 and γ equal to the wall Lorentz factor γcoll when
bubbles collide, see eq. (6.12).

We assume that the vector boson mass in the broken phase is set to

mc,h '
√

2πα 〈φ〉 . (3.58)

We choose to characterize the amount of supercooling by the ratio Tnuc/Tstart where Tstart
is the temperature when the universe becomes vacuum-dominated7

π2

30g∗T
4
start ' ∆V =⇒ Tstart '

(30 cvac
π2 g∗

)1/4
〈φ〉 , with cvac ≡ ∆V/ 〈φ〉4 . (3.60)

Here Ne ≡ ln (Tstart/Tnuc) gives the number of e-folds of inflation generated during the
supercooled phase transition. As shown in table 1, at large supercooling or large coupling
constant, e.g. α & 0.3 and Tnuc . 10−3 Tstart, the perturbative calculation in eq. (3.54)
cannot be trusted and we must account for the possibility to radiate multiple vector bosons.

4 The splitting probability at all leading-log orders

4.1 Multiple boson emission

Exchanged momentum. For multiple c emission, the exchange momentum along z is

∆p = Ea −
√

(1−X)2E2
a −m2

b,h −K2
⊥ −

n∑
i=1

pzci (4.1)

7In the low-temperature expansion of the thermal potential, i.e. when the abundance of the particles i
thermally correcting the potential of φ is Boltzmann-suppressed, mi(φ)� Tstart, one has

Tc ' 31/4
(
g∗,i
g∗,f

)1/4

Tstart & Tc, (3.59)

where Tc is the critical temperature when the two minima of the potential are degenerate, cf. appendix A
in [12], and where g∗,i and g∗,f are the number of relativistic degrees of freedom before and after the phase
transition.
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where we have denoted by X and K⊥ the sum of energies and transverse momenta of the
n emitted vector bosons

X =
n∑
i=1

xi, and K⊥ =
n∑
i=1

k⊥,i. (4.2)

The values of the z momenta of the emitted vector bosons pzci depend on whether they are
transmitted or reflected by the wall

pzci =
√
x2
iE

2
a −m2

c,h − k2
⊥, i Θ(p2

ci,h)−
√
x2
iE

2
a −m2

c,s − k2
⊥, i Θ(−p2

ci,h). (4.3)

with
p2
ci,h = x2

iE
2
a −m2

c,h − k2
⊥, i. (4.4)

Note that eq. (4.1) assumes that successive emissions take place in the same (xz) plane and
eq. (4.3) neglects the transverse recoils of the successive emissions on the momentum of the
parent particle. In appendix B.3, we show that those two approximations are very good.

Soft-collinear limit. To first order in the soft xi � 1 and collinear k⊥,i � 1 limit, we
obtain

∆p =
n∑
i=1

∆pi, with ∆pi =
m2
c,h + k2

⊥,i
2xiEa

Θ(p2
ci,h) + 2xiEaΘ(−p2

ci,h). (4.5)

4.2 Sudakov resummation

Poisson distribution. At leading-log order, the many-boson emission distribution fol-
lows a Poisson distribution, see e.g. eq. (2.30) of [95] or eq. (6.86) of [91], and the mean
value of an observable O can be computed from

〈O〉 =
∞∑
n=0

1
n!

 n∏
j=1

∫
dPE, j

O exp
[
−
∫
dPE

]
, (4.6)

where ∫
dPE, j =

∫ E2
a

0
dK2
⊥, j

∫ 1√
µ2+K2

⊥
Ea

dxj
dPE

dK2
⊥, jdxj

. (4.7)

The product factors in eq. (4.6) account for the n indistinguishable leading-log real emis-
sions while the exponential resums the leading-log virtual corrections. The matching be-
tween the matrix element of the virtual correction in the argument of the exponential and
the perturbative splitting probability stems from unitarity

∞∑
n=0

1
n!

[∫
dPE

]n
exp

[
−
∫
dPE

]
= 1. (4.8)

The real emissions are assumed to be independent and we neglect correlations which are
higher order effects [95].
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Mean exchange momentum. We can write

〈∆p〉 =
∞∑
n=0

1
n!

 n∏
j=1

∫
dPE, j

 n∑
i=1

∆pi exp
[
−
∫
dPE

]

=
[∫

dPE ∆pi
] ∞∑
n=1

1
(n− 1)!

[∫
dPE

]n−1
exp

[
−
∫
dPE

]
=
∫
dPE ∆pi (4.9)

where we have made use of eq. (4.8). This resembles the average for a Poisson distribution∑
n× λne−λ/n! = λ

∑
λn−1e−λ/(n− 1)! = λ. We conclude that in the soft-collinear limit

in which ∆p is an additive observable, see eq. (4.5), the average exchanged momentum in
which both real and virtual leading-log emissions are resummed is identical to the naive
expectation using the perturbative splitting probability as in the original article [57].

Note however that in the steps leading to eq. (4.9), we have neglected the dependence of
the kinematics boundaries on earlier emissions, i.e. we have kept fixed integration bound-
aries in eq. (4.7). Instead, the energy and momentum of the parent particle should get
depleted with the number of emissions. The proper average exchanged momentum 〈∆p〉
taking into account these backreaction effects is given in eq. (G.1) of appendix G. Since this
analytical formula is not easily tractable, we propose to include the effect of backreaction
with a Monte-Carlo simulation in the next section, section 5.

4.3 Analytical estimate

From plugging the fixed kinematic boundaries in eq. (3.17) inside eq. (4.7) and eq. (4.9),
in the limit µ� mc,h � Ea and mc,s � mc,h, we obtain

〈∆p〉 = 〈∆pR〉+ 〈∆pT〉 , (4.10)

where 〈∆pR〉 and 〈∆pT〉 are the contributions from reflected and transmitted vector bosons

〈∆pR〉 ' ζa
∫ Ea

0

dk2
⊥

k2
⊥

∫ √k2
⊥+m2

c,h
Ea√

k2
⊥+µ2

Ea

dx

x

k4
⊥

(k2
⊥ + µ2)2

(
m2
c,h −m2

c,s

k2
⊥ +m2

c,h

)2

× 2xEa (4.11)

' 4 ζamc,h ln
mc,h

µ
, (4.12)

and

〈∆pT〉 ' ζa
∫ E2

a

0

dk2
⊥

k2
⊥

∫ 1√
k2
⊥+m2

c,h
Ea

dx

x

k4
⊥

(k2
⊥ + µ2)2

(
m2
c,h −m2

c,s

k2
⊥ +m2

c,h

)2

×
k2
⊥ +m2

c,h

2xEa
(4.13)

' ζamc,h ln
mc,h

µ
, (4.14)

where in eqs. (4.11) and (4.13) we have used the splitting probability of eq. (3.53), and in
eqs. (4.12) and (4.14) we have expanded the results of the integrals for µ � mc,h � Ea.
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We conclude that the contribution from soft emitted vector bosons which are reflected at
the wall boundary is at least comparable to the contribution from the transmitted ones (as
anticipated in the fixed-order calculation in [58]). For parameters of physical interest, ∆pR

never reaches its asymptotic behaviour of eq. (4.12), but stays slightly smaller, as we will
study next. We thus write a ready-to-use approximated resummed analytical result, sum
of the reflected and transmitted contributions, as

〈∆p〉 = κ ζamc,h ln
mc,h

µ
, with κ ≈ 4. (4.15)

In figure 3, we show the analytical estimate for κ evaluated with the IR cut-off µ, either
set by the thermal mass α1/2Tnuc, or by the screening mass msat of phase-space-saturated
boson bath, see eq. (3.52). In figure 4, we confront the analytical treatment with the
numerical one, based on a MC algorithm, which is discussed in the next section, section 5.

In appendix B, we compute different corrections to eq. (4.15) due to properly computing
the mode function of particle c, and to not expanding the various square root functions
leading to eqs. (4.11) and (4.13). We summarize the list of corrections in table 2 and
figure 12. We also anticipate that eq. (4.15) neglects additional corrections due to the
presence of the thin layer of reflected vector bosons in front of the bubble walls, discussed
in section 4.4, and which we leave for further studies.

The case where the vector boson does not acquire a mass in the broken phase, mc,h =
mc,s, is discussed in appendix E, where we show that NLO effects are only O(ζa) corrections
to the LO pressure in section 2, and therefore they can be safely neglected.

4.4 Fate of reflected vector bosons

Previously we have discussed the possibility for radiated c particles to be reflected by the
wall boundary whenever their would-be momentum in the hidden phase pc,h, defined by
eq. (4.4), is negative. We now discuss possible corrections to 〈∆pR〉 in eq. (4.10) due to the
presence of those particles right in front of the wall.

� We expect the momentum of the reflected c particles to change due to scatterings
with the incoming a particles in the thermal bath. At a distance of the wall set by
their mean free path in the plasma frame, see appendix D

lp ∼
p2
c,z

α2T 3
nuc

, (4.16)

where pc,z . mc,h is their typical momentum, the c particles are expected to come
back in direction of the wall. If their new momentum pc,z is larger than mc,h, they
are transmitted to the symmetric phase. Otherwise, if pc,z < mc,h they are reflected
again and so on. Those cycles of multiple reflections ended up by transmission are
expected to give corrections to 〈∆p〉 in eq. (4.15).

� The presence of this population of reflected c particles is expected to give corrections
to the dispersion relation and to the computation of msat in eq. (3.47).
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Lw = 0

Lw = cvac
-1/2<ϕ>-1

10-7 10-5 10-3 10-1
1

2

3

4

5

Tnuc/Tstart

κ
=

〈Δ
p
〉

ζ
a
m
c,
h
lo
g
m
c,
h
/μ

Effects of mutual interactions + wall thickness

Reflected + transmitted

(Analytical treatment)

γ = γcoll

<ϕ> = 1 TeV

β/H = 10

α = 1/30

Cabc = 1

cvac = 0.1

g* = 106.75

Ea = 3γTnuc

mc,h= 2 πα <ϕ>

↑
γ
≳
10

↑
↑
R
el
at
iv
is
ti
c
w
al
l↑

μ
=
α 1/2
T
nuc

μ = msat

↑
R
u
n
-
aw
ay
w
al
l↑

Figure 3. Analytical average exchanged momentum 〈∆p〉 = 〈∆pR〉+ 〈∆pT〉, where the resummed
pressure PLL is proportional to γ T 3

nuc 〈∆p〉, see eq. (6.4). For the solid lines we used the full
analytical expressions in eqs. (4.11) and eqs. (4.13), which assumed negligible wall thickness, and
for the dotted ones we use the full numerical result eq. (B.13) for a finite wall thickness Lw =
c
−1/2
vac 〈φ〉−1. The IR cut-off µ is set to (brown lines) the thermal mass α1/2Tnuc and to (green lines)
the mass msat from the collective behaviour of the phase-space-saturated emitted vector bosons
(valid for non-abelian gauge theories only), see eq. (3.52). The presence of the plateau can be
understood by the fact that msat does not depend on Tnuc/Tstart for terminal-velocity walls, cf.
eq. (3.47). Inside the yellow region, we compute γ . 10, cf. eq. (6.10), such that interactions
between neighboring incoming particles can not be safely neglected during the time of wall crossing
and our analysis may break down.

� Due to successive scatterings with the reflected c particles, the incoming a particles
are expected to lose a small fraction of their momentum Ea. The exchanged momen-
tum 〈∆p〉 in eq. (4.10) is independent of Ea in the limit Ea � mc,h but goes to zero
in the limit Ea ∼ mc,h. The latter only arises in the region of extreme supercooling
(e.g. Tnuc/Tstart ∼ 10−7 if 〈φ〉 = 1TeV), see purple vertical line in figure 17. We
expect the depletion of Ea due to scatterings with reflected c particles, to shift the
position of this purple vertical line to the right.

� The successive scatterings of the incoming a particles with the reflected c particles,
which act as a medium by itself, is expected to induce further splitting radiations,
in addition to the one induced by the bubble wall. The presence of reflected parti-
cles then induces further splitting radiations, which in turn induce further reflected
particles and so on.

Contenting ourselves with qualitative comments, we leave the quantitative study of those
new effects for future works.
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Figure 4. Average exchanged momentum 〈∆p〉 = 〈∆pR〉+〈∆pT〉 where the resummed pressure PLL

is proportional to γ T 3
nuc 〈∆p〉, see eq. (6.4). Dashed lines use the analytical estimate in eq. (4.10),

continuous lines the Monte-Carlo simulation in section 5. We can see that the MC simulation
validates the analytical Sudakov resummation leading to eq. (4.9) at the percent level. The blue lines
shows the contributions from the emitted boson which are too soft to enter the broken phase and
are reflected by the wall boundary, while the green lines show the contribution from the transmitted
ones. The red dashed line show the contribution due to particle ‘a’ getting a mass in the broken
phase, see LO pressure in section 2. Left: IR cut-off set to the thermal mass µ = α1/2Tnuc (abelian
scenario). Right: IR cut-off set to msat, see eq. (3.52), accounting for the backreaction of the
emitted vector bosons on their dispersion relation (non-abelian scenario).

5 Monte Carlo simulation

In this section, we numerically generate the shower of emitted bosons with a Monte-Carlo
(MC) simulation and compute the resulting momentum exchanged with the wall.

5.1 The Sudakov form factor

The survival probability. A necessary ingredient to realize a MC simulation is the
probability PNE(k1, k2) of non-emission in the interval k1 ≤ k⊥ ≤ k2 [90–93]. The latter can
be derived from the probability of non-emission in the infinitesimal interval [k2

1, k
2
2 + dk2

⊥]

dPNE = 1− dPE , (5.1)

as follows. dPE is given in eq. (3.53). We consider the finite interval [k2
1, k

2
2] which we

divide in N small intervals of length dk2
⊥ = (k2

1 − k2
2)/N . The probability of non-emission
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in [k2
1, k

2
2] reads

PNE(k1, k2, Ea) = lim
N→+∞

N∏
n=1

(
1− ζa

2
dk2
⊥

k2
⊥, n

m4
c,h

(k2
⊥, n +m2

c,h)2 ln E2
a

k2
⊥, n +m2

c,s

)

= exp
(
−ζa2

∫ k2
2

k2
1

dk2⊥
k⊥

2
m4
c,h

(k2
⊥ +m2

c,h)2 ln E2
a

k⊥
2 +m2

c,s

)
= exp [−PE(k1, k2)] , (5.2)

where PE(k1, k2), is the perturbative probability to emit a vector boson with transverse
momentum k⊥ in the interval k⊥ ∈ [k1, k2]

PE(k1, k2) = F (k2)− F (k1), (5.3)

with

F (k) = ζa
2

(
m2
c,h −m2

c,s

m2
c,h

)2 [(
m2
c,h

k2 +m2
c,h

+ ln
(

k2

k2 +m2
c,h

))
ln
(

E2
a

k2 +m2
c,s

)

+ ln
(

1 + k2

m2
c,s

)
ln
(

k2

m2
c,h −m2

c,s

)
+

m2
c,h

m2
c,h −m2

c,s

ln
(
k2 +m2

c,s

k2 +m2
c,h

)
(5.4)

+ PolyLog2

(
− k2

m2
c,s

)
+ PolyLog2

(
−

k2 +m2
c,s

m2
c,h −m2

c,s

)]
,

which, in the limit where k1 � mc,h � k2 and mc,s � mc,h, reduces to

PE(k1, k2) ' 2ζa ln
mc,h

k1
ln k2
mc,h

+ ζa ln2mc,h

k1
. (5.5)

Resummation of leading-log real and virtual corrections. Another way to recover
the survival probability PNE in eq. (5.2) is

PNE(k1, k2, Ea) = exp [PE(µ, k1) + PE(k2, Ea)] exp [−PE(µ, Ea)] . (5.6)

The first exponential factor includes real emissions outside the interval [k1, k2], while the
second includes virtual emissions (inside the interval [µ, Ea]), both resummed to all leading-
log orders.

5.2 The algorithm

Motivation. In order to give support to our analytical estimate in section 4.3, but also
to include backreaction, see appendix G, we simulate the shower of emitted vector bosons
with a Monte Carlo (MC) algorithm [90, 95, 96], which we now describe.

Recipe. Starting from the hard scale k⊥,0 = Ea, we generate the transverse momentum
of the first boson k⊥,1 by solving the equation

PNE(k⊥,1, k⊥,0, Ea) = R, (5.7)
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Figure 5. Trajectory in the phase space (x, kperp) (also called Lund plane, e.g. [93]) for two
given Monte-Carlo simulations. We set Tnuc/Tstart = 10−4, α ' 1/10 and 〈φ〉 = 1 TeV, which
imply mc,h/Ea ' 6 × 10−7 and γ ' 2 × 1010. Left: we set the IR cut-off to the thermal mass
µ = α1/2Tnuc, cf. eq. (3.41), which leads to µ/mc,h ' 7 × 10−6. Right: we set the IR cut-off
to the self-energy of phase-space-saturated boson bath µ = msat, cf. eq. (3.47), which leads to
µ/mc,h ' 0.01. The orange points linked by arrows are the kinematics variables of the successive
emitted bosons generated by the MC algorithm. The ones which pass the threshold Ec > mc,h

will be able to enter the broken phase (blue region) while the others will be reflected at the wall
boundary (green region). In the red region, the emission energy is smaller than the thermal mass
µ, and therefore emission is kinematically forbidden.

where PNE is the Sudakov factor in eq. (5.2) and R is a random number between 0 and 1.
The energy of the boson x1Ea is a pseudo-random number generated from the perturbative
splitting probability in eq. (3.36), i.e. by solving∫ 1

x1

dx

x
= R

∫ 1
√
k2
⊥+µ2/Ea

dx

x
. (5.8)

The kinematics of the second emitted vector boson (k⊥,2, x2) are determined the same
way with k⊥,0 replaced by k⊥,1, and so on. We stop the shower whenever the transverse
momentum becomes smaller than the IR cut-off, see eq. (3.36)

k⊥,nmax+1 < µ. (5.9)

In appendix B.3, we present a MC algorithm which takes into account azimuthal emission
angles and transverse recoils of successive boson emissions on the momentum of the parent
particle.

Backreaction. The depletion of the energy-momentum of the parent particle as the
emission continues, discussed in appendix G, is taken into account after replacing the x
upper boundaries of eq. (5.7) by

PNE

(
k⊥,i, k⊥,i−1,

(
1−

∑
j<i

xj

)
Ea

)
= R, (5.10)

and the x upper boundaries of eq. (5.8) by∫ 1−
∑

j<i
xj

xi

dx

x
= R

∫ 1−
∑

j<i
xj

√
k2
⊥+µ2/Ea

dx

x
. (5.11)
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and by stopping the cascade whenever

pb < 0 =⇒
(

1−
nmax+1∑
i=1

xi

)2

E2
a −

(
nmax+1∑
i=1

k⊥,i

)2

< 0 (5.12)

=⇒
nmax+1∑
i=1

(
xi + k⊥,i

Ea

)
> 1. (5.13)

Results. Figure 5 shows the phase space trajectory of one given MC simulation. The
resulting momentum exchanged with the wall is given by the master formula in eq. (4.1).
In figure 4, we show that numerical computations based on MC shower and the analytical
estimates of section 4.3 agree up to percent level.

6 The bubble wall velocity

6.1 The final retarding pressure

Non-confining PTs. The goal of this paper was to compute the retarding pressure at all
leading-log orders (LL) for non-confining PTs, meaning PTs where particles simply acquire
a mass in the broken phase. We have obtained

P = PLO + PLL, (6.1)

where PLO is given in eq. (2.4), which we rewrite here

PLO =
∑
a

gaca
∆m2 T 2

nuc
24 , ca = 1 (1/2) for bosons (fermions), (6.2)

and PLL follows from eqs. (3.1) and (4.15),

PLL '
∑
a

ga

∫
γ d3pa
(2π)3

1
epa/Tnuc ± 1

〈∆p〉

' γT 3
nuc

ζ(3)
π2

∑
a

νaga 〈∆p〉 (6.3)

' κ ζ(3)
π3

∑
a,b,c

νagaCabc

α lnmc,h

µ
γ mc,h T

3
nuc, (6.4)

In eq. (6.3) ga is the number of relativistic degrees of freedom of particle a and νa = 1 (3/4)
for bosons (fermions). We also have boosted the phase space volume d3pa to the wall frame
by introducing the Lorentz factor of the wall in the plasma frame γ. In eq. (6.4) Cabc is
the charge factor for the SM and can be found in [1], and κ ≈ 4. In our numerical analysis
we use

∑
a,b,c νagaCabc = 100 for simplicity. The level of approximation leading to κ ≈ 4

is studied in appendix B. The value of the IR cut-off µ is discussed in section 3.4. In the
case of abelian gauge theory, we set it to the thermal mass µ = α1/2Tnuc and, in the case
of non-abelian gauge theory, we set it to the screening mass µ = msat resulting from phase
space saturation, see eq. (3.52).
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The regime of validity of eq. (6.4) is µ � mc,h � Ea and thin walls. Instead, outside
those regimes, we should use eq. (6.3) with our most refined formula for ∆p, see eq. (B.28)
of appendix B. Finally, eq. (6.4) neglects additional effects due to the presence of the thin
layer of reflected vector bosons in front of the bubble wall, see section 4.4. We leave their
study for further works.

We conclude that after having performed a leading-log Sudakov resummation, we have
recovered the linear γ increase found in [57], in contrast to [1] in which PLL ∝ γ2 has been
found (see appendix F for more details on this discrepancy). In the left panel of figure 6 we
display the resulting pressure eq. (6.3) at the time of bubble wall collision, using the full
analytical result for ∆p = ∆pR +∆pT in eqs. (4.11) and (4.13). In that figure, we also show
the regime of extremely small Tnuc/Tstart, where particles are too soft in the wall frame to
enter the broken phase and so the pressure decreases faster, see App G.2 for more details.

Confining PTs. We review here the findings of ref. [12] about the pressure in confining
PTs. For confining PTs, the friction pressure is not due to particles getting a mass but
instead due to particles becoming strongly-coupled. At small supercooling Tnuc ' Tstart,
one expects the pressure to be controlled by the formation of bound-states, and to conserve
the scaling of eq. (6.2)

PBS ∼
∑
i∈BS

m2
iT

2
nuc

24 , (6.5)

where the sum is operated over a spectrum of bound-states of mass mi which depends on
the model. At large supercooling Tnuc � Tstart, particles entering the bubble are separated
by d ∼ 1/Tnuc and therefore are far from each other compared to the confining distance f−1

with f ≡ 〈φ〉. Since the confining force grows linearly with the distance d, confinement with
closest neighbors through flux-tube would cost too much energy. Instead, one expects parti-
cles entering the bubble to form flux-tube attached to the wall, where the confining scale f is
at its weakest value. Those strings are expected to fragments into bound states. Besides, in
order to conserve color charge, during this process, a particle must be ejected from the wall.
The conversion of the momentum pa of the incoming particles into string confining energy
plus the ejection of a quark is expected to reduce the momentum of the wall by an amount

Pstring '
E2

string
2pa

+ f

2 ' f, (6.6)

where Estring is the center-of-mass energy of the string

E2
string ' pa f. (6.7)

One obtains the retarding pressure

Pstring ∼
ζ(3)
π2 gTC γ T

3
nuc f, (6.8)

where gTC = gg + 3gq
4 with gg (gq) the relativistic number of techni-quarks (techni-gluons).

We conclude that the retarding pressure on bubble walls of confining PTs has the same γ
scaling as non-confining PTs.
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Figure 6. Left: friction pressure at bubble wall collision. The dashed line shows the leading-order
contribution to the friction pressure, cf. eq. (6.2), while the colored solid lines show the leading-log
contribution resulting from splitting radiation, cf. eq. (6.4). The regime Ea . mi,h is treated in
appendix G.2. Right: bubble wall Lorentz factor γ computed with the results of this paper, see
eq. (6.12). On the left of the peak, bubble walls collide before they reach their terminal velocity
γLL determined by the friction pressure. This is the so-called run-away regime. The associated γ

at collision is proportional to Tnuc, which is the inverse of the bubble size at nucleation time, see
eq. (6.11). On the right of the peak, bubble walls reach their terminal velocity before collision,
which is where results from this study matter.
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Figure 7. Bubble wall Lorentz factor γ computed with the results of this paper, see eq. (6.12).
In the yellow region, bubble walls collide before they reach their terminal velocity γLL. This
is the so-called run-away regime in which GW are dominantly produced by the scalar field
gradient. In contrast, in the green region, bubble wall reach their terminal velocity before collision
and the GW signal is dominated by sound-waves and turbulence. In the right-hand panel,
αε ≡ ∆V/ρrad = (Tstart/Tnuc)4 is the latent heat of the phase transition in the Bag model [49],
∆V is the vacuum energy of the phase transition. For PLO we use eq. (6.2) and account for the
contributions from t, W±, Z and h.
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6.2 The terminal Lorentz factor

Thanks to the dependence of the pressure on γ, bubble walls cannot be accelerated forever
but instead they reach a terminal Lorentz factor, γLL, when the driving pressure from the
vacuum energy ∆V is compensated by the friction pressure

∆V = PLO + PLL(γLL), (6.9)

where PLO and PLL are given by eq. (6.2) and eq. (6.4) for non-confining PTs. Introducing
PLL ≡ γPLL, we obtain

γLL = ∆V − PLO

PLL

' 3.3× 1012 ×
(
g∗

100

)3/4 (1/30
α

)3/2(10−4 Tstart
Tnuc

)3

×
(

4× 10× 100
κ ln(mc,h/µ)

∑
a,b,c νagaCabc

)(√
2πα 〈φ〉
mc,h

)(
∆V

0.1 〈φ〉4

)1/4

, (6.10)

where in the second line we assumed ∆V � PLO. In the non-abelian scenario, the value of
the IR cut-off µ depends on γ, cf. eq. (3.52), such that the computation of γLL in eq. (6.10)
might require iterations.

Before pressures equilibrate, γ grows linearly with the bubble radius, see appendix H.
It can happen that bubble wall collisions occur before γ saturates to its terminal value γLL.
This is the so-called run-away regime. In that case, the bubble wall Lorentz factor at the
time of collision is given by (see appendix H)

γrun '
Rcoll

3Lw,tot
' β−1

cwT
−1
nuc

' 3× 1010 ×
( 1
cw

)(100
g∗

)1/4 ( Tnuc
10−4 Tstart

)( 10
β/H∗

)(TeV
〈φ〉

)(0.1 〈φ〉4

∆V

)1/4

, (6.11)

where Lw,tot = cw/Tnuc, and in the following we use cw = 1 for simplicity. In the general
case, the Lorentz factor at collision time is given by

γcoll ' Min
[
γLL, γrun

]
. (6.12)

We show the bubble wall Lorentz factor in figure 7.

6.3 Source of the GW signal

Upon comparing eq. (6.10) and eq. (6.11), we find that bubble collisions occur before the
terminal velocity is reached (run-away regime) when

γrun . γLL

=⇒ Tnuc
Tstart

. 3.2× 10−4 (6.13)

×
(
〈φ〉
TeV

β/H∗
10

g∗∑
a,b,c νagaCabc

4× 10
κ ln(mc,h/µ)

)1/4 (1/30
α

)3/8( ∆V
0.1 〈φ〉4

)1/8

.
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Figure 8. In the yellow region, bubble walls collide before reaching the terminal Lorentz factor and
GW are sourced by anisotropic stress tensor of the scalar field gradient localized at the bubble wall.
In the green region, bubble walls reach their terminal velocity before colliding and GW are sourced
by the anisotropic stress tensor of the fluid shells dragged by bubble walls. We vary the gauge
coupling constant α from 10−3 to 0.1 and the IR cut-off µ from the thermal mass α1/2Tnuc to the
one msat treated in section 3.4. We assumed that the pressure P is given by eq. (6.1). We can see
that GW are sourced by scalar field in presence of large supercooling, or when the 1stOPT occurs at
very high energies 〈φ〉 & 1010 GeV. On the right of the blue dashed line drawn for α = 0.1, effects
due to multiple reflections of vector bosons in front of the wall must be considered, see section 4.4
and appendix D, but we leave them for further studies. On the left of the purple dashed lines the
pressure is smaller than in eq. (6.4), see appendix G.2, so that bubble walls still run away.

Whether the walls run away or not changes the energy budget of the expanding bubbles
drastically [49, 80], and thus changes the dominant contribution to the GW production. If
γrun . γLL, most of the vacuum energy is used for accelerating the bubble walls and the
dominant source of GW is the anisotropic part of the stress-energy tensor of the scalar
field kinetic term. In contrast, if γrun & γLL, then most of the vacuum energy is converted
into thermal and kinetic energy of the thermal plasma through friction, leading to a GW
spectrum dominated by the contribution from sound waves and turbulence, though the fate
of the highly relativistic fluid must be investigated carefully [97, 98].8 We do not report
the formula for the GW spectrum here but we instead refer to the reviews [37, 39]. The
classification of strong 1stOPT according to their GW sources can be visualized in figure 7
in the case of minimal electroweak phase transition models with 〈φ〉 = 174 GeV, and in
figure 8 in the case of strong 1stOPT of arbitrary scale 〈φ〉.

8Note that it is not yet confirmed if such relativistic and localized fluid motion successfully develops
into sound waves, which we define here to be the fluid motion well approximated by a linear equation of
motion (∂2

t − c2s∇2)~v ' 0 (up to the vorticity term). This is one of the necessary conditions for the GW
enhancement from sound waves [99–106].
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7 Summary and outlook

Particles passing the bubble wall of a cosmological first-order phase transition undergo
splitting radiation. This is analogous to the classical radiation emitted whenever a charged
particle passes from one medium into another, see e.g. Chap. 13 of [107]. Radiation from
particles in the cosmological bath exert a pressure on the bubble walls which affect their
velocity, and in turn the physics of quantities that depend on it (gravity waves, dark matter,
the baryon asymmetry, primordial black holes, topological defects, etc). In this paper we
made progress in the computation of this pressure.

In section 3 and appendix A, we reviewed the perturbative splitting probability, which
contains an IR logarithmic divergence. We improved over previous literature by discussing
possible origins for the IR cutoff in section 3.4, and by quantifying the effect of finite wall
thickness and other approximations in appendix B.

In the regime of large gauge coupling constant and/or large supercooling, the probabil-
ity can exceed unity, which calls for resummation, see table 1. In section 4, we performed
the resummation at all leading-log orders, at both real and virtual levels, using the master
formula in eq. (4.6). We found that the averaged momentum 〈∆p〉 transferred to the wall is
IR-dominated, more precisely it is dominantly due to radiated gauge bosons with energies
in the ballpark of their mass in the broken phase (the order parameter), mc,h. We also
found that the contribution from the reflected vector bosons is at least of the same order of
the contribution from the transmitted ones. We pointed out additional novel effects due to
the population of reflected bosons in section 4.4, and we left their detailed study to future
works. In section 5, we confirmed our analytical result using a Monte-Carlo simulation of
the splitting processes, see figure 4.

Based on these results, we deduced the friction pressure on the wall in section 6. Our
final result for the pressure, with leading logs resummed, is

PLL = O(1)× g2 γ mc,h T
3
nuc log

(
mc,h

µ

)
, (7.1)

where γ is the Lorentz boost of the bubble wall and Tnuc is the nucleation temperature,9 g is
the gauge coupling, mc,h is the mass of the gauge bosons in the broken phase and µ is an IR
cutoff at most of the order of a fraction of mc,h. This result applies as long as the energy of
the incoming particles in the wall frame well exceeds the particle masses. We provided more
precise and ready-to-use expressions for PLL in eq. (6.4) and for µ in eq. (3.52). Our results
are compatible with the friction pressure for confining phase transition, which also scales
as P ∝ γ f T 3

nuc (f being the confining scale), as first computed in [12] with the formalism
of the gluon flux tube, see section 6.1. In section 6.2 we finally discussed implications for
the terminal Lorentz factor, which we display in figure 6 for different values of the energy
scale of the PT. In section 6.3, we deduced the source of the GW spectrum depending on
the energy scale of the transition 〈φ〉 and on the amount of supercooling, see figure 8.

9This is inconsistent with the findings of ref. [1]. We suggest that the origin of the discrepancy lies in
the fact that ref. [1] effectively assumes energy-momentum conservation at the bubble wall, see appendix F
for more details.
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Our results constitute a step towards a better understanding of cosmological strong
first-order phase transitions. Future directions that may be worth a better understanding
include i) effects from the fate of reflected vector bosons, like the impact on the pressure
of multiple reflections, see section 4.4 and appendix D; ii) the contribution from the
longitudinal vector boson (see footnote 3); iii) an improved treatment of the region of very
large occupation number fc, for example by including the effect of Bose enhancement on the
radiation (see footnote 2) and going beyond our perturbative treatment (see section 3.4); iv)
the effect of the multiple wall oscillations on the soft radiation, and hence on the pressure
(see footnote 11).
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A Computation of the splitting radiation vertex

A.1 Splitting ffVT

We compute the transition amplitude of the splitting radiation X(pa)→ V (pc) X(pb) with
X being a fermion. See [87] for the pioneering paper and [57, 108–110] for more recent
derivations. The transition amplitude reads

iV = g ū(pa) γµ u(pb) εµ(pc). (A.1)

The squared amplitude averaged over fermion spins is10

|V |2 = 2g2 ε(pc) · ε∗(pc)(mamb − pa · pb) + 4g2 (pa · ε(pc))(pb · ε∗(pc)). (A.2)

10The quantity which we call |V |2 is actually 1
2
∑
|V |2.
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Note that since the momentum along z is not conserved, the Ward identity is not satisfied,
see appendix F.1, and we cannot use the standard replacement

∑
pol. εµε

∗
ν → −gµν+· · · . In-

stead, we must sum over the physical polarizations ε+ and ε− [87, 111]. In the basis used for
writing eq. (3.9), (3.10) and (3.11), the transverse polarizations of the vector boson c read

ε+(pc) = 1√
2− 2µ2

c

(
0,
√

1− µ2
c − θ2,+i

√
1− µ2

c ,−θ
)
, (A.3)

ε−(pc) = 1√
2− 2µ2

c

(
0,
√

1− µ2
c − θ2,−i

√
1− µ2

c ,−θ
)
, (A.4)

where θ ≡ k⊥/xEa is the emission angle and µc ≡ mc/xEa is the mass fraction. We can
check that they satisfy ε(pc) · pc = 0. At leading order in x� 1, θ � 1, we get

|V+|2 ' 2g2Cabc
k2
⊥
x2 , |V−|2 ' 2g2Cabc

k2
⊥
x2 . (A.5)

where Cabc is the charge factor of the gauge group, e.g. for SU(N) we have Cqqg = N2−1
2N .

A.2 Splitting φφVT

When a and b are scalars, the transition amplitude reads

iV = g (pµa + pµb ) εµ(pc). (A.6)

At leading order in x� 1, θ � 1, we compute

|V+|2 ' 2g2Cabc
k2
⊥
x2 , |V−|2 ' 2g2Cabc

k2
⊥
x2 . (A.7)

One possible example is a dark U(1)D with CφφV = 1.

A.3 Splitting VTVTVT

When a and b are bosons, the transition amplitude reads

iV = −g (−(pa + pc) · ε∗b(εa · ε∗c) + (pc − pb) · εa(ε∗c · ε∗b) + (pa + pb) · ε∗c(εa · ε∗b)) , (A.8)

where the parameters related to the gauge structure are implicit. In the basis used for
writing eq. (3.9), (3.10) and (3.11), the transverse polarizations of the vector boson a, b
and c read

ε±a = 1√
2− 2(µax)2

(
0,
√

1− (µax)2,±i
√

1− (µax)2, 0
)
, (A.9)

ε±b = 1√
2− 2(µbχ)2

(
0,
√

1− (µbχ)2 − (θχ)2,±i
√

1− (µbχ)2, θχ

)
, (A.10)

ε±c = 1√
2− 2µ2

c

(
0,
√

1− µ2
c − θ2,±i

√
1− µ2

c ,−θ
)
, (A.11)
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where ± are the helicities of a, b and c, χ ≡ x/(1 − x), θ ≡ k⊥/xEa is the emission angle
and µa,b,c ≡ ma,b,c/xEa are the mass fractions. We compute

|V+++|2 ' 2g2Cabc
k2
⊥
x2 , |V++−|2 ' 2g2Cabc

k2
⊥
x2 , |V−++|2 = 0, (A.12)

|V−−−|2 ' 2g2Cabc
k2
⊥
x2 , |V−−+|2 ' 2g2Cabc

k2
⊥
x2 , |V+−−|2 = 0, (A.13)

where Cabc encapsulates the parameters related to the gauge structure, e.g. for SU(N) we
have Cggg = N . Upon averaging over initial polarizations, we obtain

|V+|2 ' 2g2Cabc
k2
⊥
x2 , |V−|2 ' 2g2Cabc

k2
⊥
x2 . (A.14)

where ± stands for the helicity of c.

B On the validity of the diverse approximations

B.1 Mode functions

B.1.1 Finite wall thickness: WKB method

Outside the wall. As discussed in the next paragraph, far away from the wall, the mode
functions are expected to be a superposition of plane waves, solutions of the Klein-Gordon
equation χ′′(z) + (pz2(z)/~2)χ(z) = 0.

Inside the wall. Instead, inside the wall we first propose using the WKB approximation,
which is valid in the limit ~pz′/pz2 � 1. It consists of injecting χ(z) = e

i
~ (S0+S1~+S2~2+··· )

in the differential equation and of matching the terms which are of the same order in ~.
Then we solve the infinite set of equations order by order in ~. We obtain

χ(z) =
√

pzs
pz(z) exp

 i
~

∫
dz pz + i~

∫
dz

1
pz

3
8

(
pz
′

pz

)2

− pz
′′

4pz

+ · · ·

 . (B.1)

At first order in ~ and upon neglecting the prefactor, the M-matrix defined in eq. (3.25)
becomes

M' V
∫
dz exp

(
i

∫ z

0
dz′∆p(z′)

)
, ∆p(z) ≡ pza(z)−pzb(z)−pzc(z) ' k2

⊥ +m2
c(z)

2xEa
, (B.2)

where we have used that V is z-independent, see eq. (3.26). We assume a tanh wall profile

m2
c(z) =

m2
c,h +m2

c,s

2 +
m2
c,h −m2

c,s

2 tanh(z/Lw), (B.3)

where Lw is the wall thickness.11 We then obtain the following WKB phase

∆p(z) = ∆̄p+ ∆2p tanh(z/Lw), (B.4)
11The tanh wall profile which we consider here, accounts for the initial rising part of the wall, which

interpolates between mc,s and mc,h. However, it neglects the subsequent multiple wall oscillations around
mc,h. The thickness of the rising part of the wall is expected to be Lw ' c−1/2

vac 〈φ〉−1 which for supercooled
phase transition can be much smaller than the total thickness of the wall accounting for the multiple
oscillations, Ltot

w ' Tnuc, cf. appendix A of [12]. We leave the study of the impact of multiple wall oscillations
on particle splitting for future studies.

– 30 –



J
H
E
P
0
5
(
2
0
2
2
)
0
0
4

Δ2p Lw = 102

Δ2p Lw = 10

Δ2p Lw = 1

10-1 1 10 102
10-2

10-1

1

10

102

Δp Lw

|
δ˜
(Δ
p
L
w
,Δ

2
p
L
w
)
|

Pseudo-delta function

Symmetry restoration Δmc → 0
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Figure 9. The function δ̃(∆̄pLw, ∆2pLw) tends to the Dirac δ function for ∆2p ≡ ∆m2
c/4xEa → 0.

with

∆̄p ≡ ∆p(+∞) + ∆p(−∞)
2 ' 1

2xEa

(
k2
⊥ +

m2
c,h +m2

c,s

2

)
, (B.5)

∆2p ≡ ∆p(+∞)−∆p(−∞)
2 ' ∆m2

c

4xEa
with ∆m2

c ≡ m2
c,h −m2

c,s. (B.6)

From injecting eq. (B.4) into eq. (B.2), we obtain [57]

M' 2πV δ̃(∆̄pLw, ∆2pLw), (B.7)

with

δ̃(∆̄pLw, ∆2pLw) ≡ Lwe
−i∆2pLw ln 2 ×

Γ
(
i
2(∆̄p−∆2p)Lw

)
Γ
(
− i

2(∆̄p+ ∆2p)Lw
)

4πΓ (−i∆2pLw) . (B.8)

As expected, in the limit of vanishing mass difference ∆2pLw → 0, the function
δ̃(∆̄pLw, ∆2pLw) approaches the Dirac δ function, see figure 9

δ̃(∆̄pLw, ∆2pLw) −−−−−−−→
∆2pLw→0

δ(∆̄p), (B.9)

and conservation of momentum along z is restored. Using that |Γ(iy)|2 = π/[y sh(πy)] for
real y where sh x is the sinus hyperbolic function [112], we obtain

|M|2 = π|V |2∆2pLw

∆̄p2 −∆2p2
× sh

(
π∆2pLw

)/
sh
(
π

2 (∆̄p−∆2p)Lw

)
sh
(
π

2 (∆̄p+ ∆2p)Lw

)
.

(B.10)
The splitting probability in eq. (3.24) reduces to

dPa→bc = ζa
dk2
⊥

k2
⊥

dx

x
Π(k⊥)Wwall(Lw, k⊥, x), (B.11)
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where Π(k⊥) is defined in eq. (3.34) and

Wwall ≡ shc
(
π∆2pLw

)/
shc
(
π

2 (∆̄p−∆2p)Lw

)
shc
(
π

2 (∆̄p+ ∆2p)Lw

)

= shc
(
πLw
4xEa

∆m2
c

)/
shc
(
πLw
4xEa

(k2
⊥ +m2

c,s)
)
shc
(
πLw
4xEa

(k2
⊥ +m2

c,h)
)
, (B.12)

with shc(x) ≡ shx/x. We compute the average exchanged momentum, cf. eq. (4.9)

〈∆p〉 =
∫
dPa→bc ∆pi, (B.13)

with dPa→bc in eq. (B.11) and ∆pi in eq. (4.5) sums over both transmitted and reflected
bosons. We did not find an analytical expression for 〈∆p〉 in eq. (B.13) so we report its
numerical value in figure 10. We nonetheless find an analytical approximation (Ei(x) is
the exponential integral special function),

〈∆p〉 ' 2 ζamc,h

[
Ei

(
−π2Lwmc,h

)
− Ei

(
−π2

Lwm
2
c,s

mc,h

)]
, (B.14)

that is valid up to O(50%). We identify three behaviors for 〈∆p〉,

〈∆p〉 ' 2 ζamc,h ×



2 ln
(
mc,h

µ

)
for Lw . m−1

c,h,

ln
(

2mc,h

πLwm2
c,s

)
for m−1

c,h . Lw . mc,h/m
2
c,s,

exp
(
−
πLwm

2
c,s

2mc,h

)/
πLwm

2
c,s

2mc,h
for mc,h/m

2
c,s . Lw.

(B.15)

We conclude that 〈∆p〉 decreases logarithmically as soon as Lw & m−1
c,h and exponentially

around Lw ∼ mc,h/m
2
c,s, see figure 10. We remind the reader that the scaling of the

pressure with the Lorentz boost γ arises from the phase space integration and not from
∆p, see e.g. eq. (6.3). We also comment that eq. (B.15) includes both the reflected and
the transmitted contributions, so it properly includes the case where an emitted particle is
softer than mc,h and is thus reflected.

In concrete scenarios we expect the wall thickness Lw to be of the order of the inverse
massm−1

φ of the scalar field driving the phase transition, for which we estimate m2
φ 〈φ〉

2/2 '
∆V ≡ cvac 〈φ〉4 where ∆V is the vacuum energy difference, which implies

Lw ' c−1/2
vac 〈φ〉

−1 = 1.4
mc,h

(
α

1/30
0.1
cvac

)1/2
. (B.16)

Therefore, we expect the finite wall thickness to bring only logarithmic corrections for
mc,s � mc,h, see eq. (B.15). However, in the regime mc,s ' mc,h, we expect the friction
pressure to receive an exponential suppression factor, see eq. (B.15), in addition to the UV
suppression factor contained in Π(k⊥) in eq. (3.34). In figure 3, with dotted lines we show
the impact of the wall thickness on 〈∆p〉, assuming that eq. (B.16) holds.

– 32 –



J
H
E
P
0
5
(
2
0
2
2
)
0
0
4

num.

ana.

10-2 1 102 104 106 108 1010
10-1

1

10

102

Lw mc,h

〈Δp〉

ζamc

mc,s = α1/2Tnuc

α = 1/30
cvac = 0.1

γ = γcoll
β/H = 10

<ϕ> = 1 TeV

Ea = 3γTnuc
mc,h= 2 πα <ϕ>

Cabc = 1
g* = 106.75

T
nuc = 10 -2

T
start

Tnuc = 10-4Tstart

L
w
=
m
c,
h
/m
c,
s

2

L
w
=
m
c,
h
/m

c,
s

2

L
w
=
m
c,
h

-
1

Tnuc = 10
-2Tstart

Tnuc = 10
-4Tstart

numerical integration

analytical estimate

10-2 1 102 104 106 108 1010
10-1

1

10

102

Lw mc,h

〈Δp〉

ζamc

mc,s = msat

α = 1/30
cvac = 0.1

γ = γcoll
β/H = 10

<ϕ> = 1 TeV

Ea = 3γTnuc
mc,h= 2 πα <ϕ>

Cabc = 1
g* = 106.75

L
w
=
m
c,
h
/m

c,
s

2

L
w
=
m
c,
h
/m

c,
s

2

L
w
=
m
c,
h

-
1

Figure 10. The exchanged momentum 〈∆p〉 becomes first logarithmically suppressed when the
wall thickness satisfies Lw & m−1

c,h and then exponentially suppressed around Lw ∼ mc,h/m
2
c,s. Solid

lines show the numerically integrated result in eq. (B.13) while dashed lines show the analytical
estimate in eq. (B.14). We fix the IR cut-off µ (or equivalently the mass mc,s in the symmetric
phase) to the thermal mass α1/2Tnuc in the left panel, see eq. (3.41), and to the screening mass
msat of phase-space-saturated non-abelian vector boson bath, in the right panel, see eq. (3.47).

Thin-wall limit. In light of the preceding paragraph, in the regime mc,s � mc,h, effects
coming from the mode functions inside the wall bring at most logarithmic corrections and
we can safely approximate the wall profile by a Heaviside function. This is the subject of
the next section, section B.1.2.

WKB breaks down. In order to further motivate the use of a Heaviside function, we
would like to comment about two difficulties which we have to deal with if we rely on the
WKB method, and which arise when the particle c is reflected

pc,s . mc. (B.17)

First, the hypothesis of the WKB approximation,

~pz
′
/pz2 . 1 =⇒ pc > L−1

w ∼ mc, (B.18)

breaks down at the turning point, pc(z) = 0, that is present when a particle is reflected,
which implies that the WKB expansion χ(z) = e

i
~ (S0+S1~+S2~2+··· ) cannot be used. Sec-

ond, the prefactor
√
pzs/p

z(z) of χc(z) in eq. (B.1) becomes infinite at the turning point.
Regularization of the WKB solution near turning points has a well-known solution based
on the Airy equation [113]. In order to avoid those difficulties and thanks to fact the thin
wall approximation is a good one (see eq. (B.15) and discussion around it), in this paper
we decide to not use the WKB approximation for computing the mode functions, see next
section for more details.
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Figure 11. We compare the approximation χc,s(z) = eipc,sz and χc,h(z) = eipc,hz chosen in
the main text, cf. eq. (3.27), to the one including the reflected wave-function χc,s(z) = eipc,sz +
Cc,se

−ipc,sz and χc,h(z) = Bc,he
ipc,hz, see eq. (B.20).

B.1.2 Step potential in 1D

Klein-Gordon equation in presence of a step potential. As motivated by the
preceding paragraph, we choose to model the wall by a Heaviside function

mj(z) =

 0 when z < 0,
mj when z ≥ 0,

(B.19)

with j = a, b, c. From solving the Klein-Gordon equation on each sides, we obtain

χj,s(z) = Bj,s e
ipj,sz + Cj,s e

−ipj,sz when z < 0,
χj,h(z) = Bj,h e

ipj,hz when z ≥ 0,
(B.20)

with

pj,h =
√
p2
j,s −m2

j . (B.21)

Note that in contrast to [1, 11, 57], we have included the plane wave e−ipj,sz moving in the
symmetric phase direction. We normalize the incoming wave-functions to Bj,s = 1. Then
we impose continuity of the wave-functions and of their derivative in z = 0 and we get

Cj,s =
pj,s −

√
p2
j,s −m2

j

pj,s +
√
p2
j,s −m2

i

, Bj,h = 2pj,s
pj,s +

√
p2
j,s −m2

j

. (B.22)

We recover that in the high-energy limit pj � mj , the particle j gets transmitted Cj,s = 0
and Bj,h = 1, while in the low-energy limit pj � mj , the particle j gets reflected Cj,s = −1
and Bj,h = 0.
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M-matrix. For relativistic walls, the particles a and b always satisfy pa � ma and
pb � mb, such that

Cj,s = 0, Bj,h = 1, for j = 1, 2. (B.23)

TheM-matrix in eq. (3.30) becomes

M' Vs
∫ 0

−∞
dz eiz

As
2Ea

+εz + VsCc,s

∫ 0

−∞
dz eiz

As,r
2Ea

+εz + VhBc,h

∫ ∞
0

dz eiz
Ah
2Ea
−εz

= 2iEa

(
VhBc,h
Ah

− VsCc,s
As,r

− Vs
As

)
, (B.24)

with

Ah '
m2
c + k2

⊥
x

, As,r '
k2
⊥
x

+ 2xEa, As '
k2
⊥
x
. (B.25)

Validity of the approximation in the main text. In the main text, for the sake of
simplicity we neglect the reflected wave-function Cc,s = 0 and we approximate Bc,h = 1 in
eq. (B.20), see χc(z) in eq. (3.27) and the correspondingM -matrix in eq. (3.30). In figure 11,
we show that the latter approximation underestimates the value of 〈∆p〉 computed from
eq. (B.24), by ∼ 20 %. The validity of the approximation (Cc,s = 0, Bc,h = 1) was expected
since among the three terms of eq. (B.24), the last one dominates over the others. In table 2
of the next section, we compare the error due to the simplification of the mode function to
other sources of error, discussed in appendix B.2 and in the main text.

B.2 Beyond the relativistic-soft-collinear limit

In order to write the perturbative splitting probability in eq. (3.33), in addition to the
simplified mode-function discussed in the previous section, we have assumed the relativistic
limit for the phase space factor

1
2pza

1
2pzb

1
2pzc
→
( 1

2Ea

)2 1
2Ec

, (B.26)

the soft and collinear limit x � 1, k⊥ � Ea for the vertex function in eq. (3.26), and the
relativistic, soft and collinear limit for the phase of the mode function in eq. (3.29)

(1− x)Ea �
√
m2
b + k2

⊥, xEa �
√
m2
c + k2

⊥, x ≡ Ec/Ea � 1. (B.27)

While the relativistic limit is a very good approximation for particles a and b, it be-
comes incorrect for particle c when Ec is close to mc,h or mc,s depending on whether c is
transmitted or reflected. In this appendix, we compute the error caused by all these ap-
proximations. Our most precise analytical calculation of the exchanged momentum follows
from, cf. eq. (4.9)

〈∆pR,T〉 =
∫
dPa→bc ∆p Θ(±p2

c,h), (B.28)

with the perturbative splitting probability given by∫
dPa→bc =

∫
d2k⊥
(2π)2

∫
dEc
2π

1
2pza

1
2pzb

1
2pzc
|M|2Wwall(Lw, k⊥, x). (B.29)
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Error estimates for the different approximations
in the analytical treatment

〈∆p〉R
ζamc,h lnmc,h/µ

〈∆p〉T
ζamc,h lnmc,h/µ

Simple analytical expression in main text, cf. eq. (4.11) and eq. (4.13)
Transmission and reflection coefficient Bh = 1, Cs = 0

+ relativistic,soft, collinear limit
(Simple analytical)

3.30 (+0%) 0.91 (+0%)

Bh given by eq. (B.22) and Cs = 0 4.34 (+27%) 1.12 (+21%)

Bh and Cs given by eq. (B.22) 4.01 (-11%) 1.10 (-2.0%)

Full phase space factor 1
Ec
→ 1

pc
, cf. eq. (B.26) 4.15 (+3.3%) 2.12 (+63%)

Vertex function beyond the soft-collinear limit, cf. eq. (A.2) 4.06 (-2.3%) 2.10 (-1.1%)

WKB phase As Ah and Asr beyond the relativistic-soft-collinear limit, cf. eqs. (B.31), (B.32), (B.33) 3.00 (-30%) 1.33 (-45%)

Momentum exchange ∆pz in eq. (4.5) beyond the relativistic-soft-collinear limit
(Refined analytical)

2.96 (-1.3%) 1.51 (+12%)

Finite wall thickness, see eq. (B.13) with Lw assumed from eq. (B.16). 2.88 (-2.6%) 1.49 (-1.4%)

Total 2.88 (-13%) 1.49 (+48%)

Fate of reflected vector bosons, multiple wall oscillations,
longitudinal component of the vector boson,

possible Bose enhancement, beyond perturbative treatment
left for future studies

Table 2. In the table above, we refine the simplest analytical estimate, line after line from top to
bottom until we obtain the most refined one. The percents % show the relative differences between
two consecutive lines, except for the ones on the line entitled ‘total’ which shows the relative
difference between the simplest and the most refined estimates. The relative difference between the
analytical and numerical treatment can be appreciated in figure 12. The values of the present table
were evaluated for µ = 10−4mc,h and 〈φ〉 = TeV as well as the same values of the parameters as in
figure 12. Corrections due to the presence of reflected bosons in front of the wall, see section 6, due
to multiple wall oscillations, see footnote 11, due to the longitudinal vector boson, see footnote 3,
due to Bose enhancement, see footnote 2, and due to non-perturbative effects, see section 3.4, are
left for further works.

where

M = 2iEa

(
VhBc,h
Ah

− VsCc,s
As,r

− Vs
As

)
. (B.30)

with Bh, Cs given by eq. (B.22) and

Ah = 2iEa
(
Ea −

√
(1− x)2E2

a −m2
b,h − k2

⊥ −
√
x2E2

a −m2
c,h − k2

⊥

)
, (B.31)

As = 2iEa
(
Ea −

√
(1− x)2E2

a −m2
b,s − k2

⊥ −
√
x2E2

a −m2
c,s − k2

⊥

)
, (B.32)

As,r = 2iEa
(
Ea −

√
(1− x)2E2

a −m2
b,s − k2

⊥ +
√
x2E2

a −m2
c,s − k2

⊥

)
. (B.33)

The factor Wwall, which is defined in eq. (B.12), accounts for the finite wall thickness
Lw. Since its impact is already studied in the section B.1.1, in this subsection we set
it to Wwall = 1. The differences between the full analytical result in eq. (B.28) and the
simplified one in eq. (4.11), (4.13) are listed in table 2 along with the respective errors.
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Figure 12. We compare different schemes for computing the exchange momentum ∆p induced by
splitting radiation resummed at all leading-log orders, both at the analytical and at the numerical
level. The analytical estimates shown in orange and brown correspond to the 1st and 7th level
of correction of table 2. The green and gray lines show the results from the Monte-Carlo simula-
tions, see section 5, using either the soft-collinear-single-plane-emission-no-transverse-recoil limit in
eq. (4.5) (green line) or the more refined prescription presented in appendix B.3 (gray line). The
most refined schemes of our work, shown in brown and gray lines, do not account for the same
corrections, and so they are complementary to each other.

For µ = 10−4mc,h and 〈φ〉 = TeV, the simplified formula in Eqs (4.11) and (4.13) only
underestimates the total 〈∆p〉 = 〈∆pR〉 + 〈∆pT 〉 by O(5%). The corrections for other
values of µ/mc,h (or Tnuc/Tstart) are shown in figure 12.

B.3 Azimuthal angle and transverse recoil

Azimuthal angle. The formula for ∆p given in eq. (4.1), which we rewrite here

∆p = Ea −
√

(1−X)2E2
a −m2

b,h −K2
⊥ −

n∑
i=1

pzci , (B.34)

with

X =
n∑
i=1

xi, and K⊥ =
n∑
i=1

k⊥,i, (B.35)
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assumes that the successive emissions occur in the same (xz) plane. Instead, eq. (B.35)
should be replaced by

K⊥ =
n∑
i=1

k⊥,i → ~K⊥ =
n∑
i=1

~k⊥,i, with ~k⊥,i = ~k⊥,i(cosφi, sinφi, 0). (B.36)

with the azimuthal angle φi generated randomly at each emission

φi = R2π, (B.37)

where R2π is a random number between 0 and 2π.

Transverse recoil. Also the formula for pzci in eq. (4.3) does not account for the recoils
of the successive emission on the transverse momentum of the parent particle. Indeed, k⊥,i
is the transverse momentum relative to the actual emitter and because of the successive
recoils, it must differ from the absolute transverse momentum k̃⊥,i relative to the initial in-
coming momentum pa in eq. (3.9). Instead, upon taking into account successive transverse
recoils, eq. (4.3) becomes

pzci =
√
x2
iE

2
a −m2

c,h − k̃2
⊥, i Θ(p2

ci,h)−
√
x2
iE

2
a −m2

c,s − k̃2
⊥, i Θ(−p2

ci,h). (B.38)

with

p2
ci,h = x2

iE
2
a −m2

c,h − k̃2
⊥, i,

~̃k⊥, i = ~k⊥, i −
i−1∑
j=1

~k⊥,j . (B.39)

The recoils on the energy of the parent particle, xi → xi
(
1−

∑i−1
j=1 xj

)
, were already

discussed in section 5.2 and appendix G. In figure 12, we compare the exchanged momentum
〈∆p〉 calculated with Monte-Carlo simulations, using eq. (4.5) (green line) which assumes
the soft-collinear limit, single plane emission and which neglects transverse recoil, with the
MC using eq. (B.34), (B.36) and (B.38) (gray line). We conclude that transverse recoil and
azimuthal angle can be safely neglected.
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Figure 13. 3-to-2 scattering between emitted vector bosons which is expected to deplete the boson
abundance and to possibly provide an IR cut-off µ for the emission.

C 3 → 2 vector boson scattering

C.1 Estimation of the scattering rate

In the case of a non-abelian gauge theory, when the density of the emitted IR vector bosons
becomes large, one must account for the possibility of scatterings that decrease the number
of initial particles, because they can deplete the number of vector bosons and in turn lower
the pressure on the wall. As an example of such scatterings, here we consider 3 → 2
processes, see figure 13. They become important if the rate Γ3→2 is larger than the time
it takes for these particles to cross the wall L−1

w

Γ3→2Lw & 1. (C.1)

The rate reads

Γ3→2 =
∫

d3~k1
(2π)32k0

1

d3~k2
(2π)32k0

2

d3~k3
(2π)32k0

3
fg(k1)fg(k2)fg(k3)|M|2

/∫
d3~k

(2π)3 fg(k), (C.2)

where M is the 5-vector-boson scattering amplitude [114]. From plugging eq. (3.42) into
eq. (C.2), we obtain

Γ3→2 =
(∑

a

gaζa
ζ(3)
π2 γT 3

nuc

)2 1
(2π)6(2Ea)3

∫ ∏3
i=1

dk2
⊥,i

k2
⊥,i

dxi
x2
i

Π(k⊥,i)|M|2∫ dk2
⊥

k2
⊥

dx
x Π(k⊥)

. (C.3)

Assuming that the five gluons are soft and collinear with

pi · pj = k2
⊥,1 + µ2, ∀i 6= j ∈ [1 · · · 5], (C.4)

at tree-level order [114], we obtain

|M|2 ' g6N2

N2 − 1
60

k2
⊥,1 + µ2 . (C.5)

Upon integrating eq. (C.3) over the range in eq. (3.17) with mc(z) = µ, we obtain the
scattering rate

Γ3→2 '
(∑

gaCabc
)2
γ2T 6

nuc ×
16

9π9l

α5

µ5 , (C.6)

where
l ≡ ln Ea

mc,h
ln mc,h

µ
. (C.7)
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C.2 Impact on the IR cut-off

As argued above, the value of µ = µ3→2 for which the population of vector boson is depleted
is found after requiring that 3→ 2 processes happen within a wall length Lw ' c−1/2

vac 〈φ〉−1.
So we determine µ3→2 from

Γ3→2Lw = 1. (C.8)

We obtain

µ3→2 '



0.001mc,h

(
γ
γrun

10
β/H∗

∑
a,b,c

ga Cabc

2g∗
TeV
〈φ〉

5√
l

)2/5(
α

1/30

)1/2( ∆V
0.1〈φ〉4

)3/10
(

Tnuc
10−4Tstart

)8/5

(run-away),

0.01mc,h

(
γ
γLL

∑
a,b,c

ga Cabc ln 100
2g∗ lnmc,h/µ3→2

10√
l

)2/5 (
1/30
α

)1/10 ( ∆V
0.1〈φ〉4

)1/2
(terminal-velocity walls).

(C.9)
We find that µ3→2 is always smaller than the scale msat in eq. (3.47) below which phase
space is saturated and perturbation theory breaks down. Therefore, the IR cut-off in
eq. (C.9), which relies on perturbation theory and where additionally in eq. (C.5) only tree-
level has been included, is not trustable and in this paper for non-abelian gauge theories
we instead rely on the more conservative IR cut-off msat in eq. (3.47).

D Fate of the reflected c particles

In this appendix, we compute the typical distance l from the wall beyond which the reflected
c particles, cf. section 4.4, have exchanged enough momentum with the incoming a particles
in order to come back in the direction of the wall.

D.1 Mean free path

Elastic cross-section. We assume that the reflected c particles scatter elastically with
the a particle with the differential cross section

dσ

d(−t) ∼
α2

(−t)2 , (D.1)

where t is the usual Mandelstram variable, with (−t) > 0. We approximate the c particles
to be massless and denote by f their momentum in the wall frame, see figure 14-right.

Plasma frame. The threshold value for the deflection angle θ is given by the condition
that the velocity of the scattered c particle in the z direction becomes equal to the wall
velocity,

cos θth = v, (D.2)
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Figure 14. (Left) Plasma frame paramaterization. (Right) Wall frame parameterization.

see figure 14-left. The Mandelstam variable t corresponding to this deflection angle reads

(−tth) ∼ (γf)2(1− cos θth) ∼ γ2(1− v)f2 ∼ f2. (D.3)

The relevant cross section is given by integrating (−t) above this threshold value. Since
the cross section is dominated by small (−t) values, it becomes

σ ∼
∫

(−tth)
d(−t) dσ

d(−t) ∼
α2

(−tth) ∼
α2

f2 . (D.4)

Multiplying by the number density of the incoming particles n ∼ (ζ(3)/π2)g∗T 3, we obtain
the typical length scale in the plasma frame, after which the c particles come back in the
direction of the wall

lp ∼
1
nσ
∼ π2

g∗

f2

α2T 3 . (D.5)

Wall frame. In the wall frame, the threshold value of the deflection angle θ beyond
which a given scattered c particle comes back in the direction of the wall, is given by
the condition that c moves perpendicular to the wall, see figure 14-right. Energy and
momentum conservation for this case becomes

γT + f = p+ q : energy, (D.6)
γT − f = p cos θth : z momentum, (D.7)
p sin θth = q : x, y momentum. (D.8)

The solution for γT � f is

p ∼ γT − f, q ∼ f, θth ∼
f

γT
. (D.9)

The Mandelstam t for this deflection angle becomes

(−tth) ∼ (γT )2(1− cos θth) ∼ f2, (D.10)

which is consistent with the plasma frame calculation. The relevant cross section reads

σ ∼ α2

(−tth) ∼
α2

f2 . (D.11)
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Multiplying by the number density of the incoming particles n ∼ ζ(3)
π2 g∗γT

3, we obtain the
mean free path in the wall frame

lw ∼
1
nσ
∼ 1
γ

π2

g∗

f2

α2T 3 . (D.12)

The extra 1/γ is because the thermal bath is Lorentz contracted.

Account for multiple scatterings. We pursue the discussion in the plasma frame.
The average deflection angle squared 〈θ2〉 after N scatterings θ1, · · · , θN , can be deter-
mined with a random walk approach. Assuming that scatterings are independent from
each other, we can write 〈θ2〉 = 〈(θ1 + · · ·+ θN )2〉 = 〈θ2

1〉 + · · · + 〈θ2
N 〉. Thus, we can

simply calculate the average deflection angle squared for each, and sum up. Noting that
(−t) ∼ γ2f2θ2 and dσ/d(−t) ∼ α2/(−t)2, the average deflection squared per unit distance
in the z direction reads

d 〈θ2〉
dz

∼ n
∫
θ2
cut

d(θ2) θ2 dσ

dθ2 ∼
g∗
π2
α2T 3

γ2f2 ln 1
θ2

cut
. (D.13)

The cutoff angle θcut is related to the IR cut-off µ discussed in section 3.4 by
θcut = µ/Ea. Since the particle gets caught by the wall once the deflection accu-
mulates to θth ∼

√
1− v ∼ 1/γ, the mean free path becomes

lp ∼ θ2
th

/d 〈θ2〉
dz

∼ π2

g∗

1
ln 1

θ2
cut

f2

α2T 3 . (D.14)

We conclude that upon taking multiple scatterings into account, the mean free path l only
receives a logarithmic correction such that the big picture remains unchanged.

D.2 Motivation for further studies

A given reflected c particle gets scattered by incoming a particles before traveling the mean
bubble separation when

lp . β−1, (D.15)

which implies

Tnuc
Tstart

& 7× 10−6 α−1/3
(

f

mc,h

)2/3 ( 〈φ〉
TeV

)1/3 (β/H
10

)1/3

×
(100
g∗

)1/3
 10

ln 1
θ2
cut

1/3(
0.1

∆V/ 〈φ〉4

)1/12

. (D.16)

We show this condition with a dashed blue line in figure 8. We conclude that as soon as
Tnuc/Tstart is larger than what is indicated in eq. (D.16) (basically most of the cosmological
first-order phase transitions considered in the literature), the interactions of reflected c

particles with a particles, and the possible associated corrections to the friction pressure,
discussed in section 4.4, should be considered. We leave the quantitative study of such
effects for further works.
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E Massless vector boson scenario

In this section, we consider the emitted vector boson to remain massless in the broken phase,
up to expected thermal effects. We find that the contributions to the friction pressure are
equal to the LO one, up to O(ζa).

Perturbative splitting probability. We suppose that the vector boson mass is phase-
independent and given by the thermal contribution mc,h = mc,s = µ while ma,h 6= ma,s = 0
and mb,h 6= mb,s = 0. The WKB suppression factor introduced along eq. (3.29), in the
soft-collinear limit, reads

( 1
Ah
− 1
As

)2
=

 1

−m2
a,h + k2

⊥+m2
b,h

1−x + k2
⊥+µ2

x

− 1
k2
⊥

1−x + k2
⊥+µ2

x


2

(E.1)

=
x4((m2

b,h −m2
a,h) +m2

a,hx
)2

(k2
⊥ + µ2)2(k2

⊥ + µ2 + x(m2
b,h −m2

a,h) + x2m2
a,h)2 , (E.2)

so that the splitting probability in eq. (3.36) becomes

dPa→bc = ζa
dk2
⊥

k2
⊥
dxx

k4
⊥

(k2
⊥ + µ2)2

(
(m2

b,h −m2
a,h) +m2

a,hx
)2

(k2
⊥ + µ2 + x(m2

b,h −m2
a,h) + x2m2

a,h)2 . (E.3)

E.1 Case mb = ma

We consider the case where mb,h = ma,h in eq. (E.3).

Exchanged momentum averaged over resummed distribution. Since emitted vec-
tor bosons do not acquire a mass in the broken phase, they are never reflected against the
wall boundary. The exchanged momentum in the soft X, xi � 1 and collinearK⊥, k⊥,i � 1
limit, reads

∆p ' Ea −
√

(1−X)2E2
a −m2

b,h −K2
⊥ −

n∑
i=1

√
x2
iE

2
a − k2

⊥, i (E.4)

' ∆p1 + ∆p2 + ∆p3, (E.5)

with

∆p1 =
m2
b,h

2Ea
, ∆p2 =

(∑n
i=1 k⊥, i

)2
2Ea

, ∆p3 =
n∑
i=1

k2
⊥,i

2xiEa
. (E.6)

where we recall that K⊥ ≡
∑n
i=1 k⊥,i. We average over the resummed splitting distribution

in eq. (4.6). At first, since ∆p1 is independent of the splitting kinematics, we have

〈∆p1〉 = ∆p1 =
m2
b,h

2Ea
. (E.7)
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This coincides with the LO order piece in eq. (2.2). Next we compute

〈K⊥, iK⊥, j〉 =
∞∑
n=0

1
n!

 n∏
j=1

∫
dPE, j

K⊥, iK⊥, j exp
[
−
∫
dPE

]

=
[∫

dPEK⊥

]2 ∞∑
n=0

1
n!

[∫
dPE

]n−2
exp

[
−
∫
dPE

]

=
[∫

dPEK⊥∫
dPE

]2
, (E.8)

which implies

〈∆p2〉 = 1
2Ea

[∫
dPE k

2
⊥ + n(n− 1)

n2

(∫
dPE k⊥

)2
]
, (E.9)

where n =
∫
dPE is the mean number of emitted bosons. We compute

∫
dPE k

2
⊥ ' ζa

m2
b,h

2 ,

(∫
dPE k⊥

)2
' 2ζam2

b,h, n ' ζa ln2 mb,h

µ
, (E.10)

which in the limit n� 1, implying

〈∆p2〉 ' ζa
5m2

b,h

4Ea
. (E.11)

Finally, we use eq. (4.9) to compute

〈∆p3〉 ' ζa
∫ E2

a

µ2

dk2
⊥

k2
⊥

∫ 1√
k2
⊥+µ2

Ea

dxx3 m4
b,h

(k2
⊥ + x2m2

b,h)2
k⊥

2xEa
' ζa

m2
b,h

2Ea
. (E.12)

Final results. Hence, we conclude that in the limit where the vector boson is massless
and ma = mb, the exchanged momentum in eq. (E.5) is equal, up to O(ζa), to the LO
contribution

〈∆p〉 ' ∆pLO (1 + 3ζa) , with ∆pLO '
m2
b,h

2Ea
. (E.13)

This is in contrast to [1], which, in the massless vector boson limit, have found 〈∆p〉 ' ζaEa,
see appendix F.

E.2 Case mb,h > ma,h

We suppose mb,h > ma,h in eq. (E.3).

Computations. As in eq. (E.5), the exchange momentum can be written ∆p = ∆p1 +
∆p2 + ∆p3 with

∆p1 =


m2
b,h

2Ea
if n odd,

m2
a,h

2Ea
if n even,

∆p2 =
(∑n

i=1 k⊥, i
)2

2Ea
, ∆p3 =

n∑
i=1

k2
⊥,i

2xiEa
. (E.14)
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The asymptotic state particles are a → bc if the number of splitting n is odd while they
are a→ ac if n is even. Therefore, eq. (4.6) becomes

〈∆p1〉 =
[
m2
a,h

2Ea
coshn+

m2
b,h

2Ea
sinhn

]
e−n =

m2
a,h +m2

b,h

4Ea
+
m2
a,h −m2

b,h

4Ea
e−2n. (E.15)

where n is the mean number of emitted bosons

n =
∫
dPE ' ζa ln2

√
m2
b,h −m2

a,h

µ
, (E.16)

with µ given by the vector boson thermal mass µ = mc,s or larger. Next, we use eq. (E.9)
and eq. (4.9) to compute∫

dPE k
2
⊥ ' ζa(m2

b,h −m2
a,h),

(∫
dPE k⊥

)2
' 10ζa(m2

b,h −m2
a,h), (E.17)

which in the limit n� 1, implies

〈∆p2〉 ' ζa
11(m2

b,h −m2
a,h)

2Ea
. (E.18)

Finally, we use eq. (4.9) to compute

〈∆p3〉 ' ζa
m2
b,h −m2

a,h

Ea
ln

√
m2
b,h −m2

a,h

µ
, (E.19)

with µ given by the vector boson thermal mass µ = mc,s or larger.

Final result. Summing up eq. (E.15), (E.18) and (E.19), we obtain

〈∆p〉 ' ∆pLO +
m2
b,h −m2

a,h

4Ea

(
1− e−2n + 22ζa + 4

√
nζa

)
with ∆pLO '

m2
b,h

2Ea
, (E.20)

and where n is given by eq. (E.16). Again, we conclude that the contributions to the
exchanged momentum coming from the emission of a massless vector boson, in the case
mb,h ≥ ma,h, are only O(ζa) corrections to the LO result.

In the case where ma,h > mb,h, the expression in eq. (E.3) has a pole when ∆pz,h =
Ah/2Ea = 0, corresponding to the possibility in the broken phase for a to decay to bc,
on-shell and without the need of the presence of any wall. After subtracting that pole, we
expect the NLO correction to the exchange momentum 〈∆p〉 to be of the same order as
eq. (E.20).

F Comment on [1]

F.1 Violation of the Ward identity

Let us consider the splitting radiation vertex in figure 15

M = ū(pb)/ε(pc)u(pa). (F.1)
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pc

pa pb

Figure 15. Splitting radiation vertex.

The Ward identity can be stated as

M is invariant under εµλ(pc, n)→ εµλ(pc, n) + pµc . (F.2)

We make clear the conditions for the Ward identity to hold. Consider a new transition
matrixM′ in which the polarization vector has been shifted by εµ(pc)→ εµ(pc) + pµc . The
difference from the original transition matrix is given by

M′ −M = ū(pb)/pcu(pa). (F.3)

From eliminating /pc with the momentum conservation condition

pa = pb + pc, (F.4)

and from using
(/pa −m)u(pa) = 0, ū(pb)(/pb −m) = 0, (F.5)

we get
M′ −M = ū(pb)(/pa − /pb)u(pa) = ū(pb)(m−m)u(pa) = 0. (F.6)

We conclude that there are two types of scenarios in which the Ward identity cannot
be satisfied. The first one is when the particles a and/or b are off-shell, in which case
(/pa −m)u(pa) 6= 0 and/or ū(pb)(/pb −m) 6= 0, in eq. (F.5). This can be the case for QCD
splitting functions à la Altarelli and Parisi [87], where one leg must be attached to a larger
Feynman diagram and the momentum of the corresponding internal line is off-shell. In
this case, the Ward identity is only satisfied at the level of the larger Feynman diagram.
The second scenario is when 4-momentum is not conserved pa 6= pb + pc, in eq. (F.4).
This is the scenario of the calculation presented in this paper, where the existence of the
wall boundary separating the two phases breaks spontaneously translation invariance and
prevent momentum conservation in the z direction.

As we explain in the next section, we point out that the computation in [1] satisfies the
Ward identity out of its regime of validity, thus possibly suggesting an avenue to explore
to understand why the splitting probability in [1] does not vanish in the limit where the
symmetry is restored, as it instead should.

F.2 Splitting at first order

In appendix B of v3 of [1], the matrix element squared |M|2 for splitting radiation across
the wall is computed in the case of scalar QED. The matrix element at leading order in
presence of the wall reads

M(0)
a→bc = 2iEa

(
Vh
Ah
− Vs
As

)
, (F.7)
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with the vertex functions in the symmetric and broken phase being

Vs = ig(pa,s + pb,s)µεµλ, Vh = ig(pa,h + pb,h)µεµλ. (F.8)

Until now, there is no difference with us, see eq. (3.30) and eq. (A.6). The authors of [1]
then define pb,s and pa,h via

pa,s = pb,s + pc,s, and pa,h = pb,h + pc,h, (F.9)

i.e. by assuming energy-momentum conservation (so in particular momentum conservation
along z) in the two phases separately. Note that this implies that at least one among the
three momenta, in each of the s and h phases, is off-shell. Then, using a classical current
formalism, they obtain the following WKB phases

As = −2pa,spc,s, and Ah = −2pb,hpc,h. (F.10)

By plugging eq. (F.9) into the vertices eq. (F.8), and then the vertices and the phases (F.10)
into the matrix element eq. (F.7), one finds that the matrix elements does respect the Ward
identity, if pc,s = pc,h = pc with p2

c = 0 as assumed in [1]

M(0)
a→bc|εµλ→pµc = gEa

(
(pa,hpc + pb,hpc)

pb,hpc
− (pa,spc + pb,spc)

pa,spc

)

= gEa

(
pa,hpc
pb,hpc

− pb,spc
pa,spc

)

= gEa

(
(pb,h + pc)pc

pb,hpc
− (pa,s − pc)pc

pa,spc

)
= 0. (F.11)

This signals a possible issue with the result of [1], because eq. (F.9) implies that at least
one of the momenta in each equation should be off-shell, and so the Ward identity should
not have been satisfied.

The authors of [1] then use the polarization sum rules in axial gauge with arbitrary
auxiliary vector nµ,

∑
λ

εµλ(pc, n)εν∗λ (pc, n) = −gµν + pµcn
ν + pνcn

µ

pcn
− n2 pµc p

ν
c

(pcn)2 , (F.12)

and obtain the gauge-invariant result12

∣∣∣M(0)
a→bc

∣∣∣2 = 4E2
a|g|2

(
2pa,spb,h

pa,spc pb,hpc
−

p2
a,s

(pa,spc)2 −
p2
b,h

(pb,hpc)2

)
. (F.13)

12While it is nice that this result is manifestly gauge-invariant, without Ward identities the polarization
sum rules of eq. (F.12) would lead to a final |M|2 that depends on the arbitrary gauge vector nµ. Instead,
when computing the matrix element, only the physical polarizations (corresponding to the gauge choice nµ =
(1, 0, 0,−1)) should be used, as prescribed long ago by Altarelli and Parisi [87], and as we do in appendix A.
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The perturbative splitting probability associated to eq. (F.13) then reads

dP
′
E = d3pc

(2π)32Ec

∣∣∣M(0)
a→bc

∣∣∣2
4Ea

' ζa
dk2
⊥

k2
⊥
dxx

(
k2
⊥ + xm2

b,h

k2
⊥ + x2m2

b,h

)2

. (F.14)

The splitting probability in eq. (F.14) does not vanish in the limit where the order
parameter of the phase transition goes to zero, either mb,h � k⊥ or mb,h → mb,s. Therefore
the friction pressure is left intact in the limit in which the wall disappears 〈φ〉 → 0 [58],
thus signaling a possible problem with eq. (F.14). We suggest that the root of the problem
may lie in the effective assumptions discussed earlier, that lead to unexpectedly satisfying
the Ward identities.

In contrast, our splitting probability does vanish when mc,h � k⊥ or mb,h � k⊥ (but
also when mi,h → mi,s), for vector bosons c which are respectively either massive, see
eq. (3.36), or massless, see eq. (E.3).

F.3 Splitting at all orders

The average exchange momentum. In [1], the average exchanged momentum is com-
puted according to

〈∆p〉 =
∫
k⊥>µ

dP
′
E

k2
⊥

2xEa
exp

[
−
∫
k̃⊥>k⊥

dP
′
E(k̃⊥)

]
, (F.15)

where the perturbative splitting probability dP ′E is given by eq. (F.14). The integrand in
eq. (F.15) is dominated by the region where x ∼ 1 and k⊥ ∼ Ea which leads the authors
of [1] to conclude that

〈∆p〉 ∼ ζaEa. (F.16)

Our comments. The Sudakov resummation operated in eq. (F.15) can be obtained from
the master formula in eq. (4.6) if we assume that the exchanged momentum in eq. (4.5) is
dominated by the largest k⊥

∆p = Max
k⊥

[
k2
⊥,1

2x1Ea
,
k2
⊥,2

2x2Ea
, · · · ,

k2
⊥,n

2xnEa

]
. (F.17)

In that case, eq. (4.6) becomes

〈∆p〉 =
∞∑
n=0

1
n!

 n∏
j=1

∫
dP
′
E, j

∆p exp
[
−
∫
dP
′
E

]

=
[∫

dP
′
E(k⊥) k2

⊥
2xEa

] ∞∑
n=1

1
(n− 1)!

[∫
dP
′
E(k̃⊥) θ

(
k⊥ − k̃⊥

)]n−1
exp

[
−
∫
dP
′
E

]

=
∫
dP
′
E(k⊥) k2

⊥
2xEa

exp
[∫
k̃⊥<k⊥

dP
′
E(k̃⊥)−

∫
k̃⊥>µ

dP
′
E(k̃⊥)

]
=
∫
k⊥>µ

dP
′
E(k⊥) k2

⊥
2xEa

exp
[
−
∫
k̃⊥>k⊥

dP
′
E(k̃⊥)

]
, (F.18)

which coincides with eq. (F.15). We have checked that to take the max in eq. (F.17) instead
of the sum of the ∆pi in eq. (4.5) can lead to the underestimation of the final 〈∆p〉 by a
factor ∼ O(30) in the limit of large supercooling Tnuc/Tstart ∼ 10−4 and large ζa ∼ 0.1.
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Figure 16. We display here the average momentum transferred to the wall ∆p as a function
of the IR cut-off µ, both in some units of mc. In contrast to the analytical result in dotted, cf.
Eq (4.15), which overestimates the exchanged momentum in the limit µ → 0, the MC simulation
in solid accounts for the depletion of the incoming energy-momentum due to the successive boson
emissions, see section 5.2. This implies a maximal number of boson emission and a maximal value
for the exchanged momentum compatible with energy-momentum conservation. The impact of
energy depletion is higher and higher as we decrease the incoming energy Ea/mc. For simplicity,
mc = mc,h in this plot.

Conclusion. We conclude that the assumption pa = pb + pc at the level of the vertex
leads the authors of [1] to eq. (F.14) instead of eq. (3.36) for massive vector boson, or
instead of eq. (E.3) for massless vector boson,13 which overestimates the final 〈∆p〉 by
an amount Ea/mc or (Ea/mb)2 respectively, and does not vanish in the limit 〈φ〉 → 0.
Additionally, the approximation in eq. (F.17) instead of eq. (4.5) leads the authors of [1]
to underestimate 〈∆p〉 by an amount ∼ O(30).

F.4 Finite wall thickness

Finally, let us add that if the result 〈∆p〉 ∼
〈
k2
⊥/2xEa

〉
∼ ζaEa claimed by [1] was right,

the infinitely-thin-wall assumption Lw∆p . 1 would violently break down. Indeed, the
perturbative splitting probability used by [1] and given in eq. (F.14) should receive the
additional factor Wwall(Lw, k⊥, x) defined in eq. (B.12), which evaluated at k2

⊥/xEa ∼
ζaEa, is exponentially suppressed

Wwall ∝ e−πLwEa ∼ e
−π Ea

mc,h � 1. (F.19)

13The authors of [1] consider the case of a massless vector boson mc = 0.
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Figure 17. Comparison between analytical treatment in dashed lines and MC treatment in solid
lines. The blue and green lines show the exchanged momentum induced by radiated bosons re-
summed at all leading-log orders, either transmitted (green) or reflected (blue) by the wall boundary.
The red dashed line shows the LO contribution assuming no splitting radiation. In the run-away
regime, we have Ea/mc,h ∼ (Mpl/ 〈φ〉)(Tnuc/Tstart)2, see eq. (3.55) and eq. (6.11). Therefore, at
very strong supercooling the initial particle energy Ea in the wall frame becomes smaller than the
particle masses ma,h, mb,h and/or mc,h in the broken phase, such that a, b and/or c are reflected.

G Energy-momentum conservation

G.1 Backreaction

In the Sudakov resummation in section 4.2, we have neglected the depletion of the initial
energy and momentum (Eb, pb) due to the multiple boson emissions. When considering
those effects, which we call ‘backreaction’, eq. (4.9) should instead become

〈∆p〉 =
∞∑
n=0

1
n!

 n∏
j=1

∫
dPE, jΘ

(
(1−X)2E2

a −K2
⊥
)
Θ
(
1−X

) n∑
i=1

∆pi exp
[
−
∫
dPE

]
.

(G.1)
where X and K⊥ are defined in eq. (4.2). The Θ functions prevent the emission of more
momentum and energy than what is available, i.e the momentum pzb and energy Eb in
eq. (3.10) must remain positive. We account for the effect of backreaction with our Monte-
Carlo simulation, cf. section 5, in which the Theta functions in eq. (G.1) enter through the
boundaries of the integral in eq. (5.11) and through the condition in eq. (5.12).

In figure 16, we can see that in contrast to the analytical result (dotted line), in
the numerical study in which the effect of energy depletion due to successive emissions
is included (solid lines), the number of emissions and the resulting 〈∆p〉 saturates to a
plateau. This could by itself regulate the logarithmic divergence if the thermal mass as
well as other possible IR cut-offs were zero, see section 3.4. However, in presence of the
thermally induced cut-off µ = α1/2Tnuc, we find that backreaction can be safely neglected.
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G.2 Snowplow region: Ea . mi,h

The expressions for the friction pressure, PLO and PLL, induced by 1 → 1 and 1 → n

processes, cf. eq. (6.2) and eq. (6.4), are valid in the regime ma,h, mb,h � Ea and
µ � mc,h � Ea, respectively. We now derive their expression in the regime where
Ea . ma,h, mb,h and Ea . mc,h, in which the particles a, b and c are reflected by the
wall boundary. Since the particles then accumulate in front of the wall, we call this the
‘snowplow region’.14 Assuming for the sake of simplicity that a and b are identical, the
exchanged momentum between a and the wall is given by 〈∆p〉 = 〈2pa〉, and the friction
pressure at LO in the relativistic limit is, cf. eq. (2.1)

Ea . ma,h =⇒ PLO '
π2

15
∑
a

gaea γ
2 T 4

nuc, ea = 1 (7/8) for bosons (fermions)

(G.2)
The exchanged momentum due to splitting radiation resummed at all leading-log orders
is, cf. eq. (3.17), eq. (4.7) and eq. (4.9)

〈∆p〉 '
∫ E2

a
4

0

dk2
⊥

k2
⊥

∫ √k2
⊥+m2

c,h
Ea

1

dx

x

k4
⊥

(k2
⊥ + µ2)2 2xEa ' 4Ea log

(
Ea
µ

)
, (G.3)

which after injection into eq. (3.1) with Ea = 〈pa〉 ' 2.7 γ Tnuc, leads to the friction
pressure15

Ea . mc,h =⇒ PLL '
11 ζ(3)
π3

∑
a,b,c

νagaCabc

α ln
(
Ea
µ

)
γ2 T 4

nuc. (G.4)

The exchanged momentum due to the eq. (G.3) is shown by the dashed blue line in figure 17.
Note that the region Ea . mc,h ∼ ma,h falls in the region where interactions between
reflected particles and newly incoming particles can be neglected, cf. dotted purple and
blue lines in figure 8, such that the possible corrections to the friction pressure discussed
in section 4.4 are not expected. It is interesting that a region Ea . mi,h, where particles
are too soft to penetrate inside the bubble wall, exists in the large supercooling limit (as
already pointed out in [12] for confining PTs). We leave its study for further works.

H Lorentz factor in the run-away regime

H.1 Generic potential

Energy conservation. The vacuum energy gained upon formation of a bubble of radius
R is

Ebubble '
4
3 π R

3 P, (H.1)

14We thank Gilad Perez for suggesting the name ‘bulldozzer’, we end up choosing ‘snowplow’ due to
proximity with the Christmas season at the time of arXiv first submission.

15Note that we recover the scaling PLL ∝ αγ2 T 4
nuc found in [1], but only in the limit Ea . mc,h.
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where P is the expanding pressure. As the bubble grows, the energy stored in the bubble
wall is given by

Ewall ' 4π R2 γ σ, (H.2)

where σ is the surface energy of the wall in the wall frame

σ ≡
∫ ∞

0
dr

[1
2(φ′(r))2 + V (φ(r))− V (φ(0))

]
. (H.3)

Insuring energy conservation by equating eq. (H.1) and eq. (H.2), we obtain that in the
run-away regime, the wall Lorentz factor grows linearly with the bubble radius, e.g. [80, 115]

γ = P
3σR. (H.4)

In the supercooled and run-away regime, the expanding pressure is given by the vacuum
energy difference P = cvac 〈φ〉4 while the surface tension can be estimated as

σ ≈ Ltot.
w cvac 〈φ〉4 , (H.5)

where Ltot.
w is the total thickness of the wall, accounting for the rising part plus the multiple

oscillations around the true vacuum value, until the oscillations become negligible. This
should not be mistaken with Lw introduced earlier, which is the thickness of the rising part
of the wall only, see footnote 11. The Lorentz factor of the running-away bubble wall in
eq. (H.4) becomes

γ = R

3Ltot.
w

. (H.6)

Total wall thickness. The wall profile can be found by sticking the space-like profile
with the time-like profile, see e.g. [116]. The former is solution of the euclidean equation
of motion

φ′′E(sE) + d− 1
sE

φ′E(sE) = dV

dφE
, with φ

′
E(0) = 0, and lim

r→∞
φE(r) = 0. (H.7)

where sE =
√
~r2 + t2E =

√
~r2 − t2 is the space-like light-cone coordinate, tE = i t is the

Euclidean time and d = 3 or 4. The latter is solution of the real-time equation of motion

∂2φ

∂s2 + 3
s

∂φ

∂s
+ ∂V

∂φ
= 0, with φ(s) = φE(0), and φ

′(0) = φ
′
E(0). (H.8)

where s =
√
t2 − ~r2 is now the time-like light-cone coordinate. The total wall thickness

Ltot.
w is set by the sum of the characteristic length scales of the two profiles

Ltot.
w = Lspace−like + Ltime−like, (H.9)

which are themselves set by the damping terms of the two respective eqs. (H.7) and (H.8).
Due to the matching condition φ′(0) = φ

′
E(0), the two damping terms are of the same order

and we conclude that
Ltime−like ' Lspace−like ≡ Rnuc, (H.10)
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where the last equality defines the bubble radius at nucleation. The Lorentz factor of the
running-away bubble wall in eq. (H.6) becomes16

γ = R

3Rnuc
. (H.13)

H.2 Shallow potential

The friction pressure in eq. (6.1) is suppressed by powers of Tnuc/f � 1, where f ≡ 〈φ〉.
Therefore, a run-away regime at bubble collision time requires supercooled phase transi-
tions. Typically, supercooled phase transitions are generated by shallow zero-temperature
potentials, namely potentials where the curvature close to the false vacuum√

V ′′(φ)
∣∣∣
φ�f

' f exp(−c/ε), ε� 1, c = O(1), (H.14)

is much smaller than the curvature f close to the true vacuum. In that case, the tunneling
exit point is very close to the false minimum and the bounce action is only sensitive to
the scale f exp(−c/ε). We expect both temperature and bubble radius at nucleation to be
related to that scale, and therefore17

Rnuc ' cw T
−1
nuc, (H.15)

where cw is a model-dependent numerical factor. At the time of collision, the bubble size
is given by18

Rcoll ' (8π)1/3 vwβ
−1, (H.16)

where vw is the bubble wall velocity, β is the expansion coefficient of the exponent of the
nucleation rate around the typical transition time t∗

Γ ∝ eβ(t−t∗)+···, (H.17)
16In [80], the wall tension is expressed in term of the bubble radius at nucleation Rnuc, obtained from

minimizing the total energy Ebubble + Ewall

σ = RnucP/2, (H.11)

such that the Lorentz factor of the running-away bubble wall in eq. (H.4) becomes

γ = 2R
3Rnuc

. (H.12)

However, as the bubble expands, the scalar field undergoes damped oscillations toward the true vacuum,
such that eq. (H.11) under-estimates the surface tension σ. With eq. (H.13), we claim that eq. (H.11) only
under-estimates σ by an O(1) factor.

17Note that the authors of [39] have set Rnuc ∼ f−1 instead of Rnuc ∼ T−1
nuc. For typical potentials leading

to large supercooling, e.g. Coleman-Weinberg [76] or light-dilation [74], the latter choice is the correct one,
see appendix A of [12].

18The factor 8π comes from the expected number of bubbles nucleating in a volume V . To derive this, one
has to take into account the fact that the nucleating bubble must be in the false vacuum. Taking the wall ve-
locity to be unity for simplicity, and taking the nucleation rate per unit time and volume to be Γ(t) = Γ∗eβt,
we sum up the differential nucleation probability for time interval [tn, tn+dtn] to get (expected # of bubbles)
= V ×

∑
(prob. for the nucleation point to be in the false vacuum) × (prob. for nucleation between [tn, tn+

dtn]) = V ×
∫∞
−∞ e

− 4π
3

∫ tn
−∞

dt (tn−t)3Γ∗eβt × Γ∗eβtndtn = V ×
∫∞
−∞ e−8πΓ∗eβtn/β4

× Γ∗eβtndtn = β3V/8π.
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which gives the inverse of the bubble propagation time. Therefore, in the run-away regime
(vw = 1 and P > 0), the Lorentz factor at the time of collision in eq. (H.13) becomes

γrun '
Tnuc
cwβ

, (H.18)

which we have use in the main text, cf. eq. (6.11).
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