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Abstract The present paper is the extension of author’s ear-

lier research devoted to more accurate numerical modelling

of beam-to-beam contact in the cases when beam axes form

acute angles in the contact zone. In such situation with beam

deformations taken into account, the contact cannot be con-

sidered as point-wise but it extends to a certain area. To cover

such a case in a more realistic way, two additional pairs of

contact points are introduced to accompany the original sin-

gle pair of contact points from the point-wise formulation.

The Coulomb friction model is introduced and advantage

is taken from the analogy to plasticity. The penalty method

is used to enforce the contact and friction constraints. The

appropriate kinematic variables for tangential contact and

their finite element approximation are derived. Basing on

the weak form for frictional contact and its linearisation, the

tangent stiffness matrix and the residual vector are derived.

The enhanced element is tested using author’s computer pro-

grams and comparisons with the point-wise contact elements

are made.

Keywords Beam-to-beam contact · Multiple-point

contact · Coulomb friction · Elasto-plastic analogy

for friction · Penalty method

1 Introduction

The beam-to-beam contact represents a special case in the

general field of 3D contact analysis. The efforts to analyze

it numerically were started by Wriggers and Zavarise in [1]
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and subsequently continued in [2–4] where contact without

and with Coulomb friction for beams of circular and rec-

tangular cross-sections was considered. Since then further

developments appeared and they included inclusion of ther-

mal and electric coupling [5], smoothing procedures for 3D

curves representing axes of beams in contact, e.g., [6] as well

as a rigorous approach to the question of solution existence

and uniqueness in the point-wise contact formulation, which

was presented by Konyukhov and Schweizerhof in [7]. These

authors focused their interest on the closest-point projection

procedure, which in the particular case of the beam-to-beam

contact leads to the orthogonality conditions, see [1]. The

same authors used their approach to analyse the problem

of rope wound around a cylinder and the question of knot-

tightening [8]. The latter issue was also considered and solved

by Durville in [9].

A fine analysis of various types of contact scenarios,

including the beam-to-beam case, based on the geometry

consideration was given in [10].

One important assumption in the majority of those

approaches was the uniqueness of the mutual closest point

projection procedure for two curves, ensured at least locally.

The obvious consequence was the concept of the point-wise

contact between beams. Yet, it is perfectly clear that such an

approach fails in some special situations, e.g., when irregu-

lar assemblies of fibre-like objects are considered [11]. Thus,

the more precise approach should cater for possibilities when

the contacting beam-like objects form acute angles and are

parallel or conforming, see Fig. 1. The issues related to the

existence and uniqueness of the closest points location were

discussed in detail in [7,10].

Also the problem of contact between beams and other

objects like rigid surfaces has been recently investigated. This

topic was addressed in the further paper by Konyukhov and

Schweizerhof [12] and by Gay Neto et al. [13,14]. Further-
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Fig. 1 Non point-wise contact

between beams: a beams with

axes crossing at acute angles,

b conforming beams

(b)(a)

more, the latter authors took into consideration the problem

of self-contact of a rope sustaining an off-shore riser [15].

The multiple-point beam-to-beam contact finite element

was developed in [16] to model in a more precise way the sit-

uations, when contact between beams cannot be considered

as point-wise. The frictionless interaction between beams

was considered therein. This element is now enhanced to the

frictional case. The main geometrical assumptions remain

valid, in particular it is necessary that, locally, there still exists

the unique solution to the closest-point projection equations.

Hence, the presented approach is not applicable for the case

of conforming/parallel beams which requires a completely

different approach. In such a case a full 3D analysis with

node-to-segment approach or a mortar method could be used

instead of a special beam-to-beam treatment.

In the suggested model the line along which the contact

may take place between two almost parallel or almost con-

forming beams, is discretised by three contact point pairs,

see Fig. 1a. This model with two additional pairs is the

most straightforward possible extension of the point-wise

approach.

The adopted interpretation of the contact zone between

two cylinders as a curved line is valid, if the assumption of

small strains and undeformable cross-sections is kept, as was

assumed in the previous papers [3,4,16].

Moreover, the contacting beams are modelled as one-

dimensional curves, with circumferential frictional effects

neglected, only the tangential friction force components are

taken into account. Hence, the proposed approach can be

practically used in the cases when the beam cross-section

dimension is much smaller than the beam length. The more

general case was considered successfully in [7,10] using a

geometrically exact covariant approach.

For a consistence of the present paper, in the Sect. 2 a

brief introduction of geometrical considerations regarding

the two additional contact pairs is presented repeating the

ideas from [16]. To this end also some results of the finite ele-

ment discretisation for the frictionless case are summarised in

Appendix 3. In the remaining sections the attention is focused

mainly on the frictional components of the contact formula-

tion, since the detailed description the normal contact part

can be found in the above mentioned paper. Furthermore, the

present paper is mainly related to the influences due to the

additional contact pairs, which are added to the formulation

of point-wise contact given earlier in [4,17].

Section 3 includes the introduction of friction contribu-

tions to the weak form in the case of multiple-point contact.

The frictional interactions are defined using the penalty

method, and the analogy to non-associated plasticity is used

with the distinction of stick and slip friction status. The

consistent linearisation required for an effective use of the

Newton–Raphson method to solve the non-linear problem at

hand is also presented.

The kinematic variables present in the formulation of

frictional contact are introduced and expressed in terms of

displacements in Sect. 4. Again, the focus is put mainly on

the terms due to the additional contact pairs and a comparison

with point-wise contact variables is made.

Section 5 presents the finite element discretisation of fric-

tional terms. The components of the weak form and its

linearisation are suitably related to the nodal parameters of

the beam elements. In this way the components due to fric-

tion of the residual vector and the consistent tangent stiffness

matrix for the contact element are determined. Combined

with the normal contact components from [16] they yield the

complete frictional contact finite element formulation, which

was embedded in the author’s computer program.

Results of some numerical examples presented in Sect. 6

confirm the effectiveness and advantages of the multiple-

point beam-to-beam contact element with respect to the

previously derived one-point contact element in the cases

of beams forming acute angles.

Section 7 contains final remarks, conclusions and outlook.

2 Additional contact pairs

Let us consider a contact between two beams labelled m and

s. Their axes are shown in Fig. 2. The beams are of circular

x1 

x2 

x3 

xsn

s

Csn

(gN + rm + rs) 

Cmn 

xmn

m 

beam m

beam s

Fig. 2 Central contact pair of points on beam axes and central normal

gap
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Fig. 3 Additional contact pairs of points on beam axes and additional

normal gaps

cross-sections with radii rm and rs . In the suggested multiple-

point beam-to-beam contact element three pairs of contact

points are considered—the central contact points Cmn − Csn

and two additional ones. The central points are found using

the orthogonality conditions, as described in [1,3] where the

minimisation of the axes distance dN yields the local co-

ordinates of the closest points on each beam −ξmn and ξsn

(−1 ≤ ξin ≤ 1, i = s or m). Hence, the normal contact gap

function is

gN = dN − (rm + rs) (1)

with

dN = ‖xmn − xsn‖ (2)

To find the additional contact pairs, first, the contact candi-

date points Csnb, Csn f are found on the beam s using the

backward (subscript b) and forward (subscript f ) shift of

local co-ordinates with respect to the value ξsn for the cen-

tral contact point

ξsnb = ξsn − ξ�s

ξsn f = ξsn + ξ�s (3)

as shown in Fig. 3.

The definition of the shift ξ�s of the local co-ordinate is

taken as a result of simple geometric considerations regard-

ing the layout of beam contact zones. Let us consider the

plan view of the contact zone presented in Fig. 4. The cross-

section A–A along the beam s is shown in Fig. 5. The distance

between the centre contact point Csn on the axis of the beam

s and the edge of the overlap region shown in the plan view

(Fig. 4) is

as =
rm

sin ϕ
(4)

where ϕ is the angle between the beams axes in the plan view.

The distance between a shifted contact point, Csnb or Csn f ,

and the central one Csn is assumed as a fraction 1/k of as . In

the numerical tests (see [18]) it was found that k = 3 yields

the best results, so

Beam m

Beam s

rm

A 

A 

as

Fig. 4 Plan view of contacting beams at the contact zone (cross-section

A–A—see Fig. 5)

Beam s

A–A 

Beam m

Csn 

sbn

Csfn 
Csbn 

Cmn 

sn 
sfn

Fig. 5 Cross-section A–A of contacting beams at the contact zone—

see Fig. 4

ξ�s =
rm

3ls sin ϕ
(5)

where ls is the length of the beam element within which the

contact point lies.

Having located the additional points on the beam s, the

orthogonality condition can be applied to find their counter-

parts Cmnb and Cmn f on the beam m

(xmnb − xsnb) · xmnb,m = 0 (6)
(

xmn f − xsn f

)

· xmn f,m = 0 (7)

where dot · denotes the scalar product. Generally, each of the

conditions (6) and (7) represents a non-linear equation, which

can be solved iteratively using the Newton–Raphson method.

Following the lines of the solution for the central points with

a set of orthogonality conditions (see [1]) with the use of

the following expressions for the position vectors and their

derivatives with respect to local co-ordinates, determined at

the additional points

�xmnb = �umnb + xmnb,m�ξmnb

�xsnb = �usnb + xsnb,s�ξsnb

�xmnb,m = �umnb,m + xmnb,mm�ξmnb (8)
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�xmn f = �umn f + xmn f,m�ξmn f

�xsn f = �usn f + xsn f,s�ξsn f

�xmn f,m = �umn f,m + xmn f,mm�ξmn f (9)

the iterative updates for the local co-ordinates of the points

Cmnb and Cmn f are obtained in the form

�ξmb =
− (xmnb − xsnb) · xmnb,m

xmnb,m · xmnb,m + (xmnb − xsnb) · xmnb,mm

(10)

�ξm f =
−

(

xmn f − xsn f

)

· xmn f,m

xmn f,m · xmn f,m +
(

xmn f − xsn f

)

· xmn f,mm

(11)

Having located the additional contact points at both beams

m and s, two additional normal gap functions can be defined

in a way analogous to the normal gap at the central point (1).

This yields

gNb = dNb − (rm + rs)

gN f = dN f − (rm + rs) (12)

where the distances between the contact points are

dNb = ‖xmnb − xsnb‖

dN f =
∥

∥xmn f − xsn f

∥

∥ (13)

With three gap functions given by (1) and (12) the normal

contact formulation for three separate contact point pairs can

be formulated.

The point to note is the character change of the beam-to-

beam contact which is introduced by the presented procedure.

Instead of the parity of both contacting beams like in the

standard point-wise approach, the present model, due to the

shifted additional points on the beam s, brings the distinction

between slave and master bodies. It is advisable to treat the

beam with a smaller cross-section as the beam s. With this

provision, the resulting contact points are more effectively

distributed along the real contact zone which is longer along

the beam with a smaller cross-section and narrower along the

beam with a larger cross-section (see Fig. 4).

3 Friction contribution to the weak form

The weak form for the frictional contact problem between

two bodies can be written down in the following way:

δ� = δ�m + δ�s + δ�N + δ�T (14)

where the subscripts at the components of the virtual work

δ� denote the influences of the deformation of the body m,

the deformation of the body s, normal contact N and friction

T . Here the latter term only will be discussed. It is assumed

Beam s

Beam m FTsb 

FTmb

FTb (action)

FTb (reaction) 

Fig. 6 Components and resultant friction forces at the backward addi-

tional contact pair

that the contact model is independent of the beam model

itself, as was assumed in previous research (e.g., in [17]),

while the normal contact component was analyzed in detail

in [16]. For the case with three contact pairs as introduced in

Sect. 2, the friction contribution to (14) can be given as

δ�T = δ�T c + δ�T b + δ�T f (15)

where the subscripts c, b and f stand for the central pair,

the backward pair and forward pair, respectively, as shown

in Figs. 2 and 3. The contribution from the central point with

the appropriate kinematic variables and the results of the

finite element discretisation in the form of tangent stiffness

matrix and the residual vector were presented in the papers

on point-wise contact model [2,4,17]. The present paper is in

principle devoted to the derivation of components concerning

friction at the additional points, described as forward and

backward contributions. Thus, the appropriate friction forces

and virtual displacements are introduced which allow to write

down:

δ�T b = FT sb · δgT sbn + FT mb · δgT mbn (16)

δ�T f = FT s f · δgT s f n + FT m f · δgT m f n (17)

The friction forces FT mb, FT sb and FT m f , FT s f in each of

the relations (16) and (17) do not represent action-reaction

forces from Newton’s third principle of dynamics. Rather

than this, they have to be understood as pairs of components,

which result from a relative movement of a contact point

along each of the contacting beams, m or s. Let it also be

indicated, that special care must be taken when computing

the resultant friction forces FT b and FT f , when the angle

between their components acting along the beams m and s is

arbitrary. Their definition must include tangent vectors and

proportionality coefficients, as introduced in the continua-

tion.

These resultant forces, can then be viewed as acting simul-

taneously on both beams, each of them can be treated as an

action or a reaction force. This is depicted in Fig. 6 for the

particular case of the backward contact pair.

Similarly, the corresponding variations of tangential dis-

placements present in (16) and (17), i.e., the tangential gaps,
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must be related to the contacting beams, m and s. For each

contact pair two independent movements are considered.

It must be also pointed out that the assumed way to model

the beams as one-dimensional curves limits the possibilities

of friction modelling to the tangential direction only. The

circumferential friction force is not included in the analysis.

From the practical point of view this means that the present

model is limited to the cases when the cross-sectional diame-

ter of contacting beams is much smaller than the beam length,

like in the case of fibres assemblies, thin contacting cables

or ropes, etc.

The analysis presented in this paper follows the foot-

steps of the point-wise contact formulation and the analogy

between the frictional contact and the plasticity [19] is uti-

lized. This concept includes the additive split of tangential

gaps at backward and forward pairs into sticking (superscript

e, for the elastic analog) and sliding (superscript p, for the

plastic analog) components:

gT mb = ge
T mb + g

p

T mb

gT sb = ge
T sb + g

p

T sb (18)

gT m f = ge
T m f + g

p

T m f

gT s f = ge
T s f + g

p

T s f (19)

The Coulomb law with the constant friction parameter μ

is assumed to model the interface physical relation and the

sliding functions fb and f f must fulfil the conditions

fb = ‖FT b‖ − μ · FNb ≤ 0

f f =
∥

∥FT f

∥

∥ − μ · FN f ≤ 0 (20)

where FNb anf FN f are the normal contact forces at the addi-

tional points (see [16]). An important thing to note is that the

formulae (20) involve the resultant friction forces. There is

a theoretical possibility to check the sliding criterion sepa-

rately for each sliding component as was discussed e.g., in

[17]. However, such an approach seems to be non-physical.

Rather than this, each contact spot is to be treated consis-

tently and thus it should have one contact status attributed,

despite the fact that the resultant is determined using two

components.

Now the sliding rule can be introduced

ġ
p

T mb = γ̇
∂ fb

∂ FT mb

ġ
p

T sb = γ̇
∂ fb

∂ FT sb

ġ
p

T m f = γ̇
∂ f f

∂ FT m f

ġ
p

T s f = γ̇
∂ f f

∂ FT s f

(21)

which is a counterpart of the non-associated flow rule.

The sliding rule can be integrated with respect to pseudo-

time using the incremental analysis. Hence, introducing the

current new (subscript n) and previous (subscript p) config-

urations the following relations can be written down

gT mbn = gT mbp + dgT mb

gT sbn = gT sbp + dgT sb (22)

gT m f n = gT m f p + dgT m f

gT s f n = gT s f p + dgT s f (23)

The second terms on the right hand sides of these expressions

represent the values of increments of tangential gaps. The

method to find these basic kinematic variables for friction is

given in Sect. 4.

In the process of the incremental solution at the current

new step, the trial values of sticking tangential gaps compo-

nents

get
T mbn = gT mbn − g

p

T mbp

get
T sbn = gT sbn − g

p

T sbp (24)

get
T m f n = gT m f n − g

p

T m f p

get
T s f n = gT s f n − g

p

T s f p (25)

are assumed using the current total gaps (22, 23) and the

history variables, i.e., the previous values of the sliding gap

components. The penalty method is now used to determine

the trial values of the friction forces components

F t
T m f = εT get

T m f n

F t
T s f = εT get

T s f n (26)

F t
T mb = εT get

T mbn

F t
T sb = εT get

T sbn (27)

where εT is the frictional penalty parameter.

The unit tangential vectors have to be introduced in order

to evaluate the trial resultant friction forces. These vectors

follow from the definition of the kinematic variables given

in Sect. 4. Here, let it only be stated that they can be deter-

mined using the current and previous position vectors of the

contact points. Hence, the tangential vectors can be found

using

tmb =
xmbn − xmbp

∥

∥xmbn − xmbp

∥

∥

= (tmb1, tmb2, tmb3)
T

tsb =
xsbn − xsbp

∥

∥xsbn − xsbp

∥

∥

= (tsb1, tsb2, tsb3)
T (28)

tm f =
xm f n − xm f p

∥

∥xm f n − xm f p

∥

∥

=
(

tm f 1, tm f 2, tm f 3

)T
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ts f =
xs f n − xs f p

∥

∥xs f n − xs f p

∥

∥

=
(

ts f 1, ts f 2, ts f 3

)T
(29)

The magnitude of the trial resultant friction forces can now

be given by

F t
T b =

∥

∥Ft
T b

∥

∥ =
∥

∥F t
T mbtmb + F t

T sbtsb

∥

∥ (30)

F t
T f =

∥

∥

∥
Ft

T f

∥

∥

∥
=

∥

∥

∥
F t

T m f tm f + F t
T s f ts f

∥

∥

∥
(31)

and the trial values of the sliding functions can be evaluated

using

f t
b =

∥

∥Ft
T b

∥

∥ − μ · FNb

f t
f =

∥

∥

∥
Ft

T f

∥

∥

∥
− μ · FN f (32)

With (32) in hand the status of the friction at the additional

contact points can be checked. If the condition

f t
b ≤ 0 (33)

is met, then the backward pair is in the stick state, and if it

is not—then sliding takes place. Similar check is carried out

separately for the forward pair using

f t
f ≤ 0 (34)

In the case of stick the trial value of the friction force resultant

is within the sliding limit and it corresponds to the correct

current friction force components

FT mb = F t
T mb = εT get

T mbn

FT sb = F t
T sb = εT get

T sbn (35)

for the backward pair and

FT m f = F t
T m f = εT get

T m f n

FT s f = F t
T s f = εT get

T s f n (36)

for the forward pair. In this situation there is no incremental

increase of the plastic part of the tangential gaps, either. For

the backward pair one has

g
p

T mbn = g
p

T mbp

g
p

T sbn = g
p

T sbp (37)

and for the forward pair—

g
p

T m f n = g
p

T m f p

g
p

T s f n = g
p

T s f p (38)

If the sliding status is encountered, then the trial friction force

exceeds the limit imposed by the sliding rule and the Euler

return procedure has to be employed. For the Coulomb fric-

tion model it leads to the closed-form solution and the friction

force components are given by their limiting values—

FT mb = μpmb FNb

FT sb = μpsb FNb (39)

for the backward pair and

FT m f = μpm f FN f

FT s f = μps f FN f (40)

for the forward pair. It should be pointed out, that there are

also proportionality parameters introduced in (39) and (40).

Their presence is necessary due to the fact, that the sliding

status check is carried out for the resultant friction force and

the formulation of the weak form (16) and (17) requires the

values of the friction force components along the beams m

and s. These parameters are given by

pmb =
F t

T mb

F t
T b

psb =
F t

T sb

F t
T b

(41)

pm f =
F t

T m f

F t
T f

ps f =
F t

T s f

F t
T f

(42)

The sliding state involves the update of the plastic tangential

gaps. For the backward pair one gets

g
p

T mbn = g
p

T mbp +
1

εT

(

F t
T mb − FT mb

)

g
p

T sbn = g
p

T sbp +
1

εT

(

F t
T sb − FT sb

)

(43)

and for the forward pair—

g
p

T m f n = g
p

T m f p +
1

εT m

(

F t
T m f − FT m f

)

g
p

T s f n = g
p

T s f p +
1

εT s

(

F t
T s f − FT s f

)

(44)

Let it again be emphasized, that the current state of the friction

is checked separately for each of three contact pairs—central,

backward and forward. Hence, the status at these points may

be different and correspondingly to (33) or (34) the appro-

priate relations for the additional points (35)–(44) have to be

used.

The results for sticking or sliding cases can now be intro-

duced into the weak form relations (16) and (17) to get the
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following results. The weak form for the sticking case for the

backward points reads

δ�e
T b = εT ge

T mbn δgT mbn + εT ge
T sbn δgT sbn (45)

and for the forward points

δ�e
T f = εT ge

T m f n δgT m f n + εT ge
T s f n δgT s f n (46)

The linearisations yield

�δ�e
T b = εT �gT mbn δgT mbn + εT ge

T mbn �δgT mbn

+ εT �gT sbn δgT sbn + εT ge
T sbn �δgT sbn (47)

�δ�e
T f = εT �gT m f n δgT m f n + εT ge

T m f n �δgT m f n

+ εT �gT s f n δgT s f n + εT ge
T s f n �δgT s f n (48)

In the case of the sliding status the weak form is

δ�
p

T b = μεN pmb smb gNb δgT mbn

+μεN psb ssb gNb δgT sbn (49)

for the backward pair and

δ�
p

T f = μεN pm f sm f gN f δgT m f n

+μεN ps f ss f gN f δgT s f n (50)

for the forward pair. These two formulae require additional

parameters smb, ssb, sm f , ss f to control the sliding direction.

They can be found from the simple relations

smb = sign(ξmbn − ξmbp)

ssb = sign(ξsbn − ξsbp) (51)

sm f = sign(ξm f n − ξm f p)

ss f = sign(ξs f n − ξs f p) (52)

using the local co-ordinates of the current and previous con-

tact points if these points are located in the same contact facet.

In the contrary situation, for instance the element numbers

can be used.

Besides, the values of the normal contact forces present

in (39) and (40) are evaluated using the penalty method

FNb = εN gNb (53)

FN f = εN gN f (54)

with the normal contact penalty parameter εN introduced (see

[10])

The linearisations of the weak forms (49) and (50) read

�δ�
p

T b = μεN pmb smb �gNb δgT mbn

+μεN pmb smb gNb �δgT mbn

+μεN smb gNb �pmb δgT mbn

+μεN psb ssb �gNb δgT sbn

+μεN psb ssb gNb �δgT sbn

+μεN ssb gNb �psb δgT sbn (55)

�δ�
p

T f = μεN pm f sm f �gN f δgT m f n

+μεN pm f sm f gN f �δgT m f n

+μεN sm f gN f �pm f δgT m f n

+μεN ps f ss f �gN f δgT s f n

+μεN ps f ss f gN f �δgT s f n

+μεN ss f gN f �ps f δgT s f n (56)

The weak form expressions (45), (46), (49), (50) and their

linearisations (47), (48), (55), (56) include various kinematic

variables. Some are related to the the normal gaps (12) and

thus concern the normal contact. They were given in detail in

[16] and are not discussed in this paper. The variables related

to the tangential gaps and to the proportionality parameters

(41) and (42) are considered in the following section.

4 Kinematic variables for friction

The tangential gaps representing the key kinematic variables

for friction, given by (22) and (23) require the definition

of the tangential gap increments dgT mb, dgT sb, dgT m f and

dgT s f . The procedure to find these values will be given for

the example of dgT m f and dgT s f in the case of the forward

contact pair.

Let us consider the beams m and s in two subsequent

configurations—previous and current, as shown in Fig. 7.

The increment of the tangential gap is found as the dis-

tance between the current contact points Cm f n, Cs f n defined

by the current local co-ordinates ξm f n, ξs f n in the current

configuration and the mappings C′
m f p, C′

s f p of the previous

contact points Cm f p, Cs f p from the previous configuration

onto the current configuration, defined by the previous local

co-ordinates ξm f p, ξs f p. With the appropriate position vec-

tors introduced, see Fig. 7, the gap increments can be given as

dgT m f = sm f

∥

∥xm f n − xm f p

∥

∥

dgT s f = ss f

∥

∥xs f n − xs f p

∥

∥ (57)

For the backward pair one gets similar expressions

dgT mb = smb

∥

∥xmbn − xmbp

∥

∥

dgT sb = ssb

∥

∥xsbn − xsbp

∥

∥ (58)

These relations include the sliding direction control parame-

ters given by (51) and (52).
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Fig. 7 Definition of the

tangential gap increment for the

beam m in the forward contact

pair
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The local co-ordinates ξsbn and ξs f n of the current points

at the beam s are found from (3) and those concerning the

beam m follow from the orthogonality conditions (6) and (7)

applied to the beam m only, as discussed in [16]. The vari-

ations and linearisations of these variables were also given

in that paper. The only exceptions were �δξmbn and �δξm f n

which were absent in the frictionless contact formulation.

These variables can be derived from the orthogonality con-

ditions. The corresponding tedious but elementary derivation

is given in Appendix 1.

The local co-ordinates of the previous point mappings

require a comment and a special treatment. The nature of

the proposed contact model is that the additional points on

the beam s are defined by the shift of local co-ordinate ξ�s .

This value depends, among others, on the angle ϕ included

between the tangents to the beam axes at the central contact

points Cmn and Csn . If the angle decreases, than the spacing

between the points is increased to cover the longer contact

zone, see Fig. 8. The angle ϕ undergoes changes during the

deformation process. Therefore, it can be concluded that the

relative movement of the contact point on the beam s will

result from two independent factors—the frictional sliding

and the change of location due to the varying angle ϕ. If the

beams are modelled as 1D curves and the circumferential

effects are neglected, then the latter factor would result in an

unrealistic behaviour and unphysical addition to the frictional

force at the contact points. Therefore, the local co-ordinates

of the previous contact point mapping cannot be treated as

mere history variables and taken directly from the previous

increment.

To overcome this problem it is suggested, that the rela-

tive movement of the additional points is directly related to

the relative movement of the central points. The idea behind

this assumption is that the three contact points modelling

the continuous contact line for almost parallel beams are

tied together. Hence, the following relations are proposed to

define the local co-ordinates required to localize the previous

contact point mappings C′
mbp, C′

sbp and C′
m f p, C′

s f p

ξsbp = ξsp − ξ�s

ξmbp = ξmbn −
(

ξmn − ξmp

)

(59)

ξs f p = ξsp + ξ�s

ξm f p = ξm f n −
(

ξmn − ξmp

)

(60)
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In other words it is assumed that the distance between the

additional contact point and the central contact point on the

beam s is determined by the same difference of the local

co-ordinate ξ�s in the case of the current points (Cs f n, Csn)

and the previous point mappings (C′
s f p, C′

sn). And similarly,

for the beam m it is assumed that the distance between the

current additional point Cm f n and the mapping of the previ-

ous contact point C′
m f p is given by the same difference in the

local co-ordinates (ξmn − ξmp) as in the case of the central

points (Cmn, C′
mp).

It should be pointed out, that simultaneously the influence

of the angle ϕ on the formulation of the local co-ordinate shift

in (5) remains unchanged. The results of this influence on the

contact element tangent stiffness matrix and the residual vec-

tor were derived in [16] and are summarised in Appendix 3.

Now the tangential gap variations present in the weak

forms and their linearisations derived in Sect. 3 can be eval-

uated. The results are similar to the kinematic variables for

friction at the central points, which were given in [17] for the

point-wise contact formulation. One gets

δgT mbn = smb tmb ·
(

xmbn,m δξmbn − xmbp,m δξmbp

+ δumbn − δumbp

)

δgT sbn = ssb tsb ·
(

xsbn,s δξsbn − xsbp,s δξsbp

+ δusbn − δusbp

)

(61)

for the backward points and

δgT m f n = sm f tm f ·
(

xm f n,m δξm f n − xm f p,m δξm f p

+ δum f n − δum f p

)

δgT s f n = ss f ts f ·
(

xs f n,s δξs f n − xs f p,s δξs f p

+ δus f n − δus f p

)

(62)

for the forward points. The difference between the formula-

tion for the central points and the additional points is the

presence of the second components in the parentheses in

(61) and (62) for the latter case. These components were

null for the central points because the variation of the local

co-ordinates for the previous point mapping was vanishing—

the co-ordinates were treated as history variables and were

independent on the current displacements variations. On the

contrary, for the additional points these local co-ordinates are

defined by (59) and (60) and their variations do not vanish.

These variables can be found using the relations

δξm f p = δ
(

ξm f n − ξmn + ξmp

)

= δξm f n − δξmn

δξmbp = δ
(

ξmbn − ξmn + ξmp

)

= δξmbn − δξmn (63)

for the points on the beam m

δξs f p = δ
(

ξs f n + ξ�s

)

= δξ�s

δξsbp = δ (ξsbn − ξ�s) = −δξ�s (64)

for the points on the beam s. The second components at the

right-hand sides of (63) are the variables related to central

points, which were expressed in terms of displacements in

[17]. The first components at the right-hand sides of (63)

concern the additional points; they are given in [16]. Finally,

the right-hand sides of (64) can also be expressed in terms

of displacements of the central points, as was shown in [16],

too.

The linearisations of the weak forms variations include

the linearisations of the tangential gaps and of the variations

of the tangential gaps. The former variables are computed in

the way analogous to the variations given by (61) and (62).

The latter ones are specified in Appendix 2 in Eq. (138).

It can be verified, that likewise for the variations, also here

the terms related to the local co-ordinates for the previous

point mapping are present, in what these relations differ from

the ones for the central contact point. The linearisations of

these local co-ordinates are computed in the way similar to

the variations given by (63) and (64). The linearisations of

variations can be found using

�δξm f p = �δ
(

ξm f n − ξmn + ξmp

)

= �δξm f n − �δξmn

�δξmbp = �δ
(

ξmbn − ξmn + ξmp

)

= �δξmbn − �δξmn

(65)

for the points on the beam m and

�δξs f p = �δ
(

ξs f n + ξ�s

)

= �δξ�s

�δξsbp = �δ (ξsbn − ξ�s) = −�δξ�s (66)

for the points on the beam s. Likewise with (63) and (64),

the particular components of these relations were expressed

in terms of displacements in [16,17].

The weak form linearisation for the slip state includes also

the linearisations of the proportionality parameters (41) and

(42) related to the friction force components. The similar

variables were derived in [17] for the central contact points.

Their detailed form is given in Appendix 2 in (139) and (140).

In this way all the terms in weak forms and their lineari-

sations are given by displacements and position vectors and

can be subjected to the finite element discretisation.

5 Finite element discretisation

A finite element for contact uses the same nodal parame-

ters as the finite elements for the beams themselves. In the

presented examples the beams are modelled using the co-

rotational beam finite element derived in [20].

An important issue influencing the form of the contact

finite element is the smoothing technique used to ensure

the proper continuity between the adjacent contact facets.
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Fig. 9 Beam-to-beam contact finite element based on smooth curves

segments

The importance of smoothing in a general contact context

was discussed for instance in [21]. The particularities of

the smoothing process for the beam-to-beam contact with

an analysis of several possible techniques were considered

in [17]. Out of the models presented therein, the one using

the inscribed curve and Hermite polynomials is used in this

paper. This leads to the definition of the contact finite element

involving two pairs of adjacent beam elements from two con-

tacting beams, see Fig. 9. There are three nodes m1, m2, m3

of the beam m and three nodes s1, s2, s3 of the beam s

involved in the formulation. The vector of nodal displace-

ments related to the contact element can be given by

q[18×1] = (um11, um12, um13, um21, um22, um23,

um31, um32, um33, us11, us12,

us13, us21, us22, us23, us31, us32, us33)
T

=

(

uT
M , uT

S

)T

(67)

where subscripts a = 1, 2, 3 and c = 1, 2, 3 in the dis-

placement notation usac and umac refer to the node numbers

and the co-ordinate numbers, respectively.

However, the issue can become more complex, if one con-

siders the fact, that the friction contact formulation for the

three-pair layout involves indeed not one but six different

points on each beam. These are: the current contact points

Cmbn, Cmn, Cm f n (Csbn, Csn, Cs f n correspondingly for the

beam s) and the mappings of the previous contact points

C′
mbp, C′

mp, C′
m f p (C′

sbp, C′
sp, C′

s f p for the beam s). It must

be assumed that these points may not lie within a single con-

tact facet. The situation where the mapping of the additional

(forward or backward) previous contact point is separated

from the current point or where the additional contact point

itself is separated from the central point should be taken into

account. Therefore, the appropriate vectors of nodal displace-

ments are introduced

qb =

(

uT
Mb, uT

Sb

)T

(68)

q f =

(

uT
M f , uT

S f

)T

(69)

qbp =

(

uT
Mbp, uT

Sbp

)T

(70)

q f p =

(

uT
M f p, uT

S f p

)T

(71)

which may or may not coincide with the vector q, given by

(67), related to the current central contact points Cmn and

Csn .

It must be pointed out, that the history variables for friction

and sliding are attributed to the particular contact points—

central and additional. They are stored and revised at each

iteration. If a local co-ordinate value at the current state

exceeds the limit (from –1 to 1) then the corresponding

number of contact segment and contact elements is changed

accordingly.

The method of smoothing determines the form of the

relation between displacements of an arbitrary point on the

contact facet and the nodal displacements. Let us assume the

following matrix representations for displacements at central

points

δuik = GikδuI

�uik = Gik�uI (72)

and at additional points

δui jk = Gi jkδuI j

�ui jk = Gi jk�uI j (73)

where the subscripts i and I are related to m-beam or s-beam

(i = s or m, I = S or M), the subscript j is related to back-

ward or forward additional pair ( j = b or f ) and the subscript

k is related to current (new) or previous configuration (k = n

or p).

Similar relations are introduced for the derivatives of dis-

placements with respect to the local co-ordinates

δuik,i = HikδuI

�uik,i = Hik�uI (74)

at central points and

δui jk,i = Hi jkδuI j

�ui jk,i = Hi jk�uI j (75)

at additional points with i = s or m, I = S or M, j = b or

f and k = n or p.

The explicit form of all the matrices G and H present in

(72)–(75) was given in [17].

The variations and linearisations of the current local co-

ordinates can be discretised to yield the following relations
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δξsbn = (Fs − F�s)

[

δuM

δuS

]

δξs f n = (Fs + F�s)

[

δuM

δuS

]

(76)

�ξs f n = (Fs − F�s)

[

�uM

�uS

]

�ξs f n = (Fs + F�s)

[

�uM

�uS

]

(77)

�δξsbn =
[

δuT
M δuT

S

]

(Rs − R�s)

[

�uM

�uS

]

�δξs f n =
[

δuT
M δuT

S

]

(Rs + R�s)

[

�uM

�uS

]

(78)

for the points on the beam s and

δξmjn = Fmj1

[

δuM

δuS

]

+ Fmj

[

δuM j

δuSj

]

(79)

�ξmjn = Fmj1

[

�uM

�uS

]

+ Fmj

[

�uM j

�uSj

]

(80)

with j = b or f , for the points on the beam m.

The matrices F and R present in (76)–(80) were detailed in

[16] and for the self-consistence of the present formulation

are repeated in Appendix 3. The missing discretisations in

this group are for �δξmbn and �δξm f n and they yield

�δξmjn =
[

δuT
M δuT

S

]

Rmj1

[

�uM

�uS

]

+

[

δuT
M j δuT

Sj

]

Rmj

[

�uM j

�uSj

]

+

[

δuT
M j δuT

Sj

]

Rmj2

[

�uM

�uS

]

+
[

δuT
M δuT

S

]

RT
mj2

[

�uM j

�uSj

]

(81)

where j = b or f.

The matrices involved in (81) are derived in Appendix 1.

Similar relations can be found for the appropriate kine-

matic variables related to the previous contact points. Using

(63)–(66) and the matrices introduced above one can get

δξsbp = −F�s

[

δuM

δuS

]

δξs f p = F�s

[

δuM

δuS

]

(82)

�ξsbp = −F�s

[

�uM

�uS

]

�ξs f p = F�s

[

�uM

�uS

]

(83)

�δξsbp =
[

δuT
M δuT

S

]

(−R�s)

[

�uM

�uS

]

�δξs f p =
[

δuT
M δuT

S

]

R�s

[

�uM

�uS

]

(84)

δξmjp =
(

Fmj1 − Fm

)

[

δuM

δuS

]

+ Fmj

[

δuM j

δuSj

]

(85)

�ξmjp =
(

Fmj1 − Fm

)

[

�uM

�uS

]

+ Fmj

[

�uM j

δuSj

]

(86)

�δξmjp =
[

δuT
M δuT

S

] (

Rmj1 − Rm

)

[

�uM

�uS

]

+

[

δuT
M j δuT

Sj

]

Rmj

[

�uM j

�uSj

]

+

[

δuT
M j δuT

Sj

]

Rmj2

[

�uM

�uS

]

+
[

δuT
M δuT

S

]

RT
mj2

[

�uM j

�uSj

]

(87)

where j = b or f .

The discretisation of the proportionality parameters (139)

and (140) leads to the following matrix relations

�pmj =Pmj0

[

�uM j

�uSj

]

+Pmj1

[

�uM

�uS

]

+Pmj2

[

�uM jp

�uSjp

]

(88)

�ps j =Ps j0

[

�uM j

�uSj

]

+ Ps j1

[

�uM

�uS

]

+ Ps j2

[

�uM jp

�uSjp

]

(89)

where j = b or f .

The matrices present in (88) and (89) take the form

Pmja =

⎡

⎢

⎣

εT

F t
T j

−
pmjεT

(

F t
T j

)2
Ft

T j · tmj

⎤

⎥

⎦
tT
mj Smja

−
pmjεT ge

T mjn
(

F t
T j

)2 ∥

∥xmjn −xmjp

∥

∥

Ft
T j

(

1 − tmj ⊗ tmj

)

Smja

−
pmjεT

(

F t
T j

)2

(

Ft
T j · ts j

)

tT
s j Ss ja

−
pmjεT ge

T s jn
(

F t
T j

)2 ∥

∥xs jn − xs jp

∥

∥

Ft
T j

(

1 − ts j ⊗ ts j

)

Ss ja

(90)

Ps ja =

⎡

⎢

⎣

εT

F t
T j

−
ps jεT

(

F t
T j

)2
Ft

T j · ts j

⎤

⎥

⎦
tT
s j Ss ja
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−
ps jεT ge

T mjn
(

F t
T j

)2 ∥

∥xmjn −xmjp

∥

∥

Ft
T j

(

1−tmj ⊗ tmj

)

Smja

−
ps jεT

(

F t
T j

)2

(

Ft
T j · tmj

)

tT
mj Smja

−
ps jεT ge

T s jn
(

F t
T j

)2 ∥

∥xs jn − xs jp

∥

∥

Ft
T j

(

1 − ts j ⊗ ts j

)

Ss ja

(91)

with a = 0, 1, 2 and where the auxiliary matrices

Sm f 0 = xm f n,m Fm f − xm f p,m Fm f +
[

Gm f n 0
]

Sm f 1 = xm f n,m Fm f 1 − xm f p,m

(

Fm f 1 − Fm

)

Sm f 2 =
[

−Gm f p 0
]

Ss f 0 =
[

0 Gs f n

]

Ss f 1 = xs f n,s (Fs + F�s) − xs f p,s F�s

Ss f 2 =
[

−Gs f p 0
]

(92)

Smb0 = xmbn,m Fmb − xmbp,m Fmb + [Gmbn 0]

Smb1 = xmbn,m Fmb1 − xmbp,m (Fmb1 − Fm)

Smb2 =
[

−Gmbp 0
]

Ssb0 = [0 Gsnb]

Ssb1 = xsbn,s (Fs − F�s) + xs f p,s F�s

Ssb2 =
[

−Gsbp 0
]

(93)

were introduced.

For the simplification of notation some further matrices

are used:

Zmb0 = FT
mbtT

mb

[

Hmbn 0
]

Zmb1 = FT
mb1tT

mb

[

Hmbn 0
]

Zmb2 = −FT
mbtT

mb

[

Hmbp 0
]

Zmb3 = −

(

FT
mb1 − FT

mb

)

tT
mb

[

Hmbp 0
]

Zsb1 =

(

FT
s − FT

�s

)

tT
sb

[

0 Hsbn

]

Zsb3 = FT
�stT

sb

[

0 Hsbp

]

(94)

Zm f 0 = FT
m f tT

m f

[

Hm f n 0
]

Zm f 1 = FT
m f 1tT

m f

[

Hm f n 0
]

Zm f 2 = −FT
m f tT

m f

[

Hm f p 0
]

Zm f 3 = −

(

FT
m f 1 − FT

m f

)

tT
m f

[

Hm f p 0
]

Zs f 1 =

(

FT
s + FT

�s

)

tT
s f

[

0 Hs f n

]

Zs f 3 = −FT
�stT

s f

[

0 Hs f p

]

(95)

Wmb =

⎡

⎢

⎣

3
∑

j=1

tmbj Gd jmbn 0

0 0

⎤

⎥

⎦
,

Wmb2 =

⎡

⎢

⎣

−
3
∑

j=1

tmbj Gd jmbp 0

0 0

⎤

⎥

⎦
,

Wsb =

⎡

⎢

⎣

0 0

0
3
∑

j=1

tsbj Gd jsbn

⎤

⎥

⎦

Wsb2 =

⎡

⎢

⎣

0 0

0 −
3
∑

j=1

tsbj Gd jsbp

⎤

⎥

⎦
(96)

Wm f =

⎡

⎢

⎣

3
∑

j=1

tm f j Gd jm f n 0

0 0

⎤

⎥

⎦
,

Wm f 2 =

⎡

⎢

⎣

−
3
∑

j=1

tm f j Gd jm f p 0

0 0

⎤

⎥

⎦
,

Ws f =

⎡

⎢

⎣

0 0

0
3
∑

j=1

ts f j Gd js f n

⎤

⎥

⎦

Ws f 2 =

⎡

⎢

⎣

0 0

0 −
3
∑

j=1

ts f j Gd js f p

⎤

⎥

⎦
(97)

For the notation in (96) and (97) the matrices given in (128)–

(129) and the split of tangent vectors (28) and (29) into

components were used.

The finite element discretisation of the weak forms for the

stick state, (45) and (46), leads to the following expressions

δ�e
T j =

(

δuT
M j δuT

Sj

) (

Re
T jm0 + Re

T js0

)

+
(

δuT
M δuT

S

)

(

Re
T jm1 + Re

T js1

)

+

(

δuT
M jp δuT

Sjp

) (

Re
T jm2 + Re

T js2

)

(98)

where j = b or f and the following residual vectors were

introduced

Re
T jma = εT ge

T mjn tmj Smja

Re
T jsa = εT ge

T s jn ts j Ss ja (99)

with a = 0, 1, 2.

Similarly, the finite element discretisation of the weak

forms for the slip state (49) and (50) yield
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δ�
p

T j =

(

δuT
M j δuT

Sj

) (

R
p

T jm0 + R
p

T js0

)

+
(

δuT
M δuT

S

)

(

R
p

T jm1 + R
p

T js1

)

+

(

δuT
M jp δuT

Sjp

) (

R
p

T jm2 + R
p

T js2

)

(100)

where j = b or f and the residual vectors are

R
p

T jma = μεN gN j pmj smj Smjatmj

R
p

T jsa = μεN gN j ps j ss j Ss jats j (101)

with a = 0, 1, 2.

The linearisations of the stick state weak forms (47) and

(48) after the discretisation can be given in the form

�δ�e
T j

=

(

δuT
M j δuT

Sj

) (

Ke
T jm00 + Ke

T js00

) (

�uT
M j �uT

Sj

)T

+

(

δuT
M j δuT

Sj

) (

Ke
T jm01 + Ke

T js01

)

(

�uT
M �uT

S

)T

+

(

δuT
M j δuT

Sj

) (

Ke
T jm02 + Ke

T js02

) (

�uT
M jp �uT

Sjp

)T

+
(

δuT
M δuT

S

)

(

Ke
T jm01 + Ke

T js01

)T (

�uT
M j �uT

Sj

)T

+
(

δuT
M δuT

S

)

(

Ke
T jm11 + Ke

T js11

)

(

�uT
M �uT

S

)T

+
(

δuT
M δuT

S

)

(

Ke
T jm12 + Ke

T js12

) (

�uT
M jp �uT

Sjp

)T

+

(

δuT
M jp δuT

Sjp

) (

Ke
T jm02 + Ke

T js02

)T (

�uT
M j �uT

Sj

)T

+

(

δuT
M jp δuT

Sjp

) (

Ke
T jm12 + Ke

T js12

)T
(

�uT
M �uT

S

)T

+

(

δuT
M jp δuT

Sjp

) (

Ke
T jm22 + Ke

T js22

) (

�uT
M jp �uT

Sjp

)T

(102)

where j = b or f and the tangent stiffness matrices involved

take the form (a = 0, 1, 2 and c = 0, 1, 2)

Ke
T jmac = εT ge

T mjn

[

(

Smjatmj

)

⊗
(

Smjctmj

)

ge
T mjn

+
ST

mja

(

1 − tmj ⊗ tmj

)

Smjc

dgT mj

+ Ae
T jmac

]

Ke
T jsac = εT ge

T s jn

[

(

Ss jats j

)

⊗
(

Ss jcts j

)

ge
T s jn

+
ST

s ja

(

1 − ts j ⊗ ts j

)

Ss jc

dgT s j

+ Ae
T jsac

]

(103)

The further auxiliary matrices in (103) are:

Ae
T bm00 = Zmb0 + ZT

mb0

+ tT
mb

(

xmbn,mm − xmbp,mm

)

FT
mbFmb

+ tT
mb

(

xmbn,m − xmbp,m

)

Rmb + Wmb

Ae
T bm01 = Zmb1 + tT

mbxmbn,mmFT
mbFmb1

− tT
mbxmbp,mmFT

mb (Fmb1 − Fm)

+tT
mb

(

xmbn,m − xmbp,m

)

Rmb2

Ae
T bm02 = Zmb2

Ae
T bm11 = tT

mbxmbn,mmFT
mb1Fmb1

− tT
mbxmbp,mm (Fmb1 − Fm)T (Fmb1 − Fm)

+ tT
mbxmbn,mRmb1 − tT

mbxmbp,m (Rmb1 − Rm)

Ae
T bm12 = Zmb3

Ae
T bm22 = Wmb2 (104)

Ae
T bs00 = Wsb

Ae
T bs01 = Zsb1

Ae
T bs02 = 0

Ae
T bs11 = tT

sbxsbn,ss (Fs − F�s)
T (Fs − F�s)

− tT
sbxsbp,ssFT

�sF�s + tT
sbxsbn,s (Rs − R�s)

−tT
sbxsbp,s (−R�s)

Ae
T bs12 = Zsb3

Ae
T bs22 = Wsb2 (105)

Ae
T f m00 = Zm f +ZT

m f +tT
m f

(

xm f n,mm −xm f p,mm

)

FT
m f Fm f

+ tT
m f

(

xm f n,m − xm f p,m

)

Rm f + Wm f

Ae
T f m01 = Zm f 1 + tT

m f xm f n,mmFT
m f Fm f 1

− tT
m f xm f p,mmFT

m f

(

Fm f 1 − Fm

)

+ tT
m f

(

xm f n,m − xm f p,m

)

Rm f 2

Ae
T f m02 = Zm f 2

Ae
T f m11 = tT

m f xm f n,mmFT
m f 1Fm f 1

− tT
m f xm f p,mm

(

Fm f 1 − Fm

)T (

Fm f 1 − Fm

)

+ tT
m f xm f n,mRm f 1 − tT

m f xm f p,m

(

Rm f 1 − Rm

)

Ae
T f m12 = Zm f 3

Ae
T f m22 = Wm f 2 (106)

Ae
T f s00 = Ws f

Ae
T f s01 = Zs f 1

Ae
T f s02 = 0

Ae
T f s11 = tT

s f xs f n,ss (Fs + F�s)
T (Fs + F�s)

−tT
s f xs f p,ssFT

�sF�s

+ tT
s f xs f n,s (Rs + R�s) − tT

s f xs f p,sR�s

Ae
T f s12 = Zs f 3

Ae
T f s22 = Ws f 2 (107)
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Additionally, the following relations hold

Ae
T i j10 = Ae

T i j01
T

Ae
T i j20 = Ae

T i j02
T

Ae
T i j21 = Ae

T i j12
T

(108)

for the both beams m and s (subscript i) and the both contact

pairs b and f (subscript j).

In the case of the slip state the discretisation of the lineari-

sations of the weak forms (55) and (56) yields

�δ�
p

T j

=

(

δuT
M j δuT

Sj

) (

K
p

T jm00 + K
p

T js00

) (

�uT
M j �uT

Sj

)T

+

(

δuT
M j δuT

Sj

) (

K
p

T jm01 + K
p

T js01

)

(

�uT
M �uT

S

)T

+

(

δuT
M j δuT

Sj

) (

K
p

T jm02 + K
p

T js02

) (

�uT
M jp �uT

Sjp

)T

+
(

δuT
M δuT

S

)

(

K
p

T jm01 + K
p

T js01

)T (

�uT
M j �uT

Sj

)T

+
(

δuT
M δuT

S

)

(

K
p

T jm11 + K
p

T js11

)

(

�uT
M �uT

S

)T

+
(

δuT
M δuT

S

)

(

K
p

T jm12 + K
p

T js12

) (

�uT
M jp �uT

Sjp

)T

+

(

δuT
M jp δuT

Sjp

) (

K
p

T jm02 + K
p

T js02

)T (

�uT
M j �uT

Sj

)T

+

(

δuT
M jp δuT

Sjp

) (

K
p

T jm12 + K
p

T js12

)T
(

�uT
M �uT

S

)T

+

(

δuT
M jp δuT

Sjp

) (

K
p

T jm22 + K
p

T js22

) (

�uT
M jp �uT

Sjp

)T

(109)

where j = b or f .

The particular tangent stiffness matrices take the form

K
p

T jmac = μεN gN j pmj smj

[

(

Smjatmj

)

⊗ R j

gN j

+
ST

mja

(

1 − tmj ⊗ tmj

)

Smjc

dgT mj

+ A
p

T jmac

]

K
p

T jsac = μεN gN j ps j ss j

[

(

Ss jats j

)

⊗ R j

gN j

+
ST

s ja

(

1 − ts j ⊗ ts j

)

Ss jc

dgT s j

+ A
p

T jsac

]

(110)

where a = 0, 1, 2 and c = 0, 1, 2. The auxiliary matrices

Rb and R f result from the linearisation of the normal gaps

(12), see [17], and take the form

R j =

[

GT
mjnnN j

−GT
s jnnN j

]

(111)

with the unit normal vectors nNb and nN f

nN j =
xmjn − xs jn

∥

∥xmjn − xs jn

∥

∥

(112)

Note also that the components including these matrices and

vectors are the ones introducing the asymmetry to the slip

tangent stiffness matrix due to the non-associativity of the

sliding rule (21).

The further auxiliary matrices in (110) can be given as

A
p

T jiac = Ae
T jiac +

1

p j i

(

ST
jiat j i

)

⊗ P j ic (113)

where i = s or m, j = b or f, a = 0, 1, 2 and c = 0, 1, 2.

The contact element residual vectors and tangent stiffness

matrices (99, 103) or (101, 110) are ready to be embedded

in any computer program of beam-to-beam contact analysis.

An inherent contact search routine, like the one described in

[17], determines for each increment and each iteration, used

within the Newton–Raphson iterative solution scheme, if a

contact contribution has to be switched on—separately for

the central, forward and backward contact candidate pair. In

a case of an active contact pair the appropriate components

resulting from the normal contact (detailed in [16]) as well

as the friction components derived in this paper have to be

added to the global residual vector or stiffness matrix. At

each contact pair the friction status must be checked using the

criterion (33)–(34) and the appropriate, stick or slip versions

have to be applied.

6 Numerical examples

This section of the paper includes two examples of frictional

contact analysis for beams. The examples are meant to verify

the performance of the newly developed three-point contact

element in the frictional regime and compare it to the stan-

dard point-wise approach. The axes of beams in the contact

facets are approximated by Hermite polynomials as inscribed

curve segments, as discussed in [6,17]. The contact search

algorithm presented in [17] is applied. In both analysed cases

beams axes form acute angles in the plan view, i.e., the layout

for which the multiple-point contact formulation is devised.

In the both examples data and results are given without any

specified units but they may be interpreted using any consis-

tent unit set.

The computer times for both considered approaches differ.

However, it is worth to emphasize, that the introduction of

two additional points, meaning the 200 % increase in the

number of contact candidates or active constraints, increases

the time of computations only by about 20–30 %, depending

on the beam layout. This ratio is quite favourable because

the computations for the additional points involve several
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Fig. 10 Data for example

1—beam axes layout and
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Fig. 11 Example 1—evolution

of plastic tangential gap: a

comparison of behaviour in

central and additional contact

pairs, b comparison of

point-wise and multiple-point

formulation of frictional contact
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matrices and vectors, which are identical as the ones used in

the computations for the central contact points. Besides this,

the vast majority of new matrices can be computed using

the same subroutines as in the point-wise formulation, what

gives some space for an optimisation of the computer code.

The values of the penalty parameters were adopted to keep

the penetration below 4 % of the beam diameter.

6.1 Example 1

Let us consider a set of two cantilever beams 1 and 2 with

the lengths l1 = l2 = 6.021 and the angle between their axes

ϕ = 9.46◦ in the plan view, as presented in Fig. 10. Both

beams have circular cross-sections with the radius r = 0.1

and are made of a linearly elastic material characterised with

the Young’s modulus E = 250 × 105 and the Poisson’s ratio

ν = 0.3. The initial gap separating the beams is gN0 = 0.001.

The Coloumb friction parameter is taken as μ = 0.1. The

beams are forced into contact by the nodal displacements

�1 = �2 = 0.2 applied in 60 increments at the free ends of

both beams. Each beam is discretised by 5 co-rotational finite

elements proposed by Crisfield [20]. The penalty parameters

used in the calculations are εN = 3 × 103 εT = 1 × 103.

The friction state in this example is slip. The values of the

measure of the relative sliding—the plastic tangential gap

g
p

T during the deformation process in 60 increments are pre-

sented in Figs. 11a, b for various contact points and various

formulations. Due to symmetry between the beams the slid-

ing distance is the same along each of the beams, so only one

set of results for one beam is presented.

Figure 11b gives a comparison between the point-wise

formulation and the present multiple-point formulation. It is

clear that the new approach is characterised by larger easy

for sliding. It is due to the fact that the normal contact forces
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are distributed along the contact zone (line) instead of being

concentrated at a single spot. In this situation the resistance

to sliding is smaller.

Figure 11a showing the accumulated sliding distance for

the central and the backward contact points indicates, that

the three contact points (the results for the forward and the

backward points are virtually identical) move together. The

difference between the distance is due to the fact that for

technical reasons the computations for the additional points

must start one increment later than for the central point. This

0 20 40 60

increment

-10
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-4

-2

0

F
T

multiple-point
central

point-wise

multiple-point
backward

Fig. 12 Example 1—evolution of frictional force

X Y

Z

2 = 0.2 

1 = 0.2 

Fig. 13 Example 1—final deformation of beam axes

difference is kept constant during the process, what means

that the points indeed move together along the beam.

Figure 12 presents the results of the friction force compo-

nent along one beam; again due to symmetry the results are

identical for beams 1 and 2. In the slip state the friction force

for the Coulomb model is proportional to the normal con-

tact force. The distribution of the contact interaction along

the contact zone in the multiple-point formulation results in

smaller values of penetration and the contact forces, what is

evident in the presented graph.

The final deformed shape of beam axes is shown in Fig. 13.

6.2 Example 2

A symmetric assembly consisting of four identical beams is

considered. The beam lengths are l = 15.31 and their axes

are crossed in pairs in the plan view at the angles ϕ = 21.80◦,

as presented in Fig. 14. The mid-points of all the beams have

the imposed support conditions resulting from the symmetry.

The beams are made of a linearly elastic material charac-

terised with the Young’s modulus E = 250 × 105 and the

Poisson’s ratio ν = 0.3 and have circular cross-sections with

the radius r = 0.1. The initial gaps separating the beams are

gN0 = 0.033. The Coloumb friction parameter is taken as

μ = 0.1. The beams are forced into contact by simultaneous

application of 8 nodal displacements � = 0.25 in 30 incre-

ments at all the beams tips. Each beam is discretised by 10

co-rotational finite elements developed by Crisfield [20]. The

problem was solved using the penalty parameters εN = 103

and εT = 102.

Due to symmetry there are only two different contact

points, depicted by A and B in Fig. 14. Also, at every con-

tact spot the contact behaviour including the sliding distance,

elastic tangential gaps and friction force components is the

same for each of two contacting beams.

The example presented here is characterised by the stick

state. Figure 15a, b presents the evolution of the elastic part

Fig. 14 Data for example

2—beam axes layout and

imposed displacements X

Y

Z

Y X

Z

X Y

ZA 
B 

3D view 

 = 0.25 (8 ) 

XY view 
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Fig. 15 Example 2—evolution

of elastic tangential gaps at

contact points in the stick

frictional case: a point A,

b point B
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Fig. 16 Example 2—evolution

of plastic tangential gaps at

contact points in the slip

frictionless case: a point A,

b point B
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of the tangential gap g
p

T computed at the contact zones A and

B for various contact pairs and compared with the point-wise

formulation. To give the comparison with the frictionless

case, Fig. 16a, b presents the similar comparison, but related

to the plastic part of the tangential gap g
p

T which in this

case represents the total sliding distance in the resistance-

less case.

In the fricional case it is clearly visible that the distribu-

tion of contact interactions in the multiple-point formulation

leads to the smaller values of elastic tangential gap and the

resulting friction force than in the case of typical point-

wise model where the interaction is concentrated in a single

point.

It can also be noted that, similarly as in Example 1,

the three points in the presented contact model are moving

together. The evolution of the tangential gaps in the addi-

tional points, forward and backward is virtually identical,

that is why only one of them is depicted in Figs. 15 and 16.

Each of these two evolutions follows the one for the central

point, with a shift related to the starting value of the gap at

the central point computed at the very first increment, when

due to computational reasons the additional points cannot be

included in the analysis.

The final deformed shape of beam axes is shown in Fig. 17.

X Y

Z

Fig. 17 Example 2—final deformation of beam axes

7 Concluding remarks

The present paper includes an extension of the multiple-point

beam-to-beam contact formulation [16] to the frictional case.

The introduction of two additional contact pairs allows to

model the situation when the contacting beams form acute

angles and the resulting contact zone is not a single point.

One could certainly think of introducing more points but

the presented approach is devoted only to the simplest possi-

ble three-point approach. A further analysis of models with

more additional points constitutes an interesting topic for a

future research.
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The paper includes the full formulation of the contact con-

tributions to the weak form and its linearisation describing

the general contact problem. The appropriate kinematic vari-

ables are introduced taking into account the possibility of

independent frictional movement of the contact point along

each of contacting beams. These variables are determined

for the additional points using the central point coming from

the point-wise formulation as a reference. The required vari-

ations of the variables with respect to the displacements

are computed and then discretised using the finite element

methodology with appropriate contact finite element intro-

duced. The resulting consistent tangent stiffness matrix and

the residual vectors are ready to be embedded in the finite

element model of contacting beams. The author’s computer

programs written in Fortran language were used to solve

numerical examples which confirm the effectiveness of the

proposed solution in the frictional cases.

It should be emphasized once again, that the proposed

beam-to-beam contact element with additional points is

based on the existence and uniqueness of the closest point

location procedure. If this procedure is unable to determine

uniquely the closest points which are the central points in the

suggested model, than the additional points cannot be found,

either. Hence, the proposed approach may be viewed as an

alternative for the standard point-wise contact in the cases

of beams forming acute angles, but not in the cases of par-

allel or conforming beams or when one beam wraps around

another. It might also be used as an intermediate link between

the point-wise contact approach for large angles between

tangents and the node-to-segment or mortar approach for

conforming beams.

It is planned to use the derived formulation in the gen-

eral beam-to-beam contact model which would automatically

switch between the point-wise contact for perpendicular or

almost perpendicular beams and the full node-to-segment

model for conforming beams, while the presented multiple-

point contact would be a transition link between the two

classical contact models.
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Appendix 1: Derivation and discretisation of

variables �δξmbn and �δξm f n

This derivation is given for �δξm f n , the case of �δξmbn

follows the identical pattern. The starting point is the orthog-

onality condition (7), which for the additional point concerns

only beam m. In the first step the variation is calculated, what

yields the following equation

δxm f n,m · xms f + xm f n,m ·
(

δxm f n − δxs f n

)

= 0 (114)

where

xms f = xm f n − xs f n

Besides, the variation of the position vectors and its derivative

can be found using the following relations

δxm f n = xm f n,m · δξm f n + δum f n

δxs f n = xs f n,s · δξs f n + δus f n (115)

δxm f n,m = xm f n,mm · δξm f n + δum f n,m (116)

The next step is the calculation of the linearisation of Eq.

(114). This yields

�δxm f n,m · xms f + δxm f n,m ·
(

�xm f n − �xs f n

)

+�xm f n,m ·
(

δxm f n − δxs f n

)

+ xm f n,m ·
(

�δxm f n − �δxs f n

)

= 0 (117)

The majority of the kinematic variables related to the position

vectors of additional contact points required in (117) were

given in [16]. However, for the full self-consistency of this

derivation they are put together below

�δxm f n = xm f n,mmδξm f n�ξm f n + �um f n,mδξm f n

+ δum f n,m�ξm f n + xm f n,m�δξm f n + �δum f n

�δxs f n = xs f n,ssδξs f n�ξs f n + �us f n,sδξs f n

+ δus f n,s�ξs f n + xs f n,s�δξs f n + �δus f n

(118)

And the yet undefined expression for the derivative with

respect to the local co-ordinates of the variation linearisa-

tion of the position vector, also present in (117), reads

�δxm f n,m = xm f n,mmmδξm f n�ξm f n

+�um f n,mmδξm f n + δum f n,mm�ξm f n

+ xm f n,mm�δξm f n + �δum f n,m (119)

After substitution of (115), (116), (118) and (119) and some

reorganization, Eq. (117) can be given in the form

a�δξm f n = Rm f (120)

where

a =
(

xm f n − xs f n

)

xm f n,mm + xm f n,mxm f n,m
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With the simplifying notation

p1 = xm f n,mmmxms f + 3xm f n,mmxm f n,m

p2 = xs f n,sxm f n,mm

p3 = xs f n,ssxm f n,m (121)

the right hand side of (120) can be expressed as

Rm f = −p1 δξm f n �ξm f n + p2

(

δξm f n �ξs f n

+ δξs f n �ξm f n

)

+ p3 δξs f n �ξs f n

+ xm f n,mxs f n,s�δξs f n − xms f �δum f n,m

− δum f n,m

(

�um f n − �us f n

)

−
(

δum f n − δus f n

)

�um f n,m

− xm f n,m

(

�δum f n − �δus f n

)

− δξm f n

[

xms f �um f n,mm + xm f n,mm

(

�um f n

−�us f n

)

+ 2xm f n,m�um f n,m

]

−
[

xms f δum f n,mm + xm f n,mm

(

δum f n − δus f n

)

+ 2xm f n,mδum f n,m

]

�ξm f n

−
(

xm f n,mδus f n,s + xs f n,sδum f n,m

)

�ξs f n

− δξs f n

(

xm f n,m�us f n,s + xs f n,s�um f n,m

)

(122)

After the finite element discretisation Rm f can be put in the

matrix form

Rm f =
[

δuT
M δuT

S

]

Ram f 1

[

�uM

�uS

]

+

[

δuT
M f δuT

S f

]

Ram f

[

�uM f

�uS f

]

+

[

δuT
M f δuT

S f

]

Ram f 2

[

�uM

�uS

]

+
[

δuT
M δuT

S

]

RT
am f 2

[

�uM f

�uS f

]

(123)

Substitution of (123) to (120) leads to the relation (81) where

Rm f =
1

a
Ram f (124)

Rm f 1 =
1

a
Ram f 1 (125)

Rm f 2 =
1

a
Ram f 2 (126)

In order to define the matrices Ram f , Ram f 1 and Ram f 2

expressions for the second derivative of displacement with

respect to the local co-ordinates

δum f n,mm = Mm f n δuM (127)

and for the linearisation of variations of displacements and

their derivatives with respect to the local co-ordinates

�δus f n =

⎡

⎢

⎣

δuT
S f Gd1s f n �uS f

δuT
S f Gd2s f n �uS f

δuT
S f Gd3s f n �uS f

⎤

⎥

⎦
(128)

�δum f n =

⎡

⎢

⎣

δuT
M f Gd1m f n �uM f

δuT
M f Gd2m f n �uM f

δuT
M f Gd3m f n �uM f

⎤

⎥

⎦
(129)

�δum f n,m =

⎡

⎢

⎣

δuT
M f Hd1m f n �uM f

δuT
M f Hd2m f n �uM f

δuT
M f Hd3m f n �uM f

⎤

⎥

⎦
(130)

are also required.

The matrices Mm f n and Ms f n in (127) are calculated

explicitly as the derivatives of the subsequent components

of the matrices Hm f n and Hs f n with respect to the local co-

ordinates ξm and ξs .

The matrices Gd js f n, Gd js f n and Hd jm f n in Eqs. (128)–

(130) can be obtained by partial differentiation of the matrices

Gs f n, Gs f n and Hm f n with respect to the nodal displace-

ments. This is done by the perturbation method in the same

way as it was discussed for the central contact points in [17].

For instance, in the case of Hd jm f n , if we split the appropriate

matrix Hm f n into row components

Hm f n =

⎡

⎣

H1m f n

H2m f n

H3m f n

⎤

⎦ (131)

then we get

Hd jm f n =
∂H jm f n

∂uM f

(132)

Additionally two auxiliary matrices

Ym f =

[

MT
m f n xms f + 2HT

m f n xm f n,m + GT
m f n xm f n,mm

−GT
s f n xm f n,mm

]

Ys f =

[

−HT
m f n xs f n,s

−HT
s f n xm f n, f

]

(133)

and the representation of vectors by means of their compo-

nents

xms f =
[

xms f 1, xms f 2, xms f 3

]T

xm f n,m =
[

xm f n,m1, xm f n,m2, xm f n,m3

]T
(134)

are introduced. Finally the matrices in (123) can be expressed

as
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Ram f = −p1 · FT
m f Fm f − FT

m f YT
m f − Ym f Fm f

−

[
(

HT
m f n Gm f n + GT

m f n Hm f n

)

−HT
m f n Gs f n

−GT
m f n Hs f n 0

]

−

⎡

⎢

⎢

⎢

⎣

(

3
∑

j=1

xm f n,mj Gd jm f n +
3
∑

j=1

xms f j Hd jm f n

)

0

0 −
3
∑

j=1

xm f n,mj Gd js f n

⎤

⎥

⎥

⎥

⎦

(135)

Ram f 1 = −p1 · FT
m f 1 Fm f 1 + p2 ·

[

FT
m f 1 (Fs + F�s)

+ (Fs + F�s)
T Fm f 1

]

+p3 · (Fs + F�s)
T (Fs + F�s)

+xm f n,mxs f n,s (Rs + R�s) (136)

Ram f 2 = −p1 · FT
m f Fm f 1 + p2 · FT

m f (Fs + F�s)

−Ys f (Fs + F�s) − Ym f Fm f 1 (137)

to yield the discretised form of the kinematic variables

�δξm f n . The variable �δξmbn can be derived in the same

way with all the subscripts f replaced by b.

Appendix 2: Details of linearisation of friction kine-

matic variables

This appendix includes some relations used in the linearisa-

tion of kinematic variables for friction.

Linearisations of tangential gap variations (61) and (62).

�δgT i jn =
si j

∥

∥xi jn − xi j p

∥

∥

(

xi jn,i δξi jn

−xi j p,i δξi j p + δui jn − δui j p

)

×
(

1 − ti j ⊗ ti j

) (

xi jn, j �ξi jn − xi j p,m �ξi j p

+�ui jn − �ui j p

)

+ si j ti j

·
(

�δui jn + xi jn,i i δξi jn �ξi jn + �ui jn,i δξi jn

+ δui jn,i �ξi jn + xi jn,i �δξi jn − �δui j p

− xi j p,i i δξi j p �ξi j p − �ui j p,i δξi j p

− δui j p,i �ξi j p − xi j p,i �δξi j p

)

(138)

where the subscript i is related to s-beam or m-beam (i = s

or m) and the subscript j is related to backward or forward

additional pair ( j = b or f ).

Linearisations of proportionality parameters given by (41)

and (42) introduced in friction contributions to the weak form

(53) and (54)

�pmj =

⎡

⎢

⎣

εT

F t
T j

−
pmj εT
(

F t
T j

)2
Ft

T j · tmj

⎤

⎥

⎦
�gT mjn

−
pmj εT
(

F t
T j

)2
Ft

T j · ts j �gT s jn

−
pmj εT ge

T mjn
(

F t
T j

)2 ∥

∥xmjn − xmjp

∥

∥

Ft
T j

(

1 − tmj ⊗ tmj

)

×
(

xmjn,m�ξmjn − xmjp,m�ξmjp + �umjn − �umjp

)

−
pmj εT ge

T s jn
(

F t
T j

)2 ∥

∥xs jn − xs jp

∥

∥

Ft
T j

(

1 − ts j ⊗ ts j

)

×
(

xs jn,s�ξs jn − xs jp,s�ξs jp + �us jn − �us jp

)

(139)

�ps j =

⎡

⎢

⎣

εT

F t
T j

−
ps j εT

(

F t
T j

)2
Ft

T j · ts j

⎤

⎥

⎦
�gT s jn

−
ps j εT

(

F t
T j

)2
Ft

T j · tmj �gT mjn

−
ps j εT ge

T mjn
(

F t
T j

)2 ∥

∥xmjn − xmjp

∥

∥

Ft
T j

(

1 − tmj ⊗ tmj

)

×
(

xmjn,m�ξmjn − xmjp,m�ξmjp + �umjn − �umjp

)

−
ps j εT ge

T s jn
(

F t
T j

)2 ∥

∥xs jn − xs jp

∥

∥

Ft
T j

(

1 − ts j ⊗ ts j

)

×
(

xs jn,s�ξs jn − xs jp,s�ξs jp + �us jn − �us jp

)

(140)

where j = b or f .
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Appendix 3: Matrices used in finite element discreti-

sation

For the self-consistency of this paper this appendix presents

the matrices related to the additional contact points derived

in [16] for the frictionless contact formulation and tran-

ferred directly to the frictional formulation discussed here.

In general they are expressed in terms of specific parameters,

vectors and matrices related to the central contact pair, which

do not have the subscript b or f , like xsn, xmn, Fm, Fs .

Those are not presented here, the interested reader may refer

to [17] or [4].

Matrix F�s in (76) and (77)

F�s =
rm

3ls

cos ϕ
(

1 − cos2 ϕ
)3/2

D0 (141)

where

D0 = DT
s

[

xmn,m

dms

−
pms

dms

∥

∥xsn,s

∥

∥

2
xsn,s

]

+DT
m

[

xsn,s

dms

−
pms

dms

∥

∥xmn,m

∥

∥

2
xmn,m

]

(142)

Dm =
[

Hmn 0
]

+ xmn,mFm

Ds =
[

0 Hsn

]

+ xsn,sFs (143)

pms = xmn,m · xsn,s

dms =
∥

∥xmn,m

∥

∥

∥

∥xsn,s

∥

∥

fms =

∥

∥xmn,m

∥

∥

∥

∥xsn,s

∥

∥

(144)

Matrix R�s in (78)

R�s =
rm

3ls

{[

(

1 − c2
)−3/2

+ 3c2
(

1 − c2
)−5/2

DT
0 D0

]

+ c
(

1 − c2
)−3/2

(D1 − D2 − D3)

}

(145)

where

D1 =
1

dms

(

3
∑

i=1

xmn,mi Ddmi + DT
mDs + DT

s Dm

)

−
1

d2
ms

(

DT
s xmn,m + DT

mxsn,s

)

(

1

fms

xT
mn,mDm

+ fmsxsn,sDs

)

(146)

D2 =
1

dms

∥

∥xmn,m

∥

∥

2

[

DT
mxmn,m

(

xT
mn,mDs + xT

sn,sDm

)

+

+ pms

(

DT
mDm +

3
∑

i=1

xmn,mi Ddmi

)]

−
pms

d2
ms

∥

∥xmn,m

∥

∥

4
DT

mxmn,m

×

(

fms

∥

∥xmn,m

∥

∥

2
xT

sn,sDs + 3dmsxT
mn,mDm

)

(147)

D3 =
1

dms

∥

∥xsn,s

∥

∥

2

[

DT
s xsn,s

(

xT
mn,mDs + xT

sn,sDm

)

+ pms

(

DT
s Ds +

3
∑

i=1

xsn,si Ddsi

)]

−
pms

d2
ms

∥

∥xsn,s

∥

∥

4
DT

s xsn,s

×

(
∥

∥xsn,s

∥

∥

2

fms

xT
mn,mDm + 3dmsxT

sn,sDs

)

(148)

Ddm1 =

[

Hd1mn 0

0 0

]

+

[

MT
mn1

0

]

Fm + FT
m

[

Mmn1 0
]

+ xmn,mmm1FT
mFm + xmn,mm1Rm

Ddm2 =

[

Hd2mn 0

0 0

]

+

[

MT
mn2

0

]

Fm + FT
m

[

Mmn2 0
]

+ xmn,mmm2FT
mFm + xmn,mm2Rm

Ddm3 =

[

Hd3mn 0

0 0

]

+

[

MT
mn3

0

]

Fm + FT
m

[

Mmn3 0
]

+ xmn,mmm3FT
mFm + xmn,mm3Rm (149)

Dds1 =

[

0 0

0 Hd1sn

]

+

[

0

MT
sn1

]

Fs + FT
s

[

0 Msn1

]

+ xsn,sss1FT
s Fs + xsn,ss1Rs

Dds2 =

[

0 0

0 Hd2sn

]

+

[

0

MT
sn2

]

Fs + FT
s

[

0 Msn2

]

+ xsn,sss2FT
s Fs + xsn,ss2Rs

Dds3 =

[

0 0

0 Hd3sn

]

+

[

0

MT
sn3

]

Fs + FT
s

[

0 Msn3

]

+ xsn,sss3FT
s Fs + xsn,ss3Rs (150)

and the subdivision of vectors and matrices into components

as in (130), (131) and (134) was introduced.
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