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RESUMEN

En este trabajo se considera la convergencia por fricción en una capa límite atmosférica acotada por una troposfera 
estable libre. De acuerdo con un extenso trabajo previo encontramos que la estabilidad atmosférica reduce la 
escala vertical de la circulación troposférica secundaria libre asociada con la convergencia por fricción. Rela-
cionada con esta reducción en la escala vertical hay una reducción proporcional en la escala temporal debido a 
la fricción por el giro descendente de la circulación atmosférica. Esta reducción en la escala temporal modifica 
el balance entre términos del componente en la ecuación de momento a lo largo de las isobaras. En particular, 
para las escalas de perturbación menores a unos cuantos cientos de kilómetros en condiciones tropicales típicas, 
la tendencia del término de momento llega a un balance aproximado con el término de fricción, haciendo que 
el término de Coriolis sea menos importante. Esto reduce la magnitud del flujo isobárico cruzado y la fuerza 
ascendente en las regiones donde este flujo converge. Si algún otro mecanismo, tal como la convergencia 
húmeda, produce suficiente convergencia de capa límite para anular el giro descendente de la perturbación en 
cuestión, entonces la magnitud de la convergencia iguala a la predicha por la fórmula de la convergencia por 
fricción de estado estable. Sin embargo, en este caso la flecha de la causalidad es invertida en comparación 
con la que se asume en el tratamiento simple de la convergencia por fricción. La convergencia por fricción no 
“causa” la convección, realmente la convección causa la convergencia y el mecanismo que fuerza la convección 
debe buscarse en otro lado. Esta distinción es crucial para entender qué produce la convección profunda. El 
presente análisis es lineal y la perspectiva puede cambiar cuando los efectos no lineales son importantes. Tam-
bién está limitado a situaciones en las que los vientos de la capa limite son relativamente débiles. Por lo tanto, 
los ciclones tropicales con sus fuertes vientos y comportamiento no lineal merecen un análisis independiente.

ABSTRACT

Frictional convergence in an atmospheric boundary layer topped by a stable free troposphere is considered. In 
agreement with extensive previous work, we find that atmospheric stability reduces the vertical scale of the 
free tropospheric secondary circulation associated with frictional convergence. Associated with this reduction 
in vertical scale is a proportional reduction in the time scale for the frictional spindown of an atmospheric 
circulation. This reduction in time scale alters the balance between terms in the component of the momentum 
equation along the isobars. In particular, for disturbance scales less than a few hundred kilometers in typical 
tropical conditions, the momentum tendency term comes into approximate balance with the friction term, with 
the Coriolis term becoming less important. This reduces the magnitude of the cross-isobaric flow and the strength 
of the ascent in regions where this flow converges. If some other mechanism such as moist convection produces 
enough boundary layer convergence to nullify the spindown of the disturbance in question, then the magnitude 
of the convergence equals that predicted by the steady-state frictional convergence formulation. However, in 
this case the arrow of causality is reversed from that assumed in a naive treatment of frictional convergence. 



254 D. J. Raymond and M. J. Herman

Frictional convergence is not “causing” the convection; the convection is actually causing the convergence, and 
the mechanism forcing the convection must be sought elsewhere. This distinction is crucial in understanding 
what drives deep convection. The present analysis is linearized and the picture may change when nonlinear 
effects become important. It is also limited to situations in which the boundary layer winds are relatively weak. 
Tropical cyclones, with their strong winds and nonlinear behavior, thus deserve an independent analysis.

Keywords: Atmospheric stability, frictional spindown, momentum equation, tropical conditions.

1. Introduction
The frictional spindown of a rotating fluid over a stationary surface is a classical problem in 
geophysical fluid dynamics, first considered by Ekman (1905, 1906; see also Duck and Foster, 
2001). In this scenario, cross-isobaric flow is induced in the boundary layer by friction as part of a 
deep secondary circulation which spins down the entire fluid. Charney and Eliassen (1949) proposed 
that frictionally induced cross-isobaric flow produces upward motion at the top of the boundary 
layer when this flow is convergent. (They further noted that Albert Einstein earlier employed this 
idea to explain the clustering of tea leaves in the center of a stirred cup of tea in his book Mein 
Weltbild). This idea later became an integral part of their theory of tropical cyclogenesis (Charney 
and Eliassen, 1964) and in Charney’s ideas about the forcing of convection in the intertropical 
convergence zone (ITCZ; Charney 1971) and tropical cloud clusters (Charney, 1973).

That frictionally induced convergence of boundary layer air and the resulting ascent at the top 
of the boundary layer force convection in the tropics has become a staple of tropical meteorology. 
Ooyama’s (1969) model of the development of a tropical cyclone incorporated this mechanism as 
have models of large-scale tropical waves (e. g., Holton et al., 1971; Holton, 1974; Wang, 1988; 
Wang and Rui, 1990).

Holton (1965) investigated the role of stratification of a rotating fluid in the spindown problem. 
In an unstratified fluid, the secondary circulation associated with frictionally induced cross-isobaric 
flow in the boundary layer extends through the full depth of the fluid. If the fluid depth is much 
greater than the boundary layer depth, then the time scale for spindown is equal to the rotational time 
scale times the ratio of fluid depth to boundary layer depth (Greenspan and Howard, 1963). When 
this ratio is large, the time scale for spindown is much greater than the rotational time scale, which 
allows the approximation of time-independence to be made in the calculation of cross-isobaric flow 
in the boundary layer. However, if the fluid is stratified, then the secondary circulation is confined 
to a shallower layer, and the spindown time decreases in comparison to the unstratified case.

Significant controversy surrounded Holton’s (1965) paper shortly after it appeared (Pedlosky, 
1967; Holton and Stone, 1968; Sakurai, 1969; Duck and Foster, 2001). However, the controversy 
had to do primarily with Holton’s treatment of the side wall in laboratory experiments. As we are 
interested in the atmosphere where side walls do not exist, we ignore this controversy; the central 
result that spindown is confined to a shallow layer and consequently occurs more rapidly in the 
presence of stratification has not been challenged.

In the case of strong stratification, the spindown time may be short enough that the assumption 
of time-independence in the boundary layer calculation of cross-isobaric flow is no longer justified. 
Holton et al. (1971) and Holton (1974) include time dependence explicitly in their analyses of the 
boundary layer. However, many authors do not. The purpose of this paper is to highlight the potential 
importance of this issue, especially as it applies to the interaction between frictionally induced flow 
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and deep atmospheric convection. In particular, we address the question as to whether boundary 
layer convergence “causes” convection or whether the convection “causes” the convergence. This 
question is important for understanding the dynamics of tropical, convectively coupled disturbances 
such as ITCZs, tropical waves, tropical cyclones, and even the Madden-Julian oscillation.

In section 2 the response of a uniformly stratified atmosphere to surface friction is reviewed 
in a simple, linearized context. The analysis is extended to a neutral boundary layer topped by 
a stably stratified atmosphere in section 3. Section 4 discusses the interaction between frictional 
convergence and convection in these cases, and conclusions are presented in section 5.

2. Stratified spindown
For purposes of exposition, in this section we postulate a very simple atmosphere, one with constant 
static stability independent of height. In essence, the neutrally stratified boundary layer becomes 
infinitely thin. A linearized Boussinesq approximation is employed, again for simplicity. Though 
frictional convergence is an issue in a variety of fully three-dimensional geometries, e. g., in cloud 
clusters and tropical cyclones, we consider only the slab-symmetric case here, with the most direct 
application being to undisturbed ITCZs.

In the classical view, frictional convergence is confined to the neutrally stratified boundary 
layer. However, in trade wind regions the momentum deficit due to surface friction is arguably 
distributed through a layer extending into the stable troposphere via momentum transport by 
shallow convective clouds. Where deep convection exists, this layer is likely to be even thicker. 
Thus, we explore the effects of transporting surface stress into the statically stable region above 
the boundary layer proper.

The hydrostatic, rotating Boussinesq equations linearized about a state of rest for a stably 
stratified atmosphere in slab symmetry (∂ / ∂x = 0) are

∂v

∂y
+
∂w

∂z
=M, (1)

∂u

∂t
− fv = F

x
, (2)

∂v

∂t
+
∂π

∂y
+ fu= Fy , (3)

∂π

∂z
− b = 0, (4)

∂b
∂t

+ N2 w = 0,  (5)

where the velocity vector is (u, v, w), the buoyancy perturbation is b, the kinematic pressure 
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perturbation is π, and f is the Coriolis parameter. The Brunt-Väisälä frequency, assumed constant, 
is given by N and surface friction is represented by the horizontal force vector per unit mass F = 
(Fx, Fy), which is assumed to be linear in velocity and decrease exponentially with height in order 
to simplify the analysis:

F = −λ vs exp (−µz), (6)

where λ = µCDU0 is the inverse of the spindown time scale and vS = (uS, vS) is the surface wind. 
The quantity CD ≈ 10–3 is the drag coefficient, U0 is a characteristic velocity, and µ–1 is roughly the 
depth over which surface friction acts. If U0 = 5 m s–1 and µ = (500 m)–1, then λ = 10–5 s–1 which 
is about one third of the typical tropical Coriolis parameter.

The quantity M is the mass source associated with moist convection. In this formulation, 
the vertical velocity w represents the vertical motion in the environment outside of convection. 
Convection is represented as a phenomenon which extracts mass from one level and deposits it at 
a higher level. By mass conservation, in a bounded domain the vertical integral of M must be zero.

Let us now consider the spindown of an initial set of alternating jets in the x direction, with a 
kinematic pressure perturbation initially independent of height of the form πG exp(ily), where l is 
the wavenumber of the jet structure in the y direction. A schematic of the assumed flow is shown 
in Figure 1. Substitution of the assumed y dependence exp(ily) into (1)-(5) and a bit of algebra 
yield an equation for the time tendency of pressure:

∂2

∂t2
+ f 2

∂2

∂z 2
∂π

∂t
− l2N 2 ∂π

∂t
= −N 2

∂2

∂t2
+ f 2 M

− iλlN 2 ∂vS

∂t
− fuS exp(−µz ).

 (7)
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Fig. 1. Schematic of boundary layer flow (arrows) 
and pressure distribution (gray scale contours). Cross-
isobaric flow is toward lower pressure. All scales are 
arbitrary.
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We solve this equation subject to the initial condition that π(z) = πG at all levels and assume that 
∂π / ∂t, uS, and vS decay exponentially with time dependence exp(–σt). (Note that π itself has a more 
complex time dependence, which will be explored shortly). Substituting this form into (7) results in

∂2

∂z 2
∂π

∂t
− m 2 ∂π

∂t
= − N 2M +

iλm 2 (σvS + fuS ) exp( − µz )

l
 (8)

where

m 2
=
l2N 2

f 2 + σ2
 (9)

is the inverse square of the vertical penetration depth of frictional effects into the free atmosphere.
Since by hypothesis, uS, and vS decay exponentially to zero with time, (2) (3) can be evaluated 

at the surface as follows:

− σuS − fvS = − λu S (10)

− σvS + ilπS + fuS = − λvS . (11)

Solving these for uS and vS in terms of the surface pressure perturbation πS results in

uS = −
ilfπS

(λ − σ)2 + f 2
vS = −

il(λ − σ )πS

(λ − σ )2 + f 2
 (12)

from which (8) becomes

∂2

∂z 2
∂π

∂t
− m 2 ∂π

∂t
= − N 2M + λm 2G(σ) exp( − µz )πS( ( ( (  (13)

where

G(σ) =
f 2 + σ(λ − σ )

f 2 + ( λ − σ)2
. (14)

We now set M = 0, considering first the convection-free solution to (13). This can be written 
as the sum of inhomogeneous and homogeneous parts:

∂π

∂t
=
λm 2G(σ )πS

µ2 − m 2
exp(− µz ) + A exp(−mz ). (15)

The coefficient A of the homogeneous part is determined by assuming zero buoyancy perturbation 
at the surface, which implies that ∂π / ∂z there, yielding A = – λµmG(σ)πS / (µ2 – m2), whence the 
full solution becomes
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∂π

∂t
=
λmG (σ ) [m exp(− µz ) − µ exp(−mz )] πS

µ2 − m 2
. (16)

Evaluating this at z = 0 and assuming that πS =π exp(–σt), we obtain the dispersion relation 
yielding σ:

σ =
λmG (σ )

m + µ
 (17)

This equation is implicit, but if λ, σ << f, then G ≈ 1, and we have σ ≈ λm / (m + µ). Note than  
in this approximation, σ ≤ λ so if λ << f, as is marginally satisfied for a typical tropical boundary 
layer with not-too-strong winds, then σ << f as well. Thus, G ≈ 1 is a reasonable approximation in 
normal tropical conditions at latitudes exceeding 10º – 15º. Closer to the equator, a more careful 
evaluation of (17) must be made. (As the unapproximated dispersion relation (17) is cubic in σ, 
there must be two additional solutions. By plotting the left side of (17) versus the right side as a 
function of σ for a variety of numerical values of f and λ, it is evident that there is only one real 
solution of (17). Thus, the remaining two solutions must be complex. We do not consider those 
solutions here).

Finally, we integrate (16) over the interval [0, t] assume that π = πG at t = 0 and invoke (17) to 
obtain the kinematic pressure perturbation as a function of time and height:

π(z, t) = 1 −
[m[ [exp(− µz) − µ exp(−mz )] [1− exp(− σt )]

m − µ
πG . (18)

The buoyancy obtained from (4) is

b(z, t ) =
mµ [exp(− µz ) − exp(−mz )] [1− exp(− σt )] πG

m − µ
 (19)

and the vertical velocity from (5) is

w(z, t ) = −
σmµ [exp(− µz ) − exp(−mz )] exp(− σt )πG

N 2(m − µ)
. (20)

The y velocity component is obtained from (1)

v(z, t ) =
fσmµ [µ exp(− µz ) − m exp(−mz )] exp(− σt )uG

l2N 2(µ − m )
 (21)

where we have used the geostrophic balance condition f uG = –ilπG to eliminate πG. The x velocity 
is too complex to write explicitly, but can be obtained from (3), (18), and (21):

u(z, t ) =
− λvS exp(− µz ) + σv − ilπ

f
. (22)
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We now compare the cross-isobaric wind predicted by our model with the simple, steady state 
wind vSTEADY obtained by setting ∂u /∂t = 0 in (2). For simplicity we continue to assume that λ,σ 
<< f, which results in significant simplification of the results but does not change their essence. 
Combining (2) and (6), we find at z; t = 0 that vSTEADY = λuS / f ≈ λuG / f, where we have used us(t) 
= uG exp(–σt). From (17) and (21) and setting G(σ) = 1, the actual cross-isobaric wind at z, t = 0 is

v ≈
µ

m( (( ( ( (+ µ

λu G

f
≈

µ

m + µ
vSTEADY . (23)

Two limits are evident in this result. If µ >> m , then v ≈ vSTEADY, and the actual cross-isobaric 
wind at the surface is well approximated by the steady-state result. This occurs when the layer 
in which surface stresses are deposited is much shallower than the resulting penetration depth of 
momentum fluxes m–1 ≈ f / (lN). In the other limit in which µ << m , v is less than vSTEADY by the 
factor µ/ (m + µ).

In the first case, the initial jets spin down in the layer below z ≈ m–1 with significant cross-
isobaric flow. This flow results in vertical velocities which lift low-level air underneath cyclonic 
vorticity regions aloft, and cause air to descend underneath anti-cyclonic regions, in agreement 
with Charney’s ideas cited in section 1. In the second case, insignificant cross isobaric flow occurs, 
and the jets just spin down in place below z ≈ µ–1.

As an example, let us assume that l = 10–5 m, which corresponds to jet widths of about 300 km. 
Taking typical tropical values of f = 3 x 10–5 s–1 and N = 10–2 s–1, then m–1 = 300 m. For µ–1 = 1500 
m, as may occur in a region of trade wind clouds, then µ / (m + µ) = 1/6, and the cross-isobaric flow 
is highly suppressed. In order for µ/ (m + µ) > 2/3 in this case, then l–1 > 1000 km and jet widths 
would have to exceed ≈ 3000 km. Thus, for typical trade wind jets with horizontal dimensions less 
than of order 1000 km, the magnitude of cross-isobaric flow and the associated convergence and 
divergence are much smaller than computed from the steady-state approximation.

Vertical velocities are correspondingly small. Eliminating µG in favor of uG in (20) and setting 
G(σ) = 1 in (17), we find for t = 0 that

( (|w | ≈
λuGm

Nµ

exp(− µz ) − exp(−mz )

m 2/µ 2 − 1
. (24)

Figure 2 shows the vertical velocity scaled by λuG / N and evaluated at z = µ–1,

w =
N |w*|

λu G
=
m

µ

exp(− 1) − exp(−m/µ )

m 2/µ 2 − 1
, (25)

as a function of m/µ. Since m ∝ l, larger values of m correspond to smaller jet widths.
For weak stratification m/µ << 1 . In this case the term in absolute value brackets becomes 1 – 

exp(–1) and w* is a linear function of m/µ. The dashed line in Figure 2 shows the scaled vertical 
velocity in this weak stratification limit extrapolated to strong stratifications. Comparison of the 
solid to the dashed line thus shows how the suppressive effect of stratification on the vertical 
velocity increases with m/µ.
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3. Stratified troposphere topping boundary layer
The analysis in section 2 assumes an infinitely thin boundary layer, which is arguably adequate. 
In the event that it is not, then a more complex model is called for, one which incorporates a 
frictional neutral boundary layer topped by a stably stratified layer free of friction. Such a model 
is developed in this section.

Figure 3 illustrates the ambient structure of the two-layer atmosphere. The neutrally stable 
boundary layer has an ambient thickness of h and satisfies modified shallow water equations in 
linearized form. Assuming horizontal structure exp (ily) for all variables as in section 2 and time 
evolution for the velocity components given by exp(–σt), we have

∂η

∂t
+ ilvB = MB (26)

− σuB − fvB = − λuB (27)

− σvB + ilπB + fuB = − λvB , (28)

1.0

Scaled vertical velocity for μz = 1

w
*

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8

m /µ

1.0 1.2 1.4 1.6
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where (uB, vB) is the boundary layer wind, the actual boundary layer depth is h(1 + η), πB is the 
kinematic pressure in the boundary layer at z = 0, MB is the mass source in the boundary layer, and 
all other symbols are as in section 2. The time derivative of η is retained in (26) as we anticipate a 
temporal structure for η more complex than simple exponential decay, in analogy with that exhibited 
by π in section 2. Combining (26)-(28) to eliminate uB and vB, we find

∂η

∂t
= −

l2(λ − σ)πB

f 2 + ( λ − σ)2
+ MB . (29)

For the normal shallow water equations πB = ghη, but the presence of the overlying stratified 
atmosphere alters the equation for πB in a manner that we now describe. We assume continuity in 
potential temperature across the interface between the boundary layer and the free troposphere. 
This is so because the interface itself is an isentropic surface, so differential advection between 
the boundary layer and the free troposphere cannot result in potential temperature discontinuities. 
Since the interface occurs at the elevation zI = hη, we can express this condition as

N 2hη + b(hη) = bB = 0 (30)

where we have assumed that the buoyancy of boundary layer air bB is uniformly zero in space and 
time. Expanding b(hη) in a Taylor series about z = 0 and invoking the hydrostatic relation in the 
free troposphere, we find

− N 2hη = b (hη) ≈ b (0) +
∂b

∂z
z=0

hη ≈ b(0) =
∂π

∂z
z=0

( ( ( (  (31)

where (∂b / ∂z)hη is ignored because it is nonlinear in the small quantities b and η. The pressure 
derivative term refers to conditions in the free troposphere.

Ignoring friction and mass sources in the free troposphere, (13) simplifies to

∂
2

∂z 2

∂π

∂t
− m 2 ∂π

∂t
= 0( ( ( (  (32)

where m2 is defined in (9). Based on the experience of section 2, we assume that the pressure in 
the jet spindown problem takes the form

π(z, t ) = πG − [1− exp(− σt )] exp(−mz )πX  (33)

where the constant πG has the same meaning as in that section and πX is to be determined by the 
interface condition (31). The assumed form of π satisfies (32) trivially. From this equation we infer 
that πB(t) = π(0, t) = πG – [1 – exp(–σt)] πX and that (∂π / ∂z)z=0 = m [1– exp(–σt)] πX. Eliminating 
πX between these conditions results in

πB = πG + N
2hη/m, (34)
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which tells us that πB = πG when η = 0. Substitution into (29) provides us with the governing 
equation for η:

∂η

∂t
+

l2(λ − σ)N 2hη

m [f 2 + ( λ − σ)2]
= MB −

l2(λ − σ)πG

f 2 + ( λ − σ)2
. (35)

Simplifying immediately to the case in which λ, σ << f  and MB = 0, m = lN / f and (35) reduces to

∂η

∂t
+
lhN (λ − σ)η

f
= −

l2(λ − σ)πG

f 2
. (36)

Using a solution method similar to that used for π  in section 2, we find 

η = −
l [1 − exp(− σt )] πG

fNh
 (37)

subject to the dispersion relation

σ =
lhNλ

f + lhN
. (38)

The cross-isobaric flow in the boundary layer is obtained from (27):

B−STEADY
vB =

(λ − σ )uB

f
=

λuB

f + lhN
=

v

1 + lhN/f
, (39)

since the cross-isobaric flow in the steady case is vB–STEADY = (λ / f )uB. Thus, the actual cross-isobaric 
flow is much less than the steady-state cross-isobaric flow if l–1 << hN /  f . For h = 600 m, N = 10–2 
s–1, and f = 3 x 10–5 s–1, hN / f = 200 km. For jet widths much less than about three times this value, 
the decaying jet lacks significant cross-isobaric flow.

The vertical velocity at the top of the boundary layer is

wB = −ihlv B = −
ilhλu B

f (1 + lhN/f )
. (40)

As in section 2, we define a dimensionless version of this vertical velocity as

w =
N |wB

B

|

λu
=

lhN/f

1 + lhN/f
,*  (41)

which is a function only of the dimensionless wavenumber, lhN / f. Without the suppressing effects 
of stratification, we would simply have w* = lhN / f. Figure 4 shows w* as a function of lhN / f in 
each of these cases. Suppression by stratification is less extreme than in the uniformly stratified 
case shown in Figure 2, but it is nevertheless significant.
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4. Frictional convergence and convection
Let us now ask what profile of convective mass source (MS) is required to maintain a steady state 
in the uniform stratification scenario of section 2. Setting ∂π /∂t = 0 in (13) results in

M S (z ) =
λl 2 exp(− µz )πS

f 2 + λ 2
≈
if λl exp(− µz )uG

f 2 + λ 2
 (42)

where we have used the approximation that πS ≈ πG = ifuG / l. In deriving this expression we have 
taken σ = 0 in agreement with the steady state assumption, which yields G = f 2  / (f 2  + λ2) and 
m2 = l 2  N 2 / f 2 . This form of MS exhibits a non-zero vertical integral, and is thus not possible by 
itself; it must be part of a net MS profile M = MS + MF which does satisfy this condition. In regions 
of cyclonic vorticity and negative πS, the z integral of MS must be negative, which means that the 
z integral of MF must be positive. A general result arising from these considerations is that no 
configuration of jets and convection can attain a true steady state in this model.

Another consequence of (42) is that the steady-state MS increases as λ increases until it equals f, 
and decreases thereafter. This is consistent with the numerical results of Montgomery et al. (2010) 
for intensifying tropical cyclones. Alternatively, as one approaches the equator with fixed λ and uG, 
the mass flux MS increases, reaches a maximum where f = λ and then decreases.

Similar arguments can be made for the boundary layer topped by a stratified free troposphere, 
as discussed in section 3, except that the boundary layer mass source required for steady state is

MB =
l2λπG

f 2 + λ 2
=

ilf λuG

f 2 + λ 2
 (43)

in this case.

Fig. 4: The solid line shows the scaled vertical 
velocity at the boundary layer top as a function 
of the scaled horizontal wavenumber. The scaled 
vertical velocity without the suppressive effects of 
stratification in the free troposphere is shown by 
the dashed line.

3.0
Scaled vertical velocity at BL top

w
*

2.5

2.0

1.5

0.5

1.0

0.0

0.0 0.5 1.0 1.5

lhN / f

2.0 2.5 3.0



264 D. J. Raymond and M. J. Herman

Charney and Eliassen (1964) argued in essence that the depth of the free tropospheric secondary 
circulation associated with cross-isobaric frictional flow is comparable to the depth of the 
troposphere. As noted in section 1, the steady-state approximation would be valid if this were true, 
and the vertical motion at the top of the boundary layer could be said to be caused by the action of 
surface friction. However, as we have shown, typical values of atmospheric stratification result in 
a far shallower secondary circulation in response to surface friction. Under these circumstances, 
the time tendency of the wind along the isobars cannot be neglected for a flow of any reasonable 
horizontal scale (say < 1000 km) in the tropics. For horizontal scales of order 100 km or less, 
the vertical scale of the secondary circulation is typically much smaller than the thickness of 
the layer over which surface friction is deposited, especially when there is widespread shallow, 
moist convection such as occurs in the trade wind regions. In this situation there is essentially 
no cross-isobaric transport in a boundary layer spinning down under the influence of friction. If 
some mechanism external to boundary layer dynamics (such as mass sources imposed by deep 
convection) acts to maintain the boundary layer flow in a nearly steady state, then the time tendency 
of the boundary layer wind along the isobars becomes small or zero and cross-isobaric flow and 
resulting convergence exists more or less in the amount predicted by steady-state boundary layer 
theory. However, the immediate cause of this convergence and the resulting vertical motion at 
the top of the boundary layer is actually the convection itself, and not boundary layer dynamics; 
surface friction could be completely absent and the convergence would still exist if the convection 
were still present.

As discussed in section 1, many investigators postulate that frictional convergence plays 
an important role in forcing convection in the tropics. However, the suppression of frictional 
convergence for smaller scales (less than several hundred kilometers in the present context) 
suggests that this assumption needs to be re-examined. Holton’s investigations (Holton et al., 1971; 
Holton, 1974) demonstrate that friction can have interesting effects on tropical disturbances without 
invoking the assumption of frictional convergence, i. e., without neglecting the time derivative in 
the boundary layer momentum equation.

An alternate way of looking at the interaction of convection and frictional convergence might 
be to imagine that the net effect of the convection is to reduce the effective static stability of the 
atmosphere, thus resulting in a deeper secondary circulation. However, if the reduction of the static 
stability is the only effect of the convection, the system would still spin down, albeit more slowly. 
This is easily ascertained by noting the effects of reducing N 2 in the analysis of section 2. For the 
boundary layer flow to spin up, boundary convergence in excess of that produced by frictional 
convergence alone is needed. Thus, modeling the effects of moist convection as a simple reduction 
in static stability does not adequately represent the rich behavior of this phenomenon. For example, 
if convection acted this way, tropical cyclones would never intensify.

5. Conclusions
We have demonstrated that the stratification of the atmosphere strongly suppresses frictional 
convergence for typical tropical atmospheric disturbances with scales less than several hundred 
kilometers. By “typical”, we mean disturbances with perturbation velocities of order 5 m s–1. This 
suppression occurs because the stratification causes the free tropospheric secondary circulation to 
be much shallower than would be expected in the unstratified case. As a consequence, only a thin 
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layer aloft spins down in response to the secondary circulation as the surface friction dissipates 
energy. The spindown is therefore more rapid, and the time tendency of the along-isobar component 
of the horizontal wind in the momentum equation cannot be neglected. This result is demonstrated 
here for both an atmosphere of uniform static stability and a neutral boundary layer topped by a 
stably stratified free troposphere.

Charney and Elaissen’s (1964) scale analysis of frictional convergence assumes a deep secondary 
circulation and fails for this reason in the case of weak boundary layer flows. In the limit of a 
small-scale disturbance, the primary balance in the component of the momentum equation along 
the isobars is between this time tendency term and friction, not between friction and the Coriolis 
term. The result is much weaker cross-isobaric flow than would normally be expected when the 
disturbance is less than a critical size, which is of order several hundred kilometers in our analysis.

In the case of a deep secondary circulation such as envisioned by Charney and Eliassen (1964), 
the spindown of a disturbance is much slower and the time tendency of the along-isobar component 
of the wind can be neglected in the momentum equation. The cross-isobaric flow and resulting 
frictional convergence is close to that obtained from time-independent arguments in this case. If 
in addition, the frictional convergence produces sufficient ascent to reduce convective inhibition, 
then the resulting convection can be said to be “caused” by the frictional convergence. When 
the effects of stratification are included, the situation becomes much more complex. One could 
imagine that convection located in the regions of boundary layer convergence could boost the 
strength of this convergence, perhaps supplying enough energy to maintain the boundary layer 
in a near-steady state. However, even though this convergence is equivalent in magnitude to 
that produced spontaneously by a boundary layer associated with a deep secondary circulation, 
one can no longer say that the boundary layer convergence “causes” the convection. In fact, the 
opposite is true, the convection actually causes the convergence in this case. The convergence 
cannot have caused the convection, because the convergence would not have been there prior to 
the convection. The origin of the convection must be sought in some other mechanism.

The attribution of causality in the shallow and deep secondary circulation cases is subtle, but 
important from the point of view of the parameterization of cumulus convection. Parameterizations 
in which convection is controlled by frictional convergence computed by a steady-state boundary 
layer model get the arrow of causality wrong, at least for disturbances small enough to exhibit 
shallow secondary circulations. This is likely to produce incorrect results in many cases. The solution 
to this problem is two-fold: (1) include the time derivatives in the boundary layer momentum 
equations, and (2) drive convection in the model via the mechanisms that are actually responsible 
for producing it. With these changes, the issue of causality resolves itself.

One tempting shortcut to fixing the problem of shallow secondary circulations is to attempt 
to represent the effects of deep, moist convection as a simple reduction in the effective static 
stability, with a corresponding increase in the depth of the secondary circulation. This quick fix 
has the problem that the resulting model of convection is not nearly rich enough to represent what 
convection actually does in nature, and is therefore seriously deficient.

Two issues could potentially lead to some alteration of these conclusions. The first is a 
mathematical point; the analysis performed here is linear. The manifestation of nonlinear effects 
could be important. Of particular interest is the possibility that advection of vorticity by the 
convergent flow in the boundary layer could lead to a phenomenon similar to frontal collapse, with 
the convection resulting from the intense convergence along the front. The geostrophic momentum 
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approximation and semi-geostrophic formalism (Hoskins, 1975) could perhaps be used to tackle 
this problem.

Raymond et al. (2006) found that an Ekman balance model (pressure gradient + Coriolis force 
+ friction = 0) accurately predicted the meridional wind, and hence meridional convergence, on 
a day with quiescent conditions in the east Pacific ITCZ. On this day a strong convergent region 
associated with shallow ascent to 800 hPa occurred near 4º - 6º N, suggesting a front-like structure. 
Though there was no deep convection occurring in this convergence zone, there certainly must 
have been ample shallow convection. On a day exhibiting strong, deep convection, large pressure 
perturbations associated with the convection itself existed in the boundary layer and there was 
no hint of Ekman balance. This suggests that instances of frictionally driven frontal collapse are 
delicate and occur only in convectively quiescent conditions. As soon as significant deep convection 
occurs, more robust mechanisms are likely to dominate.

The second issue has to do with the range of environmental conditions assumed in the present 
model. Tropical storms have far stronger winds and environmental vorticity. This can result in 
much deeper and stronger secondary circulations, even on relatively small scales, thus paving the 
way for significant frictional convergence in the boundary layer. The tropical storm case deserves 
an independent analysis of the effects of stratification on frictional convergence.
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