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Frictionally Excited Thermoelastic
Instability in Multi-Disk Clutches
and Brakes

The propensity toward thermoelastic instability (TEI) in multi-disk cluiches and brakes is
investigated by introducing a new bidimensional analytical model, where metal and fric-
tion disks are replaced by two-dimensional layers of finite thickness. This new model
permits to estimate the effect of the thickness ratio a;/a, between friction and metal
disks, on the critical speed, critical wave parameter and migration speed of the sliding
system. It is found that as the thickness ratio a;/a, decreases the critical speed reduces
significantly taking up values about 80 percent smaller than that predicted by previous
two-dimensional models for commonly used ratios (0.1<a,;/a,<lI), whilst the critical
wave parameter slightly increases. Therefore, not only the susceptibility towards TEI can
be reduced by changing the material properties of the friction lining but also by adjusting
suitably the thickness ratio of the disks. The two-dimensional model is also employed to
determine the critical speed in a real multi-disk clutch, and the results are compared with
a three-dimensional finite element code. It is shown that the critical speed estimated by
the present two-dimensional plane strain model is in good agreement with that determined
by the FE code for sufficiently large radial thickness of the disks, whilst the two-
dimensional plane stress solution has to be used for relatively small radial thickness
ratios. Also, it is found that the critical number of hot spots is independent of the radial

thickness ratio and it is correctly predicted by the two-dimensional model.
[DOI: 10.1115/1.1352740]

1 Introduction

The hot spotting phenomenon can be experienced by clutches
and brakes and is responsible for load concentration over small
zones of high pressure and temperature (hot spots). At an unaided
eye, such hot spots appear as oval, bluish and equally spaced
stains which are arranged antisymmetrically on each side of the
metal disks. A metallographic investigation reveals that such
stains result from deposits of decomposed oil and degraded fric-
tion material. Hot spotting has been attributed to the phenomenon
of thermoelastic instability (TEI) by Barber [1], who firstly stud-
ied it in rajlway braking application. Recently, the introduction of
new asbestos free friction materials and the growing demand for
higher performances have increased the propensity of brakes and
clutches towards thermoelastic instability [2]. It is extensively re-
ported in the literature that high mechanical and thermal loads
strongly affect durability and performance of friction linings. For
instance, Yang et al. [3], performing thermal gravimetric analysis
on a multi-disk wet paper clutch, have shown that cellulose com-
ponents are completely degraded for temperature higher than
400°C. Also, Takezaki and Kubota [4], investigating the effect of
non-uniform contact pressure in clutches, measured a decrease in
average friction coefficient of about 20 percent, an increase in
carbonization and wear of the friction material respectively of
about 500 percent and 400 percent, just after 1000 engagement
cycles.

The susceptibility toward hot spots formation depends on the
relative speed, geometry and material properties of the sliding
system. By means of a perturbation analysis, Burton and cowork-
ers [5] showed that there exists a sliding speed below which the
system is unconditionally stable, whilst for larger speeds even a
small perturbation grows leading to fully developed hot spots in a
very short time. Burton’s analysis modeled seal-like configura-
tions as two sliding half-planes, and its application to actual
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clutches and brakes overestimates significantly the critical speed.
Clearly, the main approximation relies on the non finite dimen-
sions of the sliding bodies. Lee and Barber [6] introduced a model
where a thin metal disk slides between two friction half-planes,
obtaining more reasonable results but still the critical speed is
overestimated, as shown in the sequel. Obviously only a finite
element model can take account of the actual geometry of the
sliding system: axialsymmetry, finite axial and radial thickness of
the disks. This way has been followed, for instance, by Zagrodzki
[7], who solved the transient coupled thermoelastic problem for a
real 9 disk clutch, showing that an uneven pressure distribution
over an ending plate can grow in time, leading also to uneven
temperature distribution, over all the disks. Despite their flexibil-
ity and accuracy, finite element modeling of thermoelastic prob-
lems is extremely computer intense. Only recently Yi et al. [8],
introduced a reasonably efficient finite element model for a multi-
disk clutch or brake. In particular, they showed that, as the number
of disks increases, the critical speed reduces approaching a fixed
minimum value for just 9 disks, and that the three-dimensional
solution is bracketed between the two-dimensional plane strain
and plane stress solution. Consequently, the critical speed of real
clutches or brakes with 9 or more disks, commonly used in air-
crafts and high speed railway applications, can be estimated refer-
ring to virtual two-dimensional clutches or brakes with an infinite
number of disks.

In this paper, the propensity toward thermoelastic instability of
a two-dimensional model of a clutch/brake, with an infinite num-
ber of disks, is studied, under both plane strain and plane stress
assumptions. This model is used to investigate the influence of the
disk thickness ratio on the critical speed, critical wave parameter
and migration speed of the system. Different modes of deforma-
tion for friction and metal disks are investigated. Subsequently,
the two-dimensional model is applied to a real multi-disk clutch
and the results are compared with a three-dimensional axisymmet-
ric finite element solution.
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2 Formulation

A pack containing an infinite series of two-dimensional metal
and friction layers is considered (Fig. 1). Such a system is sym-
metric about the mid planes of each layer, thus the analysis can be
restricted to a mid friction layer (1) sliding with relative speed V'
over a mid metal layer (2), whit suitable boundary conditions
prescribed over the planes of symmetry, as discussed later on.

As a consequence of the frictional heat generated at the contact
interface, the temperature of the sliding disks increases tending to
a steady state value depending on the thermomechanical boundary
conditions. In order to assess the susceptibility toward hot spot-
ting, that is to assess the thermoelastic stability of the system, this
steady state solution is perturbed superimposing a non-uniform
contact pressure. Thus, the perturbed solution has to satisfy the
thermomechanical governing equations and the associated homo-
geneous boundary value problem.

In real systems, several factors can produce non uniform con-
tact pressure such as thickness variation and lack of parallelism of
the disks, non adequate constraining of the ending plates and
eventually mechanical vibrations transmitted from the engine or
the road to the clutch/brake. Noting that a sufficiently regular
perturbation can be expanded in Fourier series and, as long as it
remains small, each term of the series can be considered indepen-
dently, the system is driven unstable if at least one component of
the series grows in time. Therefore, without losing generality, we
consider a contact pressure perturbation of the form

p(x;t)=p,etlel™, (1

where the growth rate b can be (i) negative—stable perturbation,
(i) positive—unstable perturbation, as well as (iii) zero—
threshold of instability, for which the critical speed ¥, is
determined.

Geometrical symmetry does not imply load and displacement
symmetry. In fact, numerical analysis of multi-disk clutches and
brakes [7] showed that metal disks are likely to deform antisym-
metrically (asym), whilst friction disks exhibit symmetric defor-
mations (sym). However, in the present paper four different sets of
boundary conditions are investigated, namely sym,—sym,;
sSym;—asym,; asym,—sym, and asym,—asym,, with the
scope of determining the most critical set of boundary conditions.

az
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Fig. 1 An infinite pack of friction (1) and metal (2) layers slid-
ing with a relative speed V
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In general, the disturbance could be not stationary with respect
to the layers. Thus, a migration speed ¢;=c— ¥} is introduced and
defined as the relative speed of the disturbance with respect to the
layer i. The absolute speed of the disturbance is denoted by c.
Two frames of reference (x;,y,) and (x,,y,) are considered fixed
over the two layers and with center on the mid planes, whilst a
third frame (x, y) moves with the perturbation (Fig. 1). Therefore,
it follows that
y=y;i+(=1)a, (@)

x=xi——cit;

and
V= ci—Ca, (3)

where positive speeds are directed as the x-axis.

The following formulation is a generalization of that of Lee and
Barber [6]. Firstly, the perturbed temperature field is evaluated by
solving the transient Fourier’s equation. Subsequently, the ther-
moelastic problem is solved by superimposing a suitable solution
of the isothermal elastic problem on a particular solution of the
equation of thermoelasticity.

2.1 Temperature Field. The temperature distribution in
both bodies is governed by the Fourier’s equation

32Ti+ *T; 1 8T, .
ax? " yr kot @

where k;=K;/(p;cp;) is the coefficient of diffusivity with K;, p;,
and c,,; the conductivity, the density and specific heat of the ma-
terial i, respectively. A suitable solution of Eq. (4) is given by

Tixi.yiit)=(4,e N1+ B Mnebieimsimen  (s)

with

. 2 b [ me;
N=gtjm= N mt = ) ®

The four constants 4; and B; are determined by satisfying the
homogeneous thermal boundary conditions associated with the
perturbation problem. Therefore, for a symmetric layer, the heat
flux across the plane of geometric symmetry is null

sym )

qyilyi=0= -

On the other hand, for an antisymmetric layer, the temperature
over the plane of symmetry must be null, giving

T,v,yi=0=0; asym 8)

Also, by imposing perfect contact at the friction interface, the
surface temperature of both bodies must be identical, hence,
Tl |y=0= To= T2ly=0-

After few algebraic manipulations and considering the first of (2),
it follows that

g[( - l)lhiyi] eb1+jmx’

g(\ay)
where g()=cosh for symmetrical and g()=sinh for anti-

symmetrical boundary conditions. The fourth thermal boundary
condition is considered later on.

T,v(x,y,' ;t)= To (9)

2.1 Thermoelastic Stresses and Displacements. The par-
ticular solution of the thermoelastic problem is given in form of a
strain potential  [6] that must satisfy the equation

2pie{l+v;)
B 1=

V2, T;, (10)
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where u;=E;/[2(1 + v;)] is the shear modulus, ; the coefficient
of thermal expansion, and v; the Poisson’s ratio. The correspond-
ing displacement and stress field components are given by

; 1 d¢; L dy;
5T 2 ox T 2wy
i Py
T~ " Tgx2 T axdy an

The strain potential introduced by Lee and Barber [6] is given by
_ BT, g0y
TA-m? g(\ap)
which is singular if A ;= m, that is if the migration speed c¢; goes to

zero. In this paper, a different strain potential is proposed in order
to avoid singularity, that is

BiT, {g(k,y) g(my,)
A —m? [ g\a)  g(may)

which still satisfies Eq. (10). For \;—m, expanding the term
g(\;y)/g(\;a;) in Taylor series of initial point m, and substitut-
ing it back in (13), it follows that

BT, 3 {g(x,-y,»)

ebr-{—jmx’ (12)

bt+jmx
s

o= (13)

bt+jmx, =0 14
i N+m 9N, } € o =Y, (14)

g(\ap) -

where the singular term (A;—m) has been canceled out.

A general solution to the isothermal elastic problem is given by
superposing solutions 4 and D of Green and Zerna ([9], 5.6),
where the displacement and stress field components are given in
terms of harmonic potential functions ¢; and w,(V*(¢;,w;)=0)

1 d¢; 1 Jw;
2 ox 2p7 ox
1 d¢; 1 &w 3—4y;
B ik e F e
C2m v 2w dy 2
ang, Fw, dw;

v +yi o2 cVi ay
&qul P o dw;
Oy =~ 7 tyisr 3? =2(1~- )E

‘92¢i 32
Twy, = axdy y'c?xay

U, =
u

w;

(15)

Uxx,.

(I—ZV)

It is easily verified by back substitution that

'
w =D,_g (myl) ejme

gy
: e’ H i i
g'(ma;)

g(ma;)
where prime denotes differentiation. Notice that for a symmetrical
layer

#=C; (16)

uy =0; 04, =0 sym

on the mid plane; whilst for a antisymmetric layer
=0

uxi=0; [ asym.

The four constants C; and D; are determined by imposing me-
chanical contact conditions on the friction surface (y=0), thus
u 1 u 2 =0

Jyyl_Uyy2:0 (17)

Oxpl ™ Oxy2= 0

Tyl +f0'yyl =0.
Finally, the contact pressure is given by
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p=pyetie/m = e (18)

2.3 The Characteristic Equation. The fourth thermal

boundary condition states that the heat flux generated at the fric-

tion interface has to balance the mechanical power lost due to
friction, that is

aT
dy1 ™ 4= -K]—B}_

aT,
+K2—;7—' =fVp.
V=0

(19

y=0
Substituting the results given in the previous paragraphs into Eq.
(19) and setting the growth rate b to zero, since we are only
interested into the threshold of instability, the following non-linear

-equation with complex terms holds

gi(\ay) g:(Nay)
M ina) T (N ay)

where V=V, . In the special case of sym1 —asym?2, the above
equation takes the form

{K\\ytanh(hjap) + Kok, coth(Nya)} T, — fV.,p,=0,

}To“pro'—‘O, (20)

which tends to that given by Lee and Barber [6] for antisymmetric
mode, as a; goes to infinity.

Finally, fixing the materials properties, the thicknesses ratio
a;/a, and the wave number m of the assumed perturbation, the
real and imaginary part of Eq. (20), together with the kinematic
condition V'=c|—c¢,, give a non-linear system of three equations
in the three unknowns V, ¢, and ¢,.

The present formulation is for plane strain assumption. The
plane stress solution is obtained by introducing the following fic-
titious material constants

(1+2v). v B (1+v)
a+»n% YT U+n Y0120

2.4 The Numerical Code. The whole procedure so far de-
scribed has been implemented in Mathematica [10], in order to
perform automatically lengthy symbolic calculations. The proce-
dure is briefly described in the sequel for the case of symmetric
friction layers (1) rubbing over antisymmetric metal layers (2). In
this case, the strain potentials given in Eq. (13) take the form

’

(22)

= BT, [cosh[hi(y=a;)] coshm(y—ai)] olbrm)
" (N2=m?) | cosh[Aa] cosh[ma,]

BT, {sinh[)\z(y+a2)] sinh [m(y+a2)1] s ime

=7 : . erm,
(N5—m*) sinh [\ ,a,] sinh [ma,]

(23)
whilst the Green and Zerna potentials introduced in Eq. (16) are
given by
sinh[m(y+ay)] . -

sinh [ma,]

cosh{m(y—a;)] .,
=3 —— ]mz. _
"1 cosh[ma,] e =G

sinh[m(y—a,)]

cosh[m(y+ay)] mx
sinh[ma,]

cosh[ma,]

=Dy I =Dy

(24)

The potential functions (23) and (24) are substituted in (15), hence
the displacements and stresses over the planes of symmetry and at
the friction interface are evaluated. Subsequently, the system (17)
is solved for the constants Cy, C,, D, and D,, and the interface
pressure amplitude p, is determined from equation (18). Finally,
the governing characteristic equation f(¥,c;,c,)=0 is given by
21).

By substituting ¢,=c¢;— ¥, the problem is reduced to solve the
real part (fre(¥,c;)=0) and the imaginary part (f1,,(V,c;)=0) of
the characteristic equation for ¥ and ¢, . Since there are no accu-
rate and general methods to solve systems of non-linear equations,
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a custom made algorithm has been used. Firstly, the wave number
m is fixed and an initial value ¥ for ¥ is guessed, thus the real
part of the characteristic equation is solved for ¢,

fRe(V“),CI)=0

using a built in Mathematica algorithm, giving c(ll). Subse-
quently, the imaginary part of the characteristic equation is evalu-
ated at (V('),c(ll)) giving

SV, ey =Fpp,. (26)

If Fy,, is different from zero, the above procedure is restarted with
a new value for V. The function fi( V(l),c(ll)) varies smoothly and
continuously, thus a classical bisection method is employed to
converge to Fp,=0, for which the actual critical speed ¥ and
migration speed ¢, are determined.

Moreover, the code has to take account of the fact that the
migration speed can take up positive, negative and zero values,
thus the definition of £; and %; in (6) has to be adjusted as from
Appendix, to avoid branch cut problems.

25)

3 Results

The general procedure described above is employed to study
the propensity towards thermoelastic instability in multi-disk
clutches and brakes. Firstly, the effect of the thickness ratio and
type of boundary conditions (b.c.) on hot spot formation is inves-
tigated. Subsequently, the two-dimensional model is used to de-
termine the onset of instability in a real multi-disk clutch and a
comparison with a three-dimensional axisymmetric FE model is
performed.

The Effect of the Thickness Ratio. The effect of the thick-
ness ratio a /a, on the critical speed, critical wave parameter and
migration speed of the good conductor is analyzed. In order to
give general results, the sliding speed is normalized with respect
to the product k,a, and the wave parameter ma, is introduced.
Common materials for brakes and clutches are considered, as
from Table 1. Generally, gray cast iron is employed for metal
disks, whilst different materials can be used for the friction lin-
ings, namely non asbestos organic (NAO), semi-metallic (SM),
and Aybrid materials which combine formulations and properties
of NAO and SM. The following results are for a NAO material,
which is more susceptible to TEI [2].

In Fig. 2, the variation of the critical dimensionless speed with
the wave parameter is shown for different values of the thickness
ratio a;/a, and the limiting cases of Burton (two half-planes
model) and Lee and Barber (a; /a,— ) are presented for com-
parison. It clearly appears that the Burton’s solution is approached
only for sufficiently large wave parameters, depending on the
thickness ratio @, /a,: the smaller the thickness ratio a,/a, the
larger the wave parameter ma,. This result can be easily ex-
plained noting that as the wave number ma, increases, that is
shorter wave lengths are considered, the temperature and pressure
disturbances penetrates only slightly into the layers affecting a
shallow area beneath the surface. Thus for sufficiently large ma,,
the layers are seen as half-planes by the disturbances, thus Bur-
ton’s approximation holds true.

At fixed thickness ratio a,/a,, as the wave parameter de-
creases, the dimensionless critical speed reduces, reaches a mini-

Table 1 Material properties

Material E v K k a
N/m? x 10° W/ (m°C) | m?fsx10~¢ | °C~! x 10~¢

Gray Cast iron 125 0235 54 12,98 12

NAO 0.53 0.25 0.5 0.269 30
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Fig. 2 The effect of the thickness ratio a;/a, on the relation-
ship between critical speed V and wave number m, for the
dominant mode sym;—asym,

mum and then grows again, showing a characteristic vee shape. In
addition, at fixed ma,, a reduction in thickness ratio leads to a
decrease in critical speed. The results plotted in Fig. 2 are for the
sym;—asym, mode, which is the dominant mode, as later
discussed.

In the second paragraph, it has been pointed out that an arbi-
trary perturbation is unstable if at least one of its components is
unstable. Generally speaking, the system is driven unstable by the
component with wave parameter (ma,)m;, corresponding to the
absolute minimum critical speed (Va, /)y, - Therefore, it is im-
portant to analyze in detail the effect of the thickness ratio on
(Vay k) in and (may)min . This is shown in Fig. 3. For suffi-
ciently large thickness ratio, namely a;/a,>10, the minimum
critical speed and the wave parameter are almost constant and
Lee’s approximation holds. However, as a;/a, reduces,

0.5 — (Ma)mi (Vaykodmin — 10

sym; sym,

0.3 = 10°
4 . .
LN Symyasym,
0.2 — R R
0.1 ——rrmm—r e e et 107

10° 102 107 1 10 10? 10°

a /a;
Fig. 3 The effect of the thickness ratio a,/a; on the minimum

critical speed V (solid line) and the wave number m (dashed
line)
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ma,

Fig. 4 The effect of the thickness ratio a,/a, on the migration
¢, speed of the good conducting layer

(Vay /ky)min decreases and (maj)y;, increases’ significantly: for
common thickness ratio (0.1<<a,/a,<1) a difference of about 80
percent is measured with respect to the Lee and Barber’s model.
Continuing in decreasing the thickness ratio, both (Va,/ky) i
and (may)y;, tend to distinct fixed values, depending on the ma-
terial properties. In Fig. 3, it is also shown a comparison between
the minimum critical speed for the sym;—asym, and sym,
—sym, modes: the former is more critical than the later. Curves
for the other two possible modes asym;—sym, and asym,
—asym,, which are not included here, have been also produced
and they resulted always much higher than the sym,—asym,
mode, confirming once again that this is the most critical set of
boundary conditions. Therefore, the metal disks are likely to de-

1 57.0
pressure
I,
metal disc
R
bl
o
- friction lining
[
S metal core
[~
-§ friction lining
3 ’ ,
2 { Triction lining
) metal core
friction lining
g
<
metal disc
backing 7
plate
445

Fig. 5 Geometry and dimensions of a typical multi-disk clutch
(all dimensions are expressed in mm)
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Fig. 6 The relation between the critical rotational speed—with
the number of hot spots N, for different radial thickness ratio
w/ R of the disks. The two-dimensional solution is obtained for
a thickness ratio a,/a,=0.5.

form antisymmetrically, whilst the friction disks are likely to de-
form symmetrically. So far, the wave parameter ma, has been
considered as a continuous variable. However, it must be pointed
out that in practical applications ma, can only take up discrete
values and has a minimum. In fact, the pressure perturbation su-
perimposed over the uniform field has to be self-equilibrated
meaning that the wave length /=2 77/m has to be a submultiple of
the mean circumferential length [6], that is

ma,=N — @7)

R L
where N is the integer number of hot spots. In addition to this, it
comes up that (ma,)yn=a,/R. Consequently, in order to judge
the susceptibility toward hot spotting, it is also worth to investi-
gate the influence of the thickness ratio on the whole curve V'
—m. From Fig. 2, it clearly appears that as the thickness ratio
reduces the vee shape curves are widened, leading to a general
reduction in critical speed.

The relationship between the dimensionless migration speed
¢y =cy/(mk,) and the wave parameter ma, is plotted in Fig. 4
for different thickness ratios, namely a, /a,=1.0, 0.56, 0.25, 0.05.
As the thickness ratio decreases, the curves are shifted toward
larger values of the migration speed, and they are widened. From
Fig. 4, it appears that for thickness ratios larger than 0.56, the
migration speed of the good conducting layer takes up only nega-
tive values, whilst for thickness ratios smaller than 0.56, ¢ takes
up positive and negative values and has two distinct zeros. Notice
that ¢5 <0 means that the perturbation in the poor conductor is
faster than the sliding speed (¢;>V); whilst the opposite result
holds for ¢5>0. For ¢ =0, the perturbation is stationary with
respect to the good conductor. In Fig. 4, the cross marks indicate
the locations of the minima for the critical speed.

The Effect of the Type of Boundary Conditions. At this
point, it is worth to investigate further the inherent nature of the
boundary conditions (b.c.), in order to understand why the sym,
—asym, mode is dominant. From a mechanical point of view,
symmetric b.c. implies zero normal displacements along the lay-
er’s mid plane which acts as an infinitely rigid backing plate;
whilst antisymmetric b.c. leads to zero normal tractions. There-
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Table 2 Material properties for the real clutch considered

Material E v K k a
N/m? x 10° W/ (m°C) | m?/s x 1076 | °C~% x 10~

Metal disk 200 0.30 42 11.91 12

Friction material 0.3 0.12 0.241 0.13 14

fore, a symmefric layer is less compliant than a half-plane, which
in turn is less compliant than an antisymmetric layer, that is, in-
troducing fictitious elastic moduli,

Easym<Eha.lf-plane<Exym . (28)

By reducing the thickness of the layers, the discrepancies in (28)
increase. On the other hand for thermal b.c., a symmetric layer has
zero heat flux across its mid-plane, which consequently acts as an
insulating panel; whilst the temperature goes to zero on the mid
plane of an antisymmetric layer. Therefore, the frictional heat
flowing across the thickness of an antisymmetric layer is much
larger than that associated to a symmetric layer, meaning that in
the first case a fictitious increase in conductivity is measured. It
follows that

Ksym<Khalf-plane< Kasym ’ (29)

where again the differences increase as the thickness of the layers
reduces.

It has been verified also experimentally [11], that the critical
speed of a sliding system is decreased if (i) more rigid and (ii) less
conductive friction material, and (iii) more conductive metal disks
are used, whilst the variation in elastic modulus of the metal disk
has a second order effect on the critical speed, due to the large
Young’s modulus of steel. Consequently, the dominant mode for a
thin metal layer sliding between two friction half-planes (Lee and
Barber’s model) has to be antisymmetric, since antisymmetric lay-
ers are fictitiously more conductive than symmetric layers (Ky,,
<K sym)- On the contrary, the dominant mode for a thin friction
layer sliding between two metal half-planes (Lee and Barber’s
model with reversed materials) has to be symmetric, since sym-
metric layers are fictitiously stiffer (£,,,,,<E,,,) and less con-
ductive (K, <K,gy,) than antisymmetric layers. This is why the
sym,—asym, case is dominant in the present case. Following
similar reasonings, it is also easily explained the reduction in criti-
cal speed as the thickness ratio decreases.

Application to a Real Multi-Disk Clutch. In this section, the
present code is applied to study the propensity toward thermoelas-
tic instability of a real multi-disk clutch and brake, and the results
are compared with an accurate three-dimensional FE code [8],
which takes into account the effect of axialsymmetry and finite
radial thickness of the disks. As previously reported, Yi et al. {8]
have shown that in multi-disk clutches/brakes the critical speed
reduces approaching a fixed minimum value as the number of
disks increases, and this minimum is reached for just 9 disks. The
material properties employed are listed in Table 2 and the friction
coefficient is set equal to f=0.13.

The geometry of the actual clutch is presented in Fig. 5. Dif-
ferently from the two dimensional analytical model, the FE code
considers composite friction disks made up of a steel core bonded
by two friction linings. The first disk of the pack (pressure plate)
is affected by an uniform pressure and moves axially thus com-
pressing the disks against the fixed backing plate. In most practi-
cal applications, the friction linings are so thick and have such a
low conductivity that the thermal boundary layer does not affect
the steel core, which than functions as a rigid backing plate. Con-
sequently, the composite friction disk can be replaced by a homo-
geneous friction layer, with symmetrical boundary conditions,
whose half thickness is equal to the actual thickness of the linings.
The FE results are thus compared with the present two-
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dimensional model whit (i) sym,—asym, boundary conditions
and (ii) homogeneous friction layers (Fig. 1), whose half thickness
ay is equal to the thickness of a real friction lining.

In Fig. 6, the critical rotational speed is plotted against the
number of hot spots N for different values of the radial thickness
ratio w/R, where w is the difference between the outer and inner
radius and R is the mean radius. The upper line defines the two
dimensional plane stress solution and the lower line the two di-
mensional plane strain solution. In practical applications the radial
thickness ratio varies in a relatively small neighbor of w/R
=0.25. For such commonly used values, it clearly appears from
Fig. 6 that the three-dimensional solution is bracketed between the
two-dimensional limiting cases and the plane strain assumption
can be used for radial thickness ratio w/R>0.2, whilst the two-
dimensional plane stress approximation can be used for w/R
<0.2. Also, the shape of the curves and minimum number of hot
spots (N=11) are not affected by the radial thickness ratio w/R.
Experimental results, reported in [8], have shown that for the
present geometrical data and material properties, 12 hot spots
were observed on the sliding surfaces of a 5 disk clutch, which is
in good agreement with the N=11 estimated by the present ana-
tytical formulation.

4 Discussion and Conclusions

In this work, a two dimensional analytical model is proposed to
predict the critical sliding speed in multi-disk clutches and brakes.
Since the present code considers disks with finite thickness, it has
been employed to investigate the effect of the disks’ thickness
ratio @ /a, on the (i) critical speed, (ii) critical wave parameter,
and (iii) migration speed of the sliding system. Firstly, a compari-
son with previous analytical models has been performed showing
that the Lee and Barber’s solution, strictly valid for an infinitely
thick friction layer (a;— ), is approached for sufficiently large
thickness ratios (a, /a,>10). Whilst, for ratios commonly used
in practice (0.1<<a;/a,;<1) the Lee and Barber’s model overes-
timates significantly the critical speed with respect to the present
formulation, with a difference in critical speed of about 80 per-
cent. In general, it is found that the critical speed is strongly
influenced by the thickness ratio in the neighbor of a;/a,=1,
which is a value commonly used in practice. Also, it is found that
the critical wave parameter increases slightly as the thickness ratio
decreases. This means that the susceptibility toward hot spotting
not only can be reduced by (i) changing the properties of the
friction material, but also by (ii) increasing the thickness of the
friction lining, or (iii) reducing the thickness of the metal disk,
that is adjusting suitably the thickness ratio a, /a, thus avoiding
any additional cost associated with the development of new fric-
tion materials. '

In addition, the two-dimensional analytical model is employed
to estimate the critical rotational speed in a real multi-disk clutch,
with 9 or more disks, and the results are compared with a three-
dimensional axisymmetric FE code. It is verified that the two-
dimensional plane strain solution gives conservative results for the
critical speed and can be used for w/R<<0.20, whilst for w/R
>0.20 the two-dimensional plane stress solution must be used.
Also, the critical number of hot spots N and the shape of the curve
is not influenced by the radial thickness ratio and coincide with
what predicted by the two-dimensional model.
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Nomenclature

thickness of the disk i

mean radius of the disks

radial thickness of the disks

wave number of the perturbation

= growth rate of the perturbation

absolute velocity of the perturbation

migration speed of the perturbation

x = coordinate in the x-direction moving with the pertur-
bation

local coordinate in x-direction stationary in body i
coordinate in the y-direction moving with the pertur-
bation

= local coordinate in y-direction stationary in body i
= sliding speed

= specific heat

= elastic modulus

= coefficient of friction

= imaginary unity

= thermal conductivity

= thermal diffusivity

coefficient of thermal expansion

= shear modulus

= Poisson’s ratio

= density

= stress

= pressure

= temperature

= displacement

= heat flux

= potential function 4 [9]

= potential function D [9]

= strain potential
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Appendix

Since the migration speed c; can assume either positive, zero or
negative values, the definition of \; deserves special attention.
Putting =0, from (6), it follows that

mc; [ 7]
=&+ in.= 2 =+ —_ i Qi —
N=E&+jn N7 J( ki) =\ c052+Jsm2 R
(30)
where
= \[mt+| o " 0= o 31
r="\/m % =arctan Pyl (€28

Substituting (30) in (31) and using classical trigonometrical for-
mulas for cos #/2 and sin 4/2, the following four different cases
are individuated,
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m2+r

(a) 7\f=§i+j"7i=+\/ 5

_\/~m2+r
J 5

Ci
¢;<0 and |——{>1
mk;

) m*+r  [—mi+r
) N=§&+jin=+ ) tj 2 3

Ci
¢;<0 and |—=<1
mk;

.\/—mz-!-r
J 5

. me+r
© N=§&+jin=+ 7

Ci
mki

) m*+r  [-mi+r
d N=&+jn=+ 5T 7

Cj
¢;>0 and —=1
i mk,~ »

¢;>0 and <1

where &; has to be always positive, because the perturbation am-
plitude has to decay away from the friction interface. For ¢;=0
(\;=m), the definition (13) has to be changed with (14).
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