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Abstract 

In this paper, the moving contact problem between the punch and a layer supported by a Winkler type 

foundation is considered under plane strain conditions. The cylindrical punch moves smoothly with constant 

velocity over the homogeneous layer. With the use of Galilean transformation and Fourier integral transform, 

the plane contact problem is converted into a Cauchy type singular integral equation. The singular integral 

equation is solved numerically by performing the appropriate collocation method, and the contact width, the 

contact and in-plane stresses are calculated. The results show that the stiffness of the Winkler foundation and 

the moving velocity have a significant effect on the contact width and the behavior of the stress field.  
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1. Introduction 

The contact mechanics of deformable components 

are among the most difficult problems in 

mechanics. Since mechanical and structural 

components are usually in contact with each other, 

contact problems have gained importance over the 

years. Particularly, the contact problem of a layer 

resting on an elastic foundation lies at the hearth of 

soil mechanics.  

 The studies on contact mechanics have focused 

on functionally graded materials (FGMs) in recent 

years. The load transfer problems in the presence of 

friction (sliding contact) are the potential 

applications of FGMs [1]. The sliding contact 

problems of the coated half plane are examined by 

Guler and Erdogan [1] Guler and Erdogan [2] and 

Alinia et al. [3] using Fourier integral transform 
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technique. In the mentioned studies, the shear 

modulus of the coating is assumed to vary 

exponentially in the depth direction and the system 

is loaded by rigid cylindrical, flat or triangular 

stamps. Ke and Wang [4] used the multi-layered 

model to solve the sliding contact problem of FG 

coated half plane. With the multi-layered model 

they divided the FG layer into several sub-layers 

assuming the elastic properties is a linear function. 

The sliding contact problem of a half plane coated 

with a linear graded layer is examined by Chen and 

Chen [5]. The sliding contact problem of an FG half 

plane loaded by a flat punch is investigated by Choi 

[6] and Chen et al. [7]. They also assumed that the 

shear modulus varies exponentially in an arbitrary 

direction [7]. The sliding contact analysis of 
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laterally graded medium is investigated by Dag et 

al. [8] and Dag [9]  

 In the sliding contact problems, the frictional 

heating may occur since the presence of friction 

between the contacting components. The frictional 

heating may influence the performance of the 

system and leads to contact damage. Liu et al. [10] 

examined the thermoelastic contact problem of a 

FGM coated half plane with multilayered model. 

Choi and Paulino [11] studied thermoelastic contact 

of coating-graded interlayer-substrate system. The 

thermoelastic contact problem of FG coated half 

plane is studied with finite element method (FEM) 

by Balci et al. [12]. Barik et al. [13] investigated the 

effect of thermal conductivity on the thermoelastic 

contact problem. Mao et al. [14] analyzed the 

thermoelastic instability of an FGM layer and a 

homogeneous layer by the perturbation method.  

In the absence of body forces the contacting bodies 

get separated from each other with the loading and 

the contact area reduces to a finite size. This kind 

of contact referred to as receding. Rhimi et al. [15] 

and Rhimi et al. [16] considered the axisymmetric 

receding contact problem between an FG layer and 

a homogeneous layer using Hankel transform. The 

frictional receding contact problems of an FG layer 

resting on a homogeneous substrate are 

investigated by El-Borgi et al. [17] and El-Borgi 

and Çömez [18] using the Fourier transformation 

technique. The frictionless receding contact 

problem of a homogeneous layer or bilayer resting 

on a homogeneous substrate or a layer is examined 

by Çömez et al. [19], Kahya et al. [20] Adibelli et 
al. [21]. The layer and substrate are assumed to be 

anisotropic in [20]. Çömez [22] and Parel and Hills 
[23] studied the frictional receding contact problem 

of a homogeneous layer resting on a homogeneous 

substrate. The studies of Çömez et al. [19] and 
Adibelli et al. [21] are extended to the FGM case 

by Jan and Li [24] and Jan and Mi [25].  

 The contact problem involving a layer 

supported by a Winkler foundation have many 

applications particularly in soil mechanics and ice 

engineering fields. In the Winkler foundation 

model, it is assumed that the foundation behaves 

like an infinite number of individual elastic springs 

and the foundation reaction is proportional to its 

displacement [26]. Although there are considerable 

number of studies related to the beam or the plate 

problem resting on a Winkler foundation, the 

contact problem of a layer resting on a Winkler 

foundation is quite limited in the literature. The 

plane contact problem of an elastic homogeneous 

layer lying on a Winkler foundation is first 

investigated by Dempsey et al. [27].  The layer is 

pressed by line load, uniform load, rigid cylinder or 

flat punch. This study is extended to the 

axisymmetric case by Dempsey et al. [28]. 

Wozniak et al. [29] studied the axisymmetric 

contact problem of a layer lying on a rigid support 

with a Winkler type excavitation using the Hankel 

transform. The contact problem of a homogeneous 

bilayer supported by a Winkler foundation is 

analyzed by Birinci et al. [30]. Çömez [26] 
investigated the contact problem of FG layer 

supported by Winkler type foundation. Birinci et al. 

[31] studied the continuous and discontinuous 

contact problem of the bilayer resting on a Winkler 

foundation using the FEM.  Adıyaman and Birinci 
[32] investigated the contact problem of an FG 

layer pressed to a Winkler foundation with the 

arbitrary rigid punches. 

 There are problems that arise in practice in 

which the speed of one body relative to other is 

quite large, and we therefore need to investigate 

whether it is necessary to take the dynamic 

character of the problem into account [33]. In this 

respect, Georgiadis [34] studied the rigid flat 

moving punch problem over the highly orthotropic 

strip and examined the effect of the velocity of the 

punch as well as of the orthotropy. De and Patra 

[35] investigated the contact problem of a single 

punch or a row of equally spaced punches moving 

over the surface of the orthotropic medium. The 

contact problem between the moving flat or 

cylindrical punch and the magneto-electro-elastic 

half plane is analyzed by Zhou and Lee [36], [37].  

Zhou et al. [38] and Zhou et al. [39] considered the 

frictional and frictionless moving contact problem 

of a rigid punch over the orthotropic layer using 

Galilean transform and Fourier integral transform 

technique. It is assumed that the flat or cylindrical 
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rigid punch moving at a constant velocity on the 

surface of orthotropic medium. The first study of 

the frictionless moving contact problem of an FG 

layer indented by a rigid cylindrical punch is 

examined by Çömez [40]. Çömez [41] considered 
the contact problem between the moving punch and 

a homogeneous layer in the presence of friction. 

Balcı and Dag [42] solved the moving contact 
problem between the rigid punch and a coated half 

plane. 

 It can be seen from the literature that the moving 

contact problem of a layer resting on a Winkler 

foundation has not been considered, yet. To fill this 

gap in the literature, the contact problem of a rigid 

cylindrical punch moving at a constant velocity on 

the surface of a homogeneous layer resting on a 

Winkler foundation is investigated in this study. 

The plane contact problem was reduced to a 

singular integral equation of the second kind using 

the Galilean transformation and Fourier integral 

transform technique. The integral equation is 

solved numerically utilizing the Gauss- Chebyshev 

integration formula. The main objective of this 

paper is to study effect of the moving velocity and 

stiffness of the Winkler foundation on the contact 

area and the distribution of the stress components. 

 

2. Formulation of the problem 

Consider the plane moving contact problem in Fig 

1. A homogeneous layer of a thickness ℎ is resting 

on a Winkler type foundation. The layer is pressed 

by a rigid cylindrical punch with radius 𝑅 subjected 

to an external force 𝑃. The punch moves over the 

surface of the layer in 𝑥1 direction at a constant 

velocity 𝑉. 

 The governing equations of motion can be 

written as follows 
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where u , v  are the −1x  and −1y components of 

the displacement vector, respectively and t  

denotes the time variable.  

 The stress and displacement relations (Hooke’s 
law) in a state of plane strain can be expressed as 

follows 
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where   represents the shear modulus and 

3 4 = −  for the plane strain case,   being the 

Poisson’s ratio. 
  

 

 
 

Fig 1. Geometry of the moving contact problem 
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 Introducing the following Galilean 

transformation [33], the dynamic contact problem 

may be turn into the steady contact problem 

1
x x Vt= −  

1
y y=  (3) 

 Substituting Eqs. (3) into Eqs. (1) and using 

Hooke’s law (2), the equations of motion can be 
written in terms of the derivatives of ( , )u x y  and 

( , )v x y  as follows 
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where 
L

c  and 
T

c  are the speed of propagation of 

longitudinal and shear waves in the layer, 

respectively. 

T
c




=  
2
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+
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 Note that Eqs. (4) contain partial differential 

equation system. Using the Fourier integral 

transform technique, Eqs (4) can be converted to 

the ordinary differential equation system. Due to 

the plane symmetry, it is adequate to consider the 

problem in the field 0 x   only. Utilizing the 

symmetry of the problem and Fourier transform 

technique, the following transforms may be written 

0

2
( , ) ( , )sin( )u x y u y x d  





=   (6a) 

0

2
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=   (6b) 

where ( , )u y  and ( , )v y  are the Fourier 

transforms of the displacement vectors ( , )u x y  and 

( , )v x y , respectively. 

 Using the Fourier transforms defined (6) to Eqs. 

(4) with respect to x, yields following ordinary 

differential equation system 
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Substituting the necessary derivatives of Eqs. (6) 

into Eqs. (7) and after some routine manipulations, 

the following characteristic equation may be 

obtained 
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The roots of the characteristic equation can be 

found as 
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Hence, the solution of the Eqs. (7) may be 

expressed as 
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Using Hooke’s law (2) and Eqs. (10) the stress field 
can be obtained as follows 
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where j
A  ( 1,...4)j =  are the unknown functions to 

be determined from the boundary conditions of the 

problem. 

 

3. The boundary conditions and the singular 

integral equation 

The moving contact problem under consideration 

must be solved using the following boundary 

conditions 

( ) 0
( ,0)

0
y

p x x a
x

a x


−  
=    

 (12a) 

( ,0) 0
xy

x =   (12b) 

( , ) ( , ) 0
x w

x h k v x h − − − =  (12c) 

( , ) 0
xy

x h − =   (12d) 

where ( )p x  is the contact stress between the rigid 

punch and the homogeneous layer on the contact 

area ( , )a a−  and 
w

k  is the stiffness of the Winkler 

foundation.  

 Upon taking the Fourier transforms of the 

boundary conditions given by (12), the unknowns 

j
A ( 1,...4)j =  and consequently the displacement 

and the stress components may be determined in 

terms of the unknown contact stress ( )p x . The 

vertical displacement is known based on the profile 

of the cylindrical stamp which is cylindrical.  

Additional condition may be written in the form of 

a derivative of the rigid punch profile to eliminate 

rigid-body displacement and ensures continuity of 

normal displacements as follows  
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where   is the maximum indentation depth. 

Substituting the unknowns jA  into the mixed 

condition (13) and determining the singular 

behavior of the solution following singular integral 

equation can be obtained as 
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 The expressions for  
1( , )k x   and 1  from Eq. 

(14) are given in Appendix A.  

 In the singular integral equation (14) the contact 

width a  is also unknown, a priori. To complete the 

solution, ( )p x  must satisfy the following 

equilibrium condition 

0 0

( ,0) ( )
2
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y
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4. Numerical solution of the singular integral 

equation 

Since the smooth contact at the ends of the contact 

area, the index of the integral equation (14) is 1−  

[43]. 

 The following transformations are defined to 

solve the integral equation numerically 
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 Using the transformations, the integral equation 

(14) and the equilibrium condition (15) becomes 
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 The solution of the integral equation can be 

expressed as  

2
( ) ( ) (1 )r g r r = −  (19) 

where ( )g r  is a continuous and bonded function in 

the interval [-1,1]. Applying the conventional 

collocation technique [43], [44] the integral 

equation (17) can be transformed into the 

equivalent system of algebraic equations as follows 
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and the equilibrium condition becomes 
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 Note that there are N+1 equations to determine 

the N unknowns )( irg  in Eq. 20. It can be shown 

that the (N/2+1)-th equation in (20) is automatically 

satisfied [44]. Thus, Eq (20) and Eq (21) give N+1 

equations to determine the N+1 unknowns, which 

are ( )
i

g r  and a. The system of equations (20) is 

linear in terms of the ( )
i

g r  but the contact area a is 

unknown in priory and makes the problem highly 

nonlinear. Therefore, an iterative method is used to 

obtain unknowns.  

 After solving the contact stress and contact 

areas, the in-plane stress at the surface of the layer 

can be expressed as  

2

( )
( ),( ,0)

/
/

( ), ,

x

p x
H x a x ax

P h
P h

H x x a x a

  + −   =  
  −  

 (23) 

where 

2

1
( ) ( ) ( , )

a

a

H x p k x d  
 −

=   (24a) 

2 2 2

0

( , ) ( ( ) )cos cosk x M xd     


= −  (24b) 

2

2

2 1 2 3

2

2

4

(1 ( 3 ) )
( ) 2 2

1

(1 ( 3 ) )

1

n
M A A A

n
A

 
 



 


 + − + +
= + + − +

+ − + +
+ − + 

 

  (24c) 

2 2lim ( )M


 
→

=   (24d) 

 

5. Numerical results 

The contact width /a h , the contact stress 

( ) / ( / )p x P h , the in-plane stress component on the 

surface of the layer ( ,0) / ( / )
x

x P h  and along the 

y axis (0, ) / ( / )
x

y P h  is computed numerically 

for various material and geometrical parameters 

such as the moving velocity 2
/V   , the stiffness 

of the Winkler foundation /
w

k  , the punch radius 

/R h  and the external load / ( )P h . During the 

computation, the Poisson’s ratio is taken as 0.2 =
The results obtained from the study are presented in 

table and showed graphically in figures. 
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 This study can be validated with those of 

Çömez [26] by letting the problem static, i. e.
2

/ 0V   → For the comparison the contact widths 

obtained from the two studies are presented in 

Table 1. It can be observed from the table that the 

numerical results for the contact width under the 

punch is quite close to the each other.  

 Fig 2. shows the influences of the moving 

velocity 2
/V    and punch radius /R h  on the 

contact width. It may be seen from the figure that 

an increase in the moving velocity and punch radius 

tends to widen the contact width. The effect of the 

moving velocity on the contact width becomes 

certain when the punch radius gets bigger. Note that 

when the punch radius very small the contact width 

does not change with moving velocity. 

The effect of the stiffness of the Winkler foundation 

/
w

k   and the load parameter / ( )P h  on the 

contact width is depicted in Fig 3.  Note that the 

foundation becomes flexible when the stiffness of 

the Winkler foundation is getting smaller. As a 

result, the contact width tends to widen with 

decreasing values of the stiffness of the Winkler 

foundation. When the external load increases, the 

punch penetrates the layer more, so the contact 

width increases. It can be observed from the figure 

that the contact width close to zero when the 

external load decreases. 

 Due to the absence of the friction the contact 

stress and the in-plane stress distributions on the 

upper surface of the layer are symmetric (Figs. 4-

6). The 

 

Table 1. Comparison of the contact width under the 

punch with that of Çömez (2013) 

( / 100, / ( / ) 500)R h P h= =  

 /a h   

/
w

k   Comez, 

2013 

( 0)h   

This study 

2
( / 0)V     

Error 

% 

0.1 0.3725 0.3729 0.1074 

1 0.3304 0.3306 0.0605 

10 0.3151 0.3152 0.03173 

  0.3116 0.3117 0.03209 

peak values of the contact stress and the in-plane 

stress ( ,0) / ( / )
x

x P h  occurs at the symmetry 

plane  0x = . It is observed from the Figs. (4-6) the 

tensile peaks occur both on the upper and bottom 

surface of the layer. The in-plane stress gives some 

implications for the crack propagation problem. 

The axial stress (0, ) / ( / )
x

y P h  is compressive in 

the upper part of the layer and tensile in the lower 

part of the layer. 

 The influences of the moving velocity on the 

contact stress and in-plane stresses are plotted in 

Fig 4. As the punch moves faster the peak values of 

the contact stress decreases but the tensile peak 

increase at the bottom and top surface of the layer. 

 

 
 

Fig 2. Variations of the contact width under the punch 

/a h  versus punch radius /R h  for some selected 

moving velocity 
* 2

/V V  =  with fixed parameters 

/ 1, / ( / ) 500.
w

k P h = =  
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Fig 3. Variations of the contact width under the punch /a h  versus load parameter / ( )P h  for some selected the 

stiffness of the Winkler foundation 
*

/
w w

k k =  with fixed parameters 
2

/ 0.2, / 100.V R h  = =  

  

 

Fig 4. Contact stress and in-plane stress distributions for different values of moving velocity
* 2

/V V  = . 

( / 100, / ( / ) 500, / 1)
w

R h P h k = = =  
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 Fig 5. shows the effect of the stiffness of the 

Winkler foundation on the contact stress and the in-

plane stresses. An increasing value of the stiffness 

of the elastic foundation tend to increase the peak 

values of the contact stress. As the elastic 

foundation is more flexible ( 0.1)
w

k =  the axial 

stress (0, ) / ( / )
x

y P h  distribution becomes linear 

and it matches the simple supported beam stress 

distribution. Also, the bigger tensile peaks occur 

when the foundation is softer, and the layer become 

susceptible to a possible cracking problem. 

 The effect of punch radius on the contact stress 

and the in-plane stresses is depicted in Fig 6. With 

the increasing values of the punch radius the peak 

values of contact stress and in-plane stresses 

decrease. The peak values occur when the punch 

radius / 10R h = . This is because when the punch 

radius smaller the loading approaches to the point 

load case.  

 

  

 
 
Fig 5. Contact stress and in-plane stress distributions for different values of the stiffness of Winkler foundation 

*
/

w w
k k = . 

2
( / 0.2, / 100, / ( / ) 500)V R h P h  = = =  
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Fig 6. Contact stress and in-plane stress distributions for different values of the punch radius 
*

/R R h= . 
2

( / 0.2, / 1, / ( / ) 500)
w

V k P h   = = =  

 

6. Conclusion 

This study is concerned with the frictionless 

moving contact problem between the rigid 

cylindrical punch and a homogeneous layer lying 

on a Winkler foundation. The plane contact 

problem is solved in the framework of linear 

elasticity and using Fourier integral transform 

technique. The effect of the moving velocity, the 

stiffness of the Winkler foundation, punch radius 

and external load on the contact area and 

distributions of the stress components are given. 

The contact width tends to widen when the punch 

moves faster and the Winkler foundation getting 

flexible. The contact width also increases with 

increasing values of external load and punch radius. 

The contact stress increases with the increasing 

stiffness of the Winkler foundation and decreasing 

values of moving velocity. The in-plane stress 

distributions imply that the tensile peaks occur at 

the bottom and on the surface of the layer which 

should be considered for crack propagation 

problem. The tensile stress tends to increase when 
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the punch moves faster, and the Winkler foundation 

becomes flexible. 
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Appendix A 

Expressions of 1( , )k x  and 1
  appearing in (14) are given below: 
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