
FRIDGE: A Fixed-Point Design and Simulation Environment

Holger Keding, Markus Willems, Martin Coors and Heinrich Meyr
Integrated Signal Processing Systems

RWTH Aachen, University of Technology
D-52056 Aachen, Germany

Abstract
Digital systems, especially those for mobile applica-

tions are sensitive to power consumption, chip size and
costs. Therefore they are realized using fixed-point archi-
tectures, either dedicated HW or programmable DSPs. On
the other hand, system design starts from a floating-point
description. These requirements have been the motiva-
tion for FRIDGE1, a design environment for the specifica-
tion, evaluation and implementation of fixed-point systems.
FRIDGE offers a seamless design flow from a floating-
point description to a fixed-point implementation. Within
this paper we focus on two core capabilities of FRIDGE:

(1) the concept of an interactive, automated transfor-
mation of floating-point programs written in ANSI-C into
fixed-point specifications, based on an interpolative ap-
proach. The design time reductions that can be achieved
make FRIDGE a key component for an efficient HW/SW-
CoDesign.

(2) a fast fixed-point simulation that performs compre-
hensive compile-time analyses, reducing simulation time
by one order of magnitude compared to existing ap-
proaches.

1 Introduction
Digital system design is characterized by ever-

increasing system complexity that has to be implemented
within reduced time, resulting in minimum costs and short
time-to-market. These characteristics call for a seamless
design flow that allows to perform the design steps on the
highest suitable level of abstraction.

For most digital systems, the design has to result in a
fixed-point implementation, either in HW or SW. This is
due to the fact that these systems are sensitive to power
consumption, chip size and price per device. Fixed-point
realizations outperform floating-point realizations by far
with regard to these criteria.

A typical fixed-point design flow is depicted in Fig.1.
Algorithm design starts from a floating-point description
that can be analyzed by means of simulation.

Copyright 1998 EDAA. Published in the Proceedings of DATE’98,
February 23-25, 1997 in Paris, France. Personal use of this material
is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works, must be obtained
from EDAA.

1Fixed-point pRogrammIngDesiGn Environment

target system

Idea

 floating-point-
algorithm

quantization

fixed-point
algorithm

ok?
No

Yes

No

 architecture
spec. description

Yes

No

al
go

rit
hm

ic
 le

ve
l

im
pl

em
en

ta
tio

n
le

ve
l

fix
ed

-p
oi

nt
flo

at
in

g-
po

in
t

ok?

code generation

ok?

Yes

OFDM receiver:
frequency sync. unit

5 weeks

3 weeks

Figure 1: Fixed-point design process

This abstraction from all fixed-point effects allows an
evaluation of the algorithm space before analyzing quan-
tization effects on the algorithmic behavior. Additionally,
the use of floating-point models offers a maximum degree
of reusability.

The transformation to the fixed-point level is quite te-
dious and error-prone. It requires one to assign a fixed
wordlength and a fixed exponent to every operand. For
more complex designs more than 50% of the design time is
spent on the algorithmic fixed-point level once the floating-
point model has been specified (as illustrated by Fig.1).
Two reasons can be offered:
� The transformation of the floating-point algorithm

to the fixed-point algorithm has to be done manu-
ally, which is known to be time-consuming and error-
prone. Even for a single transformation, modeling ef-
ficiency is very low. Especially in HW/SW-CoDesign
typical designs require multiple float-to-fixed trans-
formations. This is due to the fact that while perform-
ing a transformation on the algorithmic level, one can
no longer abstract from the target system since HW
and SW put different constraints on the fixed-point
specification: for SW, the wordlength is already fixed
and the minimization of shift operations is of interest,
while for HW the wordlength is free and its minimiza-
tion is a concern. Therefore, the manual float-to-fixed
conversions no longer appears to be acceptable.

� The fixed-point simulation efficiency is low. This is
due to the fact that the fixed-point data type has no

built-in data type on the host machine but has to be
emulated. Existing concepts perform all necessary
emulation steps at run-time.

These inefficiencies have been the motivation for
FRIDGE, an interactive design environment for the speci-
fication, simulation and implementation of fixed-point sys-
tems. Two key ideas that significantly speed up the specifi-
cation and simulation of fixed-point systems are described
in this paper. The structure is as follows: after an overview
of existing concepts for the specification and simulation of
fixed-point systems (Sec. 2), in Sec. 3 we present the in-
terpolative approach. The realization of this concept within
FRIDGE is presented in Sec. 4. The advanced fixed-point
simulation capabilities of HYBRIS, the simulator that ac-
companies FRIDGE, are subject to Sec. 5.

2 Related Work
Several design environments allow the specification of

a fixed-point algorithm, starting from a floating-point de-
scription of the system. Two concepts exist:

1. Block diagram-based algorithm specifications where
blocks represent the functionality and signals the data
flow among these blocks:
The designer assigns fixed-point attributes to the sig-
nals, but the blocks’ internal fixed-point behavior can-
not be influenced [1, 2, 3]. The blocks’ black box be-
havior is a severe limitation of these approaches. As
a consequence, functionalities are limited to blocks
with the fixed-point behavior completely specified by
the interface, such as adders, multipliers, etc. More
complex functionalities, e.g. filters, different fixed-
point behaviors require the designer to manually ex-
change or even rewrite the block.

Another design bottleneck is that a complete fixed-
point specification requires to specifyall signals. For
most concepts, this calls for amanual assignment.
Recently, Sung [4] presented a concept to reduce the
effort of manual annotations based on exhaustive si-
mulations to determine the fixed-point format of all
non-specified signals. Long system response times
restrict this concept to only a very few non-specified
signals. Since typical designs often include 1000 sig-
nals or more [5], manual assignment is still necessary
for most of the signals.

2. Textual descriptions where the system’s functionality
is described using a programming language:
Examples include DFL [6] as well asC++-based con-
cepts [7]. Both concepts allow a fixed-point instanti-
ation of variables atdeclaration time, i.e. a variable
keeps a unique fixed-point representation throughout
the complete program. Both make use of operator
overloading, which requires minimum modifications
of the code. As for the block diagram concepts, for a
fixed-point algorithm specification all variables have
to be annotated manually.

All these design approaches share a common simulation
principle, namely performing an emulation of the fixed-
point behavior at runtime. Emulation covers two aspects:
emulating the fixed-point arithmetic, since no built-in ge-
neral fixed-point data type exists on the host machine, and

emulating the casting operations, which include overflow
and quantization handling. Because of these runtime emu-
lations, simulation time is increased by one or even two or-
ders of magnitude compared to the corresponding floating-
point simulation. To reduce the casting overhead, in [8]
DeCoster presents a concept where he analyzes at compile-
time whether an overflow or a quantization can appear at
all. This compile-time analysis can reduce simulation time
significantly. To the authors’ knowledge, no concepts have
been reported that determine the appropriate built-in data
type for each operation at compile-time as well.

3 The Interpolative Approach
A fixed-point specification of an algorithm needs the as-

signment of a three-tuple< wl;iwl;s> to every operand,
with wl the wordlength,iwl the number of integer bits and
s the sign (which might beunsignedor two’s complement).
See Fig.2 for the representation.

(S)

iwl
wl

(sign) fwl

Figure 2: Fixed-point data type specification

As pointed out above, the manual annotation of all
operands as required by the existing concepts is hardly
acceptable for a single transformation. Since an efficient
evaluation of the complex design space requires multiple
transformations, it is even more of a design bottleneck.

As a consequence, we propose an alternative design
flow, denoted theinterpolative approach which is illus-
trated by Fig.3.

floating-point.c

 "hybrid"
simulation+

hybrid.fc

interpolation

 bittrue
simulation

fixed-point.fc

global-annotation.file

local
annotations

Figure 3: Design flow based on interpolation

1. Local annotations:
Starting from the floating-point description, the de-
signer assigns fixed-point information tosomefixed-
point operands that are critical to his design or that
have a known fixed-point specification (e.g. the in-
terface format of a system). This information might
be the complete fixed-point data type, or only par-
tial information such as the wordlength or the inte-
ger wordlength. These annotations result in ahybrid
specification, i.e. some operands fixed-point, while

the majority (to our experience about 95%) remain
floating-point.

2. Simulation:
The hybrid specification is simulated to check
whether the locally annotated specification still meets
the design criteria. If not, modifications to the local
annotations or even to the structure of the algorithm
become necessary.

3. Interpolation:
Once the annotated program matches the design cri-
teria, the remaining floating-point operands are trans-
ferred to fixed-point operands by interpolation. ’Inter-
polation’ means the determination of the fixed-point
parameters of the non-annotated operands from the
information that is inherent to the annotated operands.
The interpolation concept is based on three key ideas:
i) Format propagation:
The fixed-point parametersiwl andsignof an operand
can be determined once the range[min;max] is known
that this operand can take (two’s complement repre-
sentation assumed):

sign =

�
u i f min� 0
s else

iwl = dmaxfldjminj+1;
ldjmaxj

ld(2�1�2�wl)
e

It is important to notice, that without the additional
knowledge of the fixed-point parameterwl the com-
putation has to be more conservative, i.e. to guaran-
tee, that the maximum (minimum) can be represented
one additional bit has to be spent:

iwl = maxfdldjminj+1e;bldjmaxjc+2g

The parameterwl can then be determined using the
information about the fractional wordlengthfwl = wl
- iwl. It is only necessary to represent those fractional
bits which actually carry any information.
Given the information of the operator and the fixed-
point format of the inputs to the operation, both the
range and the relevant fractional wordlength of the re-
sult can be determined.
Format propagation requires an analysis of the data
flow and control flow of the program at compile-time,
i.e. prior to executing the program. This concept gua-
rantees that no information can be lost ,except for the
division.
ii) Global annotations:
While local annotations express fixed-point informa-
tion for single operands, global annotations describe
restrictions that have to be matched throughout the
complete design.
For different targets, different global restrictions ap-
ply. For SW, the functional units to perform specific
operations are already defined. Consider a 16x16 bit
multiplier, writing to a 32 bit register. A global anno-
tation can inform the interpolator that the wordlength

of a multiplication operand is not allowed to ex-
ceed 16 bit, while the result may have a wordlength
of 32 bits. For an ASIC implementation, no fixed
wordlength constraints exist for specific arithmetic
units. So global annotations might inform about a
maximum wordlengthmaxthat shall not be exceeded.
Once the propagation would result in a wordlength
exceedingmaxwl, it is reduced to thedefaultwl
wordlength.

iii) Designer support:
If an interpolation is not possible for the complete de-
sign since the annotated information is not sufficient,
the interpolator can inform the user about the location
where it is impossible to continue and can ask for ad-
ditional information.

The interpolation supplies a fully annotated program,
where a unique fixed-point data type is assigned to
each operand. Therefore, the effects of local and
global annotations become completely visible to the
designer.

4. Simulation:
Since the global annotations might have changed
the algorithmic performance of the specification, the
fixed-point program has to be simulated again. If
one finds that the system does not fulfill the design
criteria, the initial description might be modified by
adding or changing annotations.

The interpolative design flow comes with several advan-
tages compared to existing approaches:

� design time reduction: the designer can concentrate
on the specifications which are important to the de-
sign while the time-consuming task of annotating the
remaining parts is done in an optimum way by the in-
terpolator. This interpolation only takes about as long
as compiling the program.

� designer’s control: the designer fully controls the
transformation process since he can assign all infor-
mation that is critical for the design. The interpolation
makes visible the effects on those parts of the design
that have not been specified explicitly by local anno-
tations. This simplifies iterative modifications when
the designer wants to assign additional annotations.

� Design space evaluation: the evaluation of different
fixed-point specifications becomes very easy since
only some annotations have to be exchanged while
the remaining specifications are automatically derived
from this information.

4 The FRIDGE Framework
FRIDGE is a complex and most advanced design envi-

ronment for the specification and code generation for fixed-
point architectures, as illustrated in Fig. 4.

Within this section we focus on the transformation of
the floating-point algorithm to the fixed-point algorithm,
which is based on the interpolative approach as described
in Sec. 3. The hybrid simulator HYBRIS is described in
more detail in Sec. 5.

floating-point
program
(ANSI-C)

fixed-point
program
(fixed-C)

Interpolator

fixed-point program
for behavioral

VHDL synthesis

VHDL
back-end

fixed-point program
for a specific

DSP Architecture

Assembly
back-end

HYBRIS

FRIDGE
Fixed

Float

fixed-point program
for DSP

fixed-point compiler

ANSI-C
back-end

hybrid simulation

Figure 4: The FRIDGE Framework

4.1 fixed-C
The input to FRIDGE is a floating-point program writ-

ten in ANSI-C. Most block diagram based design en-
vironments come with a C-code generator which allows
one to transfer these specifications into ANSI-C as well
[1, 3, 6, 9].

ANSI-C offers no efficient support for fixed-point data
types [10], but since the interpolative approach calls for
an option for hybrid specifications of the algorithm, the
ANSI-C syntax has been extended to the languagefixed-C
by introducing two parameterizable fixed-point data types,
namedfixed andFixed .
4.1.1 The Data Typefixed
fixed a,*b,c[8];

A variable is declared to be of data typefixed , but
no instantiation is performed at declaration time.fixed-C
permits pointers and arrays as known from ANSI-C.

a=fixed(wl,iwl,sign,cast,*b);
a receives data type<wl,iwl,sign> , the value of

*b is casted according tocast . The casting mode speci-
fies how to handle overflow as well as quantization. The
different casting modes are shown in Tab. 4.1.1.

casting overflow handling overflow handling no overflow
modes saturation wrap around handling
quantization sr wr nr
by rounding
quantization st wt nt
by truncation
no quantization sn wn nn
handling

Table 1: Different modes for cast tofixed
Every assignment to a variable overwrites all prior in-

stantiations. This concept ofassignment-time instan-
tiation(ATI) allows the assignment of different, context-
specific fixed-point formats to the same variable within the
same program. This is motivated by the specific design
flow: transformation starts from a floating-point program,
where the designer does not care about fixed-point require-
ments when he specifies variables for an assignment. In-
stead he uses the floating-point description to abstract from
these problems. Fig.5 shows the differences between ATI

compared to the concept of declaration-time instantiation
(DTI), as supported e.g. by [6, 7].

gFix a(18,16,"tsr");
. . .
a = 0.25; casted to <18,16,s>, mode "sr"
b = a*c;
. . .
a = b*d; casted to <18,16,s>, mode "sr"

float a;
.....
a = 0.25;
b = a*c;
....
a = b*d;

assignment time:

fixed a;
.....
a = fixed(1,-2,u,nn,0.25);
b = a*c;
....
a = fixed(16,16,s,sr,b*d);

declaration time

gFix a(1,-2,"uwt");
gFix tmp(16,16,"tsr");
. . .
a = 0.25; casted to <1,-2,u>, mode "nn"
b = a*c;
. . .
tmp = b*d; casted to <1,-2,u>, mode "wt"

floating-point

fixed-point

fixed-point

Figure 5: Assignment-time vs. declaration-time instantia-
tion

For the first assignment toa, a fixed-point format
< 1;�2;u > is sufficient to represent the constant 0.25
without losing information, while for the second assign-
ment a format< 16;16;s > may be necessary. For DTI,
two options exist:
� the declaration of variablea merges the requirements

for all assignments to the variable (2 fractional bits
from the first assignment, 16 integer bits from the
second). This information being e.g. the input to an
implementation tool will force the usage of an 18-bit
register whenevera is used.

� variablea might be renamed, with a context specific
instantiation at declaration time. This will force the
designer to restructure his code. All usages ofa in
this context have to be replaced as well.

The concept of local annotations relies on ATI simply be-
cause it is the most convenient way to assign operand spe-
cific information without any possible side-effects on dif-
ferent contexts in the code.
4.1.2 The Data TypeFixed
Fixed< wl;iwl;sign> d;�e;g[8];

Different from data typefixed , FRIDGE performs a
data type check for every assignment to aFixed variable.
Example:

Fixed<6,3,s> d;
d = fixed(7,4,s,sr,*e); /* type mismatch */

The right value of the assignment has format< 7;4;s >.
This does not match the format required for the left value
d as specified by the declaration (< 6;3;s >). FRIDGE
behaves differently depending on the selected mode:
� warning mode: FRIDGE informs the designer about

the mismatch but continues to assign the right hand
side to variabled (sod receives format< 7;4;s >).
Except for the warning, there is no difference between
d declared asFixed or fixed .

� forced mode: FRIDGE interrupts execution and calls
for annotations that guarantee the correct assignment
to d.

Fixed is the data type of choice for variables that serve as
an interface to other functionalities. Therefore,Fixed is
the enabling feature for concurrent engineering.

The fixed-Csyntax is fully consistent toC++. This
makes it very intuitive for the user and allows one to com-
pile a simulation on every system that comes with aC++
compiler.

4.2 Interpolation
The interpolator integrated in FRIDGE is based on the

interpolation principles as described in Sec.3. A more de-
tailed description can be found in [11]. Some capabilities
shall be highlighted by the following sections.
4.2.1 Sequential Code
FRIDGE input FRIDGE output
global cast(sr);

float b=2.75; fixed b=fixed(4,2,u,sr,2.75);
float c=5.0; fixed c=fixed(3,3,u,sr,5.0);
float a; fixed a;

a = c - b; a=fixed(4,2,u,sr,c-b);

For constants, the interpolator determines the minimum
requirements oniwl, wl andsign that are necessary to re-
present the data without losing any information. By in-
terpolation, it determines the range (and thereforeiwl and
sign) and the sufficient fractional wordlengthfwl of a.
4.2.2 Conditional Structures
FRIDGE input FRIDGE output
global cast(sr);

float b=2.75; fixed b=fixed(4,2,u,sr,2.75);
float c=5.0; fixed c=fixed(3,3,u,sr,5.0);
float a; fixed a;

if (condition) if (condition)
a = c - b; a=fixed(4,2,u,sr,c-b);
else else
a = 1.875; a=fixed(4,1,u,sr,1.875);

d = a; d=fixed(5,2,u,sr,a);

Depending on the executed branch,a is instantiated dif-
ferently. Before usinga as an operand following these
branches, the interpolator merges the information inher-
ent to all possible assignments so that no information can
get lost (here:iwl = 2 from theif- branch,f wl = 3 from
theelse- branch). Notice the effects of ATI: for each as-
signment toa, the fixed-point requirements become visible
separately and can be handled in an optimum way for im-
plementation purposes.
4.2.3 Loop Constructs
FRIDGE input FRIDGE output
global cast(sr);

float b[2]=2.75,-3.5; b[2]={fixed(4,2,u,sr,2.75),
fixed(4,3,s,sr,-3.5)};

float a; fixed a;

int wl a[]=5,3;
int *pwl a=wl a;
int iwl a[]=3,1;
int *piwl a=iwl a;

a = 0; a = 0;
for (i=0;i<2;i++) for (i=0;i<2;i++)

a = a + b[i]; a=fixed(*pwl_a++,*piwl_a++,
s,sr,a + b[i]);

FRIDGE analyzes the number of iterations. For each
iteration it determines the necessary fixed-point parame-
ters separately. If FRIDGE identifies that the parameters
are not equal for all iterations, it automatically generates
an array containing the iteration specific fixed-point for-
mat. These arrays are accessed via pointers. Notice the
advantage of iteration-specific instantiations: if, for the fi-
nal implementation, one decides to unroll or parallelize the
loop, he has full access to the minimum fixed-point re-
quirements.

The interpolator is based on a powerful data flow and
control flow analysis. It covers pointers, arrays and static
variables, as described in detail in [11].

The interpolator can extract information about the fixed-
point parameters not only from direct information about
wordlength, integer wordlength and sign, but also from in-
direct or user supplied information. An example is given
here:

a=fixed(minim(-2.35),maxim(4.74), *b);

As described above, this information is sufficient for the
determinationiwl andsign.

5 HYBRIS: HYBRId Simulation Classes
HYBRIS areC++ Classes for a bit-true simulation of

fixed-C. It permits to simulate algorithms containing both
floating-point and fixed-point data types (hybrid code).

HYBRIS makes use of the advanced compile-time op-
timization of FRIDGE (described in Sec. 5.1) and thereby
outperforms existing fixed-point simulations by far.

5.1 Fast Fixed-Point Simulation
Fixed-point simulation increases runtime by one or even

two orders of magnitude compared to the corresponding
floating-point simulation. This is due to the fact that the
fixed-point specification has to be emulated on the host
machine which, for the most part, have different data for-
mats than the target machine. Moreover floating-point si-
mulations for complex designs run for hours since often
109� 1012 data samples have to be processed to receive
sufficient statistics. These simulation time increases are
hardly acceptable. Therefore, advanced concepts are ne-
cessary to speed up fixed-point simulations.

The key idea for a fast fixed-point simulation is to take
advantage of all compile-time information to minimize the
processing effort that has to be spent at simulation time.
Two areas for compile-time optimization have been inte-
grated into FRIDGE/HYBRIS: casting optimization and
data type emulation.
5.1.1 Casting Mode Optimization

Whenever an operation result is forced to a specific
fixed-point format, a casting mode information is neces-
sary to describe how overflow and quantization effects
have to be handled. For completely specified fixed-point
programs, this casting mode has to be defined for each as-
signment and for each intermediate result.

Rebuilding the bit-true behavior of the casting process
is a time-consuming task since there is no built-in func-
tion at the host machine. A typical cast requires 10 opera-
tions written in C to handle the result of a simple operation
such as an addition. Obviously, it is highly desirable to

dismiss the casting operation wherever possible. This be-
comes possible if at compile time it is known that no over-
flow or change in the quantization can occur at all. Exist-
ing concepts do not perform this compile-time analysis but
check the casting conditions for every operation.

In contrast, FRIDGE/HYBRIS offers casting mode op-
timizations that have also been independently proposed by
DeCoster [8]. Whether an overflow check is necessary or
not depends on the range that an operation result can take.
If the possible range can be represented by the available
number of integer bits, no overflow check is necessary at
all. The same holds for quantization if it is known that
no information can get lost due to the casting mode. This
range analysis and fractional wordlength determination is
exactly what is performed by the interpolator, as described
in Sec. 4.

The tight connection of the casting mode analysis to
the interpolator’s functionality does not come as a surprise
since the key idea of interpolation has been to determine
the fixed-point specification of the non-annotated operands
so that no information can get lost. If no information can
get lost, absolutely no casting is necessary. Therefore, if
a simulation program results from an interpolation using
FRIDGE, a casting has to be performed only for those
fixed-point specifications, that have been directly effected
by local or global annotations.

5.1.2 Data Type Selection
A general fixed-point data type, e.g. defined byfixed-C,

has no built-in data type on the host machine. Therefore, its
arithmetic behavior must be emulated. Different concepts
for this emulation exist.

In DFL [6], this is done usingshortvariables in C. Vari-
ables (or signals in DFL syntax) that cannot be represented
by a data typeshortare represented using arrays ofshort.
In order to receive the bit-true specification, logical tests
and modifications using shift operations to adjust the dif-
ferent binary points have to be included. This is done at
runtime.

Kim [7] makes use of the operator overloading capa-
bilities of C++. Every variable is described by 6 class
members. The bit string is represented by along variable,
the integer wordlength by ashort variable. For every op-
eration a complex analysis of the mantissa and the inte-
ger wordlength is performed at runtime. E.g., for a sim-
ple addition, the simulator performs about 20 operations.
In addition to this runtime overhead, the representation of
the mantissa by along variable restricts the wordlength to
a specific, host machine-dependent length (typically 32).
The same holds for the integer wordlength representation
using ashortvariable (typically 16).

In contrast to these concepts, HYBRIS makes use of the
compile-time information about the fixed-point specifica-
tion of each operand.

The key concept is based on a simple idea: perform in-
teger arithmetic using ANSI-C integer data types when-
ever this is sufficient to rebuild the fixed-point specifica-
tion. Only if the fixed-point specification cannot be rebuilt
by ANSI-C does one switch to a fixed-point emulation us-
ing C++ overloading capabilities.

ANSI-C Integer Code Generation The concept of
ANSI-C Integer Code Generation (’Integer’-C generation)
from a fixed-Cspecification is described in detail in [12].
Therefore, here we restrict ourselves to presenting only the
basic concepts.

Fig.6 shows the principle: the relevant bit-string with
wl = 5 is embedded into the integer bit-string that is
available on the host machine, denoted bymwl (machine
wordlength). mwl corresponds to the wordlength of the
built-in data typesshort, int or long .

mwl - iwl > lbp > wl - iwl
 8 - 3 > lbp > 5 - 3
 5 > lbp > 2

lbp

mwl

iwl
wl

S S S

Figure 6: Embedding a relevant bit-string withwl=5 into
an integer bit-string withmwl=8

lbp denotes the location of the binary point once the re-
levant bit-string has been embedded. Ifmwl> wl, there
is no unique transformation, but some degree of freedom
exists, expressed by the inequality forlbp.

Additional restrictions on each operand’s individuallbp
come with the arithmetic operations, as it is illustrated in
Fig.7 for the addition.

a

a >> sa

b

b >> sb

c = (a >> sa) + (b >> sb)

0

0 0

0

lbp(c) = lbp(b) - sb = lbp(a) - sa

Addition: c = a + b

0

Figure 7: Requirements onlbp’s imposed by the addition

Using this concept it is possible to describe the transfor-
mation space through a set of inequalities. This holds for
rebuilding the casting operations as well. HYBRIS identi-
fies the appropriate shift operations to rebuild the function-
ality and generates an Integer-C code whenever possible
[12].

Emulating the fixed-point behavior It is impossi-
ble to emulate the fixed-point behavior using Integer-
C if the operand does not fit into the machine word,
e.g.c = fixed(37,12,s,nn,a+b) given a machine
wordlengthmwl=32. Since the complete fixed-point in-
formation is available at compile time, these non-fitting

operands can be identified at compile-time. If so, the fixed-
point behavior must be rebuilt using an emulation data
type.

The emulation data typefixed emurepresents the re-
levant bit-string by an array oflong , and carries the in-
formation how to interpret this bit-string (iwl, sign). All
arithmetic operators are defined for this data type, therefore
operator overloading becomes possible.

In addition, interfacing routines exist for converting in-
teger operands intofixed emuoperands and vice versa:

fixed_emu a;
int b;

/* cast from emu to int */
b=a.return_int(wl,iwl,sign,cast,lbp)
/* cast from int to emu */
a=fixed_emu(wl,iwl,sign,lbp,b)

Therefore, mixed specifications become possible and
can be compiled by anyC++ compiler:

fixed_emu *coeff, *state;
int sum,i;
....
sum=0;
for (i=0; i < 5; i++)

sum=(sum >> 2) +
(*coeff++**state++).return_int(16,13,s,sr,5);

The multiplication is performed using the emulation
class, since the multiplication result shall be represented
with maximum accuracy before its wordlength is reduced.
The addition can be performed using integer arithmetic.
The second operand that is casted from thefixed emu
type is requested to be a long variable that contains the in-
formation ofwl=16 relevant bits,iwl=13 of them integer
bits. This is a signed representation, with the result of the
multiplication casted to this format according to modesr,
while the relevant 16 bits are embedded into theint string
with anlbp=5 (while fwl=3, so the two LSB-bits of the re-
turned integer string are set to 0).

Notice that with HYBRIS there is no general restriction
on the wordlength, as it is inherent to other concepts. Since
most designs can be simulated using the integer emulation,
the increase in simulation time compared to the floating-
point model is mostly due to casting operations. Applying
the HYBRIS approach as presented above, this overhead is
reduced to a minimum.

5.2 Integration into existing environments
HYBRIS can easily be integrated into all C-based simu-

lation environments. Test vector generation, post process-
ing and performance analysis can be done by these envi-
ronments, while the HYBRIS classes provide the handling
of the fixed-point data types.

6 Summary
Existing approaches make it necessary to annotate

fixed-point specifications toall operands manually, an
error-prone and time-consuming task. This is hardly ac-
ceptable for a single transformation but becomes an unac-
ceptable situation for an efficient evaluation of the com-
plex design space. The interpolative approach, which is a
key feature of FRIDGE, a fixed-point specification start-
ing from local annotations forsomespecific operands of

the floating-point program. This became possible by intro-
ducingfixed-C, ANSI-C extended by two fixed-point data
types.

The verification of each transformation has to be per-
formed by means of simulation where existing fixed-point
simulation concepts increase simulation time by one or
even two orders of magnitude compared to the correspond-
ing floating-point simulation. The efficient fixed-point si-
mulation using HYBRIS uses advanced compile-time anal-
ysis concepts analyzing necessary casting operations and
selecting the appropriate built-in data type on the host ma-
chine.

These features, in combination with target-specific im-
plementation strategies, make FRIDGE a powerful design
environment for the specification, evaluation and imple-
mentation of fixed-point algorithms. This environment can
easily be integrated into existing C-based design environ-
ments.

References
[1] Cadence Design Systems, 919 E. Hillsdale Blvd., Foster

City, CA 94404, USA,SPW User’s Manual.

[2] Angeles Systems,VANDA-Design Environment for DSP
Systems, 1994.

[3] Mathworks Inc.,Simulink Reference Manual, Mar. 1996.

[4] W. Sung and K. Kum, “Simulation-Based Word-Length
Optimization Method for Fixed-Point Digital Signal Pro-
cessing Systems,”IEEE Transactions on Signal Processing,
vol. 43, pp. 3087 – 3090, Dec. 1995.

[5] P. Zepter, T. Gr¨otker, and H. Meyr, “Digital Receiver Design
using VHDL Generation from Data Flow Graphs,” inProc.
32nd Design Automation Conf., June 1995.

[6] Mentor Graphics, 1001 Ridder Park Drive, San Jose, CA
95131, USA,DSP Station User’s Manual.

[7] S. Kim, K. Kum, and W. Sung, “Fixed-Point Optimization
Utility for C and C++ Based Digital Signal Processing Pro-
grams,” inWorkshop on VLSI and Signal Processing ’95,
(Osaka), pp. 197–206, Nov. 1995.

[8] L. DeCoster, M. Engels, R. Lauwereins, and J. Peperstraete,
“Global Approach for Compiled Bit-True Simulation of
DSP-Applications,” inProceedings of Euro-Par’96, vol. 2,
(Lyon), pp. 236–239, Aug. 1996.

[9] Synopsys, Inc., 700 E. Middlefield Rd., Mountain View, CA
94043, USA,COSSAP User’s Manual.

[10] W. Sung and K. Kum, “Word-Length Determination and
Scaling Software for a Signal Flow Block Diagram,” inPro-
ceedings of ICASSP ’94, pp. II 457– 460, Apr. 1994.

[11] M. Willems, V. Bürsgens, H. Keding, T. Gr¨otker, and
H. Meyr, “System Level Fixed-Point Design Based on an
Interpolative Approach,” inProceedings of the Design Au-
tomation Conference (DAC), (Anaheim), pp. 293–298, Jun.
1997.

[12] M. Willems, V. Bürsgens, and H. Meyr, “FRIDGE Enables
Floating-Point Programming of Fixed-Point DSPs,” inProc.
Int. Conf. on Signal Processing Application and Technology
(ICSPAT), (San Diego), pp. 1000–1005, Sep. 1997.

