
The Friedman rule in a model with endogenous

growth and cash-in-advance constraint

Firouz Gahvari∗ (fgahvari@illinois.edu)

Department of Economics

University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA

This version, October 2011

∗I am grateful to two anonymous referees for their helpful comments. I also thank

the participants in the Conference in Honor of Pierre Pestieau, held at University of

Liège and CORE, June 2009.



Abstract

This paper introduces money into an overlapping generations model with en-

dogenous growth. The main message of the paper is that, as long as the modified

golden rule is attained, the Friedman rule is optimal. The result holds regard-

less of the ability of the government to internalize the externality and control the

level of human capital. Other results include: (i) violation of the Friedman rule

for a different second-best environment wherein human capital accumulation is

controlled but not physical capital accumulation and (ii) existence of a negative

relationship between money growth rate and the economy’s endogenous growth

rate.

JEL classification: H21; H52.

Keywords: Friedman rule, endogenous growth, investment in human capital, over-

lapping generations, second best.



1 Introduction

For over four decades, the optimal money supply literature has studied the envi-

ronments under which the Friedman rule may or may not hold. One interesting

result, in the context of overlapping-generations models à la Diamond (1965), is

that if the (modified) golden rule is satisfied the Friedman rule will hold. Weiss

(1980) had famously shown that the Friedman rule does not hold in overlapping

generations models. The subsequent literature showed that this result was due

to the generic failure of the laissez-faire equilibrium of overlapping generations

models to deliver the (modified) golden rule; see, e.g., Able (1987) and Gahvari

(1988). Introducing generational lump-sum tax and transfers, or a debt policy, to

control capital accumulation allows the economy to attain the (modified) golden

rule and restores the optimality of the Friedman rule.1

The primary aim of this paper is to examine if the above result is robust

to the introduction of some form of market failure. Put differently, I ask if the

control of physical capital and offsetting intergenerational wealth transfers due to

money creation is sufficient for the application of the Friedman rule in overlapping

generations model; or it is also required that the model should contain no other

intrinsic sources of market failures, such as externalities. For example, van der

Ploeg and Alogoskoufis (1994) demonstrate that the Friedman rule is violated in

an overlapping-generations model that exhibits endogenous growth.2 Given that

van der Ploeg and Alogoskoufis allow for lump-sum taxation and debt policy,

capital can be controlled in their model. It might then appear that it is the

market friction underlying the endogenous growth that is behind the violation

of the Friedman rule in their setup. This deduction is unwarranted, however,
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as van der Ploeg and Alogoskoufis do not set the available fiscal instruments to

fully control the capital stock of the economy. Indeed, in their model, it is the

non-neutrality of monetary policy that leads to the breakdown of the Friedman

rule.3

I set out to address this question sequentially. First, I consider an environment

wherein the government has enough fiscal instruments to offset the other sources

of distortion in the economy. In this setting, as in Diamond, one can attain a first-

best equilibrium; albeit through a Pigouvian tax as well as the control of capital.

In the second environment, the government lacks enough fiscal instruments to

control both sources of frictions that impinge on the proper working of a market

economy (capital accumulation and the externality). I will do so once allowing

for the control of capital and once for the correction of the externality.

The distortion I consider is an externality associated with investment in edu-

cation. I use a model due to Docquier et al. (2007) who have recently extended

Diamond’s model to allow for endogenous growth that emanates from building

up one’s human capital. Two aspects of this model are particularly interesting.

One is that it allows for (per capita) growth that does not exist in Diamond

(1965); secondly, its laissez-faire equilibrium exhibits an additional source of mar-

ket failure (an intergenerational spillover). Specifically, the externality is due to

the positive effect of investment in education on the human capital of not just the

investor, but his children as well. It arises when one’s human capital is determined

partly through education and partly through the human capital one inherits from

his parents. However, in deciding how much to spend on education, individuals

ignore the effect that their decision has on the human capital of their children.4

To address these questions, the paper introduces money in Docquier et al.’s
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(2007) model and rationalizes it through a cash-in-advance constraint. It derives

the dynamics of the model and characterize its balanced growth path under laissez

faire. Subsequently, it derives the first-best allocations of this economy and shows

that they are not affected by the introduction of money.5 It proves that the

implementation of the first-best, i.e. when both physical and human capital are

fully controlled, requires the Friedman rule to be satisfied. This result generalizes

the earlier result of Able (1987) and Gahvari (1988) to overlapping generations

models that incorporate an intrinsic source of externality. It also puts van der

Ploeg and Alogoskoufis’ (1994) contrary result in the right perspective.

Secondly, the paper proves that the Friedman rule holds even in a second-best

environment without an instrument to internalize the externality of education.

As such, it contributes to the literature on the suboptimality of the Friedman

rule in second-best environments that followed Phelps’ (1973) original argument

to this effect. The lesson of that literature is that the validity of the Friedman

rule depends, to a great extent, on what tax instruments the government has

at its disposal. See, e.g., Chari et al. (1991, 1996) who, studying this issue in

the context of the optimal tax literature in public finance, also emphasize the

structure of consumer preferences for this result. Most recent contribution in this

genre is Petrucchi (2011) who shows that restrictions on tax instruments that

violate Diamond and Mirrlees (1971) production efficiency result also violate the

Friedman rule (as well as Chamley (1986) and Judd (1985) zero capital income

taxation result).6

As a contribution to the second-best literature on the Friedman rule, the cur-

rent paper’s novelty is its juxtaposition of an externality to another market failure

problem; namely, that of optimal capital accumulation. That the Friedman rule
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holds even in this environment, may at first appear counter intuitive. The key

to understanding it is that introducing another distortion in the economy via the

violation of the Friedman rule does nothing to alleviate the existing distortion in

human capital accumulation, as long as one fully controls the economy’s stock

of physical capital. The paper highlights this point. Third, the paper studies a

different second-best environment; one in which human capital accumulation can

be controlled but not physical capital accumulation. The paper proves that this

setting calls for the violation of the Friedman rule. In this case, the distortion

due to the violation of Friedman rule does alleviate the distortion due to the lack

of physical capital accumulation. However, in this case, it is also possible for the

Friedman to be satisfied as a boundary condition.

Other grounds covered, and results obtained, include a comparison between

the values that the variables of the model assume in the first- and second-best

environments studied. The second-best with control of physical capital leads to a

lower money growth rate, a higher physical to human capital ratio, and a lower

endogenous rate of growth than the first best. In the second-best with control of

human capital, physical to human capital ratio and the endogenous growth rate

are lower when the monetary growth rate is set optimally and greater when the

Friedman rule is satisfied as a boundary condition. A second result is the existence

of a negative relationship between money growth rate and the endogenous growth

rate of the economy in the cash-in-advance-constraint models à la Hahn and Solow

(1995).

Finally, the paper is related to the vast literature on the Friedman rule, par-

ticularly those written in the context of endogenous growth and/or within the

overlapping generations framework. van der Ploeg and Alogoskoufis (1994) re-
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ferred to earlier is one. Paal and Smith (2000) discuss the suboptimality of the

Friedman rule in a monetary growth model where spatial separation and lim-

ited communication rationalize money holding for transaction purposes. There

are no (offsetting) fiscal instruments in their model and the suboptimality of the

Friedman rule is caused by the impact of bank portfolio reallocations on the real

economy. Most recently, Lai and Chin (2010) show that the Friedman rule is valid

if global capital markets are perfect; in this case distortions cannot be remedied

through monetary policy. On the other hand, with imperfect capital markets

becomes an effective tool for correcting market distortions.7

2 The model and its laissez-faire equilibrium

Consider Diamond’s (1965) two-period overlapping generations model wherein

individuals work in the first period supplying one unit of labor and derive utility

from consuming a composite consumption good in the first- and second-period of

their lives. There is no bequest motive, and population grows at a constant rate.

Append to this model (i) human capital accumulation as modeled by Docquier

et al. (2007) and (ii) money holdings. Output of each period can be used for

consumption in the same period, or retained with no depreciation, to be used next

period as an input either in the educational process of the young or the production

process.8 Endowed with an initial level of human capital, the young decide how

much to invest in their own education to increase their human capital, how much

to save in real assets to finance their future consumption, and how much money

to carry forward into the future. The old, who own all the economy’s physical

and monetary assets, sell their assets and use the proceeds, along with the return

on their real assets, to finance their consumption. The firms hire capital and
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labor to produce the output (used as consumption goods and real savings). All

decisions on human capital accumulation, production, consumption and savings

are undertaken at the beginning of period one and in the order stated.9 These

decisions by individuals and firms determine, as explained below, the temporal

laissez faire equilibrium of the economy under the perfect-foresight assumption on

the part of the young.

2.1 Education

The first decision the young makes is on education. At the beginning of period 

the young start life with a given amount of human capital, or “effective labor,”

−1 that they have inherited from their parents. This level of inherited human

capital may be increased to  by one’s investment in education,  Assume that

the human capital formation technology is characterized by a linear homogeneous

function Φ ( −1) so that

 = Φ ( −1) = −1

µ


−1

¶
 (1)

where  (·) ≡ Φ (· 1). I assume that  (·) is positive, increasing, and strictly
concave with  (0) = 1; it also satisfies the Inada conditions: 0 (0) = ∞ and

0 (∞) = 010

When deciding on how much to invest in their education, the young have no

resources. They thus borrow  each for their own education from the old of the

previous generation. Let  denote the real wage at time  (measured in units

of composite consumption good), and  the real interest rate. The individual

chooses  to maximize  − (1 + ) subject to (1). This yields a solution for
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 characterized by

0
µ



−1

¶
=
1 + 



 (2)

2.2 Production

Firms decide on production after the young’s decision on education. The produc-

tion technology, which also exhibits constant returns to scale, uses capital,  and

effective labor, to produce a composite output,  =  () Let  denote

the number of young persons–equivalently workers–at time , and define output

and capital according to  =   =  From the definitions of  and

 one also has  =  The production function can then be presented by

 =  ( ) Assuming a competitive setting  and  are determined according

to

 = ( ) (3)

 = ( ) (4)

At the beginning of period  prior to the educational and production decisions, the

sum of aggregate capital to be used for educational investment of the young and for

production, + is pre-determined from the savings decisions of the current

old at time −1 when they were young. Specifically, denoting these savings, on an
individual basis, by −1 it must be the case that + = −1−1. Dividing

this equation by  it follows that

 +  =
−1
1 + 

 (5)

where  denotes the constant population growth rate. The system of equations

(1)—(5) determine the equilibrium values for     and  (as functions of

−1 and −1)
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2.3 Monetary policy

The monetary authority injects money into (or retires money from) the economy

at the constant rate of  per period.11 This occurs before consumption takes place.

Denote the aggregate stock of money at the end of period  by  With money

stock changing at the rate of  in every period,  = (1 + )−1 The transfers

are given to (or taken from) the old–who hold all the stock of money–via lump-

sum monetary transfers at the beginning of period . Denote the lump-sum money

transfer to each old person, his share of the change in money supply, by  With

−1 old individuals, it must be the case that  =  (−1−1)  Denoting the

cash holdings of an old person at the beginning of period  by −1 one can write

this relationship as

 = −1 (6)

where −1 ≡ −1−1 Observe that the relationship (6) holds in equilibrium;

otherwise the individual treats  as lump-sum in his optimization problem.

The old’s money holdings during period  thus consists of two components:

their own cash savings from the previous period, −1 and the lump-sum money

transfer from (or to) the government, . Holdings of money is rationalized through

a Clower cash-in-advance constraint. I specify this constraint through the assump-

tion that all agents must finance a fraction of their expenditures on second-period

consumption, , through cash balances. That is,

−1 +  =  (7)

where  is the price level at time  and   1 is the proportion of  that has to

be financed through cash. This specification is due to Hahn and Solow (1995) and

has been used extensively in overlapping-generations models; see, e.g., Crettez
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et al. (1999, 2002) and Michel and Wigniolle (2003, 2005). It may at first appear

restrictive in that it does not apply to first-period consumption expenditures.

However, this is not the case. Extending it to the young will not change the main

results of the paper concerning the Friedman rule; see Appendix B for details.12

Finally, for future reference, denote the inflation rate during period  + 1 by

+1 This is defined by

1 + +1 ≡ +1


 (8)

Also denote the nominal interest rate at +1 by +1 and observe that the nominal

and real interest rates are related according to the Fisher equation,

1 + +1 = (1 + +1) (1 + +1)  (9)

2.4 Consumption and saving

The second decision the young makes concerns consumption and savings. This

occurs after production and money injection. Preferences of the young are repre-

sented by

 = ( +1) (10)

where  denotes consumption in the first period, and (· ·) is strictly quasi-
concave, twice differentiable, and homothetic. Denote a young person’s savings in

real assets by  and his cash balances by . His first- and second-period budget

constraints are given by13

 +  +



=  − (1 + ) (11)

+1 =  (1 + +1) +
 + +1

+1
 (12)

9



The young person, having already determined his educational investment  and

human capital  must choose his present consumption  savings in real assets

 and real cash balances  His decision on cash balances is tied to his future

consumption via the Clower cash-in-advance constraint. Assume constraint (7) is

binding. Rewrite it for time , then divide it by +1 and rearrange the terms to

get



+1
= +1 − +1

+1
 (13)

Incorporate this constraint in the young’s first- and second-period budget con-

straints. Simplification yields,14

 +

∙
1 +

 (1 + +1)

1− 

¸
 =  − (1 + ) +

+1


 (14)

(1− ) +1 =  (1 + +1)  (15)

Substituting for  and +1 from constraints (14)—(15) into ( +1) and

optimizing with respect to  yields the following first-order condition

 ( +1) +1

 ( +1) 
=
1 + +1

1 + +1
 (16)

Equations (14), (15), and (16) determine the values for the current-period vari-

ables  and  under perfect-foresight assumption (as functions of +1 +1 and

+1)
15
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2.5 Dynamics

First, to simplify the exposition, rewrite the variables of the model as a fraction

of effective labor. Denote b ≡ −1 and thus rewrite equations (1) and (2) as

 = −1 (b) 
0 (b) =

1 + 





Similarly, denote b =  =  and b =  =  This allows

the production function to be represented by b = (b) where (·) is positive,
increasing, and strictly concave. One can then rewrite equations (3) and (4) as

 = (b)− b 0(b)
 =  0(b)

Observe that the values of b and b will be determined as soon as  and  are

determined.

Now, to examine the dynamic evolution of this economy, substitute for  from

(5) into equation (15) to get

(1− ) +1 = (1 + ) (+1 + +1) (1 + +1) 

Divide this relationship by  substitute b+1 for +1 b+1 for +1 b+1 for
+1+1  (b+1) for +1 and rearrange the terms to arrive at

(1− ) b+1 = (1 + ) (1 + +1)
hb+1 + b+1 (b+1)i  (17)

With +1 being determined by b+1write the above expression as b+1 = 
³b+1b+1´ 

Second, “solve” equation (13) and +1 =  for  and +1 to get

 =


1 + 
+1+1 (18)

+1 =


1 + 
+1+1 (19)
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It follows from (18) that

+1+1


=



−1
=



−1−1
=
1 + 

1 + 


or
+1


=
1 + 

1 + 

1

1 + +1


Multiply the numerator by  and the denominator of this relationship by

−1−1 to rewrite it as

 (b) b+1b =
1 + 

1 + 

1

1 + +1
 (20)

This expression leads to b+1 = 
³
+1b b´ 

Third, delete  between equations (14)—(15) to get the young’s intertemporal

budget constraint

 + (1 + +1)
+1

1 + +1
=  − (1 + ) +

+1


 (21)

Substitute for +1 from (19) in (21) and rearrange the terms to get

 +

∙
1 +

(+1 − )

1 + 

¸
+1

1 + +1
=  − (1 + )

Divide this equation by  substitute b for  b+1 for +1 b for −1
and  (b) for −1 to arrive at

b + ∙1 + (+1 − )

1 + 

¸ b+1
1 + +1

=  − (1 + )
b

 (b)  (22)

Turning to the first-order condition (16) for utility maximization, the assumption

that the utility function (10) is homothetic, implies that the marginal rate of
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substitution between b and b+1 and between  and +1 are the same. One can

rewrite (16) as



³b b+1´


³b b+1´ = 1 +  +1

1 + +1
 (23)

Eliminating b between (22) and (23), and using the Fisher equation 1 + +1 =

(1 + +1) (1 + +1), one finds b+1 =  (+1 +1  b)  Eliminating +1

between this relationship and b+1 = 
³
+1b b´, the expression for b+1

can be rewritten as b+1 = (+1   bb) With +1 being determined byb+1 and  and  by b one can further rewrite this expression as b+1 =

³b+1b bb´ 
Finally, the system of equations b+1 = 

³b+1b+1´  b+1 = 
³b+1b bb´ 

and the first-order condition (2), which determines b as a function of b leads to
a pair of first-order difference equations of the form

b+1 = Ψ
³b b´  (24)b+1 = Φ
³b b´  (25)

The system of difference equations (24)—(25) determines the dynamic path of the

economy. Moreover, the economy tends to a balanced growth path if equations

(24)—(25) have a steady-state solution and if it is stable. Under the latter two

assumptions, the steady-state values of
³b b´ will be the rest point of equations

(24)—(25).16
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2.6 Balanced growth

At the steady state, equations (23), (22), (17), (20), (9), (2), (4), and (3) are

simplified to17



³b b´


³b b´ = 1 +  

1 + 
 (26)

b+ ∙1− 

1 + 
+



(1 + ) (b)
¸ b =  − (1 + )

b
 (b)  (27)

(1− ) b = (1 + ) (1 + )
hb+ b (b)i  (28)

1 +  =
1 + 

(1 + ) (b)  (29)

1 +  = (1 + )
1 + 

(1 + ) (b)  (30)

0 (b) = 1 + 


 (31)

 =  0(b) (32)

 = (b)− b 0(b) (33)

These equations determine the steady-state values of real variables b bbb 
and monetary variables  and  Observe that while these values remain un-

changed, the values of the other variables of the model grow over time at a constant

rate.18 This is the balanced growth path of the economy. Specifically, let

 ≡  (b)− 1 (34)

Then,  = (1+)−1  = (1+)−1  = (1+)−1  = (1+)−1  = (1+

)−1 and  = (1+)(1+ )−1 Utility also grows over time. Assuming that

the utility function is homogeneous of degree   0, ( +1) = 

 
³b b+1´

so that utility increases by a factor of (1 + )

19
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The following proposition summarizes these results:

Proposition 1 Consider a version of Diamond’s (1965) overlapping-generations

model wherein each generation’s human capital is determined via the level they

inherit from their parents and their own educational attainment. Assume further

that money is an alternative asset to physical capital and required for second period

transactions. On a balanced growth path, per capita educational expenditures, hu-

man capital, physical capital, consumption during working years, and consumption

during retirement all grow at a constant rate  specified in (34). The monetary

variables of the economy, the inflation rate and the nominal rate of interest, re-

main constant and vary with the rate of money growth, . Equations (26)—(33)

characterize the laissez faire balanced growth path of the economy (where a “hat”

on a variable denotes its value per “effective labor”).

3 First best

Let the social welfare function be presented by the discounted sum of the average

of all generations’ lifetime utilities. The first best is then characterized by max-

imizing this function subject to every generation’s human capital formation and

resource constraint. The human capital formation is given by equation (1); the

resource constraint for the generation born at time  is given by

 +  () =  +−1 ++1 ++1+1

which one can alternatively write, by dividing it by  as

 + 

µ




¶
=  +

1

1 + 
 + (1 + ) (+1 + +1) 
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The Lagrangian expression for this optimization problem can then be written as,

$ ≡
∞X
=0

1

(1 + )

(
 ( +1) + 

∙


µ
+1



¶
− +1

¸

+

∙
 + 

µ




¶
−  − 1

1 + 
 − (1 + ) (+1 + +1)

¸)
(35)

where  ∈ (0 1) is the discount rate reflecting the “planner’s” social time pref-
erence, and (1 + ) and (1 + ) are the multipliers associated with the

resource constraint and the human capital equation at time . The first-order

conditions with respect to  +1 +1 +1 and +1 are

( +1) =  (36)

( +1) =
+1

(1 + )(1 + )
 (37)

(1 + ) = +1

h
(b+1)− b+1 0(b+1)i+ +1 [(b+2)− b+20 (b+2)]  (38)

(1 + )(1 + ) = +1

h
1 +  0(b+1)i  (39)


0 (b+1) = (1 + ) (40)

Finally, the transversality condition is

lim→∞
+1 + +1

(1 + )
= 0 (41)

In characterizing the optimal values of the economic variables, when manipu-

lating the first-order conditions (36)—(40), I pay close attention to which deriva-

tions use (39), the first-order condition with respect to +1 and which use (40),

the first-order condition with respect to +1. This facilitates the characterization

of second-best outcomes that I shall discuss later in which the planner cannot
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control one or the other of the variables +1 and +1. Thus derive an expression

for +1 once from (37) by writing it for  + 1 and  and dividing one by the

other, and once from dividing (37) by (36). One gets the following two equations

+1


=

( +1)

(−1 )
=


−1
 

³b b+1´

−1
−1 

³b−1 b´ = [ (b)]−1


³b b+1´


³b−1 b´  (42)

+1


= (1 + )(1 + )

( +1)

( +1)
= (1 + )(1 + )



³b b+1´


³b b+1´  (43)

It then follows from (42)—(43) that



³b b+1´


³b b+1´ = [ (b)]−1
(1 + )(1 + )



³b b+1´


³b−1 b´  (44)

Observe that neither (39) nor (40) has been used in deriving (44).

Next, substituting from (4) in (39) yields +1 = (1 + )(1 + )(1 + +1).

Equating this to the expression for +1 in (43) and using (44)

1 + +1 =
(1 + )(1 + )

[ (b)]−1


³b−1 b´


³b b+1´  (45)

Observe that (45) uses (39) but not (40).

Finally, use equation (40) to substitute for  and +1 into (38). Divide the

resulting equation by , substitute for +1 from (42), and manipulate to arrive

at

0 (b+1) = 1 + 

+1

⎧⎨⎩[ (b)]1− (1 + )


³b−1 b´


³b b+1´ − 0 (b+1)
0 (b+2) [(b+2)− b+20 (b+2)]

⎫⎬⎭ 

(46)

This equation uses (40) but not (39).
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3.1 Balanced growth

On the balanced growth path, b and b+1 remain constant over time so that
equations (44), (45), and (46) simplify to



³b b´


³b b´ =
1

(1 + )(1 + ) [ (b)]1−  (47)

1 +  = (1 + )(1 + ) [ (b)]1−  (48)

0 (b) =
1 + 



n
(1 + ) [ (b)]1− − [(b)− b0 (b)]o  (49)

Observe also that on a balanced-growth path the transversality condition (41)

reduces to20

[ (b)]
1 + 

 1 (50)

In what follows I assume   121

Equations (47)—(49) constitute the three margins that should be determined

“correctly”; none is assured at the laissez-faire equilibrium. Condition (47) shows

the first-best marginal rate of intertemporal substitution in consumption. Its

counterpart at the steady-state laissez-faire equilibrium is equation (26) indicating

that the real and nominal interest rates govern its value in the market. Condition

(48) is a version of the modified golden rule, adjusted for the endogenous growth

rate. As is well known, this condition is not generally satisfied at the laissez

faire equilibrium. The third condition, equation (49), characterizes the optimal

educational investment rule. To see how this condition differs from its counterpart

at the steady-state laissez faire equilibrium, substitute from (48) into (49) to get

0 (b) = 1 + 


− (1 + ) [(b)− b0 (b)]


 (51)
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This equation differs from the corresponding laissez faire equation (31) in that

the latter does not include the second expressions on the right-hand side. This

reflects the externality that parents bestow on their children by educating them-

selves. Recall that education increases one’s human capital which also enhances

the human capital of one’s children. Parents do not take this externality into

account when deciding on their own educational attainment. Observe also that

this is a positive externality. The above equation is in accordance with this in

that with (·) being concave, (b)− b0 (b)  0 so that 0 (b)  [1 + ] 

Now while the laissez-faire equilibrium, in and of itself, does not satisfy any of

these three conditions, the government can muster enough instruments to ensure

the satisfaction of all three. The most crucial element for this is ensuring that

capital accumulation follows the modified golden rule. This can be achieved by

levying of generation-specific lump-sum taxes. Given the satisfaction of this rule,

i.e. equation (48), condition (47) will be satisfied by setting  = 0 so that the

opportunity cost of holding money is zero (as required by the Friedman rule).

Finally, subsidizing educational expenditures guaranteed that condition (49) is

satisfied. I demonstrate this below.

3.2 Decentralization

Let 

 and  denote lump sum taxes imposed at time  on the living young and

the old, and  denote the rate of subsidy on educational expenditures. These

taxes are related through the government’s budget constraint so that



 +−1


 −(1 + ) = 0
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Or, dividing by −1

(1 + )

∙b − (1 + )
b

 (b)
¸
+

b
 (b) = 0 (52)

where b = 

  and b =  −1 Observe also that b and b+1 remain invariant

on the balanced growth path so that 

 = (1 + )


−1 and  = (1 + )−1

Allowing for the above tax rates, and eliminating b through the government’s
budget constraint (52),22 equations (27), (28), and (31) change to

b+ ∙1− 

1 + 
+



(1 + ) (b)
¸ b =  − (1 + )

b
 (b) +

∙
1

(1 + ) (b) − 1

1 + 

¸ b(53)
(1− )b = (1 + ) (1 + )

h
(1− )b+ b  (b)i− b (54)

0 (b) = (1− ) (1 + )


 (55)

The remaining steady-state equations in (26)—(33) do not change. Thus the market

solutions for b b bb   and  are now found from equations (26), (29), (30),
(32), (33), and (53)—(55). To have these equations lead to the first-best balanced

growth path characterized by (47)—(49), the policy instruments must be set as

follows. First, lump-sum taxes   must be set such that the modified golden

rule (48) is attained. This requirement is commonplace in overlapping generations

models. Second, to have the first-best condition (49), or (51), satisfied, a subsidy

is required on the purchase of . The subsidy rate is found from (49) and (55) to

be23

 =
1 +  − (1 + )(1 + ) [ (b)]1−

1 + 
+
(1 + ) [(b)− b0 (b)]

1 + 


where b and  take their first-best values. Observe also that in the first best, with
condition (48) satisfied, the above relationship is simplified to

 =
(1 + ) [(b)− b0 (b)]

1 + 
 (56)
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Finally, attaining (47), simultaneously with (48), is predicated on the well-

known result in the money literature that at the optimum there should be no

opportunity cost in holding money; that is that  must be equal to zero. To have

(47) satisfied, in the face of (48), one must set  = 0 in equation (26).24 The

implication of this for the rate of money growth is straightforward. Substituting

 = 0 in equation (9) yields (1 + ) (1 + ) = 1 so that from (48)

1 +  =
1

(1 + )(1 + ) [ (b)]1−
It then follows from (29) that

 =
[ (b)]
1 + 

− 1 = (1 + )


1 + 
− 1  0 (57)

where b and  are set at their first-best values. The sign of  follows from the

transversality condition (50).25

The following proposition summarizes the results of this section.

Proposition 2 Consider the economy of Proposition 1. The first-best balanced-

growth path of this economy is characterized by equations (47)—(49). It can be

decentralized using generation- specific lump-sum taxes, a subsidy on educational

expenditures given by equation (56), and the satisfaction of the Friedman rule that

requires the opportunity cost of holding money to be zero.

4 Second best with control of physical capital

Assume now that educational subsidies are unavailable so that the level of in-

vestment in education is not optimal. The question I want to address is if the

Friedman rule continues to be optimal as long as the government can control the
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level of physical capital in the economy. To answer this question, I first character-

ize the second-best allocation when  can be controlled but not  The formulation

of this problem is exactly as that in the first best with the sole difference of not

being able to optimize over  The optimization problem is summarized by the

Lagrangian (35) where the optimization is done with respect to  +1 +1 and

+1. The corresponding first-order conditions are (36)—(39). Specifically, first-

order condition (40) with respect to +1 does not hold which means equation

(46), and thus (49), do not hold. The equations that characterize this second best

are (44) and (45) and their corresponding balanced growth versions, equations

(47) and (48).

The satisfaction of equation (47) in this second best means that the intertem-

poral consumption decision must remain undistorted (even though the choice of

 is distorted). Interestingly, as long as one can control b and thus  =  0(b), the
condition for an undistorted intertemporal consumption decision remains  = 0.

This follows because the other second-best optimality condition, the modified

golden-rule condition (48), requires one to set 1 +  = (1 + )(1 + ) [ (b)]1−.
Setting  = 0 on top of this ensures that the intertemporal consumption decision

remains undistorted. We have:

Proposition 3 Consider the economy of Proposition 1. The Friedman rule holds

in a second-best environment of this economy wherein the levels of education and

human capital are suboptimal, as long as physical capital can be controlled and the

modified golden rule is satisfied.
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4.1 Why the Friedman rule?

Given our second-best environment, one may wonder why introducing an addi-

tional distortion through the violation of the Friedman rule does not improve

welfare. The answer lies in the manner that inflation affects the decentralized

equilibrium solution of the economy in relation to the optimality conditions that

characterize its first-best allocation. Specifically, observe that inflation has no

direct effect on educational investment decisions. It can affect b only through b
via equation (31). Now there is no benefit to using inflation to affect b given thatb is fully controlled through generation-specific lump-sum taxes. Consequently,

deviation from the Friedman rule, while having an adverse effect on intertemporal

consumption decisions, has no countervailing effect on b
Figure 1 illustrates this point diagrammatically. Given full control of b, the

government can ensure that the equilibrium values of b and b satisfy the modified
golden rule condition (48)

1 +  = (1 + )(1 + ) [ (b)]1− 
Differentiation establishes that the graph of this curve slopes downward as drawn

in Figure 1. Observe that the government need not resort to inflation to satisfy

this relationship.

Next consider the graph of (31) that determines b as a function of b in the
laissez-faire (second-best equilibrium):

0 (b) = 1 + 


=

1 +  0(b)
(b)− b 0(b) 
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Differentiating this equation with respect to b yields
b
b =  + (1 + )b

2

 00
³b´

00 (b)  0 (58)

Intuitively, as b increases, (1+) declines and this lowers the cost of borrowing

to educate oneself relative to returns to education. This, in turn, increases the

demand for education. It follows from equation (58) that the graph of (31) slopes

upward. Inflation has no effect on (31); it does not shift it. The intersection of

the graphs of (48) and (31) shows the second-best equilibrium.

4.2 Second-best versus first-best

To compare the second-best values for b and b versus their first-best counterparts,
observe that whereas the modified golden rule condition (48) applies in both cases,

the second-best laissez-faire condition (31) 0 (b) = (1 + )  is replaced by

0 (b) = 1 + 


− (1 + ) [(b)− b0 (b)]



1 + 


(59)

in the first best. The inequality sign in (59) follows from the concavity of (·)
It then follows from equations (31) and (59) that 0

³b ³b´´  0
³b ³b´´

where superscripts  and  denote first best and second best. The concavity

of (·) then implies b ³b´  b ³b´ so that the graph of b ³b´ is above
graph b ³b´  This is depicted in Figure 1. Observe that the first-best value ofb exceeds its second-best value, while the first-best value of b is smaller than its
second-best value. We have b  b and b  b
The finding that b  b and b  b allows one to compare the first-

best and second-best values of the other variables of interest. Specifically, withb  b it follows that    and    However, at any given
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time  it is not  that matters to the individual but . Now  grows at

the rate of  = (b) − 1 in the first best and  = (b) − 1 in the
second best, with    Finally, observe that while  = 0 in both first and

second best, the corresponding money growth rate that induces this differs across

the two equilibria. Because condition (45) holds in the second best as well, the

corresponding monetary growth rate continues to be given by equation (57)

 =
[ (b)]
1 + 

− 1

With b  b, the optimal monetary growth rate–the Friedman rule–calls
for a smaller monetary growth rate. That is

    0

These results are summarized as:

Proposition 4 Consider the economy of Propositions 2 and 3. Let b denote
physical capital to human capital ratio,  denote the growth rate of the economy,

 denote the money growth rate, and superscripts  and  denote the cor-

responding first- and second-best solutions of this economy. Then, b  bb  b    and     0

5 Second best without control of physical capital

Assume now that differential lump-sum tax and transfers are not feasible and the

government cannot control the level of physical capital in the economy. How-

ever, educational subsidies are available and b is set optimally. To characterize
this second-best equilibrium, one can again formulate the problem as in the first
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best with the exception of not optimizing over  Specifically, the optimization

problem is summarized by the Lagrangian (35) where the optimization is done

with respect to  +1 +1 and +1. The first-order condition that does not

hold in this case is (39), and thus (45) and (48). The equations that character-

ize this second-best allocation are then (47) and (49). One continues to require

an undistorted intertemporal consumption decision and an undistorted decision

concerning educational expenditures.

Unlike the previous two cases, the Friedman rule of  = 0 no longer ensures

that equation (47), requiring an undistorted intertemporal consumption decision,

is satisfied. This arises because the modified golden rule condition (48) does not

hold in this second best. Specifically, to bring about an undistorted intertemporal

consumption decision, i.e. to satisfy (47), one must set  and , from (26) and

(30), according to condition is satisfied if

 =
(1 + ) [ (b)]−1 − (1 + )(1 + )

 (1 + ) (1 + )
 (60)

 = −1 + (1 + ) [ (b)] − (1− ) (1 + )(1 + ) (b)
 (1 + ) (1 + )

 (61)

However, given that one does not control b to ensure 1 +  = (1 + )(1 +

) [ (b)]1−  and given that  ≥ 0 equation (60) tells us that (47) is satisfied

only if 1 +   (1 + )(1 + ) [ (b)]1−  That is, the equilibrium is characterized

by a “low” physical-capital to human-capital ratio b. This makes sense. With
 ≥ 0 one can push 

³b b´  ³b b´ = (1 + )  (1 + ) only upwards. And

this will be helpful if 

³b b´ 

³b b´ is, in the absence of inflation, “too small”
(which arises if  is too high relative to its modified golden rule level). Figure 2

depicts this case wherein b  b and b  b It then also follows that in
this case   
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On the other hand, if the laissez-faire solution entails too much capital, and

a low  then (47) is not satisfied. Under this circumstance, one wants to deflate

the economy and the Friedman rule is satisfied as a boundary condition. Figure

3 depicts this case for which b  b and b  b so that   

Proposition 5 Consider the economy of Proposition 1. Assume that the govern-

ment can control human capital fully but not physical capital.

(i) The second-best balanced growth is characterized by equations (47) and (49).

(ii) There are two types of equilibrium. One is characterized by a “low” value of

physical-capital to human-capital ratio for which the Friedman rule is not optimal.

Under this circumstance, the optimal nominal interest rate is given by equation

(60) and the optimal monetary growth rate by (61). In this case, b  bb b and   

(iii) The other type is characterized by a “high” value of physical-capital to

human-capital ratio for which the Friedman rule is satisfied as a boundary condi-

tion. In this case, b  bb  b and   

6 Third best and the Friedman rule

I now consider the desirability of the Friedman rule in an environment without

generations-specific lump-sum taxes and education subsidies. The only available

instrument to influence the economy is the monetary authority’s control of the

growth rate of money supply (without any coordination from the fiscal side). As

a first step, I establish a result concerning the effect of money growth on the

steady-state balanced-growth laissez-faire solution of the economy. Specifically, I
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prove in Appendix A that

b


 0

This result is, in and of itself, an interesting one. It also implies that inflation

lowers the growth rate of the economy. This follows from the laissez-faire condition

(31) that governs the relationship between b and b Its differentiation with respect
to  yields

b

=

 + (1 + )b
2

 00
³b´

00 (b) b
b 

so that b and b are of the same sign. Consequently, b  0 Observe
also that with the growth rate of the economy being  =  (b)− 1 and 0 (b)  0
 moves positively with b and




 0

The dampening effect of money creation on growth appears at odds with the

earlier results of van der Ploeg and Alogoskoufis (1994) and Mino and Shibata

(1995) who find that a rise in money growth rate tends to boost the balanced

growth rate. The main reason for this difference lies in the way money holdings

are rationalized in those models as opposed to here. In those studies, real cash bal-

ances enter directly into the utility function. Given this formulation, an increase

in  increases the cost of holding money relative to consumption goods. Indi-

viduals respond by substituting away from consumption of money services into

consumption of physical goods. Accommodating this increase in demand then

generally requires a higher amount of real savings and capital accumulation.26 In

the present model, on the other hand, inflation works like a tax on future goods

relative to present goods. A higher  decreases the demand for future goods

relative to today’s. This results in lower real savings and capital accumulation.
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It is important to point out that it is not just the cash-in-advance constraint

modeling that is behind this result. The negative effect of money creation on

growth depend also on the particular modeling of the cash-in-advance constraint.

Unlike the rest of the results of the paper particularly those concerning the Fried-

man rule, this result may be reversed if the constraint applies to the expenditures

of the young as well. In this latter formulation, the constraint works like a tax on

consumption in both periods. If, as a percentage of their expenditures, the young

will have to hold more cash than the old, the effective tax on present consumption

will be higher than on future consumption leading to a substitution into future

goods. See Appendix B.

Turning to the desirability of the Friedman rule in this case, consider two

possible solutions that can emerge at  = 0 One is that 1 +   (1 + )(1 +

) [ (b)]1− so that the equilibrium is characterized by “too much” capital. Under
this circumstance, the b  0 result suggests that increasing the money growth
rate moves the economy in the right direction by lowering b However, that 1+ 
(1 + )(1 + ) [ (b)]1− also suggests bb exceeds its optimal value at  = 0;

see (47). Increasing bb through inflation increases the intertemporal distortion
further.

Second, assume that at  = 0 1 +   (1 + )(1 + ) [ (b)]1− so that the
economy is characterized by “too little” capital. Under this circumstance, inflation

further reduces b and, on this score, worsens welfare. However, in this case, bb
is less than optimal and inflation moves it in the right direction. Either way, the

opposing effects on welfare renders the result ambiguous.

The results of this section are summarized as:

Proposition 6 Consider the economy of Proposition 1.
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(i) An increase in the money growth rate leads to a reduction in the balanced

growth path values of the physical capital per human capital ratio and the rate of

growth of the economy.

(ii) If the only instrument through which the government can influence the

economy is the growth rate of money supply, with no coordination from the fiscal

side, the Friedman rule may or may not be optimal.

7 Conclusion

This paper has studied the implications of introducing money into an overlapping-

generations model with endogenous growth where the rationalization for money

holding comes from the Clower’s cash-in-advance constraint. It has considered an

economy populated with finitely-lived individuals whose human capital is deter-

mined partly through education and partly through their inherited human capital.

Throughout the paper, to emphasize allocative efficiency, the paper has assumed

no government tax requirements. With an external revenue requirement, one can

always reject the Friedman rule by suitably ruling out certain fiscal instruments.27

The main message of the paper has been that, as long as the government can

fully control the level of physical capital in the economy and sets it to satisfy

the modified golden rule, the Friedman rule remains optimal. The result holds

regardless of the ability of the government to control the level of human capital.

With the control of human capital, controlling physical capital yields a first-best

environment. Given this perspective, the result has generalized the earlier result

of Abel (1987) and Gahvari (1988) derived for overlapping-generations models

without endogenous growth. Without the control of human capital, the economy

is in a second-best environment. The result thus contradicts one’s intuition based
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on the second-best theory. The paper has clarified this apparent contradiction by

demonstrating that introducing an additional distortion in the economy, via the

violation of the Friedman rule, does nothing to alleviate the existing distortion

in human capital accumulation as long as one can fully control physical capital

accumulation. Furthermore, the paper has demonstrated that notwithstanding a

zero nominal interest rate in both first- and second-best environments, the mon-

etary growth rate and the economy’s endogenous rate of growth are both smaller

in the second best.

The paper has also studied another second-best environment; one in which

human capital accumulation can be controlled but not physical capital. It has

shown that in this setting the distortion due to the violation of the Friedman

rule does alleviate the distortion due to the lack of physical capital accumulation.

Here, second-best optimality calls for the violation of the Friedman rule. However,

it is also possible for the Friedman rule to be satisfied in this case as a boundary

condition.

A final interesting result is the possibility of a negative relationship between

money growth rate on the one hand and the endogenous growth rate of the econ-

omy on the other. The reason for this is that, in a cash-in-advance constraint

model, holding on to cash works like a tax on consumption goods. To the extent

that the constraint applies more to the future goods as opposed to present, as in

the cash-in-advance-constraint models à la Hahn and Solow (1995), future goods

are taxed more heavily relative to present goods. This decreases the demand for

future goods relative to today’s resulting in lower real savings and capital accumu-

lation. However, this particular result may be reversed if the young have to hold

on to cash more than the old making the present goods relatively more expensive.
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Appendix A

Satisfaction of the economy’s resource constraint: Rewrite the old’s bud-

get constraint (12) for time  while substituting (1 + )−1 for −1+  so that

 = −1 (1 + ) +
(1 + )−1



= −1 (1 + ) +
(1 + )




Eliminate  between this equation and equation (11) to get

 − −1 (1 + )

1 + 
=  − (1 + )− ( + )

Rearranging the terms yields

 +


1 + 
=  − (1 + )−  +

−1 (1 + )

1 + 

Substituting for  and −1 from (5) in above and simplifying results in

 +


1 + 
+ (1 + ) (+1 + +1) =  +  (1 + )

=  +  + 

=  + 

which is the economy’s resource constraint.

Local stability of the steady-state solution: To examine the (local) sta-

bility properties of the steady-state solution, I linearize the system of difference

equations (24)—(25) around the steady-state solution
³b b´ according to

Ã b+1 − bb+1 − b
!
=

⎛⎝ Ψ

³b b´ Ψ

³b b´
Φ

³b b´ Φ

³b b´
⎞⎠Ã b − bb − b

!
≡ Ω

Ã b − bb − b
!
 (A1)

where ΨΨΦ and Φ denote the partial derivatives of Ψ(·) and Φ(·) with
respect to  and  The dynamic path given by (A1) converges to a steady state

32



as  increases (i.e., b − b and b − b tend to zero), if at time  = 0, the initial

values of b0 and b0 are such that ³b0 − b b0 − b´ is in the space spanned by
the eigenvectors of Ω that are associated with the eigenvalues of Ω with modulus

smaller than one. Now, at  = 0, the value of b0 is pre-determined. However, the
value of b0 depends on 0. Consequently, the system will be stable for any value

of 0 if Ω possesses two eigenvalues with modulus less than one. If there is only

one eigenvalue with a modulus less than one, then there will be one value for 0

and a unique path which leads to the steady state.

Proof of b  0: Substitute for  from equation (30) into equation (26) and

simplify to get



³b b´


³b b´ = 1− 

1 + 
+

 (1 + )

(1 + ) (b)  (A2)

With equations (32)—(33) determining  and  as functions of b equations (27)
and (A2) determine b and b as functions of bb and . Moreover, equation (31)

relates b to  and  and thus to b Substituting for b as a function b in (27) and
(A2) then yields the solution for b and b as functions of b and  only: b³b ´
and b³b ´ 
Combine equations (27) and (28), and substitute b³b ´ and b³b ´ in it to

arrive at

(1 + )
hb ³b³b´´+ b³b´i =  − (1 + )

b³b´

³b³b´´ − b

³b ´− 

1 + 

b³b ´

³b³b´´ 

(A3)

Rewrite equation (A3) as

Θ
³b ´ ≡(1 + )

hb ³b³b´´+ b³b´i−⎡⎣ − (1 + )
b³b´


³b³b´´ − b

³b ´− 

1 + 

b³b ´

³b³b´´

⎤⎦ = 0
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The Θ
³b ´ = 0 relationship gives the equilibrium value of b as a function of 

Differentiating it totally with respect to  yields

Θ
³b ´
b b


+

Θ
³b ´


=

Θ
³b ´
b b


+

b³b ´


+


1 + 

1

 (b) 
b³b ´


= 0

Rearranging and defining Γ ≡ Θ
³b ´ b yields

b

= − 1

Γ

"
b

+



(1 + ) (b)  b
#
 (A4)

Now observe that one can think of the left-hand side of (A3) as the demand forb and its right-hand side as the supply of b The static stability condition then
requires that the excess demand function Θ

³b ´ to be downward-sloping in 

or upward-sloping in b Consequently, Γ  0

Next determine the bracketed expression on the right-hand side of (A4) by

partially differentiating the system of equations (27) and (A2) with respect to 

The resulting equations are, in matrix notation,Ã b −  b b −  b
1 1−

1+
+ 

(1+)()
!µ



 


¶
=

µ
 

(1+)()
0

¶
 (A5)

Let

∆ ≡
µb − bb b

¶∙
1− 

1 + 
+



(1 + ) (b)
¸
−
µb − bb b

¶
 (A6)

denote the determinant of the 2× 2 matrix that appears on the left-hand side of
(A5). Premultiplying (A5) by the inverse of this matrix yieldsµ



 


¶
=
1

∆

Ã
1−
1+

+ 
(1+)() −b +  b
−1 b − b 

!µ
 

(1+)()
0

¶
 (A7)
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Then rewrite (A7) as

b
b =

1

∆

∙
1− 

1 + 
+



(1 + ) (b)
¸

 b
(1 + ) (b)  (A8)

 b
b =

1

∆

− b
(1 + ) (b)  (A9)

To determine the sign of (A8)—(A9) one must determine the sign of ∆ Clearly,

bb is of the same sign as ∆ and  bb is of the opposite sign to ∆ To do this,

rewrite (A6) as

∆ = −
∙
1− 

1 + 
+



(1 + ) (b)
¸ bb b − b +

∙
1− 

1 + 
+



(1 + ) (b) + bb
¸ b

=

∙
1− 

1 + 
+



(1 + ) (b)
¸µb − bb b

¶
+

µbb b − b
¶


Assuming  and  are normal goods, one can easily show that b−(bb) b  0
and (bb) b−b  0 (where due to quasi-concavity of preferences,− (bb)2 b−b+2 (bb) b  0). Consequently, ∆  0 Given the sign of ∆ it follows that

bb  0 and  bb  0 Intuitively, as  increases the relative price of future

goods to present consumption increases so that consumers respond by lowering

their consumption of future goods and increasing their consumption of present

goods.

Finally, substituting for b and  b from (A8)—(A9) into the bracketed

expression on the right-hand side of (A4) yields

b

+



(1 + ) (b)  b = 1

∆

 (1− ) b
(1 + ) (1 + ) (b)  0

It then follows from (A4) that

b


 0

Appendix B

Clower cash-in-advance constraint applied to expenditures in both

periods
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As previously, at the beginning of each period, the old hold all the stock of

money  Hence the young will have to borrow money from the old in order to

finance their transactions (they have no assets of their own). The old will charge

the young a rate of return on these lendings equal to what they can earn on

real assets. Otherwise, rather than carrying cash for the young, they invest their

savings in real assets and for their own transaction needs. Let 

 and 

 denote

the amount of cash needed for transactions of each young and each old person at

time  A young person spends (1 + )

 when he buys 


 from the old at the

beginning of period  (prior to the money injection into the economy that pushes

prices from −1 to ). At the end of period  he will also purchase the money used
by the old for their own transactions. This is equal to −1

 = 
 (1 + )

and is inclusive of the money distribution to the old. Consequently, the first-period

budget constraint of the young, equation (11), will change to

 +  + (1 + )






+




1 + 
=  − (1 + ) (B1)

Come the second period, the  individuals have grown old and, at the at the

beginning of period +1 will sell +1

+1 money to the young of that period for

their money transactions. Thus each old person sells +1

+1/ = (1 + )


+1

for which he receives (1 + )

+1 (1 + +1)  Then, at the end of period +1 each

old person will sell what he used for transactions himself, 
+1 Again, taking

place at the end of the period, this is inclusive of money distributions. The

second-period budget constraint for the young of period  equation (12) of the

text, now changes to

+1 =  (1 + +1) + (1 + )



+1

+1
(1 + +1) +


+1

+1
 (B2)

Recall also that money grows in the economy according to the relationship

+1 = ++1

which one can write as

+1

+1 +


+1 = 


 +−1


 ++1
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Dividing by  and rearranging,

(1 + )

+1 +

+1 = 

 +




1 + 
+ +1 (B3)

Substituting for (1 + )

+1 from (B3) into (B2), and writing (1 + +1) +1

for (1 + +1)  one can rewrite the second-period budget constraint as

+1 =

µ
 +


 +




1 + 
+ +1 −

+1

¶
1 + +1

+1
+


+1

+1
 (B4)

Eliminating  between (B1) and (B4), and simplifying yields

+1 =
£
 − (1 + )−  − 


 + +1 −

+1

¤ 1 + +1

+1
+


+1

+1

=

∙
 − (1 + )−  − 






+

+1


− 

+1



¸
(1 + +1) +


+1

+1


Dividing by (1 + +1)  simplifying and rearranging the terms, one can write the

above intertemporal budget constraint as

 + 






+

1

1 + +1

∙
+1 + +1


+1

+1

¸
=  − (1 + ) +

+1


 (B5)

The Clower cash-in-advance constraint in this case can be written as,






=  (B6)


+1

+1
= +1 (B7)

where I have allowed for the proportion of expenditures to be financed through

cash to be different in the two periods. Substituting these expressions in (B5)

yields,

(1 + )  + (1 + +1)
+1

1 + +1
=  − (1 + ) +

+1


 (B8)

This equation replaces (21) in the text. The individual’s optimization problem

then yields
 ( +1) +1

 ( +1) 
=

1 + +1

(1 + ) (1 + +1)
 (B9)
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which replaces (16).

Next, substituting



+1 =

1 + 

1 + 



 


+1 =

1 + 

1 + 


 

in (B3) and simplifying, then using (B6)—(B7), one finds the value of +1 to be

+1 = 

 +



1 + 


+1

=  +


1 + 
+1+1

Substituting in (B8) yields, after simplification,

[1 +  ( − )]  +

∙
1 +

 (+1 − )

1 + 

¸
+1

1 + +1
=  − (1 + )

Divide this equation by  to get

[1 +  ( − )]b + ∙1 + (+1 − )

1 + 

¸ b+1
1 + +1

=  − (1 + )
b

 (b)  (B10)

This equation replaces equation (22) in the text. The two equations (B9)—(B10),

replacing (16) and (22), are the only equations relevant for determining the tem-

poral equilibrium of the economy that change as result of having a cash-in-advance

constraint for the young as well.

Turning to the laissez faire balanced-growth path of the economy, characterized

by equations (26)—(33) in the text, equations (26)—(27) are replaced by the steady-

state versions of (B9)—(B10), where in (B10) I have substituted for − from (30),



³b b´


³b b´ = 1 + 

(1 + ) (1 + )
 (B11)

½
1 +  (1 + )

∙
1 + 

(1 + ) (b) − 1
¸¾b+ ∙1− 

1 + 
+



(1 + ) (b)
¸ b =  − (1 + )

b
 (b) 

(B12)

38



The implications of these changes for the results of the paper can now be checked.

If  6=  it follows from the above equations that unless  = 0 the first-

best conditions 

³b b´  ³b b´ = 1 (1 + ) = (1 + )(1 + ) [ (b)]1− will
not be satisfied in the laissez-faire equilibrium. On the other hand, if  = 



³b b´  ³b b´ = 1 (1 + ) and if capital is controlled through lump-sum

taxes to ensure 1 +  = (1 + )(1 + ) [ (b)]1− it appears that the optimal
monetary policy is indeterminate. However, I prove below that even in this case

the Friedman rule must hold.

To see the necessity of the Friedman rule when capital is fully controlled,

consider (B12). In this equation, only the price of b depends on  It is plain that
individuals attain their highest utility level if  is set to minimize this price. Now

with capital being set optimally, 1 +  = (1 + )(1 + ) [ (b)]1−  and the price
of b becomes

1 +  (1 + )

∙
1 + 

(1 + ) (b) − 1
¸
= 1 +  (1 + )

n
(1 + ) [ (b)]− − 1o 

Moreover, from the transversality condition (50) for the optimal balanced growth

path, (1+ ) [ (b)]− − 1  0 Hence the price of b is minimal when 1+  assume

its smallest value. But, because  ≥ 0

1 +  =
(1 + ) (1 + )

(1 + ) (b) ≥ 1
or

1 +  ≥ (1 + ) (b)
1 + 



Consequently, the smallest value of 1+ is attained when 1+ = (1 + ) (b)  (1 + ) 

This, in turn, implies that  = 0

These results sow that our findings in Propositions 1—4 remain valid. The

same is true for the general message of Proposition 5 unless  =  To see this,

observe that the satisfaction of an undistorted intertemporal decision, condition

(47), now requires are now replaced by

 = − (1 + )− (1 + ) (1 + ) [ (b)]1−
 (1 + )−  (1 + ) (1 + ) [ (b)]1− 

 = −1 + (1− ) (1 + )
2
(1 + ) [ (b)]2− − (1− ) (1 + ) (1 + ) (b)

 (1 + )
2 −  (1 + ) (1 + ) (1 + ) [ (b)]1− 
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These conditions replace (60)—(61) in the text. Three possibilities arise. If   

we have a similar case to that in the text where  = 0 Under this circumstance, if

1+  (1 + ) (1+) [ (b)]1−  condition (47) can be satisfied by opting for   0
and pushing 

³b b´  ³b b´ upwards. And if 1+  (1 + ) (1+) [ (b)]1− 
the Friedman rule is satisfied as a boundary condition. Second, one can have

   Then if 1 +   (1 + ) (1 + ) [ (b)]1−  condition (47) can be satisfied
by opting for   0 and pushing 

³b b´  ³b b´ = (1 + )  (1 + ) (1 + )

downwards. On the other hand, if 1+   (1 + ) (1+) [ (b)]1−  the Friedman
rule is satisfied as a boundary condition. The third possibility is that  = 

Under this circumstance, 

³b b´  ³b b´ is independent of  With 1 +  6=
(1 + ) (1 + ) [ (b)]1−  condition (47) can never be satisfied. Friedman rule is
then again satisfied as a boundary condition.

Finally, consider Proposition 6. Substitute for  from equation (30) into (B11)

to get



³b b´


³b b´ = 1

1 + 

(1− ) (1 + ) (b) +  (1 + ) (1 + )

(1− ) (1 + ) (b) +  (1 + ) (1 + )
 (B13)

Using (31), one can solve equations (B12)—(B13) to derive b³b ´ and b³b ´ 
Next combine (28) with equation (B12), the replacement for (27), and substituteb³b ´ and b³b ´ in the resulting equation to get

Θ0
³b ´ ≡(1 + )

hb ³b³b´´+ b³b´i−⎧⎨⎩ − (1 + )
b³b´


³b³b´´ −b³b ´− 

1 + 

b³b ´

³b³b´´

⎫⎬⎭ = 0

(B14)

where

 ≡
∙
1 +  (1 + )

µ
1 + 

(1 + ) (b) − 1
¶¸


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This equation replaces (A3). Differentiating (B14) totally with respect to  yields

Θ0
³b ´
b b


+

Θ0
³b ´


=

Θ0
³b ´
b b


+ 

∙
1 + 

(1 + ) (b) − 1
¸b³b ´+


b³b ´


+



1 + 

1

 (b) 
b³b ´


= 0 (B15)

Rearranging (B15)

b


= − 1
Γ0


∙
1 + 

(1 + ) (b) − 1
¸b³b ´

− 1
Γ0

⎧⎨⎩
b³b ´


+



1 + 

1

 (b) 
b³b ´


⎫⎬⎭  (B16)

Equation (B16) replaces equation (A4) where Γ0 ≡ Θ0
³b ´ b  0 (due to the

same stability condition).

Next, one can determine b³b ´  and  b³b ´  by partially differ-
entiating (B12)—(B13) with respect to  A bit of tedious algebraic calculations

yields Ã b −  b b −  b
 1−

1+
+ 

(1+)()
!µ



 


¶
=⎛⎝ ()−(1+)()

{(1−)(1+)()+(1+)(1+)}
−
h

1+
(1+)() − 1

ib
⎞⎠  (B17)

Premultiplying (B17) by the inverse of the 2×2 matrix on its left-hand side yieldsµ


 


¶
=

1

Ω

Ã
1−
1+

+ 
(1+)() −b +  b
− b −  b

!
×⎛⎝ ()−(1+)()

{(1−)(1+)()+(1+)(1+)}
−
h

1+
(1+)() − 1

ib
⎞⎠  (B18)
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where

Ω ≡
∙
1− 

1 + 
+



(1 + ) (b)
¸µb − bb b

¶
+

µbb b − b
¶
 0

A bit more algebraic manipulation reveals that at (1 + )  (1 + ) (b) = 1
b


= − 1
Γ0

⎧⎨⎩b³b ´


+


1 + 

1

 (b) 
b³b ´


⎫⎬⎭
= − 1

Γ0
(− ) (1− )

Ω (1 + )

(1 + ) (b)
{(1− ) (1 + ) (b) +  (1 + ) (1 + )}2

³b b´ 
(B19)

so that b is of opposite sign to (− ) 

Notes

1 Gahvari (1988) went further and showed that the optimality of the Friedman rule does

not rest on the attainment of the modified golden rule. If a switch to the Friedman rule is

accompanied by generation specific lump-sum taxes that neutralize the ensuing intergenerational

wealth transfers, the Friedman rule becomes optimal given any initial steady state laissez faire

equilibrium. This finding, and the importance of intergenerational wealth transfers appear

to have gone unnoticed in the subsequent literature dealing with the Friedman rule until its

rediscovery by Bhattacharya et al. (2005) who extended this result to models with different

rationalizations for holding money. See, e.g., Freeman (1993), and Smith (1991, 2002). An

exception is Ireland (2005); this issue has been discussed in Gahvari (2007).
2In van der Ploeg and Alogoskoufis’ (1994) endogenous-growth model “there is learning by

doing because then knowledge from one producer spills over and increases the output of rival

firms” (p. 776). They consider a setup as in Weil (1989) wherein individuals are infinitely-lived

but that new generations are born every period. They also rationalize money by putting real

balances in the utility function.
3Gahvari (1988) shows that tax policy can be used in overlapping-generations models to offset

the distributional effects of money creation across generations and neutralize the Tobin effect.
4That societies have more at stake in building up their human capital than what is forth-

coming via market economies is a widely-accepted proposition. The literature has modeled this

type of divergence between private and social valuation in a number of ways. Docquier et al.’s

(2007) model is a particularly instructive approach in that it distinguishes between private and

external effects of education in a simple and natural way. Education builds up one’s own human
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capital and individuals take this into account in their decision making process. But by educat-

ing oneself, one also helps the human capital of other agents in the economy. This remains an

externality because it is hard to imagine that one can create markets for it.
5Docquier et al.’s (2007) result applies and the relationship between laissez faire and first-best

solutions remains the same as in their paper.
6Another interesting recent study is Cunha (2008) who studies this question in the context of

a two-sector open economy. He shows that the availability of a consumption tax on non-traded

goods ensures the optimality of the Friedman rule, but if the tax is missing an inflation tax

becomes a useful substitute for it.
7Other papers that discusses the effects of monetary growth on the real economy within an

endogenous growth framework include Wang and Yip (1992), Gomme (1993), van der Ploeg

and Alogoskoufis (1994), Jones and Manuelli (1995), Chang and Lai (2000), Dotsey and Sarte

(2000), Chang et al. (2007), and Bhattacharya et al. (2009).
8Whether capital depreciates or not is of no consequence for the results. With depreciation,

the relevant rate of return to savings is the net rate which is equal to the gross rate used in the

paper net of the depreciation rate. Of course, in the steady state, investment in new capital

should also cover the depreciation (in addition to the amount required due to population growth

rate).
9This formulation is a “short cut” to stay within a two-period overlapping generations model.

A more realistic formulation allows for three periods, the first of which is dedicated to the

education of children.
10The Inada conditions ensure a positive level of investment in education. The assumption

that  (0) = 1 is tantamount to ruling out depreciation in inheriting one’s parents’ human

capital. It ensures that a positive level of investment in education increases one’s level of human

capital over that of one’s parents. Put differently, it ensures that the human capital of successive

generations increases. Without this assumption, it is possible to have a steady-state equilibrium

with declining human capital. See footnote 18 below.
11Given the paper’s focus on the balanced growth/steady state equilibrium, the invariance of

 over time leads to no loss of generality.
12The exception is the effect of the rate of increase in money supply on capital accumulation

and the growth rate of the economy; see Section 6.
13These budget constraints, plus the other equations of the model imply, by Walras Law, that

the economy’s resource constraint is satisfied; see Appendix A.
14In rewriting the young’s first-period budget constraint, I have used




=

1 + +1

1 + +1



+1
=
1 + +1

1 + +1

µ
+1 − +1

+1

¶
=

1 + +1

1 + +1

∙

 (1 + +1)

1− 
− +1

+1

¸
=



1− 
(1 + +1)  − +1




15As shown in the previous footnote,




=



1− 
(1 + +1)  − +1




This determines the value of the real cash balances  as a function of +1 +1 and +1
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as well. Observe also that, in equilibrium, +1 =  so that the equilibrium values of

  and  will all be determined as functions of +1 and +1
16The regularity conditions one imposes on preferences and the technology ensure only that

positive values exist for the variables along a solution path. There is no guarantee, however,

that there exists a steady-state solution to which the system is driven. See Appendix A for a

discussion of local stability.
17This is obvious for all the stated relationships except for the steady-state version of (22)

written as (27). The immediate steady-state version of (22) is

b+ ∙1 +  (− )

1 + 

¸ b
1 + 

=  − (1 + )
b

 (b) 
To arrive at (27), substitute for −  in the above equation from (30) according to

−  = (1 + )
1 + 

(1 + ) (b) − 1−  = (1 + )

∙
1 + 

(1 + ) (b) − 1
¸


18The value of +1 per  also remains constant over time. To see this, observe that with

+1 =  () 
+1


=



−1−1
=



−1

−1


=
1 + 

1 + 


Consequently,

(+1) 

(−1) −1
=

+1



−1


−1


=
1 + 

1 + 

1

1 + +1

1

 (b) = b+1b 

where the last step follows from (20).
19As pointed out in footnote 9 above, with depreciation, one cannot rule out the possibility

of a declining human capital over time. With  (0)  1 a positive level of b and increasing
 (·) do not guarantee that  (b)  1 An steady-state equilibrium might then emerge wherein

 (b)  1 so that   0 Under this circumstance, while b b bb   and  remain constant,

    and  decline over time.
20Using (48), condition [ (b)]  1+  also implies  (b)  (1+ )(1+) so that at the first

best,   
21This assumption makes the satisfaction of (50) easier; it is neither necessary nor sufficient

for it.
22To satisfy its budget constraint, the government cannot set the values of both  and 

freely.
23In the presence of the subsidy, the young choose b at  to maximize  (b) − (1 +

) (1− ) b. This yields, in the steady state,
0 (b) = (1 + ) (1− )




24In overlapping-generations model with cash-in-advance constraint, the Friedman rule is not

unique. Allowing for differential commodity taxes across generations makes the optimal mone-

tary rule indeterminate. One can use the commodity tax to balance any monetary growth rate
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to ensure that (47) is satisfied in the face of (48). To rule out this indeterminacy, I do not allow

for the possibility of differential commodity taxes. See Crettez et al. (2002) and Gahvari (2007).
25The intuition for (57) can best be gleaned by comparison with the corresponding familiar

relationship for the standard overlapping-generations model. There, first-best capital accumu-

lation is characterized by 1+  = (1 + ) (1 + )  Moreover, for  = 0 money stock should grow

at the rate of  such that 1 +  = (1 + )  (1 + ). These equations imply

1 +  =
1

1 + 


so that money should decline by the intertemporal discount rate.

With growth, the relationship that characterizes capital accumulation changes to (1 + )
−1

(1 + ) =

(1 + ) (1 + )  The adjustment is due to the fact that marginal utility of future consumption

increases per period by a rate equal to (1 + )
−1

(utility increases by (1 + )

) Similarly, the

relationship that ensures  = 0 changes to 1 +  = (1 + ) (1 + )  (1 + )  These two latter

relationships imply

1 +  =
(1 + )



1 + 


26The same result holds inWeiss (1980) and Gahvari (1988) who use a Diamond-type overlapping-

generations model with money in the utility function (that does not allow for endogenous

growth). An opposite result holds in Gahvari (2007) who also uses a Diamond-type overlapping-

generations model but rationalizes money through a cash-in-advance constraint.
27The stark example is provided by the case when there are no fiscal instruments.
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Figure 2:
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Figure 3:
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