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Summary. We establish the existence of Friedmann-like singularities in a sub-
class of the Szekeres cosmological models which admits no Killing vector
fields, and which depends on three arbitrary functions of a single variable. We
describe the asymptotic properties of the solutions as the singularity is
approached, for example the behaviour of the matter density, the rate of
shear of the matter, and the Weyl conformal curvature tensor. The solutions

are formulated in a way which permits comparison with linear perturbations
of the Einstein—de Sitter solution.

1 Introduction

Attempts to study the nature of the singularity in general solutions of Einstein’s field equa-
tions (with an irrotational, expanding perfect fluid as source) led to the discovery of a simple
special case in which the leading time dependence of the metric near the singularity is that of
an (isotropic) Friedmann—Robertson—Walker (FRW) solution [1, 2, 3]. In the Russian
literature, a solution with this type of singularity is called ‘quasi-isotropic’, while Eardley,
Liang & Sachs [2] use the terminology ‘Friedmann-like singularity’, which we shall adopt.
Friedmann-like singularities are quite different from those that occur generically, and
which are dominated by anisotropy, and possibly spatial curvature. One might expect that
the initial singularity in the Universe should be of the generic type, and this idea formed the
basis of the chaotic cosmology program [4, 5]. More recently, however, it has been suggested
on the basis of entropy considerations [6, 7, 8], and using the theory of quantum mechanical
creation of particles by the gravitational field [9], that the initial singularity should be con-
strained in some way so as to be similar to the singularity in an exact FRW solution. For
example, Penrose [7, 10], has proposed, as a possible constraint, that the Weyl conformal
curvature tensor should tend to zero as the initial singularity is approached. These ideas

suggest that the class of solutions with Friedmann-like singularity are possibly of significance
as models of the initial big bang.
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Friedmann-like singularities have been studied primarily by power series expansion
methods [1, 11] and by iterative methods [2, 3], but in neither case has convergence been
established. However, certain anisotropic exact solutions do admit Friedmann-like singu-
larities, which establishes that such singularities do exist in solutions other than exact FRW
ones. These examples are either plane symmetric [2] or spatially homogeneous (e.g. [12]
p. 76). In this paper we discuss a class of solutions with no Killing vector fields which admit
a Friedmann-like singularity, and use them to illustrate certain aspects of this type of singu-
larity. The solutions belong to the Szekeres [13] class of solutions with pressure-free dust as
source.

We formulate the solutions in such a way as to facilitate comparison with solutions of the
linearized Einstein equations which describe spatially inhomogeneous perturbations of FRW
solutions. Linear perturbations of the FRW solutions with flat space sections and with dust
as source, exhibit two modes of density fluctuations, called the growing and decaying
modes. If uo denotes the density of the unperturbed FRW solution, the density contrast
S u/to = (U — Mo ) Mo, can be written in the form

6—E=A+t2’3+A_t‘1, (1.1)
Ho

where A, have only spatial dependence, and ¢ denotes comoving proper time along the
worldlines of the dust [14, 15]. The function 4, determines the growing mode (increases
in magnitude into the future) while 4_ determines the decaying mode (decreases in magni-
tude into the future). In stating this we should point out that the density contrast is a gauge-
dependent quantity [14]. Nevertheless, for dust, both modes of the density contrast are
physically significant, although the particular form of §u/uy can depend on the choice of
gauge [14, 16]. The exact solutions that we will discuss contain both density fluctuation
modes, via arbitrary functions of a single variable, which we shall denote by k.(z). As one
might expect, a Friedmann-like singularity occurs only when the decaying mode is absent,
since this mode becomes unbounded as ¢ > 0".

The solutions and their required properties are presented in Section 2. Their relationship
with linear perturbations of FRW solutions is given in Section 3. A detailed discussion of the
Friedmann-like singularities which occur in these solutions is given in Section 4. There is a
concluding Section 5 in which some general remarks and suggestions for further research
concerning Friedmann-like singularities are made.

2 The solutions

The line-element is given by

ds?= —di* + t*73 (dx? + dy? + Z2 dz?), 2.1
where

Z=A+k 2P +k_t™? (2.2)
and

A=ax +by +c+59 ky (x2+y?). (2.3)

Here a, b, ¢ and k. are arbitrary but sufficiently smooth functions of z. The coordinate
freedom Z =f(z) leads to a rescaling of these functions by the expression 1/f'(z), so that
there are in fact four essential arbitrary functions. This line-element satisfies the Einstein
field equations with irrotational dust as source. The coordinates are comoving and
synchronous, so that the four-velocity u of the dust is

a
u=—,
ot
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and the hypersurfaces orthogonal to u are ¢ = const. The matter density is

p=4%%t2(1=x+ —x-), (24)
where
X+ =k+t2/3/Z, X— =k_t_1/Z. (2.5)

This solution is in fact the Szekeres [13] solution which was labelled PI by Bonnor &
Tomimura [17], with some changes in notation. Bonnor et al. [18] have proved that if the
functions a, b, ¢ and k. are unrestricted, this solution admits no Killing vector fields. We
have shown that even if k_(z) = 0, which is the restriction that we will subsequently impose,
there are no Killing vector fields, if the remaining functions are unrestricted.

The expressions x. in (2.5) in fact determine all the geometric quantities which are asso-
ciated with these solutions, as follows. We use the natural orthonormal basis for the line
element (2.1)i.e.

Wy = —dt, way = 122 dx, wy = 1> dy, wgzy = 2% Zdz. (2.6)
The rate of expansion scalar® for the matter is

0=2¢t"1(1+Y x+ — Y2 x2), 2.7
and the non-zero components (relative to equation 2.6) of the rate of shear tensor™ are
011=022=—Y2033 ==t (Ysx+ — Yo X_). (2.8)

The acceleration and vorticity of the matter are zero.
The non-zero components of the electric part* of the Weyl conformal curvature tensor
relative to (2.6) are

Eu=Epn=—YEx=%%t2(x+ +Xx_), (2.9)

while the magnetic part H, g is zero. Finally the Ricci scalar and tracefree Ricci tensor of the
hypersurfaces orthogonal to the matter flow are

R*=—40/ 72y | (2.10)
SH=8%=—" SH=—Clrt > X+. (2.11)

Certain restrictions must be imposed on a4, b, ¢ and k, in order that the density be
physically reasonable. If for some z,, k4 (o) =0, then, unless a(zo) =0 = b(z,), there will
exist values of x and y for which the metric function Z will be zero, for each ¢ = t, > 0. This
will lead to a matter singularity and the density becoming negative (if k_(zo) #0), or a
coordinate singularity (if k_(z¢) = 0). To avoid this, we write ¢ and b in the form

a="aks, b="%pk,,

where « and {8 are arbitrary functions of z, and complete the square in x and y in (2.3). Then
provided that ¢(z) is sufficiently large, we can use the coordinate freedom in z to obtain

A=1+%k, [(x +a) +(y +B)’], (2.12)
with k. being rescaled. We now assume that
ki:(z)=0 (2.13)

for all z, and that «, 3 are defined for all z. This implies4 >1,Z>1andu>0forallx, y, z
and all # > 0. In summary, if the coordinates satisfy

x,¥,zZ€ER, O<t<+oo, 2.14)

and a, @, k. are defined for all z, with k. non-negative, then equations (2.1), (2.2), (2.4) and
(2.5), with 4 given by (2.12), define an exact solution with positive density. There is a

* See Ellis [19] for these terminologies.
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matter singularity as =07, which is simultaneous for all matter particles, but the density is
bounded on each hypersurface ¢ = ¢, = const. > 0.

3 Relation with linear perturbations of FRW solutions

In this section we show that the exact solution of Section 2, subject to certain restrictions, is
arbitrarily close to an exact FRW solution. When k. (z) = 0, the solution is an FRW solution,
in fact the Finstein—de Sitter solution, with energy density

to=4/(31%), (3.1)
as follows from (2.1), (2.2), (2.4) and (2.12).
Suppose now that ¢ is restricted by

O<ti<t<t,, (3.2)
and that k. (z) are restricted by
O0<k,2<e, O<k_til<e, (3.3)

where ¢, ¢, and € are positive constants. These restrictions, in conjunction with (2.5) and
the fact that Z > 1, imply that

O<x:<e, (3.4)
for all ¢ satisfying (3.2) and all real x, y, z. Let X denote any rational scalar formed from the
quantities (2.4) and (2.7) —(2.11), and which has a well-defined value X, when k. (z) =0.
For example, the shear scalar o2 = %04p 0®P is a suitable scalar, but the ratio 6%/R* is not.

We measure the closeness of the solution to the Einstein—de Sitter solution by considering
the quantity :

A(X)=max | X-X,l,
where X denotes any of the scalars mentioned above and X, its FRW counterpart, and the

maximum is taken over all real x, v, z, and ¢ subject to (3.3). It follows from (3.4), (2.4) and
(2.7)—(2.11) that

lim A(X)=0.

e—>0

Thus we regard the exact solution, subject to (3.2) and (3.3) with € < 1, as being close to the

Einstein—de Sitter solution, even though the respective metric components are not close for

all x, y, z, due to the fact that A, as given by (2.12), becomes unbounded as x? + y% > +o0,
Using (2.4) and (3.1), the density contrast is

Su (

— = —X+ — X . 3 -5
Mo )
In the linear approximation, for € < 1, the function (2.2) becomes

Z=~A,

where A is given by (2.12). We cannot write 4 ~ 1, since the term in k., in A can become
arbitrarily large as x? + y2 >+ oo, Thus

Su

— (kP +k_t7Y)/4,

Mo

which is of the form (1.1). This substantiates our claim that the exact solution contains both
the growing (k) and decaying (k_) modes of density fluctuations. The density fluctuations
are negative, on account of (3.3) and the fact that 4 > 1. Positive fluctuations, with asso-
ciated positive spatial curvature R*, can be obtained only if we restrict x, y, z.
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These solutions also illustrate another aspect of linear perturbations of spatially flat FRW
solutions. It follows from (2.10) and (2.11) that only the increasing density mode, described
by X4, appears in the spatial curvature. On the other hand both modes contribute to the rate
of shear (and to the Weyl tensor), although near the initial singularity, the decreasing mode
dominates. This supports the conclusion reached by Liang [15] (based on the results of
[2, 3]) that ‘the A-mode (i.e. decreasing mode) arises from primordial shear fluctuations
while the B-mode (i.e. increasing mode) arises from primordial curvature fluctuations’.

In the next section we will show in detail that the absence of the decaying mode (k_)
gives rise to a Friedmann-like singularity as ¢t = 0.

4 The singularity

We now discuss the nature of the initial singularity as £ —>0. It follows from (2.7), (2.10) and
(2.11) that

* *

lim — = lim % _
PR 02 0, PE 92 = 0. 4.1)

This means that the spatial curvature is dynamically negligible relative to the expansion as
t—>0, and hence the singularity is ‘velocity-dominated’ in the sense of Eardley et al. [2]. The
nature of the singularity depends significantly on whether or not the decaying mode of the
density fluctuation is present. (i.e. on whether or not k_(z)=0). If k_(z) #0, the singularity
is of the Kasner type, with P = (%4, %3, —'3) in the terminology of [2]. On the other hand,
when k_(z) = 0, the line-element assumes the following asymptotic form as ¢~ 0:

ds® = —dt* + 1% [g0) dx o dx6 + O ()], 4.2)

where ggg = diag (1, 1, A), and O(#?3) denotes terms in #2/® or higher powers of ¢. Thus in
this case the singularity is Friedmann-like, and in the terminology of [2],go(t‘2 is the metric
of the singularity, defined to be the three-dimensional manifold ¢ = 0.

The name ‘Friedmann-like singularity’ suggests that the solution should become isotropic
and spatially homogeneous in some sense as the singularity is approached. We now discuss to
what extent this is the case for the solutions of Section 2. First, we note that the rate of
shear scalar 0*= %204 0®#, which is related to the anisotropy of the matter flow, tends to
infinity™ as ¢~ 0:

lim ¢2=+oo, 4.3)
t—>0

Despite this fact, the matter flow does approach isotropy in the following sense as ¢ = 0. The
length scales /,, a =1, 2, 3, in the eigendirections of the rate of expansion (or rate of shear)
tensor all tend to zero at the same rate as ¢ > 0:

ly
lim —=1, a=1,2,3, 4.4)
t—0 [

where I = (I, [,15)"? is the overall length scale. The I, are defined, up to a scale change which
is constant along the flow lines, by
o

la

Gaa’

* This fact was noted by Bonnor & Tomimura [17].
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where - denotes differentiation along the flow lines and the 6., are the components of the
rate of expansion tensor 0, in its eigenframe [12]. For the solutions of Section 2 subject
to k_(z) =0, we have, with suitable rescaling

11=l2=t2/39 l3=l‘2/3 [1 +(k+/A)t2/3]’

so that (4.4) is satisfied. The result (4.4) does restrict the rate of growth of 6% as - 0, and
in fact we have
2

lim 7 =0, 4.5
as follows from (2.7) and (2.8).

Secondly it follows from (4.2) that the leading term in the space-time metric is not
exactly the Einstein—de Sitter metric, since the three-metric gg’g is not flat — its scalar
curvature is in fact

RO = — % (k. /A). (4.6)

In other words, the spatial metric is not homogeneous as ¢ > 0*. Moreover this inhomo-
geneity is essential in order that the solution not be an exact FRW solution, since gg;,) is flat
if and only if k,(z) = 0. Indeed it is the information in this three-metric, together with the
leading ¢-dependence, that determines the future evolution of the space time away from the
singularity (cf. [9], p. 331). On the other hand, the solution is spatially homogeneous as
t >0 in the following sense. The leading term in the matter density as ¢ > O is precisely the
Einstein—de Sitter density (3.1), as follows from (2.4) with k_(z)=0. Thus the density
becomes spatially homogeneous® as # = 0. Another manifestation of this is that the density
contrast 8/t tends to zero as t > 0 [¢f. (3.5) with k_(z) = 0]. The leading term in the rate
of expansion scalar 0 is also spatially homogeneous, since

. 3u
i, @
a result which holds in all exact FRW solutions with p = (y —1)u ([19,], p. 41). This is a
consequence of the general first integral for irrotational perfect fluids

u=1 6% — ¢ + Y, R* (48)

(see, e.g. [19] p. 34, with A =0), together with (4.1) and (4.5). The remaining scalars (e.g.
0%, R* etc.), which are all zero in the Einstein—de Sitter solution are, however, spatially
inhomogeneous in their leading term as ¢ = 0*.

The behaviour of the Weyl tensor as ¢ = 0" is also of interest in connection with the
proposal of Penrose mentioned in the introduction. It follows from (2.9) that the Weyl
tensor (orthonormal frame components, or scalars), tends to infinity as > 0, in violation
of Penrose’s hypothesis. However the Weyl tensor is dominated by the Ricci tensor as
t >0 in the sense that the ratio of the Weyl tensor and the Ricci tensor tends to zero as
t > 0. This is exemplified, for example, by

H
lim —2£=0=1m %=

5 4.
t=0 U t~>0 M “9)

We finally comment on the relative dynamical significance of the matter density, the
shear and the spatial curvature, near the Friedmann-like singularity. Despite the fact that

* This feature of Friedmann-ike singularities arises in the discussion of this topic using a power series
expansion, and has been emphasized by Zeldovich in the p = Y/, u case (see the discussion in Belinskii et al.
[20]).
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the spatial curvature is dynamically unimportant relative to 62 and hence u near the
singularity (cf. equations 4.1 and 4.7), it does play an important role. As mentioned earlier,
it determines the asymptotic spatial metric g‘%) . In addition, in (4.8), R* is more significant

than o2, since
lim —=0, (4.10)

as follows from (2.8) and (2.10).

5 Conclusion

It is clearly of interest to know which of the results discussed in Section 4 hold for more
general Friedmann-like singularities. A few simple calculations using the Eardley, Liang &
Sachs [2] asymptotic but non-exact solutions (and formula in [19]) show that all the results
of the preceding section i.e. (4.1), (4.3), (4.5), (4.7), (4.9) and (4.10) hold for their general
Friedmann-like singularity with dust source. In particular, the Weyl tensor becomes infinite
but is dominated by the Ricci tensor. Similar conclusions aiso hold for the analysis of
Friedmann-like singularities with equations of state p = (y —1)u, given by Liang [3], with
one difference. The behaviour of the shear scalar o® as £ > 0 depends on the equation of
state as follows:

+ o0 if 1< ¥ < 4/3
lim o¢? = {finite non-zero value, ify=44
LindY 0 if4; <vy< 2.

These tentative conclusions are supported by analysis of other exact solutions, for example
spatially homogeneous solutions with equation of state p = (y—1)u [21, 22], and certain
generalizations [23] of the Szekeres solutions which have an asymptotic equation of state
p = (y —1)u at the singularity. Details will be published elsewhere.

We should stress that the above general remarks are at best tentative, since they are based
on an iterative procedure whose convergence has not been established. It would certainly be
desirable to fill this gap. Nevertheless, these remarks do emphasize the need for further
investigation as to whether there exist non-FRW cosmological solutions for which the Weyl
tensor tends to zero at the initial singularity. In connection with this, we point out that it is
not completely clear how one should define the concept of Friedmann-like singularity. One
possibility would be to simply require that the matter flow become isotropic as the singu-
larity is approached in the sense of (4.4) or (4.5). It is by no means obvious that this would
lead to the currently accepted class of Friedmann-like singularities.
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