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ABSTRACT

The interaction between T cells and the central nervous system (CNS) in 

homeostasis and injury has been recognized being both pathogenic (CD4+ T-helper 1 

- Th1, Th17 and γδT) and ameliorative (Th2 and regulatory T cells - Tregs). However, 
in-depth studies aimed to elucidate the precise in the aged microenvironment and the 

dichotomous role of Tregs have just begun and many aspects remain unclear. This 

is due, not only to a mutual dependency and reciprocal causation of alterations and 

diseases between the nervous and T cell immune systems, but also to an inconsistent 

aging of the two systems, which dynamically changes with CNS injury/recovery and/

or aging process. Cellular immune system aging, particularly immunosenescence and 

T cell aging initiated by thymic involution - sources of chronic inflammation in the 
elderly (termed inflammaging), potentially induces an acceleration of brain aging 
and memory loss. In turn, aging of the brain via neuro-endocrine-immune network 

drives total body systemic aging, including that of the immune system. Therefore, 

immunotherapeutics including vaccination and “protective autoimmunity” provide 

promising means to rejuvenate neuro-inflammatory disorders and repair CNS acute 
injury and chronic neuro-degeneration. We review the current understanding and 

recent discoveries linking the aging immune system with CNS injury and neuro-

degeneration. Additionally, we discuss potential recovery and rejuvenation strategies, 

focusing on targeting the aging T cell immune system in an effort to alleviate 

acute brain injury and chronic neuro-degeneration during aging, via the “thymus-

inflammaging-neurodegeneration axis”.

INTRODUCTION

Although the central nervous system (CNS) and 

immune systems are standalone systems, neural-immune 

interactions and their mutual dependency have been 

garnering additional attention [1, 2]. Ample evidence 

shows that the CNS and immune systems, particularly 

the T cell immune system interact, crosstalk, and affect 

each other across many physiological processes, including 

development, physiological homeostasis, disease status, 

and aging. The role of T cells on the CNS is generally 

considered pathologic, however there are many beneficial 
effects exerted on the nervous system [3-5]. Specifically, 
the well-known autoimmune demyelinating disease, 

multiple sclerosis (MS) [6], is a prototypical abnormal 

T cell immune-induced CNS pathology, however, 

CD4+FoxP3+ regulatory T cells (Tregs) can be exploited to 

exert ameliorative effects in neuro-degenerative diseases, 

such as cerebral ischemia [7], Alzheimer’s disease (AD) 

[8], and Parkinson’s disease (PD) [9]. The CNS itself 
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can also, in turn, induce changes in the immune system 

via the neuro-endocrine-immune network [10-13]. For 

example, a recent report shows that activating the brain’s 

reward system positively impacts immune responses, 

while ablating the sympathetic nervous system negatively 

impacts immune responses to bacterial load or T cell-

mediated delayed-type hypersensitivity [14]. Another 

well-known example of CNS-induced changes in the 

immune system is the global immunosuppression that 

follows acute CNS injuries, such as cerebral ischemic 

stroke [15, 16]. However, the positive impact of the T cell 

immune system on the CNS, other than Treg control of 

inflammation, has been scarcely reported but is gradually 
becoming more recognized [17]. For example, T cells 

have been demonstrated to be necessary for healing brain 

injury [18, 19]. Even autoimmune T cells, which play 

a destructive role, can be beneficial to CNS functional 
integrity [20] and play a role of brain antigen-induced 

“protective autoimmunity” [21, 22]. The same subset of 

autoimmune T cells can be a double-edged sword to have 

either destructive or protective roles in neuro-homeostasis 

and neuro-degeneration with distinct temporal and spatial 

profiles [19]. For example, Tregs are generally recognized 
for their ability to inhibit neuro-inflammation and protect 
from neuro-degeneration. However, these same Tregs 

may also obstruct a selective gateway for immune cell 

trafficking to the CNS, thereby blocking neuro-recovery 
during acute CNS injury [23] and chronic neuro-

inflammation [24]. These dichotomous affects become 
more pronounced in the aged microenvironment. For 

example, under the aging-related chronic inflammatory 
conditions (termed: inflammaging) healthy aged 
individuals have an increased susceptibility toward the 

development of dementia following an immune challenge 

[25].

The thymus is a central organ of the T cell immune 

system, which undergoes the natural process of aging, 

characterized by the progressive involution [26]. The 

thymus begins degenerative aging in adolescence, much 

earlier than other organs, and in contrast to the brain which 

is still in developmental stages. Therefore, the systemic 

age-related alterations of the T cell immune system will 

influence CNS homeostasis and regeneration. Although 
T cells are capable of circulating into the brain through 

the blood vessels and the recently determined CNS 

lymphatic vessels [27, 28], T cell entry into the CNS is 

rare under a normal physiological homeostasis. However, 

thymic involution results in not only declined output 

of naive T cells but also increased output of potentially 

harmful self(auto)-reactive T cells [29, 30]. These auto-

reactive T cells have the potential to attack the selective 

gates protecting entry into the CNS, including both the 

blood-brain barrier (BBB) and the choroid plexus (CP) 

[31-33]. Therefore, these barriers become increasingly 

permeable and less selective [34, 35], progressively 

facilitating invasion of the CNS by a variety of T cells 

[35]. In addition, aging also induces chronic inflammatory 
conditions generated by pro-inflammatory cytokines, 
produced by both glial cells in the brain and senescent 

cells in peripheral tissues. The inflammaging condition 
further increases the permeabilization of CNS barriers, 

allowing immune cell entry into the CNS [36]. Evidence 

shows that immunosenescence is an early and direct 

trigger of brain aging and memory loss [37]. In turn, age-

related neuro-degeneration in all likelihood worsens the 

aged T cell immune system [13, 38], perpetuating a vicious 

cycle of age-related multi-system degeneration. Therefore, 

rejuvenation of the immune system is an attractive target 

for therapeutics aiming to improve neuronal regeneration 

in the elderly. 

In this article, we review recent discoveries in T 

cell aging that are associated with acute brain injury and 

chronic neuro-degeneration. We also discuss outstanding 

questions regarding the interplay of the aging T cell and 

CNS systems, and illuminate potential future studies 

that may help elucidate their combined roles in neuronal 

disease and repair. Furthermore, we identify the linked 

“thymic-inflammaging-neurodegeneration axis” as the 
prime target for potential immunotherapeutic strategies 

aimed to treat age-relate neuropathology.

T CELL SUBSETS AND CONSENSUAL 

ROLES IN NEURAL DE/RE-

GENERATION ASSOCIATED WITH 

AGING

The peripheral T cell pool is highly heterogeneous 

in terms of the T cell subsets, antigen specificity, and 
the cytokines/chemokines they produce, which are 

associated with functional changes in the T cell generator, 

the thymus, during aging. Additionally, the peripheral 

T cell compartment exhibits a high degree of plasticity 

associated with the immune microenvironment over the 

life of an individual, including an age-related shift towards 

memory and senescent CD28null T cells [39], accumulation 

of Tregs [40], diminished T cell receptor (TCR) repertoire 

diversity [39], and increased frequency of autoreactive T 

cells in the elderly [29, 41]. Herein, we review the roles of 

T cell subsets on neuronal degeneration and regeneration 

(detrimental and beneficial affects - outlined in Figure 
1), focusing on the impact of thymic involution and 

inflammaging on brain plasticity and maintenance. 

Characteristics of T cells produced by the aging 

thymus

Many of the age-related changes in peripheral T cell 

population dynamics are associated with thymic aging 

and its involution, a natural aging process, beginning 

in adolescence [26]. The thymus generally atrophies at 

a rate of 3% per year, and individuals over 50 have less 
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Figure 1: The opposing roles of immune cells in neurodegenerative disease. A. Schematic of the pathogenic role of immune 

cells during neurodegenerative disease. T helper 1 (Th1) cells are capable of activating resting microglia (M0) towards the pro-inflammatory 
and pathogenic M1 phenotype. Th1 cells induce the production of autoantibodies from B cells, and suppress the Th2 response through 

IFNγ. B. T helper 2 (Th2) cells promote the differentiation of M0 microglia into anti-inflammatory M2 microglia that promote tissue 
repair. Furthermore, Th2 cells are capable of suppressing the Th1 response through IL-4. C. Regulatory Vg1+γδ T cells secrete IL-4 and 
CCR5 ligand to promote an M2 phenotype and induce the differentiation of regulatory T cells. Tregs produce IL-10, suppressing the pro-

inflammatory immune response and shifting M0 towards M2. D. Pathogenic IL-17 producing γδ T cells can directly kill neurons through 
antibody-dependent cell-mediated cytotoxicity via binding to IgG. Additionally, pathogenic γδ T cells recruit neutrophils and induce stem 
cells to differentiate into neutrophils/monocytes via granulocyte-macrophage colony-stimulating factor (GM-CSF). E. Pathogenic T helper 

17 (Th17) cells are also able to recruit neutrophils into the brain and induce them differentiation via IL-17 and GM-CSF. Additionally, 

Th17 cells induce the permeabilization of the blood brain barrier via IL-17 & IL-22 binding to IL-17R and IL-22R, respectively, on brain 

endothelium, allowing for the entry of inflammatory cells into the brain tissue. F. CD8+ Cytotoxic T lymphocytes are toxic to neurons by 

producing pro-inflammatory cytokines like IFNγ and toxic enzymes like Granzyme B.



Oncotarget7119www.impactjournals.com/oncotarget

than 15% of their thymic tissue remaining [42]. Thymic 

involution is a result of the deterioration of the thymic 

epithelium and results in a severe decline in naïve T cell 

output, which leads to decreased TCR diversity and a shift 

towards memory and senescent T cells [39]. In addition 

to ineffectiveness in response to emerging infections 

and vaccinations, thymic involution is also associated 

with increased susceptibility to autoimmune diseases 

as autoreactive T clones are not efficiently depleted in 
the involuted thymus and are instead released into the 

periphery. Therefore, the characteristics of the aging 

thymus is not only the generation of insufficient naïve T 
cells, but also the release of increased harmful T cells. For 

example, multiple sclerosis (MS), particularly patients 

with relapse-remission MS (RRMS), patients possess 

premature thymic involution with a decline in naïve T cells 

and increased T cell senescence [43], as well as increased 

autoreactive T cells.

Recently, our work reiterated that thymic involution 

is associated with chronic inflammation [29], which 
is not an overt autoimmune disease, as it lacks obvious 

clinical manifestations, but a condition that exacerbates 

the severity, incidence, and mortality of age-related 

diseases, including age-related neuro-degeneration. Using 

a mouse model of accelerated thymic involution, we found 

that thymic involution leads to the increased release of 

autoreactive T cell clones, which become activated upon 

encountering self-antigens in the periphery, results in 

cellular infiltration into non-lymphoid tissues, and leads 
to elevated IL-6 and tumor necrosis factor alpha (TNFα) 
levels. 

Dichotomous role of pro- and anti-inflamatory T 
cell subsets in neuro-degeneration and -protection

It is well known that some T cell subsets play 

predominately negative roles to lead to neuro-degeneration 

and pathology, while others exert mostly beneficial effects 
to facilitate neuronal protection [4, 44]. One such T-cell 

subset recognized as neuro-pathologic are CD4+ T-helper 

1 (Th1) cells. Th1 cells secret Type-1 cytokines (most 

notably interferon (IFN)-γ and tumor necrosis factor 
(TNF)-α) [45], and can activate innate immune cells 
and CD8+ T cells. Th1’s, along with Th17, γδ T cells, 
and CD8+ cytotoxic T lymphocyte (CTL) cells are all 

predominantly involved in neurodegenerative disease 

and neuro-inflammation via pro-inflammatory cytokines 
[46-48] and direct cytotoxicity [49]. However, some 

other T cell subsets are generally considered as neuro-

protective properties during neuro-degeneration, such as 

Th2 (producing Type-2 cytokines, such as interleukin-4, 

IL-4, IL-5, and IL-13) and immunosuppressive Tregs. 

Interestingly, recent studies have illuminated the 

dichotomy within these T subsets. In certain conditions, 

classical neuro-pathological T cells, such as Th1 cells, 

become beneficial and promote neuronal health, while 
some classical neuro-protective T cells, such as Tregs, 

are capable of facilitating neurodegenerative disease and 

neuro-inflammation. The detrimental or beneficial effects 
from the same T cell subset are tightly related to the 

localization (the CNS or periphery - See Figure 2) and 

CNS disease progression, and become exacerbated in aged 

Figure 2: Dichotomous impacts of Treg cells on the CNS in neurodegenerative disease. A. Periphery: Increased Tregs in 

the periphery in aging may result in a blockade for other immune cell trafficking through the BBB and CP, since weakening or transient 
depletion of Tregs is able to enhance immune cell trafficking to ameliorate neuro-inflammation in mouse models. B. CNS: Treg cells in the 

CNS may play a beneficial role, because they are able to suppress active M1 microglia and macrophage, and balance Th17 and γδ17 cells, 
as well as promote microglia and macrophage to M2 differentiation. 
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immune and nervous microenvironments [25, 50, 51]. Th1 

and Treg cells are most intrigued dichotomous subsets. 

Therefore, we focus on these two subsets.

Antigen specific Th1 cells

Th1 cells have been found in the CNS of many 

neuro-degenerative diseases, classified as detrimental 
contributors to CNS pathology. For example, infiltrating 
Th1 cells into the CNS of MS patients are specific for 
self-antigen and contribute to pathology [52]. Th1 cells 

have been also found in the CNS of a transgenic mouse 

model of AD that overexpresses amyloid precursor protein 

and presenilin 1 (APP/PS1). These CNS-infiltrating Th1 
cells are APP/PS1 antigen specific, and their production of 
IFN-γ was shown to lead to increased microglial activation 
and enhanced amyloid-beta (Aβ) plaque burden, resulting 
in impaired cognitive function [53]. 

However, Th1 cells are not always harmful in 

neurodegenerative diseases. In the same mouse model of 

AD, Aβ-specific Th1 cells were intracerebroventricularly 
injected into the Cerebrial spinal fluid of APP/PS1 mice, 
and showed to target Aβ plaques that resulted in reduction 
of Aβ plaque load and slight enhancement of neurogenesis 
[54]. This dichotomous role of Th1 cells in Alzheimer’s 

Disease indicates that the route of migration (localization) 

and temporal factors may play a role in whether antigen-

specific Th1 cells are beneficial or detrimental in neuro-
degeneration. 

Brain antigen specific Th1 CD4+ T cells (INFγ−
producing cells) at the CP were reported to be beneficial 
to the brain [17] during neuro-inflammation associated 
with various neurodegenerative conditions including 

Amyotrophic Lateral Sclerosis (ALS), MS, PD, and AD. 

Experiments show that lacking these T cells, such as 

in Rag-/- or SCID mice, impairs CNS injury repair [55] 

and reduces spatial learning and memory, similar to age-

associated memory loss [56, 57]. The accumulation of 

brain-antigen-specific INFγ−producing CD4+ T cells 

at the CP is attracted by INFγ receptor, since INFγ 
receptor knockout mice, following spinal cord injury, 

exhibited reduced T cells at the CP, displayed fewer T 

cells entering the cerebrospinal fluid, and impaired CNS 
recovery [32]. The mechanism driving the accumulation 

of T cells into the CNS is likely involves other immune 

cell, such as blood-derived macrophage (M
Ø
), trafficking 

through the CP gate and into the CNS. The lack of IFNγ-
producing Th1 cells limits the activation of the CP, 

thereby reducing the recruitment of M
Ø
 into the injured 

spinal cord parenchyma [19, 32]. Sufficient recruitment 
of circulating blood-derived M

Ø
 into the CNS is a key 

requirement for recovery from CNS injury and neuro-

inflammation [33]. CNS-reactive CD4+ Th1 cells can be 

enhanced by weakening immunosuppressive Treg function 

in an effort to alleviate neurodegenerative disorders [58, 

59]. These effects can be attributed to breaking Treg-

blocked lymphocyte trafficking to the CNS through 
the brain CP [24]. This model of brain antigen-specific 
CD4+ Th1 cells serving as gatekeepers at the CP is very 

intriguing, however the mechanisms surrounding this 

reported phenomena are largely unclear. For example, 

what are the CNS-specific antigen(s)? These antigens are 
not likely to be the same antigens utilized in whole brain 

tissue or whole spinal cord homogenate antigens, which 

are used to induce CNS immune pathology in diseases 

such as Experimental Autoimmune Encephalomyelitis 

(EAE). Why have these auto-reactive T cell clones not 

been deleted in the thymus during thymocyte negative 

selection? What triggers the process of these auto-reactive 
T cells’ accumulation in the BBB or CP during CNS 

injury? How are these auto-reactive T cells entering the 
CNS without attacking the CNS parenchyma? 

Treg’s dichotomous impacts on CNS functional 

integrity (simplified in Figure 2)

CD4+CD25+Foxp3+ regulatory T cells (Tregs) 

can develop either in the thymus (termed tTreg) or in 

the periphery via TGF-β induction (termed pTreg) [60]. 
Tregs primarily act to suppress effector T cells (termed 

Teff) in order to dampen the immune response in both 

auto- and foreign-source inflammation, and are capable 
of both antigen-specific and non-specific control of the 
immune response [61] and neuron-inflammation [62]. 
Tregs play a prominent role in slowing disease progression 

by decreasing pro-inflammatory cytokine levels and 
attenuating inflammatory M1 microglial activation 
via TGF-β−, IL-10-, and IL-4-expression [63-66]. 
Furthermore, Tregs can induce IL-10-producing neuro-

protective M2 macrophage/microglial phenotype [66, 

67]. In turn, M2 microglia can also induce antigen-specific 
Treg responses in EAE [68]. Therefore, many reports 

about Treg effects on attenuation of neuro-inflammation 
are positive. For example, levels of FoxP3 expression, 

Treg numbers and Treg function are impaired in patients 

with rapidly progressing ALS [69] and relapse-remission 

MS patients [70, 71]. 

However, Tregs have also shown to play a 

detrimental role in the CNS during acute CNS damage 

[23] and chronic neuro-inflammation [24]. Recent reports 
show that transient depletion of FoxP3+ Tregs displayed 

amyloid-beta (Aβ) plaque clearance, neuro-inflammation 
amelioration, and cognitive decline in AD mouse model 

[24]. Additionally, increased FoxP3 expression correlates 

with Tau protein levels in the CSF of AD patients [72]. 

Furthermore, Treg frequency is elevated in the elderly 

[72], but this is no help for controlling age-related 

neurodegenerative diseases. Therefore, weakening Treg 

function to break self-tolerance to CNS antigens has 

been a proposed strategy for fighting chronic neuro-
inflammatory disorders [24, 73]. 
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The dual natures of Tregs on CNS diseases are 

probably due to the existence of distinct Treg subsets or 

Treg clones. For example, a decrease of PD1-neg Tregs, 

which is considered as functional Treg subset with 

the highest suppressive capacity, was seen in patients 

with severe AD compared to those with mild cognitive 

impairment, implicating a distinct highly suppressive Treg 

subset in controlling AD severity [74]. Another example, 

FoxA1+Tregs (a novel Treg subset with transcription factor 

FoxA1 ectopic expression) can efficiently suppress EAE in 
both FoxA1-dependent and programmed cell death ligand 

(PD-L)1-dependent manners [75]. Emerging evidence 

reveals clonality of Treg and the distinct sets of antigens 

they recognize. The absence of Tregs in certain tissues of 

autoimmunity regulator (AIRE) gene deficient animals 
indicates that the generation of a subset of Tregs is AIRE 

gene dependent [76]; while other works have shown the 

generation of AIRE-independent Tregs in AIRE knockout 

animals [77, 78]. Because AIRE controls the expression of 

a particular set of promiscuous self-antigens in the thymus, 

AIRE-dependent and AIRE-independent Tregs are likely 

to recognize a completely distinct TCR repertoire of self-

antigens. Interestingly, the majority Tregs emigrating from 

the aged thymus are likely to be AIRE-independent, since 

Treg generation in aged thymus is not impaired, however, 

AIRE gene expression is decreased [29, 41]. Whether these 

aged Treg clones preferentially skew toward a particular 

set of self-antigens (e.g. CNS derived antigens) needs 

further investigation. Another potential cause for Treg’s 

dichotomy in relation to the CNS is probably due to 

impaired migration into the CNS in neurodegenerative 

diseases. While Tregs can be detected in the peripheral 

blood of MS patients, their absolute numbers in MS brain 

lesions were extremely low or undetectable, suggesting 

that Treg migration into the brain is impaired or Tregs 

undergo apoptosis in MS lesions [79]. Treg migratory 

capability in RRMS patients was also significantly 
impaired [80]. The third possibility of Treg’s dichotomous 

impacts on the CNS could be Treg’s localization - outside 

or inside of the BBB (Figure 2). If they are located outside 

the BBB, they block other immune cell trafficking, 
whereas if they enter into the CNS, they play a role to 

inhibit inflammatory cells. Overall, exploration of the 
dichotomous role of Tregs on CNS functional integrity 

is in its infancy and includes many outstanding gaps in 

knowledge that must be further investigated. 

T CELL RESPONSES FOLLOWING 

ACUTE CNS INJURY, AND AGE-

RELATED HOMEOSTASIS RELATED 

TO CHRONIC NEURO-DEGENERATION 

Roles of individual T cell subsets involved in 

the integrated T cell immune responses in different 

neuronal diseases, such as CNS injuries and chronic 

neurodegenerative diseases, are different. Their roles 

become more intricate in aged microenvironment. 

Except for acute cerebral trauma from an external blow 

to the head, most brain injuries and neurodegenerative 

diseases are directly and/or indirectly associated with 

age. For example, acute brain ischemic stroke is usually 

induced by insufficient blood flow to the brain likely 
owing to age-related blood vessel and flow abnormalities 
(indirect factors), while chronic neuro-degeneration is 

mostly associated with chronic inflammation during the 
aging process (direct factors). Furthermore, although 

autoimmune demyelinating disease MS is not associated 

with aging (onset at 20 - 40 year olds), it tends to worsen 

with aging (over 40 year olds). And MS patients frequently 

display accelerated aging of the thymus. Therefore, how 

inflammaging develops and its direct/indirect role in acute 
and chronic neural diseases will be discussed. 

Immunopathological characteristics in acute and 

chronic neural diseases associated with aging

T cell-mediated immune responses or 

immunopathology are involved in virtually all types of 

age-related CNS disorders, including acute brain injury 

induced by blood flow abnormalities; autoimmune 
demyelination MS induced by autoreactive T cells; 

unknown etiology neuro-degeneration ALS, and chronic 

neuro-degeneration AD and PD caused by accumulated 

misfolded protein-induced neuro-inflammation associated 
with inflammaging. However, these T cells exhibit distinct 
immunopathological characteristics within the different 

neuronal disorders, and their accumulation can either be 

considered part of an etiology and/or as an outcome of 

neuronal disease

In post-cerebral ischemic stroke, infarct brain 

tissue triggers an immunopathogenic inflammatory 
cascade, involving both the innate and adaptive immune 

responses. The responses display a complex interplay 

between the CNS and the immune system, and lead to 

both amplification of local inflammation in the brain 
and secondary cerebral damage [81-83], characterized 

by neuro-degeneration [7]. Although innate immunity-

induced inflammation by the resting microglia and 
blood-derived M

Ø
 cells is well accepted, the dynamic T 

cell responses after stroke are beginning to garner more 

attention [7, 82]. Two major T cell-related immune 

mechanisms are involved in post-ischemic stroke-

induced inflammation. First one, the CD4+ Th1 cell-

dependent pro-inflammatory pathway (see section 2.2a), 
in which IFNγ mediates polarized immune response 
leading to inflammation and exacerbates brain injury. 
Second mechanism, the interleukin-17 (IL-17)-induced 

inflammation has received increasing attention in recent 
years. IL-17 is predominantly produced by γδ T cells in 
this inflammatory process [84]. Neutralization of the IL-17 
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axis has been reported to be able to diminish brain damage 

[85]. Both γδ IL-17 and Th1 pro-inflammatory pathways 
synergistically enhance recruitment of neutrophils into 

the CNS to lead to secondary cerebral damage [85]. 

Additionally, CD8+ T cells, which are recruited as early as 

3 hours after stroke onset, and NK cells (recruited within 

24 hours) are all involved the acute inflammation [86]. 
On the opposite spectrum, anti-inflammatory Th2 cells 
[87-90] and Tregs [91] are generally regarded to be able 

to protect from post-ischemic stroke inflammation-caused 
brain injury. 

Multiple sclerosis (MS), a self-reactive CD4 T 

cell-mediated demyelinated autoimmune inflammatory 
CNS disorder, is classified as a prototypic heterogeneous 
autoimmune condition, mainly mediated by autoreactive 

Th1 cells and pathogenic Th17 cells [44, 52]. Although 

symptoms emerge in young adults between the ages of 

20 - 40 years old, patients with MS undergo an age-related 

acceleration in progressive axonal loss, potentially due to 

the synergistic effects of age and neurologic illness [92, 

93]. The pathology of MS is typically associated with 

premature thymic involution in RRMS [94, 95]. The 

role of Tregs in disease progression, either deleterious or 

protective, remains uncertain. Tregs are usually considered 

to play a protective role [96] to balance Th17 in MS [97, 

98], and this balance is broken with Treg reduction in 

MS. However, using humanized monoclonal antibody 

Daclizumb, which is an anti-CD25 antibody with a 

potential to block Tregs (reduction of 60% of Tregs in 

a 4-day dosage [99]), to treat MS patients has received 

positive clinical effects [100, 101], implying that Tregs 

may facilitate MS progression. 

Similar to MS in many aspects, Amyotrophic lateral 

sclerosis (ALS), is an age-related neurodegenerative 

disorder that is no considered an autoimmune disease, 

however the associated neuro-inflammation stemming 
from the interplay between microglia and infiltrating 
T cells is thought to play a major role in pathogenesis 

[102]. ALS is typically correlated with the onset of prior 

autoimmune disease [103], and both T cells and humoral 

antibodies were found to affect the motor-neurons [44, 

104]. Additionally, Tregs were observed to increase with 

ALS disease onset, but in the later stages of disease, the 

number and suppressive function of these Tregs were 

reduced [65, 66]. However, not all antigen specific T 
cell responses are associated with ALS progression. 

Using the “protective autoimmunity” strategy [21] to 

immunize mSOD1 mice with a myelin-derived antigen 

has been shown to attenuate ALS disease progression. 

There appears to be an indirect mechanism facilitating 

“protective autoimmunity”, associated with opening the 

brain’s choroid plexus (CP) gate to recruit peripheral Tregs 

and IL-10-produing M
Ø
 cells [105]. 

Age-associated chronic neurodegenerative diseases 

AD is the leading cause of dementia [106, 107], however, 

its etiology is unknown. The pathological features of AD 

have been well characterized, including extracellular 

deposition of amyloid-beta (Aβ) protein and intracellular 
accumulation of neurofibrillary tangles generated by 
abnormal hyper-phosphorylated Tau protein [108]. 

Although T cells are found in the brain of AD patients 

[106, 109], and have been implicated in the induction of 

AD or enhancement of the disease, their overall function 

remains unclear [110]. Mounting evidence indicates that 

misfolded proteins Aβ and Tau can stimulate the immune 
system to activate resident immune cells such as microglia 

and astrocytes [111, 112], and to increase retinoic acid-

related orphan receptor (ROR)γt+ T cells (Th17) and 

nuclear factor of activated T (NFAT)c1+ CD4 cells [46], 

that in turn release inflammatory mediators, ultimately 
exacerbating AD progression [113, 114]. The adoptive 

transplantation animal model (APP/PS1 mice) has helped 

to elucidate the role of three subsets of T cells in AD 

[8]. Transplantation of Th1 cells exacerbated the disease 

[53], while transplantation of Aβ-specific Th2 [115] or 
xenogenous Treg cells [116] ameliorated the disease, 

including improved cognition, reduced plaque deposition, 

and decreased Aβ burden. However, the mechanism of 
Treg protection and suppression of neuro-inflammation 
remains elusive, largely because the targeted effector 

cells are unknown. Additionally, it remains unclear why 

the age-related accumulation of highly suppressive Tregs 

[72] are not able to attenuate neuro-inflammition in the 
elderly, and in many cases appear to exacerbate disease. 

Therefore, the dichotomous role of Tregs in age-related 

neuro-degenerative AD needs to be further assessed. 

Like AD, Parkinson’s Disease (PD) is another 

age-related neurodegenerative disease [117], with 

the progressive clinical motor symptoms, which are 

considered to be the result of loss of dopamine neurons 

in the substantia nigra pars compacta. The pathological 

hallmark of PD is intracellular deposition of Lewy 

bodies and Lewy neurites, which contain a fibrillar and 
misfolded protein called α-Synuclein (α-Syn) [118], 
responsible for inducing a complex immunopathogenic 

response. Although the etiology of PD is unknown, onset 

and progression of the disease result from the interplay 

between the innate and adaptive immune systems, 

evidenced by a significant reduction in dopaminergic 
neuron death in immunodeficient mice [119]. Knock-
out of major histocompatibility complex (MHC) Class-

II (MHC-II) has been shown to prevent α-Syn-induced 
microglia activation, antigen presentation, IgG deposition, 

and the degeneration of dopaminergic neurons [120, 

121]. Many T cell subsets have been observed in PD 

pathogenesis: adoptive transfer of Th1 and Th17 cells 

derived from α-syn-immunized mice leads to exacerbation, 
while transfer of Tregs leads to attenuation of neuro-

degeneration in mouse model of PD [122]. 
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Inflammaging and pro-inflammatory factor 
production

Virtually all age-related diseases, either arise 

from or, are exacerbated by “inflammaging”, which is 
a low-grade, but above base-line, and sustained chronic 

inflammation associated with aging [123-127]. Although 
the etiology is not fully understood, inflammaging has 
been attributed to a combination of cellular senescence-

induced “senescence-associated secretory phenotype 

(SASP)” (details as below) that releases low levels of 

pro-inflammatory cytokines, such as IL-6, TNFα, IL-
1, and C-reactive protein (CRP), [126, 128-130], and 

the persistent activation of immune cells by chronic 

viral infections like cytomegalovirus (CMV) - so-called 

“foreign-reactive” immune cells [125, 127, 131-133]. 

Additionally, we found that auto-reactive T cells contribute 

to the emergence of an inflammatory state with advanced 
age, which is associated with tissue damage inflicted by 
so-called “self-reactive immune cell-induced damage of 

self-structure tissues”. We showed that thymic involution, 

a natural feature of the aging process, is on its own 

sufficient to induce chronic inflammation. In a conditional 
knockout of FoxN1 to induce thymic involution mouse 

model, recently emigrated T cells from the atrophied 

thymus were capable of reacting to self-antigens and 

becoming activated in the periphery, which ultimately led 

to inflammatory infiltrates in non-lymphoid organs and 
increased production of the pro-inflammatory cytokine 
TNF and increased levels of serum IL-6 [29, 41]. 

Senescence-Associated Secretory Phenotype 

(SASP)

SASP [134] likely contributes to tissue degeneration, 

including neuro-degeneration. Although the exact 

characteristics of senescent cell types in the aging brain 

are unclear, mounting evidence indicates that astrocytes 

and microglial cells potentially grow senescent with 

advancing age [135]. Astrocytes from aged rat brains stain 

positive for senescence-associated beta-galactosidase (SA-

βGal) and have increased expression of the senescence 
molecules p21 and p16INK4a [136]. Microglia undergo 

telomere shortening with advancing age [137], which 

can lead to cellular senescence. Nevertheless, SASP 

pro-inflammatory factors create a persistent low-level 
inflammatory environment with advancing age that can 
profoundly affect neighboring cells and systemic milieus, 

and induce and/or enhance neurodegenerative diseases 

such as AD [138] and PD [139]. Although the precise 

molecular mechanism of the SASP signaling pathway is 

unknown, activation of the DNA damage response (DDR), 

p38 mitogen-activated protein kinase (p38MAPK), 

and mechanistic target of rapamycin (mTOR) to trigger 

nuclear factor kappa-light-chain-enhancer of activated 

B cells (NF-κB) and CCAAT/enhancer binding protein 
transcription factors are the likely contributors [126, 

134, 140]. Importantly, activation of NF-kB signaling, a 

hallmar of immune cell activation, is a major trigger of 

SASP in senescent cells [141, 142]. 

Macrophage (M
Ø
)/microglia and inflammasomes

In brain trauma and ischemia-elicited brain acute 

inflammation, the cerebral resident microglia and recruited 
blood-derived M

Ø
 [143] play a major role in both cleanup 

of tissue debris and modification of inflammation. In 
response to environmental stimulation, microglia and M

Ø
 

are activated to differentiate into two types - M1 and M2 

[144, 145] with physiological and functional differences. 

M1 cells clear debris and induce inflammation [146], 
whereby the inflammasomes, typically, nod-like receptor 
protein (NLRP)3 and NLRP1, are activated to trigger 

increased production of pro-inflammatory factors such 
as IL-1β and IL-18 [147], and nitric oxide synthase 
(NOS2) [148]. In the chronic neuro-inflammatory aging 
environment, the inflammasome-mediated inflammatory 
pathway also plays an instrumental role in causing and/

or aggravating neuro-inflammation [149]. For example, 
NLRP3 polymorphisms were found to be associated with 

late-onset AD [150]. 

Although NLRP3 is activated in the microglia 

and M
Ø
 in the brain, it is also potentially activated by 

senescent cell secreted pro-inflammatory cytokines. It 
is proposed that upregulated NF-kB signaling, which is 

a major inducer of SASP, during aging could potentially 

initiate the NLRP3 inflammasome in the brain [151]. 
Therefore, NLRP3 activation-induced increase in IL-

1β levels can be seen not only in acute infection, brain 
trauma, and ischemia, but also in the aged brain with 

chronic inflammation, such as what has been observed in 
AD [152]. Recently, a new stress-induced intra-neuronal 

inflammasome activation pathway (NLRP1/Casp1/Casp6) 
was reported in AD patients, in which NLRP1 activation 

triggers Casp1 activation to induce IL-1β maturation, 
while Casp1 activation also induces Casp6 activation to 

mediate axonal degeneration. It is evidence that in the AD 

brain, NLRP1+ neurons were 25- to 30-fold higher than in 

non-AD brains [153]. 

Opposing the inflammatory and inflammasome 
driven M1 effector functions, the M2 phenotype is 

involved in anti-inflammation via immune modulation 

[154-156]. If NLRP3 becomes inactivated, the microglia 

and M
Ø
 display M2 phenotype with increased IL-4 and 

Arg1, and decreased pro-inflammatory production [152]. 
Both M1 and M2 types of microglia and M

Ø
 are required 

for recovery from CNS injury [157]. Furthermore, these 

classifications are not completely binary, as there is a 
switch from an M1- to M2-dominant response, involving 

cleanup of brain cellular debris in the early stage and anti-

inflammation at the later stage of recovery [156]. 
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POTENTIAL IMMUNOLOGICAL 

STRATEGIES FOR REJUVENATION 

AND CURE OF AGE-RELATED NEURO-

DEGENERATION

Although effective immunotherapeutic options, 

particularly treatments for acute CNS injury and chronic 

neuro-inflammation, remain limited, interest in this field 
is rapidly increasing. Development of immunological 

therapeutic strategies for the best rejuvenation of age-

related neuro-degeneration should target risk/inflammatory 
factors and focus on etiologies. Using anti-inflammatory 
drugs to modulate innate and adaptive immune reactions 

is a known approach. For example, long-term use of anti-

inflammatory drugs reduces the risk for AD and PD by 
roughly half [158-160], whereas alteration of peripheral 

inflammation during neurodegenerative disease can 
significantly alter the disease course [161]. However, the 
immune components, including various types of T cell 

subsets, are garnering more attention, since they have been 

observed in both the induction and suppression of chronic 

inflammation. Therefore, attenuating neuro-inflammation 
is tightly dependent on rebalancing these activated 

immune cell populations.

Improvement of cellular microenvironment-based 

therapy

Improvement of the neuron stem cell (NSC) and 

immune cell microenvironment is a therapeutic strategy 

that has the potential to recover acute CNS injury and 

rejuvenate homeostasis of chronic neuro-inflammation in 
the elderly. Most recently, there are two pivotal progresses 

in this field. 
Shifting an M1- to an M2-dominant response

 As we discussed in previous section, both M1 

and M2 types of M
Ø
 and microglial are required for 

acute CNS injury and chronic inflammatory neuro-
degeneration [157]. During the early stages of the 

recovery process blood-derived M
Ø
 enter the CNS, which 

cannot be replaced by the CNS resident microglia [143]. 

Although M1 cells have pro-inflammatory activity and 
are largely detrimental to the CNS, this is necessary for 

cleaning up CNS cellular debris. At later stages of the 

recovery, M2 cells are dominate the M
Ø
 landscape. M2 

cells have anti-inflammatory effects and are beneficial in 
reducing secondary damage to the CNS [162], thereby 

the switch from an M1- to M2-dominant response halts 

the inflammatory process [156]. Aging induces cellular 
senescence, and M

Ø
 undergo senescence similar to 

other cell types. Unlike young blood-derived M
Ø
, which 

efficiently rejuvenate regeneration in the aged injured 
CNS through “heterochronic parabiosis” (surgically joined 

young and old mice) [156, 163], aged M
Ø
 are less efficient 

at cleaning up cellular debris during CNS injury recovery 

[163] and much slower at switching from an M1- to M2-

dominant response [156]. Studies are attempting to reduce 

the time taken for the transition from M1- to M2-dominant 

response, in order to shorten the pro-inflammatory process 
and prolong anti-inflammatory effects. For example, 
intracerebroventricular infusion of rapamycin, an inhibitor 

of mTOR signaling, enhanced brain M
Ø
 polarization 

to M2-dominant response, and reduced γδ T cell and 
granulocyte infiltration into the CNS to attenuate CNS 
secondary damage after ischemic stroke [164]. mTOR 

is a kinase linking growth and aging [165], and T cell 

development and activation [166] through myriad signals. 

Inhibition of mTOR signaling was also reported to inhibit 

differentiation of Th17 cells and promote the generation 

and activation of FoxP3+ Treg cells, which are beneficial 
to CNS injury recovery [167, 168]. Another example is 

the administration of IL-4 to enhance the M2-dominant 

response in the CNS after intracerebral hemorrhage [169]. 

Evidence shows that aged mice are less sensitive to the 

M2-promoting effects of IL-4 in Lipopolysaccharides 

(LPS)-induced neuro-inflammation [170]. Use of IL-4 
in aged individuals during CNS injury as a means of 

treatment may be potentially helpful, which is reviewed 

elsewhere [4], but dosage may present a hurdle. 

Tregs and Treg-derived exosomes for therapeutics

The evidence of Treg-based therapy in recovery 

from acute CNS injury, such as cerebral ischemic stroke, 

was established using two different approaches. First, 

Treg depletion was shown to impair recovery in post-

ischemic stroke by augmenting the activation of CNS 

resident and invading inflammatory microglia/M
Ø
 and T 

effector cells, and elevation of pro-inflammatory cytokines 
(TNFα, IFNγ, and IL-1β) in the brain [171]. However, 
these phenotypes were not reproducible using a different 

Treg depletion method by another group [172]. This 

is mainly attributed to complete [172] or partial [171] 

depletion of Tregs, where incomplete depletion may be 

more harmful for recovery from post-ischemic stroke-

associated lesions [171]. Second, many experiments 

have indicated that enhancing Tregs could reduce brain 

damage in post-ischemic stroke. This can be achieved 

through several approaches: (1) adoptive transfer of Tregs 

into ischemic stroke individuals [173]; (2) amplification 
of the host’s own Tregs by intraperitoneal injection of a 

CD28 super-agonistic monoclonal antibody (CD28SA) 

[174]. The CD28SA can efficiently expand and activate 
polyclonal Tregs in vitro and in vivo without TCR 

engagement [175, 176]; (3) boosting the host’s own Treg 

suppressive function by enhancing IL-10 expression 

through injection of trichostatin A [177]. Trichostatin A is 

a histone deacetylase inhibitor, which can epigenetically 

activate the FoxP3 gene and promote the generation 

and function of Tregs [178]; (4) transplantation of bone 

marrow mesenchymal stem cells (BMSCs) or neuron 
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stem cells into MCAO animals induces an increase in 

cerebral Tregs [179, 180], although the mechanism is 

unclear. In addition to their therapeutic role in acute CNS 

injury, Tregs have been shown to affect the attenuation of 

chronic inflammation-induced neuro-degeneration [72, 
122]. Furthermore, vaccination can facilitate Treg therapy 

of autoimmunity-induced neuro-degeneration, such as 

in EAE [181]. The myelin oligodendrocyte glycoprotein 

peptide
35-55

 (MOG
35-55

) can be used as a self-antigen for use 

in a DNA-vaccine to induce Tregs and anti-self-antigen-

specific immune responses [181, 182]. This therapy 
was demonstrated to be safe and effective, and is being 

tested in a clinical trial for MS [183, 184]. Clearly, the 

therapeutic use of Tregs in CNS injury and autoimmune 

disorders is an area of growing interest [185, 186]. 

However, a recent report using naïve rats described 

a high proportion of FoxP3+ Tregs in the CNS that are 

able to suppress Lipopolysaccharides (LPS)-induced 

inflammatory responses of brain microglia/macrophages 
[64]. The question arises as to why additional Tregs 

are required for the therapy of CNS injury and chronic 

inflammation-induced neuro-degeneration, when the CNS 
already has a high proportion of resident Tregs? Is this 
because the cerebral Tregs are reduced during acute and 

chronic CNS damage? Except for MS, in which Tregs are 
impaired [187], neurodegenerative diseases, such as AD 

and PD, are reported to have increased Tregs with higher 

activation in the peripheral blood [72], that likely suppress 

T effectors of pathological proteins such as Aβ and tau 
proteins in AD. Therefore, an excessive increase in Treg 

number could potentially perturb the balance of beneficial 
immune responses necessary cleaning up accumulated 

pathological proteins and debris. Therefore, it will be 

of great interest to re-evaluate whether enhancement of 

Treg number and activation in acute and chronic CNS 

inflammation are really necessary for their therapeutic use. 
In addition, Treg-based therapy is riddled with 

other unsolved issues. For example, if Tregs from an 

individual other than the host are used, then there is an 

MHC matching requirement between the two individuals, 

making the expansion of autologous Tregs likely to be 

necessary for cell-based therapy. In the case of expansion 

of Tregs in the elderly, there is the issue of senescent 

Tregs and altered function. The immune periphery of 

aged animals and humans have an accumulation of Tregs 

[40], resulting from a decrease in pro-apoptotic Bim gene 

expression [188-190]. Although aged Tregs were not 

found to be impaired in their suppressive function [191], 

progressive aging does affect some Treg subpopulations 

[192-194]. Whether aged Tregs are the equivalent to 

young Tregs at the individual cell level or whether they are 

associated with replicative senescence is unknown [195, 

196]. Therefore, cell-free transplantation through Treg-

derived exosomes may be a better strategy in Treg-based 

therapy [197-199]. 

Exosomes are small membrane vesicles of 

multivesicular bodies secreted by numerous cell types, 

including FoxP3+CD4+ Tregs [200]. Exosomes bear 

soluble epigenetic components, including mRNAs, 

microRNAs (miRNAs), other noncoding RNAs, lipids, 

and proteins from their originating cells, of which 

miRNAs and other small RNAs are the most abundant 

components [201, 202]. Exosomes are epigenetic 

regulators that induce or suppress gene expression via 

intercellular communication. Each cell type-derived 

exosome contains a distinct pool of components with 

distinct functions. Treg-derived exosomes are distinct from 

those of Th1 and Th2 cells, and necessary for controlling 

systemic inflammation via suppression of pathogenic Th1 
cell proliferation and inhibition of IFNγ production [197]. 
Notably, Treg-mediated exosomal delivery of miRNAs and 

other immunoregulatory factors should have suppressive 

and immune modulatory functions similar to that of cell-

contact mediated Tregs, and are potentially therapeutic 

[199] in CNS injury and inflammatory recovery. 
Immunization (vaccination) therapy

Conventional vaccination prevents infectious 

diseases by the administration of antigenic material (a 

vaccine) to develop an individual’s adaptive immunity 

(mostly antibodies) against specific pathogens. 
Nevertheless, vaccination is also used for treatment (cure 

instead of prevention, termed therapeutic vaccination) 

of neuro-degeneration, neuro-inflammation, and tumors, 
which are not infectious diseases and involve the 

establishment of not only antibodies, but also cellular 

immunity. With regard to neuronal diseases, therapeutic 

vaccination is not only applied in autoimmune neuro-

degeneration, such as MS, but also in inflammatory neuro-
degeneration, such as AD and PD, and in traumatic CNS 

injury. 

Vaccination against autoimmune T cells in MS

In MS, the CNS is attacked by abnormal 

autoimmunity through an inflammatory demyelinating 
disorder, in which myelin-reactive T cells are involved. 

Therapeutic vaccination, including the use of T cell 

vaccine (TCV), TCR peptide vaccine, myelin basic 

protein-based DNA vaccine, and altered peptide ligand 

vaccine, shows great promise in ameliorating the disease 

[203], not only in rodents (A rodent model for human 

MS is EAE.), but also in humans [204, 205]. The most 

promising approach uses attenuated autologous myelin-

reactive TCV, with attenuated autoreactive T cells from 

MS patients to induce T cell-dependent inhibition/

neutralization of disease-causing T cells, and regulation of 

the autoimmune response [206, 207]. The T cells for TCV 

therapy are usually derived from the patient, attenuated 

with irradiation, and then re-injected into the patient to 

elicit an immune reaction or immune regulation, in order 

to reduce or eliminate myelin-reactive effector T cells, 
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decrease Th1 cytokine (such as INF-γ)-producing cells 
in the CNS [208], and increase and activate CD4+ Tregs, 

which can inhibit autologous myelin-reactive T cells [209, 

210], thereby ameliorating inflammation and disease.
In addition, immunization with a myelin-derived 

antigen was reported to be able to activate the brain’s 

choroid plexus (CP), thereby enhancing recruitment of 

immunoregulatory cells to the CNS to achieve attenuating 

ALS disease progression in a mouse model [105]. The 

target of this immunization is not disease-related T cells, 

but the patient’s CP. The vaccine was shown to induce 

the CP to express IFNγ and attract Th1 cells, which is 
demonstrated to be required for CNS immune surveillance 

and repair [32]. However, further in-depth studies and 

additional molecular evidence for this mechanism are 

required. 

Therapeutic vaccination, Aβ- and Tau-based 
immunotherapy

Age-related chronic neurodegenerative diseases 

such as AD and PD are characterized by the accumulation 

of pathogenic misfolded proteins. Therefore, 

immunization to target epitopes from these proteins is 

a potential effective strategy. Therapeutic vaccination 

for AD is to target two abnormal protein: extracellular 

deposition of misfolded Aβ and Tau proteins [211, 212] to 
produce specific antibodies for enhancement of clearance 
by inducing phagocytosis [213] and neutralize the toxic 

effects [214], and inhibition of anti-oligodendrocyte- and 

myelin-related neurite outgrowth [215]. 

 There are two major ways to elicit these antibodies. 

One is active immunity with Aβ or Tau peptides (such as 
using immunoge Aβ

1-40/42
) to elicit antibodies from patients 

themselves; the other is passive immunity by transfer of 

Aβ− or Tau-specific antibodies made from others, e.g., 
humanized monoclonal antibodies, to patients. 

 Therapeutic vaccination takes advantage of the 

immune response against a harmful self-antigen, but 

there is a risk of causing adverse autoimmunity. For 

example, active immunization with Aβ
1-42

 peptide for AD 

immunotherapy induced the onset of meningoencephalitis 

in 6% of treated patients [216]. The underlying mechanism 

is thought to be due to T cell-mediated autoimmunity, 

which is attributed to the Th1-biased adjuvant, QS-21 

[212, 216]. Therefore, the passive immunotherapy using 

humanized monoclonal antibody (mAb) is thought to be 

relatively safe [212, 217], and several mAbs have been 

tested in clinical trials on humans [218]. More and more 

groups are seeking safe and effective immunogens for 

vaccination to minimize autoimmune reactions and switch 

immune response type in developing a cure for AD, such 

as using non-viral DNA vaccines without any adjuvant 

[219] to rein in excessively strong immune reactions and 

to elicit a Th2-type immune response in the host [220, 

221]. 

Unlike Aβ in AD brain that forms extracellular 

senile plaques, aggregated hyper-phosphorylated Tau 

protein forms intracellular neurofibrillary tangles. In 
recent years vaccines designed to clear aggregated hyper-

phosphorylated Tau protein are being developed for the 

immunotherapy of AD [222-224], exhibiting effective 

responses against Tau in animal models of AD [225-227]. 

Additionally, passive immunization to target Tau using 

specific Ab in mouse models has been demonstrated 
[228, 229]. However, since Aβ and Tau induce different 
pathological changes in the brain of AD patients, whether 

simultaneously targeting both proteins will produce a 

synergistic therapeutic effect has just been tested with 

promising effects [230]. However, more reports in this 

field are required for establishment. 
The development of a vaccine for PD employs a 

similar concept as for AD, with great progress in recent 

years [231]. PD pathology in the brain is characterized 

by Lewy bodies, in which the major constituent is 

the accumulated and aggregated misfolded synaptic 

protein - α-synuclein (α−Syn). Therefore, cerebral α−
Syn protein was selected as the target [232]. Active 

immunization with a full length α−Syn-based vaccine 
[233] or passive immunization with an α−Syn-specific 
monoclonal antibody [234, 235] were tested in a mouse 

model over-expressing human α−Syn protein, with both 
approaches showing efficacy in disaggregating transgenic 
human α−Syn protein. Promisingly, active immunization 
for human PD patients has been developed [236]. To 

avoid autoimmune reactions, such as antibody-induced 

meningoencephalitis in AD immunotherapy [216, 237], 

this PD vaccine uses a short peptide (7 amino acids) in 

order not to induce an α−Syn-specific T cell response, 
but provides the T helper epitopes in carrier proteins to 

sufficiently activate the B-cell response. 
Therapeutic vaccination also holds promise in other 

CNS degenerative diseases [238], such as acute traumatic 

brain injury [239] or chronic psychiatric conditions [56]. 

The use of vaccination to cure CNS injury is based on 

the principle of immune suppression of harmful proteins. 

When the CNS is acutely injured by either trauma or 

stroke, myelin and oligodendrocyte associated neurite 

growth inhibitors, such as Nogo-A [240] and myelin-

associated glycoprotein (MAG) [241], are released into 

the CNS environment and inhibit neuron, particularly 

axon, regeneration. Antibodies specific to these inhibitors 
can reverse and promote neurite outgrowth [242, 243]. 

Tau protein is also phosphorylated following traumatic 

brain injury, and potentially leads to a pathological form 

of tauopathy-related dementia [239]. Therefore, Tau 

vaccination holds great promise as a therapeutic strategy 

for traumatic brain injury. 

Harnessing “autoimmune therapy” for neuro-
regeneration and CNS injury recovery

Dr. Schwartz’s group, with decades of experience on 

the cross-talk between the immune and nervous systems, 
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found that therapeutic vaccination with self-antigens, such 

as MBP, can play a role in neuro-protection and promote 

repair, renewal, and rebalance of neurodegenerative 

conditions. They termed this mechanism “protective 

autoimmunity” or “T cell immunity to self-maintain 

the self” [21, 244]. While autoimmunity is harmful to a 

healthy body, the key to harnessing it for therapy lies in 

controlling the antigen, carrier, timing, dose, and regimen. 

For example, using part of MBP peptide-51 - 70 as an 

antigen is safer (does not induce EAE) and more effective 

(does not disrupt retinal ganglion cells) than using whole 

MBP [21]. The “protective autoimmunity” confers 

benefits not only in therapy of CNS trauma, such as 
spinal cord injury [51, 245] and cerebral ischemic stroke 

[246], but also in spatial learning and memory [57], since 

mice deficient in total or CNS-specific T cells exhibited 
reduced spatial learning and memory capabilities, which 

were restored by providing them with WT T cells [56, 

247]. Two approaches are currently used in therapeutic 

vaccination with self-antigens — injection of antigen, 

such as spinal cord homogenate (SCH), directly into the 

host animal [51], or injection of dendritic cells, which are 

primed by SCH, into the host animal [248]. The precise 

mechanism, by which self-antigen induces “protective 

autoimmunity”, is still unclear, but two plausible theories 

may explain the mechanism: (1) to remove toxic materials 

generated during CNS injury, such as rapid induction of 

autoantibodies against Nogo-A, the encephalitogenic 

MOG, and neurite growth inhibitors [249]; (2) to recruit 

blood-derived M
Ø
 cells to the CP [55] and facilitating their 

entry into the CNS through the BBB [31, 33], which is 

compromised during CNS injury. The M
Ø
 is necessary to 

clean up the damaged cellular debris (M1 function) [163] 

and execute immune modulation (M2 function) [162] 

in the injured CNS. However, there remains a pressing 

need in “autoimmune therapy” to balance and augment 

the beneficial response without eliciting detrimental 
autoimmune pathology and aggravating inflammation. 
As the field of “protective autoimmunity” progresses, 
there will likely be a need to design kill-switches into 

the therapy in order to shutdown off-target autoimmune 

reactions that may arise.

CONCLUDING REMARKS

Our understanding of neural-immune crosstalk 

and mutual influence in aging and age-related diseases 
has advanced greatly over the past decade. This review 

of immunology and neurobiology in the context of 

aging and age-related diseases aims to stimulate the 

development of new therapeutic strategies. We focus 

on the impact of cellular immune system aging on 

neurodegenerative diseases, and the great promise that 

immunotherapy holds for the rejuvenation and cure of 

these diseases with the goal of developing novel and 

practical therapeutic strategies in elderly individuals at 

risk for chronic inflammation-associated cardiovascular 
and neurodegenerative diseases. Although enormous 

progress has been made, many challenges and questions 

remain, and further investigation is critically needed. 

Further investigation should focus on (1) The etiology 

of inflammaging-associated chronic neuro-inflammation, 
which remains largely unclear. Although all aged persons 

exhibit some levels of chronic inflammatory conditions, 
not all individuals suffer from age-related diseases, such 

as AD or PD. This is because inflammaging is necessary 
but not sufficient to induce age-related neurodegenerative 
diseases. Clearly, an additional trigger is required for 

disease onset, and the nature of the trigger(s), be it 

infection, nutrition, or other environmental factors, needs 

to be investigated. (2) Fundamental mechanisms by 

which a detrimental immune reaction takes place in the 

CNS associated with inflammaging or secondary cerebral 
damage during acute CNS injury are still unclear. The 

lack of a T cell immune reaction has been confirmed to 
impair CNS injury recovery and disrupt maintenance of 

brain plasticity. Therefore, the immune cell types (such 

as Th1/2/17 types and M1/M2 types), their self-reactivity, 

and their migration into the appropriate location (such 

as at the brain parenchyma or CP) and timing (such as 

length of M1/M2 response transition) will probably 

be tightly associated with disease onset. (3) Although 

immune interventions hold great promise for the treatment 

of neurodegenerative diseases, the efficiency of these 
immune therapeutic strategies needs to be improved 

since developed vaccines do not yet cure or efficiently 
treat AD and PD. One aspect that has been overlooked 

is that vaccination of immunosenescent patients is not 

efficient and all elderly patients exhibit some degree of 
immunosenescence [39]. Therefore, vaccination and 

rejuvenation should be considered in concert. We have 

great expectations that in the near future, progress in 

the understanding the etiology and mechanisms of age-

related neuronal disorders will lead to novel and efficient 
immunotherapeutic strategies. 
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