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Abstract—Personal storage is a mainstream service used by
millions of users. Among the existing alternatives, Friend-to-
Friend (F2F) systems are nowadays an interesting research topic
aimed to leverage a secure and private off-site storage service.

However, the specific characteristics of F2F storage systems
(reduced node degree, correlated availabilities) represent a hard
obstacle to their performance. Actually, it is extremely difficult for
a F2F system to guarantee an acceptable storage service quality in
terms of transference times and data availability to end-users. In
this landscape, we propose to resort to the Cloud for improving
the storage service of a F2F system.

We present FriendBox: a hybrid F2F personal storage
system. FriendBox is the first F2F system that efficiently
combines resources of trusted friends with Cloud storage for
improving the service quality achievable by pure F2F systems.

We evaluated FriendBox through a real deployment in
our university campus. We demonstrated that FriendBox
achieves high transfer performance and flexible user-defined data
availability guarantees. Furthermore, we analyzed the costs of
FriendBox demonstrating its economic feasibility.

Keywords-Friend-to-friend (F2F), storage systems, data avail-
ability, data transfer scheduling, availability correlations

I. INTRODUCTION

Increasingly, users will require ubiquitous personal storage
to handle their ever-growing digital lives. Every user will han-
dle hundreds of gigabytes to store digital information including
photos, videos, work documents and communication flows like
emails or social communication. To meet this demand, the
number of Cloud offerings is large and growing, ranging from
Dropbox and the likes, to IaaS providers like Amazon.

Although Cloud systems can meet the requirements of mass
storage, some users are reluctant to move their data to the
Cloud due to the large amount of control ceded to Cloud
vendors, which includes the lack of data privacy [1] among
other issues. In consequence, other alternatives have been
devised to provide a secure and private off-site storage service.

In this sense, Friend-to-Friend (F2F) storage systems are
nowadays an interesting research topic and they constitute an
alternative approach to leverage personal storage [2], [3], [4].
The F2F paradigm is based on the synergy between social
networks and storage systems: users store their data in a set
of social friends. Thus, data is neither stored in a centralized
server nor in unknown peers, enabling users to retain the
control of their data. Moreover, the social component of F2F
systems alleviates many undesirable problems present in large-
scale distributed systems —e.g. security, trust, incentives.

Nevertheless, the main drawback of F2F systems lies on the
poor service quality they can provide. Actually, our research
suggests that it is extremely difficult for a F2F system to pro-
vide adequate data availability and transfer times guarantees.
Specifically, there are two simultaneous issues that put the
feasibility of F2F systems at risk: reduced node degree and
availability correlations.

The first problem refers to the typically small number of
available trusted friends to which store data. For instance,
over 63% of Facebook users have less than 100 friends [5].
In this line, other content distribution sites with social com-
ponents (e.g. YouTube, Flickr, Friendster) present even lower
connectivity among users. The bad news are, however, that
for most users the majority of interactions occur only across
a small subset of their social links —e.g. 20% of their friends
account for 70% of all interactions [5]. This poses an important
drawback: in a F2F system, users present extremely small
friend-sets.

Second, real measurements on user behavior from online
social networks suggest that friends are significantly correlated
in their connectivity patterns [6], [7]. This implies that is rather
probable to find all friends of a user simultaneously offline,
particularly during night hours, which makes it impossible to
maintain high data availability even when placing one replica
at each friend. Consequently, availability correlations degrade
the storage service experienced by users in a F2F system.

In this landscape, we propose a radically different approach:
resorting to Cloud storage services for improving the perfor-
mance of a F2F storage system.

We present FriendBox: a hybrid F2F personal storage
system. FriendBox is the first F2F system that efficiently
combines the resources of trusted friends with Cloud storage
for improving storage service quality while preserving privacy.
FriendBox provides a flexible and user-defined Cloud us-
age: users are able to decide where to store their data, which
can be completely on friends, only in the Cloud or in a mix of
them. We implemented in FriendBox advanced mechanisms
which strategically use the Cloud to mitigate the problems of
pure decentralization, improving the resulting service quality.

In this article, we describe the architecture and implemen-
tation of FriendBox. We validate FriendBox executing a
real deployment in the Universitat Rovira i Virgili (URV) cam-
pus. We demonstrate that FriendBox provides high transfer
performance with flexible user-defined data availability. Fur-
thermore, we analyze the costs of FriendBox to evaluate
its economic feasibility. Finally, we illustrate the impact of
correlated availabilities on the performance of FriendBox;
a hard problem for a pure F2F system performance.

The remainder of the paper is structured as follows. We
discuss the related work in Section II, and describe the
architecture of FriendBox in Section III. In Section IV,
we overview the mechanisms that FriendBox implements to
combat the main problems of F2F systems. In Section V, we
illustrate the implementation of FriendBox. In Section VI
we describe the experimental environment and the results that
evaluate our system. Finally, we discuss about the future of
FriendBox (Section VII) and we conclude in Section VIII.
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Fig. 1. Overview of FriendBox architecture. This picture illustrates how a user maintains storage links with some of his friends in a social network.
Moreover, this user is able to store a fraction of his data in a Cloud storage service. The state information of a user’s data is stored in the FriendBox
Application State. Finally, users manage their storage relationships and check the state of their storage service in the FriendBox Social Front-end.

II. RELATED WORK

Friend-to-friend. F2F systems emerged in the last years
to overcome the limitations of P2P storage systems [8], [9].
Among the limitations P2P storage systems, the instability and
heterogeneity of peers is an important issue that hinders the
provision an appropriate service quality [10]. Furthermore, de-
spite important efforts [11], the existence of selfish behaviors
(free-riding) and the lack of trust among participants make
end-users reluctant to adopt P2P storage systems.

For example, in [2], authors used friends instead of random
peers to improve the stability of existing systems. They argued
that P2P systems with random neighbor selection are very
unstable and that using friends provides incentives for nodes
to cooperate. This results in a more stable system which, in
turn, reduces the cost of maintaining data.

Similarly, FriendStore [3] is a cooperative backup system
where peers use their friends to store information. Friend-
Store aims to solve both the availability and denial-of-service
problems thanks to trusted relationships. Users enter storage
contracts with their friends via real-world negotiations. They
validated their work developing a cooperative backup system.

A recent work in this field is [6]. Their empirical study of
availability in F2F storage systems present a major drawback
regarding data availability: if no friends are online, then data
stored in the system will not be accessible. Whereas backup
systems may be feasible using friends, storage systems require
data availability that cannot be ensured with friends’ resources.

In [12], authors present a Facebook application that aims
to create a Social Cloud, enabling friends to share resources
within the context of a Social network. Their prototype ap-
plication is a marketplace where friends trade their resources
using auctions and bidding mechanisms mediated by contracts.
However, as stated previously, the availability of these re-
sources cannot be guaranteed by the sole usage of friends.

Peer-assisted storage. Another related line of research is
peer-assisted [13] storage systems that combine Cloud and
peer resources. For example, in [14], authors present a hybrid
architecture where resources at peers (spare bandwidth, stor-
age space) are complemented with temporal usage of Cloud
storage services. They demonstrated that hybrid systems can
be comparable to traditional client-server architectures but at a
fraction of their costs. In this line, FS2You [15] is a large-scale
online storage system with peer-based assistance and semi-
persistent file availability that was developed to reduce server

bandwidth costs. Their measurement study demonstrated the
feasibility of combining peers with Cloud resources.

To conclude, FriendBox is the first hybrid F2F solution
that efficiently combines resources from trusted friends and
Cloud services to provide a flexible, trusted and private per-
sonal storage service.

III. SYSTEM OVERVIEW & ARCHITECTURE

In this section, we overview FriendBox and its architec-
ture, which is divided into three components: FriendBox So-
cial Front-end, FriendBox Storage Client and FriendBox
Application State.

A. FriendBox Social Front-end

In our architecture, the FriendBox Social Front-end pro-
vides three main services: social relationships provisioning,
access control and service information web page.

The fact of coupling FriendBox within a social network
facilitates the establishment of social storage relationships
among users, a critical aspect for a F2F system.

User management in a massive distributed application is a
complex task. For this reason, we employ a social front-end
as entry point of FriendBox: only those users which are
members of the social network are capable of accessing to
our F2F system. Thus, user management and access control
issues are partially delegated to the social network avoiding
additional complexity to the storage system.

Finally, the FriendBox Social Front-end provides a very
intuitive GUI to expose the most relevant service information
to the user. For instance, users can inspect their monthly Cloud
resource consumption and the distribution of their data within
the system.

B. FriendBox Storage Client

In addition to the FriendBox Social Front-end, users
must download the FriendBox Storage Client to connect
to the system. This software enables users to perform basic
data operations, such as storing and retrieving files from the
system (friends and/or Cloud). Moreover, this software acts
both as a client and a server in that our friends can store their
information in the storage space we contribute to the system.

To cope with friends’ instability, data redundancy must
be added to the system to guarantee an acceptable level
of data availability. To this end, a core functionality of the
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FriendBox Storage Client is the generation of data redun-
dancy before inserting a file into the system. We armed this
client with various redundancy mechanisms as we describe in
Section V-A.

One of the main novelties of FriendBox is to re-
sort to Cloud storage services for improving the service
quality achieved by pure decentralized F2F systems. The
FriendBox Storage Client enables users to decide the distri-
bution of data between their friends and the Cloud. This leaves
to the user the control of his data and its placement within the
system. In this line, the architecture of FriendBox supports
simultaneous connections with several Cloud providers. This
attractive feature opens the door for the development of new
strategies to enforce privacy and avoid data lock-in.

In Fig. 1 we observe how a user distributes his data among
friends and the chosen Cloud storage service.

C. FriendBox Application State
Essentially, the FriendBox Application State maintains

up to date the data management information about users’
files. This information expresses which friends store which
files and the network address of each friend. This information
is needed to perform friend-to-friend storage operations. The
maintenance process of this information is carried out by
FriendBox Storage Clients installed at participants. Clients
communicate with the FriendBox Application State and
update their state information via a Representational State
Transfer (REST) API. In addition, this application is the
backend of the FriendBox Social Front-end.

Storing the application state of FriendBox in the Cloud
provides service ubiquity: a user is able to install the
FriendBox Storage Client in any machine and obtain the
information state from this Cloud application. To the best of
our knowledge, no other F2F system provides this feature.

The role of the FriendBox Application State is illustrated
in Fig. 1. In this figure, we show how a user communicates
with the FriendBox Application State to transfer state
information. In this example, a user sends a message informing
that a new file has been stored in the system and containing
which friends are responsible for data blocks from that file.
As can be seen, the FriendBox Application State stores this
information using mappings that relate data blocks with the
friends who are responsible for them.

IV. BEYOND FRIENDBOX : ADVANCED ASPECTS

In this section, we provide a technical description about
the problems that put the feasibility of F2F systems at risk:
reduced friend-sets and availability correlations. Moreover,
we overview the Cloud-based mechanisms introduced in
FriendBox to mitigate these problems.

A. Understanding the problems of F2F systems
In FriendBox, we assume that friends alternate between

online and offline states, with their online sessions being
correlated over time. Correlation can be understood as the
high probability that given an online user, his friends are also
online, which corresponds well with the strong diurnal pattern
empirically observed in social networks like Facebook [7].

Data Availability. To assure a given level of availability,
FriendBox makes use of Erasure Codes (ECs), which has
been proven to be more efficient in terms of redundancy than
replication [16]. An EC scheme splits an input file into k

fragments of 1/kth the size of the original file. Then, these
k fragments are encoded into n redundant blocks k, k ≤ n,
which are stored at different nodes to mask failures. The data
redundancy required to store a file is thus n

k . The original file
can then be recovered by collecting any subset of k blocks out
of the total n.

Traditionally, given the number of fragments for a file k and
the target level of data availability A, the number of encoded
blocks to upload n and hence, the redundancy rate n

k , has been
determined as follows:

n = min

{
x ∈ N

∣∣∣∣
(

x∑
i=k

(
x
i

)
āi(1− ā)x−i

)
≥ A

}
, (1)

where ā is the average host availability. (1) simply accounts
for all the possible combinations of finding k blocks (or more)
out of n, times the probability that this happens.

Two important observations must be discussed here about
(1). The first is that this equation assumes that each fragment is
stored at a distinct machine, because otherwise the failure of a
single host would imply the loss of multiple fragments, thereby
leading to an underestimation of the real data availability given
by (1). This assumption is not realistic in our case. Due to the
reduced number of friends (typically, between 5 and 20), it is
very likely that a friend gets assigned more than one fragment.

Second, (1) assumes that hosts are not correlated, which is
by far not true in F2F systems. As before, this implies that (1)
can highly underestimate the real data availability. Considering
a diurnal pattern in host availability, it is almost impossible for
a reduced number of storage nodes, irrespective of the amount
of redundancy used, to provide high data availability, as all of
them will be probably offline during night hours [6]. This leads
to the following problem:

Problem 1. Offering a high level of data availability requires
redundancy to be added to friends to mask their discontinuous
correlated participation. If the amount of redundancy is too
high, a F2F system could become impractical.

Data Transfer Scheduling. Concretely, when we refer to
a transfer, we mean the connection with a remote node that
causes the transfer of a single block of data to it. Clearly,
a transfer may be interrupted if the remote node becomes
offline during this process. This takes an amount of time,
namely, block transfer time (BTT). For this reason, we refer
to a schedule as the set of transfers concerning the same
data object. Furthermore, we refer to as scheduling policy, the
algorithm that decides the order according to which transfers
must occur over time in order to minimize the time to complete
a given schedule. We refer to the time to complete a schedule
simply as the time to schedule (TTS) [17].

Neither the formalization of the data transfer scheduling
problem nor the existing scheduling policies take into account
availability correlations [17]. This implies that the TTS may
grow significantly if, for instance, the least available friend was
scheduled last when all friends follow a diurnal pattern. This
fact is mirrored in the example of Fig. 2, where n = |F| = 3
and the set of potential schedules is S1 (exactly one encoded
fragment to each friend). Because friends present discontin-
uous participation, we have depicted in gray the time slots
where each node is online. This scenario clearly highlights
the importance of a good schedule when storage friends are
not available at all times.

With an optimal schedule the owner would send a fragment
to p3 in the first time slot, then another to p1 in time slot t2,
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Fig. 2. Example of availability correlation.

and finally one to p2 in time slot t3, concluding the schedule.
On the contrary, if the first block is sent to p2, then the second
block to p1, the owner will have to wait for p3 to come online
again in time slot t8 to complete the upload. If the availability
pattern of p3 had been considered, this schedule would have
been discarded.

Problem 2. In a F2F system, finding the most optimal
scheduling plan is important to provide an efficient storage
service in terms of transfer times, which is not trivial. Fur-
thermore, the role the reduced number of friends and the
availability correlations among them is even more important
in a F2F scenario.

B. Improving a F2F storage service with a Cloud backend
Indeed, as we describe next, a Cloud backend is fundamen-

tal to solve the problems illustrated in the previous section.
Improving data availability. As discussed in the previous

section, availability correlation in conjunction with a small
friendset makes it hard to maintain a high data availability
during the 24 hours of the day. For this reason, we advocate
for ensuring a high data availability during the day hours
where friends are mostly online, what we call as daily data
availability, measured in δ hours. Clearly, as a consequence of
availability patterns, the required δ hours of data availability
will be mostly concentrated during the online periods of nodes.
To this end, we propose a novel hybrid redundancy scheme
where a fraction of the data is permanently stored in the Cloud
and the rest is supported by friends. To adjust the amount of
redundancy required at friends, our algorithm make use of
their availability histories1.

First, FriendBox defines the fraction of a file to be stored
in the Cloud as FC . A high FC will take more advantage of
the superior availability of the Cloud, thereby reducing the
amount of redundancy to be assigned to the friends to support
the rest of the file: 1−FC . However, a lower FC will reduce
the monetary costs of storing a file into the system. In this
way, FriendBox allows users to trade monetary cost for data
availability in order to meet their particular storage needs. We
are not aware of any other F2F system that benefits from the
Cloud to provide a differentiated storage service per user.

Note that for a FC < 1 there will be less than k blocks
permanently stored in the Cloud. This preserves the distinctive
data privacy feature of F2F systems, since the Cloud vendor
cannot reconstruct the original file by any means.

Reducing scheduling times. We resort to the Cloud for
reducing scheduling times. In case of uploads, the Cloud
acts as a temporal buffer to store those blocks belonging
to unavailable nodes during the scheduling process. To this
end, we implemented a bandwidth maximizing friend-to-Cloud

1In FriendBox, the FriendBox Application State performs the avail-
ability monitoring of nodes within the system.

Fig. 3. View of the FriendBox Storage Client. The GUI enables users to
perform several actions: data management operations (add, retrieve and delete
files), inspecting which friends are currently participating in the storage system
or modifying configuration settings (connection ports, Cloud accounts, etc).

policy. With this policy a user seeks to reduce transfer times
as much as possible by fully utilizing its own bandwidth.
If a node responsible for a block is not online, this policy
automatically redirects that block to the Cloud. This leads to
an important reduction of scheduling times when nodes are
unavailable, in particular during the night hours. In any case,
the extra blocks pushed to the Cloud are downloaded and
deleted afterwards by the nodes to whom they were assigned.

For downloads, we prioritize block downloads from friends
since they have no cost for the requester node. If there are less
than k blocks available from friends, the remaining ones are
downloaded from the Cloud.

V. IMPLEMENTATION

A. Storage Client: Blending Friend & Cloud Storage
The heart of the FriendBox Storage Client is imple-

mented in Erlang2, a programming language conceived to
build massive distributed systems. Over 4, 000 lines of code
implement the basic functionality of this software. This in-
cludes block level put/get/delete storage operations, manage-
ment of parallel transfer connections, logging, etc.

The software architecture —based on the Erlang OTP
Framework— permits to easily extend its functionalities. For
example, currently the software includes two ways of provid-
ing data redundancy: replication and Reed-Solomon erasure
codes (developed in C). However, other advanced data redun-
dancy mechanisms and coding schemes can be introduced as
independent modules in FriendBox without effort.

In the current version of FriendBox, the storage client
provides a REST API to store data in Amazon S33. Users can
configure the fraction (FC) of their files to be stored in the
Cloud. In this sense, to introduce more flexibility on selecting
a Cloud provider we are developing APIs for other Cloud
storage services, such as Google Storage or OpenStack.

Finally, users interact with the storage client via a user-
friendly GUI. This GUI has been implemented in Java and
connected to the storage client through Jinterface, a package
for communicating Java programs with Erlang processes. In
Fig. 3 we show the storage client GUI.

B. Application State powered by Google AppEngine
The FriendBox Application State component has been

developed with 3, 000 lines of Python code, plus HTML

2http://www.erlang.org
3http://aws.amazon.com/
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and CSS to render the FriendBox Front-end in Facebook.
This component has been hosted in GoogleApp Engine4.
We employed this PaaS provided by Google for hosting our
application since it offers an elastic and scalable service
platform5.

This application contains the necessary code for storing
and updating the relational data structures that reflect the
state of users and the location of their data. Moreover, this
application defines a communication API for serving user
requests. For accessing the API methods, the application
requires an authorizing token. This security measure forces
the periodical validation of users through the FriendBox
Storage Client against the FriendBox State Application6.

On the other hand, for its internal management, this ap-
plication uses the REST API that Facebook exposes to get a
range of user data including friends and profile information.
Such an information is utilized, for instance, to manage the
social relationships among users, i.e., FriendBox storage
invitations.

C. Social Front-end in Facebook
The Social Front-end of FriendBox is integrated within

the Facebook environment. This is possible since the
FriendBox Application State follows the requirements and
communication standards of Facebook.

From a user perspective, the Social Front-end presents a
useful an ubiquitous source of informations about the state of
a user’s FriendBox storage service (see Fig. 4).

At the top of Fig. 4 we observe that the current user (Pedro
Garcı́a) has sent a FriendBox storage invitation to Marc
Sánchez which is in pending state. This exemplifies how users
interact among them to manage their storage relationships.

Another interesting feature we introduced in this component
is a chart that shows how a user’s data is distributed among
his friends and the Cloud. This chart illustrates where a user’s
data is stored and to whom a user is storing data.

As many commercial services, we benefit from this compo-
nent to present to users the amount of consumed Cloud storage
resources. In the charts included in the “Cloud Consumption”
section, we depict the traffic and storage capacity that have
been consumed over the last months. Moreover, actions such as
changing the FriendBox Storage Client password or listing
the files stored in the system are present in this application.

VI. EXPERIMENTAL RESULTS

A. Scenario and Setup
Network. We deployed a group of FriendBox users in the

URV campus, which are friends among them in Facebook. The
group topology within the campus is depicted in Fig.5. In our
scenario, users perform and serve storage operations in the
system. However, we call nodes 1, 2 and 3 storage requesters
since they are automated FriendBox nodes, whereas the rest
are real users. In this section, we analyze the service received
by requester nodes in a real FriendBox deployment.

Availability. Users are connected to the system depending
on the time they spend at the university. Thus, our experiments

4http://code.google.com/intl/en/appengine/
5Facebook applications are not hosted within the Facebook environment.

Since we enable users to access their information from Facebook, we adopted
a PaaS hosting instead deploying the application in our own servers.

6The FriendBox Storage Client must transact with the application every
20 minutes to refresh the token; otherwise the token expires.

Fig. 4. FriendBox Social Front-end in the Facebook environment. This
application enables users to manage their storage relationships, analyze the
distribution of their data and check the Cloud resource consumption.

suffer from availability correlations since users in our campus
present diurnal patterns. The availability of nodes during the
experiment (24 hours) is depicted in the lower part of Fig. 5. In
our experiments, requester nodes are continuously performing
storage operations and therefore, they are always available.

Workload. The workload model of our experiments is
simple. Requester nodes are alternatively performing file
downloads and uploads during the whole experiment. These
operations are performed over synthetic files of β bytes. We
fixed FC = 0.5 and the data redundancy7 rate to n/k = 2.5.
With these parameters we will analyze the resulting data
availability δ. Moreover, data transfers of requester nodes are
concurrently executed along the experiment to observe the
effects of network congestion.

Data Transfer Scheduling. We applied a random scheduling
policy to schedule transfers among friends for both uploads
and downloads [17]. That is, the order of block transfers is
chosen completely at random. In addition, FriendBox intro-
duces a bandwidth maximizing friend-to-Cloud policy (Section
IV). To wit, if the block’s destination friend is unavailable,
that block is uploaded to the Cloud. This mechanism reduces
the upload TTS but incurs an extra cost, as later on the extra
blocks must be downloaded from the Cloud by their owners.

Hardware. FriendBox clients are hosted in desktop com-
puters (Intel Core2 Duo and AMD Athlon X2 processors)
equipped with 4GB DDR2 RAM. The operating system em-
ployed is a Debian Linux distribution8. The users were con-
nected via a 100Mbps switched Ethernet links. For gathering
physical network information we used vnstat: a tool that
keeps a log of network traffic for a selected interface. The
rest of information presented in this section (e.g. scheduling
times, data distribution) has been gathered by the FriendBox
log system. Other important parameters in this experimental
scenario are depicted in Table I.

7Although our data availability algorithm (Section IV-B) has been validated
via simulation, a long term experimental evaluation is left for future work.

8FriendBox works for other platforms such as Windows and Linux Ubuntu.
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Fig. 5. Network topology and node availabilities configured in our experi-
ments. Note that FriendBox nodes are correlated in their availability.

B. Measuring Scheduling Times
Next, we focus on analyzing the obtained times to schedule

(TTS) among nodes. Fig. 6 illustrates the performance of
upload and download TTS along one day.

First, we observe that scheduling times are notably short.
This is due to the performance of the campus network
(100Mbps). For instance, in case of uploads (Fig. 6), requester
nodes transfer 500MB of data (β = 200MB, n/k = 2.5).
However, none of these upload schedules takes more than 5
minutes to finalize. In case of uploading larger files, upload
TTS are equally short: around 330 secs for β = 400MB and
474 secs for β = 600MB in average.

The average TTS is appreciably shorter for downloads than
for uploads. The reason is that requester nodes only need
to gather k blocks in order to reconstruct the original file.
Further, since these k blocks are mostly collected from friends,
transfers among campus nodes are faster than accessing to the
Cloud, download TTS are short.

One of the most interesting points of this section refers to
the TTS performance depending on the moment of the day.
We can observe that scheduling times (uploads and downloads)
are significantly shorter in the central hours of the day than in
the rest. Actually, this is the time range where the majority of
friends are online. From this result, we conclude that in these
kind of scenarios the availability of friends improves the TTS
performance. This is specially evident in case of downloads,
since in the best cases there is no need of accessing the Cloud.

It is specially important to observe that FriendBox is able
to complete upload schedules irrespective of the availability of
friends. Thus, even when a fraction of friends are unavailable,
the bandwidth maximizing F2Cloud policy redirects blocks to
the Cloud in order to finalize the upload. Note that this is not
possible in a F2F system; a user should wait until their friends
come back on-line again to finalize the upload schedule.

In conclusion, FriendBox achieves fast data transfers
among nodes and the Cloud. FriendBox also permits to
upload files even when a user’s friends are unavailable. Finally,
we observed the impact of availability correlations on the TTS.

C. Data Availability
Now, we evaluate the data availability exhibited by requester

nodes. In Fig. 7 we compare the data availability obtained by
FriendBox and a pure F2F system in our scenario.

Parameter Description and Values
Nodes in the system 10
Experiment duration 24 hours
Node storage capacity 10GB
Parallel upload/download connections 2, 2
Erasure codes original file fragments (k) 40
Cloud file fraction (FC ) 0.5
Object size (β) 200MB, 400MB, 600MB
Data redundancy (n/k) 2.5

TABLE I
PARAMETER CONFIGURATION IN OUR EXPERIMENTAL SCENARIO.

Fig. 6. Upload and download TTS along one day. Note that scheduling
times are faster during the periods of higher node availability. This means
that accessing to friends in our campus is faster than resorting to the Cloud.

As expected, for the same amount of data redundancy, users
obtain a higher data availability with FriendBox than with
a F2F system. For instance, FriendBox nodes 2 and 3
exhibit δ = 24 hours of data availability per day. With a
pure F2F approach, they exhibit δ = 15 hours and δ = 20
hours respectively. Thus, storing a fraction of a file into the
Cloud alleviates the impact of offline friends on the resulting
data availability. In this line, FriendBox is able to obtain
equal or higher levels of data availability than a F2F system
with less data redundancy. This is key to reducing scheduling
times and making a F2F system scalable in terms of storage
redundancy.

We observe that node 3 exhibits higher levels of data
availability than other nodes. The reason is that node 3 has
more friends for storing data than nodes 1 and 2. This gives
us an important insight: the size and behavior of a node’s
friend-set has important effects on data availability.

In conclusion, FriendBox is flexible enough to satisfy the
data availability requirements of users. Clearly, the amount of
data redundancy, the role of the Cloud and the behavior of
friends will dictate the service quality.

Fig. 7. Data availability of FriendBox compared with a pure F2F system.
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Fig. 8. Block transfer time (BTT) distribution depending on whether blocks
are transferred from the friends or the Cloud.

D. Analyzing Transfer Capacity

In this section, we address the data transfer capacity of
FriendBox. To this aim, we illustrate in Fig. 8 the distribu-
tion of block transfer times (BTT). Upload and download BTT
distributions for friends and the Cloud are plotted separately.

First, the vast majority of block transfers among
FriendBox nodes are faster than resorting to the Cloud.
Again, this is mainly caused due to the high speed network
available in the campus. Furthermore, we observe that the
distribution of uploaded and downloaded blocks among nodes
is quite similar. Obviously, in contrast to domestic network
connections, the upload/download bandwidth asymmetry is not
relevant within the campus.

Fig. 8 suggests that uploading blocks to the Cloud is slightly
faster than downloading blocks from it. In our opinion, two
distinct factors might lead to this result: First, downloading
data from the Cloud is more common than uploading data to it.
This might induce restrictions on download bandwidth served
to a single user. Second, the download process implemented
in the FriendBox Amazon S3 API is different to the upload
process. Whereas blocks are loaded in memory and uploaded
directly to the Cloud, the download process receives small
chunks of data which are progressively stored on disk. This
incurs extra time when downloading blocks from the Cloud.
We will address this issue in depth in future tests.

Finally, Fig. 9 depicts the download bandwidth of requester
node measured in two distinct moments: day and night. We
observe that the diurnal download is faster than the nocturnal
download. Basically, the bandwidth trace indicates that during
the day all blocks are downloaded at high speed (≈ 40Mbps);
that is, they are gathered from friends. In case of a nocturnal
download, only a fraction of blocks is downloaded from
friends. These blocks are the first ones, which have a higher
priority than blocks to be downloaded from the Cloud in
our scheduling policy. Thus, the requester node should finally
resort to the Cloud to finalize the download. We observe (Fig.
9) that the differences in transfer speed between the first part
of the nocturnal download and the last part are significant.
This result corroborates the results obtained in Section VI-B.

E. Monetary cost of FriendBox

In this section, we address the economic implications of
our system to end-users. The monetary cost of FriendBox
depends on the use of the Cloud. In our experiments we used
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Fig. 10. Monetary cost comparison of FriendBox vs. Amazon S3. These
costs capture the expenses to upload and download a file of β bytes, as well
as keeping it stored for one month in the system.

Amazon S3 as a Cloud provider9. We compared the costs of
FriendBox with the same service provided by Amazon S3.
The costs depicted in Fig.10 capture the expenses to upload
and download a file of β bytes, as well as keeping it stored
for one month in the system.

First, we infer that FriendBox monetary costs are gener-
ally lower than Amazon S3 (Fig.10). Regarding storage costs,
FriendBox is configured with FC = 0.5. This means that
only the half of a file is stored in the Cloud, inducing important
savings. Clearly, the storage costs of FriendBox are limited
by the value of FC , which is selected by the user.
FriendBox has a particular cost labeled in Fig.10 as

auxiliary download. This cost comes from the mechanism im-
plemented in FriendBox for accelerating uploads (Section
IV-B): when a node is uploading a file, all the redundant blocks
whose recipients are offline at the moment of scheduling
are redirected to the Cloud. When these previously offline
nodes become available, they download those blocks they are
responsible for. This introduces an extra economic cost. Thus,
depending on the availability of nodes, the cost for auxiliary
download will vary. Note that in our scenario, this cost is only
present in the moments of lowest node availability.

Actually, in our experimental scenario only 2 download
schedules resorted to the Cloud to finalize. This suggests that
FriendBox can reduce costs in download traffic compared
with a Cloud service. However, this cost is dictated by the
amount of redundant blocks placed in friends and the avail-
ability of friends at the download instant.

Next we discuss the impact of availability correlations
upon the monetary costs of the FriendBox service. Clearly,
performing storage operations during the moments of lower
availability of friends (night) is significantly more expensive
than during the day. This leads us to a clear conclusion:
FriendBox should be aware of the availability of a user’s
friends to give advise about the resulting service costs.

9According to Amazon’s S3 at February 2012 we assume 0.120$ per GB
of outgoing traffic and 0.140$ per GB/month of storage. Incoming traffic is
free of charge.
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Fig. 11. FriendBox Erasure Codes performance.

We conclude that FriendBox can reduce the monetary
cost of a pure Cloud solution, specially in the long term.
These costs correspond to the permanent Cloud storage and
the Cloud outgoing traffic of future file downloads. In addition,
two parameters dictate the costs of FriendBox service: the
fraction of data permanently stored in the Cloud (FC) and the
amount of redundancy generated to guarantee data availability
(n/k). Finally, the availability patterns of friends produces
variations in FriendBox service costs along the day.

F. Erasure Codes Performance
In the final part of the evaluation, we focus on the compu-

tational erasure coding scheme used in FriendBox. In this
particular experiment, the hardware employed is different to
the previous tests (Intel Pentium 4 3GHz and 2GB RAM). For
each parameter configuration in Fig. 11 we plotted the average
execution time from 100 executions.

At first glance, we infer from Fig. 11 that coding is generally
affordable for domestic hardware when the size of the file is
small or medium. However, when the size of the file to manage
is large, coding becomes quite expensive in terms of both CPU
time and memory. Therefore, although coding can be used for
managing large files sporadically, it seems not adequate for
performing frequent operations on large files.

As expected, we observe that whereas the encoding process
is impacted by β, k and n/k, the decoding process is mainly
affected by the size of the file β. We will study new ways
to optimize the performance of the Erasure Codes scheme
included in FriendBox.

VII. WORK IN PROGRESS AND ROADMAP

Nowadays, FriendBox has released a first alpha prototype
which has been tested in the URV campus with dozens of
users. However, FriendBox is an ambitious project that is
currently growing fast towards promising stages. Next, we
describe the future stages of FriendBox.

Our primary objective is to leverage a secure, flexible and
efficient Internet-scale storage system with FriendBox; to
this end, we are currently introducing in FriendBox mech-
anisms such as NAT Traversal, data repair mechanisms and
cryptography techniques. This represents the first milestone
of FriendBox, that will be reached in the next months.

To undertake massive tests, we will benefit from our partici-
pation in the project RealCLOUD (IPT-2011-1232-430000)10.
In the context of RealCLOUD, our research group is work-
ing on personal storage solutions over OpenStack Swift in
collaboration with Tissat11, a Spanish Cloud provider. In this
line, FriendBox will leverage the Cloud storage resources
provided by Tissat’s Walhalla Data Center.

10http://www.realcloudproject.com
11http://www.tissat.es

VIII. CONCLUSIONS

In this work, we resort to a Cloud backend to overcome the
limitations of pure F2F systems for providing a secure and
private personal storage service.

We present FriendBox: the first hybrid F2F personal
storage system. In FriendBox we implemented hybrid data
transfer scheduling and data availability mechanisms to mit-
igate the drawbacks of pure decentralization. We validated
FriendBox in a real deployment in the Universitat Rovira i
Virgili campus. We demonstrated that FriendBox provides
high data transfer performance and user-defined data avail-
ability guarantees. We examined the impact of the correlated
availabilities on the performance of FriendBox; a hard
problem for a pure F2F system. Furthermore, we analyzed
the costs of FriendBox, showing its economic feasibility.

As a result of this research, we will release in short the
first fully-equipped FriendBox version, in order to provide
a flexible and private Internet-scale personal storage service12.
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