
Friends, not Foes – Synthesizing Existing
Transport Strategies for Data Center Networks

Ali Munir
Michigan State UniversityMichigan State University

Ghufran Baig, Syed M. Irteza, Ihsan A. Qazi,
Alex X. Liu, Fahad R. Dogar

Data Center (DC) Applications

 Distributed applications
Components interact via the
network
e.g., a bing search query touches
> 100 machines

Search Mail Map-
Reduce

Map-
Reduce

HPC Monitoring

 Network impacts performance
“10% of search responses
observe 1 to 14 ms of network
queuing delay”
[DCTCP, SIGCOMM 10]

Image source: http://cdn.slashgear.com/wp-content/uploads/2012/10/google-datacenter-tech-13.jpg

DC Network Resource Allocation

 Fair Sharing
Equal bandwidth sharing among jobs [TCP, DCTCP]

– Increases completion time for everyone
– Traditional “fairness” metrics less relevant

 QoS Aware
Prioritize some jobs over other jobs (Priority
Scheduling)
– Minimize flow completion times [pFabric, L2DCT]

– Meet flow deadlines [D3, D2TCP]

DC Transports

DCTCP
SIGCOMM’10

D2TCP
SIGCOMM’12

L2DCT
INFOCOM’13

D3

SIGCOMM’11

PDQ
SIGCOMM’12

pFabric
SIGCOMM’13

DC Transports

DCTCP
SIGCOMM’10

D2TCP
SIGCOMM’12

L2DCT
INFOCOM’13

D3

SIGCOMM’11

PDQ
SIGCOMM’12

pFabric
SIGCOMM’13Near Optimal but not

Deployment Friendly
(Changes in data plane)

DC Transports

DCTCP
SIGCOMM’10

D2TCP
SIGCOMM’12

L2DCT
INFOCOM’13

D3

SIGCOMM’11

PDQ
SIGCOMM’12

pFabric
SIGCOMM’13Deployment Friendly but

Suboptimal

Near Optimal but not
Deployment Friendly
(Changes in data plane)

DC Transports

DCTCP
SIGCOMM’10

D2TCP
SIGCOMM’12

L2DCT
INFOCOM’13

D3

SIGCOMM’11

PDQ
SIGCOMM’12

pFabric
SIGCOMM’13Deployment Friendly but

Suboptimal

Near Optimal but not
Deployment Friendly
(Changes in data plane)

Step back and ask

How can we design a deployment friendly and near
optimal data center transport while leveraging the

insights offered by existing proposals?

DC Transports

DCTCP
SIGCOMM’10

D2TCP
SIGCOMM’12

L2DCT
INFOCOM’13

D3

SIGCOMM’11

PDQ
SIGCOMM’12

pFabric
SIGCOMM’13Deployment Friendly but

Suboptimal

Near Optimal but not
Deployment Friendly
(Changes in data plane)

Step back and ask

How can we design a deployment friendly and near
optimal data center transport while leveraging the

insights offered by existing proposals?

PASE

Rest of the Talk …

 DC Transport Strategies
 PASE Design
 Evaluation

Rest of the Talk …

 DC Transport Strategies
 PASE Design
 Evaluation

DC Transport Strategies

 Self-adjusting endpoints
– senders make independent decisions and adjust

rate by themselves

 Arbitration

e.g., TCP, DCTCP, L2DCT

e.g., D3, PDQ

– a common network entity (e.g., a switch) allocates
rates to each flow

 In-network prioritization
– switches schedule and drop packets based on the

packet priority

e.g., pFabric

DC Transport Strategies

 Self-adjusting endpoints
– senders make independent decisions and adjust

rate by themselves

 Arbitration

e.g., TCP, DCTCP, L2DCT

e.g., D3, PDQ
Existing DC transport proposals use – a common network entity (e.g., a switch) allocates

rates to each flow

 In-network prioritization
– switches schedule and drop packets based on the

packet priority

e.g., pFabric

Existing DC transport proposals use
only one of these strategies

Transport Strategies in Isolation

Transport
Strategy

Example Pros Cons

Self-
Adjusting
Endpoints

DCTCP,
D2TCP,
L2DCT

Arbitration PDQ, D3

In-network
Prioritization pFabric

Transport Strategies in Isolation

Transport
Strategy

Example Pros Cons

Self-
Adjusting
Endpoints

DCTCP,
D2TCP,
L2DCT

Transport
Strategy

Example Pros Cons

Self-
Adjusting
Endpoints

DCTCP,
D2TCP,
L2DCT

Ease of deployment
No strict priority
scheduling

Arbitration PDQ, D3

In-network
Prioritization pFabric

Arbitration PDQ, D3

In-network
Prioritization pFabric

Transport Strategies in Isolation

Transport
Strategy

Example Pros Cons

Self-
Adjusting
Endpoints

DCTCP,
D2TCP,
L2DCT

Transport
Strategy

Example Pros Cons

Self-
Adjusting
Endpoints

DCTCP,
D2TCP,
L2DCT

Ease of deployment
No strict priority
scheduling

Transport
Strategy

Example Pros Cons

Self-
Adjusting
Endpoints

DCTCP,
D2TCP,
L2DCT

Ease of deployment
No strict priority
scheduling

o High flow switching

Arbitration PDQ, D3

In-network
Prioritization pFabric

Arbitration PDQ, D3

In-network
Prioritization pFabric

Arbitration PDQ, D3 Strict priority
scheduling

o High flow switching
overhead

o Hard to compute
precise rates

In-network
Prioritization pFabric

Transport Strategies in Isolation

Transport
Strategy

Example Pros Cons

Self-
Adjusting
Endpoints

DCTCP,
D2TCP,
L2DCT

Transport
Strategy

Example Pros Cons

Self-
Adjusting
Endpoints

DCTCP,
D2TCP,
L2DCT

Ease of deployment
No strict priority
scheduling

Transport
Strategy

Example Pros Cons

Self-
Adjusting
Endpoints

DCTCP,
D2TCP,
L2DCT

Ease of deployment
No strict priority
scheduling

o High flow switching

Transport
Strategy

Example Pros Cons

Self-
Adjusting
Endpoints

DCTCP,
D2TCP,
L2DCT

Ease of deployment
No strict priority
scheduling

o High flow switching

Arbitration PDQ, D3

In-network
Prioritization pFabric

Arbitration PDQ, D3

In-network
Prioritization pFabric

Arbitration PDQ, D3 Strict priority
scheduling

o High flow switching
overhead

o Hard to compute
precise rates

In-network
Prioritization pFabric

Arbitration PDQ, D3 Strict priority
scheduling

o High flow switching
overhead

o Hard to compute
precise rates

In-network
Prioritization pFabric

Low flow switching
overhead

o Switch-local decisions
o Limited # of priority

queues

Transport Strategies in Unison

Transport
Strategy

Example Pros Cons

Self-
Adjusting
Endpoints

DCTCP,
D2TCP,
L2DCT

Transport
Strategy

Example Pros Cons

Self-
Adjusting
Endpoints

DCTCP,
D2TCP,
L2DCT

Ease of deployment
No strict priority
scheduling

Transport
Strategy

Example Pros Cons

Self-
Adjusting
Endpoints

DCTCP,
D2TCP,
L2DCT

Ease of deployment
No strict priority
scheduling

o High flow switching

Transport
Strategy

Example Pros Cons

Self-
Adjusting
Endpoints

DCTCP,
D2TCP,
L2DCT

Ease of deployment
No strict priority
scheduling

o High flow switching

Arbitration PDQ, D3

In-network
Prioritization pFabric

Arbitration PDQ, D3

In-network
Prioritization pFabric

Arbitration PDQ, D3 Strict priority
scheduling

o High flow switching
overhead

o Hard to compute
precise rates

In-network
Prioritization pFabric

Arbitration PDQ, D3 Strict priority
scheduling

o High flow switching
overhead

o Hard to compute
precise rates

In-network
Prioritization pFabric

Low flow switching
overhead

o Switch-local decisions
o Limited # of priority

queues

Transport Strategies in Unison

In-network Prioritization Alone

High Priority

Limited # of queues
More # of flows (priorities)

High Priority

Low Priority

1
2

3
4

Flows

Transport Strategies in Unison

In-network Prioritization Alone

High Priority

Limited # of queues
More # of flows (priorities)

Flow Multiplexing
Limited performance gains!

High Priority

Low Priority

1
2

3
4

Flows

Any static mapping mechanism degrades performance!

Transport Strategies in Unison

In-network Prioritization + Arbitration

Arbitrator
Dynamic mapping of
flows to queues

Idea
As a flow’s turn comes, map it
to the highest priority queue!

Transport Strategies in Unison

In-network Prioritization + Arbitration

Arbitrator
Dynamic mapping of
flows to queues

High Priority

Idea
As a flow’s turn comes, map it
to the highest priority queue!

High Priority

Low Priority

Flows 1

2
3
4

Time t1

Arbitrator

Transport Strategies in Unison

In-network Prioritization + Arbitration

Arbitrator
Dynamic mapping of
flows to queues

High Priority High Priority

Idea
As a flow’s turn comes, map it
to the highest priority queue!

High Priority

Low Priority

Flows 1

2
3
4

Time t1 Time t2

High Priority

Low Priority

Flows
2

3
4

Arbitrator Arbitrator

Transport Strategies in Unison

In-network Prioritization + Arbitration

Arbitrator
Dynamic mapping of
flows to queues

High Priority High Priority

Idea
As a flow’s turn comes, map it
to the highest priority queue!

Similarly,
• Arbitration + Self-Adjusting EndpointsHigh Priority

Low Priority

Flows 1

2
3
4

Time t1 Time t2

High Priority

Low Priority

Flows
2

3
4

Arbitrator Arbitrator

• Arbitration + Self-Adjusting Endpoints
• Arbitration + In-network Prioritization

PASE leverages these insights in its design!

Rest of the Talk …

 DC Transport Strategies
 PASE Design
 Evaluation

PASE Design Principle

Each transport strategy should focus on
what it is best at doing!

 Arbitrators
– Do inter-flow prioritization at coarse time-scales

 Endpoints
– Probe for any spare link capacity

 In-network prioritization
– Do per-packet prioritization at sub-RTT timescales

PASE Overview

Sender
Receiver

Arbitrator

PASE Overview

Sender
Receiver

Arbitrator

Arbitration: Control plane
Calculate “reference rate” and “priority queue”

PASE Overview

Sender
ReceiverFeedback

Arbitrator

Arbitration: Control plane
Calculate “reference rate” and “priority queue”
Self-Adjusting Endpoints: Guided rate control
Use arbitrator feedback as a pivot

PASE Overview

Sender
ReceiverFeedback

Arbitrator

Arbitration: Control plane
Calculate “reference rate” and “priority queue”
Self-Adjusting Endpoints: Guided rate control
Use arbitrator feedback as a pivot
In-network Prioritization: Existing priority queues

PASE Overview

Sender
ReceiverFeedback

Arbitrator

Arbitration: Control plane
Calculate “reference rate” and “priority queue”
Self-Adjusting Endpoints: Guided rate control
Use arbitrator feedback as a pivot
In-network Prioritization: Existing priority queues

Key
Components

PASE Arbitration

Sender
Receiver

Arbitrator

PASE Arbitration

Sender
Receiver

Arbitrator Arbitrator Arbitrator

Distributed Arbitration
 per link arbitration done in

control plane
 existing protocols implement

in data plane

Arbitrator

PASE Arbitration

Sender
Receiver

Arbitrator Arbitrator Arbitrator

Distributed Arbitration
 per link arbitration done in

control plane
 existing protocols implement

in data plane

Arbitrator Location
 at the end hosts (e.g., for their

own links to the switch) OR
 on dedicated hosts inside the

DC

Arbitrator

PASE Arbitration

Sender
Receiver

Feedback FeedbackFeedback

Arbitrator Arbitrator Arbitrator

Distributed Arbitration
 per link arbitration done in

control plane
 existing protocols implement

in data plane

Arbitrator Location
 at the end hosts (e.g., for their

own links to the switch) OR
 on dedicated hosts inside the

DC

Arbitrator

PASE Arbitration

Sender
Receiver

Feedback FeedbackSends data
with min
priority

Feedback

Arbitrator Arbitrator Arbitrator

Distributed Arbitration
 per link arbitration done in

control plane
 existing protocols implement

in data plane

Arbitrator Location
 at the end hosts (e.g., for their

own links to the switch) OR
 on dedicated hosts inside the

DC

priority
Arbitrator

PASE Arbitration – Challenges

 Challenges
– Arbitration latency
– Processing overhead
– Network overhead

PASE Arbitration – Challenges

 Challenges
– Arbitration latency
– Processing overhead
– Network overhead

Solution: Leverage the tree-like structure
of typical DC topologies

Bottom Up Arbitration

 Leverage Tree Structure
from leaves up to the root

ToR

Aggregation

Core

ToR

Aggregation

Bottom Up Arbitration

 Leverage Tree Structure
from leaves up to the root

Sender Receiver

Inter-Rack

ToR

Aggregation

Core

ToR

Aggregation

Bottom Up Arbitration

 Leverage Tree Structure
from leaves up to the root

Sender ReceiverArbitration Message

Inter-Rack

ToR

Aggregation

Core

ToR

Aggregation

Bottom Up Arbitration

 Leverage Tree Structure
from leaves up to the root

Sender ReceiverArbitration Message

Inter-Rack

ToR

Aggregation

Core

ToR

Aggregation

Bottom Up Arbitration

 Leverage Tree Structure
from leaves up to the root

Sender ReceiverArbitration Message
Receiver Response

Inter-Rack

ToR

Aggregation

Core

ToR

Aggregation

Bottom Up Arbitration

 Leverage Tree Structure
from leaves up to the root

ToR

Sender ReceiverArbitration Message
Receiver Response

Intra-Rack
Inter-Rack

No external arbitrators
required!

Sender Receiver

ToR

Aggregation

Core

ToR

Aggregation

Bottom Up Arbitration

 Leverage Tree Structure
from leaves up to the root

ToR

Sender Receiver

Facilitates inter-rack optimizations (early pruning &
delegation) to reduce arbitration overhead.

Arbitration Message
Receiver Response

Intra-Rack
Inter-Rack

No external arbitrators
required!

Sender Receiver

Early Pruning

Arbitration involves sorting
flows and picking top k for

immediate schedulingAgg

Core

k k

TOR
Flows that won’t make it to

top k queues should be
pruned at lower levels

k
k k k

Early Pruning

Arbitration involves sorting
flows and picking top k for

immediate schedulingAgg

Core

k kReduces Network and Processing overhead

TOR
Flows that won’t make it to

top k queues should be
pruned at lower levels

k
k k kReduces Network and Processing overhead

Fewer flows contact the higher level
arbitrators!

Delegation

Aggregation

Core

Key Idea: Divide a link into virtual links and
delegate responsibility to child arbitrators

ToRs

Delegation

 Algorithm
Link capacity C is split in N

virtual linksAggregation

Core

C
Link Capacity

Key Idea: Divide a link into virtual links and
delegate responsibility to child arbitrators

ToRs

Delegation

 Algorithm
Link capacity C is split in N

virtual linksAggregation

Core

C
Link Capacity

Delegated Capacities

Key Idea: Divide a link into virtual links and
delegate responsibility to child arbitrators

Parent arbitrator delegates
virtual link to child arbitratorToRs

a1 a2 aN

Delegated Capacities

Delegation

 Algorithm
Link capacity C is split in N

virtual linksAggregation

Core

C
Link Capacity

Delegated Capacities

Key Idea: Divide a link into virtual links and
delegate responsibility to child arbitrators

Parent arbitrator delegates
virtual link to child arbitratorToRs

a1 a2 aN

Delegated Capacities

Child arbitrator does arbitration for
virtual link

Delegation

 Algorithm
Link capacity C is split in N

virtual linksAggregation

Core

C
Link Capacity

Delegated Capacities

Key Idea: Divide a link into virtual links and
delegate responsibility to child arbitrators

Parent arbitrator delegates
virtual link to child arbitrator

Virtual link capacity is periodically updated
based on the top k flows of all child arbitrators

ToRs
a1 a2 aN

Delegated Capacities

Child arbitrator does arbitration for
virtual link

Delegation

 Algorithm
Link capacity C is split in N

virtual linksAggregation

Core

C
Link Capacity

Delegated Capacities

Key Idea: Divide a link into virtual links and
delegate responsibility to child arbitrators

Reduces Arbitration Latency
Parent arbitrator delegates

virtual link to child arbitrator

Virtual link capacity is periodically updated
based on the top k flows of all child arbitrators

ToRs
a1 a2 aN

Delegated Capacities

Child arbitrator does arbitration for
virtual link

Reduces Arbitration Latency
Make arbitration decision close to the

sources

PASE Overview

Sender
ReceiverFeedback

Arbitrator

 Arbitration: Control plane
Calculate “reference rate” and “priority queue”

 Self-Adjusting Endpoints: Guided rate control
Use arbitrator feedback as a pivot

 In-network Prioritization: Existing priority queues

PASE Endhost Transport

 Rate Control

 Loss Recovery Mechanism

PASE Endhost Transport

 Rate Control
Use reference rate and priority feedback from
arbitrators
– Use reference-rate as pivot, and
– Follow DCTCP control laws– Follow DCTCP control laws

 Loss Recovery Mechanism

PASE Endhost Transport

 Rate Control
Use reference rate and priority feedback from
arbitrators
– Use reference-rate as pivot, and
– Follow DCTCP control laws– Follow DCTCP control laws

 Loss Recovery Mechanism
– Packets in lower priority queues can be delayed

for several RTTs
– large RTO OR small probe to avoid spurious

retransmissions

PASE -- Putting it Together

Sender Receiver
Feedback Feedback Feedback

Arbitrator Arbitrator Arbitrator

 Efficient arbitration control plane
 Simple TCP-like transport
 Existing priority queues inside switches

Rest of the Talk …

 DC Transport Strategies
 PASE Design
 Evaluation

Evaluation

 Platforms
– Small scale testbed
– NS2

 Workloads
– Web search (DCTCP), Data mining (VL2)

 Comparison with deployment friendly
– DCTCP, D2TCP, L2DCT

 Comparison with state of the art
– pFabric

Simulation Setup

Queue Size 250KB
(per queue)

RTT 300usec

RTO 1 msec

L 40

Comparison with Deployment Friendly

Settings similar to D2TCP
• Flow Sizes: 100-500KB
• Deadlines: 5-25msec

Comparison with Deployment Friendly

Settings similar to D2TCP
• Flow Sizes: 100-500KB
• Deadlines: 5-25msec

PASE is deployment friendly yet performs
BETTER than existing protocols!

Comparison with State of the Art

Settings
• Flow Sizes: 2-98KB
• Left-to-right traffic

pe
rc
en
til
e

99
th

Comparison with State of the Art

Settings
• Flow Sizes: 2-98KB
• Left-to-right traffic

pe
rc
en
til
e

PASE performs comparable and does not
require changes to data plane

99
th

Summary
 Key Strategies for Existing DC Transport

– Arbitration, in-network Prioritization, Self-Adjusting End-
points

– Complimentary rather than substitutes

 PASE
– Combines the three strategies– Combines the three strategies
– Efficient arbitration control plane; simple TCP-like transport;

leverages existing priority queues inside switches

 Performance
– Comparable to or better than earlier proposals that even

require changes to the network fabric

Thank you!Thank you!

