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Frizzled and LRP5/6 areWnt receptors that upon activation lead to stabilization of cytoplas-
mic b-catenin. In this study, we review the current knowledge of these two families of
receptors, including their structures and interactionswithWnt proteins, and signalingmech-
anisms from receptor activation to the engagement of intracellular partners Dishevelled and
Axin, and finally to the inhibition of b-catenin phosphorylation and ensuing b-catenin
stabilization.

T
he Wnt/b-catenin pathway, or canonical

Wnt pathway as it is often referred to, is an

ancient and conserved signaling cascade involv-
ing b-catenin acting as a transcriptional coac-

tivator (Logan and Nusse 2004). The pathway is

best understood when considered in a two-state
model of OFF (without Wnt) and ON (with

Wnt). In the OFF state, cytoplasmic b-catenin

is constitutively targeted for degradation by two
multidomain scaffolding proteins, Axin and

Adenomatous polyposis coli (APC), which fa-

cilitate the amino-terminal phosphorylation of
b-catenin via the kinases GSK3 and CKIa.

Phosphorylated b-catenin is recognized by the

E3 ubiquitin ligase b-Trcp and is thus ubiquiti-
nated and degraded by the proteasome, thereby

maintaining low levels of free b-catenin in the

cytoplasm and nucleus (MacDonald et al.
2009). In the ON state, a Wnt ligand binds to

the seven-pass transmembrane receptor Friz-

zled (FZD) and the single-pass low-density
lipoprotein receptor-related protein 5 or 6

(LRP5/6) (He et al. 2004). The Wnt–FZD–

LRP5/6 trimeric complex recruits Dishevelled

(DVL) and Axin through the intracellular do-
mains of FZD and LRP5/6, resulting in inhibi-

tion of b-catenin phosphorylation and thus

ensuing b-catenin stabilization. The rise of cy-
toplasmic and nuclear levels of b-catenin levels

promotes b-catenin partnering with the TCF/
LEF transcription factors for activation of Wnt-
responsive gene expression.

Wnt/b-catenin signaling controls cell pro-

liferation and differentiation and is a key regu-
latory mechanism for stem cells. As such, muta-

tions in the Wnt pathway cause many diseases

including cancer (Clevers 2006). All of the above
“core” Wnt/b-catenin signaling components

are present in vertebrates and the well-studied

fruit fly Drosophila and are also encoded in se-
quenced genomes of radial symmetric Cnidari-

ansHydra magnipapillata andNematostella vec-

tensis (Guder et al. 2006) and of the primitive
metazoan sponge Amphimedon queenslandica
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(Adamska et al. 2010). Gene loss is prevalent in

the genome of nematodes, such as the popular
model organism Caenorhabditis elegans, which

appears to lack an ortholog of LRP5/6 (Phillips
and Kimble 2009). As a result, the mechanisms
ofWnt receptor activation are likely divergent in

nematodes, whose Wnt pathways are discussed

in Jackson and Eisenmann (2012). We focus
on the vertebrate (and Drosophila) Wnt/FZD/
LRP5/6 pathway, which is characterized by its

absolute requirement for both FZDandLRP5/6
receptors. We note that FZD is also required

for other “noncanonical” or “alternative” Wnt

pathways that are independent ofb-catenin (van
Amerongen et al. 2008), and that in some cases

such as in planar cell polarity (PCP) signaling in

Drosophila (Bayly and Axelrod 2011), FZD may
signal in a Wnt-independent manner.

WNT–RECEPTOR INTERACTIONS:
OUTSIDE THE CELL

FZD Receptors

Calvin Bridges discovered a recessive flymutant,

which he called frizzled ( fz), with irregularly
orientated hairs and ommatidia (compound

eye) and an occasionally slight reduction in

wing size (Bridges and Brehme 1944). It became
clear subsequently that fz plays an important

role in planar cell polarity (PCP) (Bayly and

Axelrod 2011). fzwas shown to encode a protein
with an extracellular cysteine-rich domain and a

predicted topology of seven transmembrane he-

lices resembling a G-protein-coupled receptor
(GPCR) (Vinson et al. 1989). Epistasis and sim-

ilarities between the fz and dishevelled (dsh)mu-

tants (Wong and Adler 1993) suggested a link of
the two genes, although in PCP signaling initial-

ly. With the fledgling wingless (wg, Wnt)–dsh

(DVL)–zeste white3 (zw3, GSK3)–armadillo

(arm, b-catenin) signaling pathway important

for embryonic patterning and wing develop-

ment (Klingensmith and Nusse 1994; Krasnow
et al. 1995), came along the identification of the

second fly Frizzled gene Dfz2 and the finding

that Wg is a ligand for Dfz2 and Fz (Bhanot
et al. 1996). fz(also called Dfz1) and Dfz2 have

redundant functions, althoughDfz2 has a more

prominent role, in Wg signaling, whereas fz/
Dfz1has a unique role in the PCPpathway (Ken-
nerdell and Carthew 1998; Chen and Struhl

1999; Boutros et al. 2000; Rulifson et al. 2000).

In human, there are 10 FZD genes, num-
bered FZD1 through 10. Phylogenetic analysis

of themature FZDproteins generates the follow-

ing five subgroups: FZD1/2/7, FZD3/6, FZD5/
8, FZD9/10, and FZD4 (Fig. 1A). Dfz2 groups

closely with FZD5/8 and fz/Dfz1with FZD3/6.
The Hedgehog (another family of secreted sig-
naling protein) pathway protein Smoothened

(SMO) is distantly related to FZD (Schulte and

Bryja 2007) in their membrane topologies and
amino-terminal cysteine-rich domains (CRDs);

however, FZD proteins are distinguished from

SMO by a conserved juxtamembrane KTxxxW
motif in the carboxy tail region necessary for

signaling (Fig. 1B).

THE FZD EXTRACELLULAR DOMAIN AND
WNT BINDING: THE WNT8-FZD8CRD
CO-CRYSTAL STRUCTURE

FZD contains a conserved 120-amino-acid cys-

teine-rich domain (CRD) at the amino termi-
nus, which is connected to the first transmem-

brane helix through a variable 70- to 120-

amino-acid linker region (Fig. 1B). Wnt/Wg
ligands bind to CRD with high affinity (Kd of

1–10 nM) (Hsieh et al. 1999; Rulifson et al.

2000; Wu and Nusse 2002), although fz/Dfz1
PCP signaling may not involve anyWnt ligands.

Deletion of the CRD prevents Wnt/Wg bind-

ing, but the CRD can be replaced with other
heterologousWnt-binding domains to generate

a functional FZD receptor (Povelones and

Nusse 2005;Mulligan et al. 2012). Crystal struc-
tures of CRDs from mouse FZD8 and Sfrp3

(secreted FZD-related protein 3) reveal a com-

pact, predominantly a-helical regions held in
place by disulfide bonds among 10 invariable

cysteines (Fig. 1B,C) (Dann et al. 2001).

HowaWnt ligand engages the FZD receptor
is revealed by the co-crystal structure of Xeno-

pus Wnt8 in complex with mouse FZD8CRD

(Fig. 1D) (Janda et al. 2012). In the complex,
Wnt8 forms an unusual structure resembling a

human hand with a central “palm” that extends
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Figure 1. Frizzled (FZD) and Dishevelled (DVL). (A) Phylogeny comparing human FZD proteins. (B) Topology
of a generic FZD on the plasmamembrane. The shape of CRD is shaded in green, with the 10 invariable cysteine
(C) residues forming five disulfide bonds highlighted. (c) PotentialN-glycosylation sites. Additional conserved
cysteine and other residues in the linker and ECL1-3 in the extracellular space are indicated. Conserved residues
in ICL1-3 and the carboxy-terminal domain in the intracellular space are also indicated, with invariable residues
among all FZD proteins in bold. (� above the letter) Missense mutations found in Drosophila Dfz1 (Povelones
et al. 2005) and human FZD4 (Robitaille et al. 2002); (underlined) residues tested via double alanine substi-
tution scanning mutagenesis in FZD5 (Cong et al. 2004b). DVL protein is also shown schematically with DIX,
PDZ, and DEP domains and their interaction partners highlighted. Two discontinuous regions of FZD ICL3
(motif I [pink]; motif II [green]) bind to the carboxy-terminal region of DVL. The FZD carboxyl tail containing
the KTxxxWmotif (blue) interacts strongly with the DVL PDZ domain and also the DEP domain, which also
shows some interaction with motif II in ICL3. (See following page for legend.)
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a “thumb” plus an “index finger” to grab/pinch
the FZD8CRD globular structure on two oppo-
site sides, without changing FZD8CRD confor-

mation (Fig. 1D). The amino terminal two-

thirds of Wnt8 give rise to the palm—which
consists mostly of a-helixes and intervening

loops—and the thumb that consists of two

anti-parallel b-strands and a connecting loop
rigidified by a pair of disulfide bonds (Fig.

1D) (Janda et al. 2012). Most strikingly, a fatty

acid adduct covalently attached to a serine at the
tip of the thumb loop, likely a palmitoleic acid

as seen in Wnt3a (Takada et al. 2006), inserts

into a hydrophobic groove of FZD8CRD, con-
stituting much of theWnt8-FZD8CRD binding

“site 1” that features extensive hydrophobic in-

teractions between the lipid and apolar residues
of FZD8CRD, “lipid-in-groove” fashion (Fig.

1D). The remaining portion of site 1 is contrib-

uted by protein–protein contacts between res-
idues of the Wnt8 thumb loop and FZD8CRD

(Fig. 1D). The carboxyl one-third of Wnt8

makes up the index finger featuring two anti-
parallel b-strands and a long intervening loop,

which is also rigidified by several disulfide bonds

and engages in hydrophobic contacts within a
depression of FZD8CRD, “knob-in-hole” fash-

ion (Fig. 1D).This constitutesWnt8-FZD8CRD

interaction “site 2,” which roughly corresponds
to a Wnt-binding surface encompassing resi-

dues near the secondcysteine (C2)of FZD8CRD

as suggested by scanning mutagenesis (Fig.
1B,C) (Hsieh et al. 1999; Dann et al. 2001).

Both site 1 and site 2 are dominated by hydro-

phobic contacts (lipid-in-groove and knob-in-
hole, respectively), which are mostly mediated

by conserved residues of Wnt8 and FZD8CRD,

suggesting an explanation for broad or relatively

promiscuous specificity of Wnt–FZD relation-

ships, i.e., a single Wnt can often engage mul-
tiple FZD proteins and vice versa. However, at

both site 1 and site 2, Wnt8 also exhibits pro-

tein–protein interactions with FZD8CRD resi-
dues that are conserved in some but altered in

other FZD proteins, implying certain selectivity

on top of broad specificity in Wnt-FZD inter-
actions (Janda et al. 2012).

A YNxT motif at site 2 is conserved in all

FZD proteins and is a predictedN-glycosylation
site, and is indeed glycosylated in theWnt8CRD

crystal (Fig. 1B,C,D). Another predicted N-gly-

cosylation site is at the end of the CRD in most
FZDs, with the exception of the FZD3/6 group,
which has its own unique predicted glycosyla-

tion site in extracellular loop 2 (ECL2) (Fig. 1B).
N-glycans in both Wnt8 and FZD8CRD in the

crystal structure are solvent-exposed and do not

appear to contribute directly to Wnt–FZD in-
teraction (Fig. 1D) (Janda et al. 2012). FZD N-

glycosylation appears to be required for receptor

maturation and can be regulated by the ER-res-
ident protein Shisa, which binds preferentially

to the immature form of FZD for ER trapping

and thus antagonizes Wnt signaling (Yamamo-
to et al. 2005).

Beyond the Wnt–CRD interaction, little is

known regarding the function of other FZD ex-
tracellular regions. FZD receptors are structur-

ally analogous to GPCRs, and there is evidence

that FZDs can interact and signal through G-
proteins (see below), although this issue re-

mains debated. Nonetheless, some common

GPCR structural elements that are also found
in FZD may suggest other potentially impor-

tant regions. Many small GPCR ligands bind

to the extracellular loop regions or between

Figure 1. (Continued) (C) Crystal structure of FZD8CRD. Residues in red (and to a lesser degree those in
orange) are suggested to be a Wnt-binding interface from an alanine scanning mutagenesis (Hsieh et al. 1999;
Dann et al. 2001), which partially overlaps with site 2 indentified in the Wnt8–FZD8CRD co-crystal structure.
Residues in green when altered did not affect Wnt activity and areas in gray were not tested. Site 1 and site 2,
which mediate contacts between Wnt8 and FZD8CRD in the crystal structure, are labeled. A shade of Wnt8
index finger contacting site 2 is sketched. (PanelC is derived from Fzd8 1IJY [PDB doi: 10.2210/pdb1ijy/pdb].)
(D)Wnt8–FZD8CRD co-crystal structure, shown as a ribbon diagram superimposed on surface representation
(Janda et al., 2012). Palmitoleic acid adduct from the Wnt8 thumb at site 1 (red); N-glycans of Wnt8 and
FZD8CRD (yellow). Note that the FZD8CRD in C andD is viewed in different angles. N term, amino terminal;
C term, carboxyl terminal.
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the transmembrane helices at the extracellular

face (Tebben and Schnur 2011), causing a con-
formation change for GPCR activation. Ligand

binding and relative orientation of the trans-

membrane helices are influenced by inter- and
intraloop disulfide bonds in the extracellular

regions/loops of GPCRs. Aside from the 10 in-

variable cysteines within the CRD, there are ad-
ditional conserved cysteines in FZD extracellu-

lar regions: two in the linker between the CRD

and the first transmembrane helix, two in extra-
cellular loop 1 (ECL1), one in ECL2, and two in

ECL3 (Fig. 1B). A common extracellular disul-

fide bond in GPCRs is between the top of trans-
membrane helix 3 and ECL2 and is thought to

be important for orienting and stabilizing the

transmembrane helices (Peeters et al. 2010).
This disulfide bond is potentially present in

all FZDs (Fig. 1B). In addition, the residues

flanking the cysteine in ECL2 are conserved
(GVCFV) and are predicted to form a b-strand.

There are also examples of an intraloop disul-

fide bond in ECL3 and disulfide bonds connect-
ing with the amino-terminal region (Wheatley

et al. 2012). Smo, a distant member of the FZD

family, may share these GPCR features in that
mutations of cysteines in ECL1 and 2 or a partial

deletion of ECL2 renders a constitutively active

or less active receptor (Carroll et al. 2012). Fur-
thermore, a fly fz allele with a mutation in the

ECL2 cysteine causes a partial loss of function

(Povelones et al. 2005). Studies are required to
elucidate the role of these ECLs inWnt-induced

FZD activation and signaling.

LRP5/6 AND ARROW

Fly mutants for arrow were first reported by
Nüsslein-Volhard and Wieschaus from the fa-

mous genetic screen for embryonic lethal mu-

tants (Nusslein-Volhard et al. 1984). Fly embryo
segments normally develop a stripe of anterior

denticles that can be distinguished from the na-

ked posterior region of the segment. Mutants
for arrow contained extra bands of denticles

that were more prominent in the midline, caus-

ing the denticle stripes to look like arrows. Elim-
ination of maternal and zygotic arrow resulted

in a phenotype identical to that of wg mutants,

and molecular cloning revealed that Arrow is

homologous to LRP5 and LRP6 (Wehrli et al.
2000), which had been cloned as members of

the LDLR family (Brown et al. 1998; Hey et al.

1998). With the evidence that the Lrp6 mouse
mutant phenotypically resembles a composite

of several Wnt mutants (Pinson et al. 2000),

that LRP5 and LRP6 display critical roles in
Wnt/b-catenin signaling in Xenopus (Tamai

et al. 2000), and thatWnt1 can bridge a complex

formation between the extracellular domains of
FZD and LRP6 (Tamai et al. 2000), LRP5/6 and
Arrow were established as coreceptors for the

Wnt/b-catenin pathway.

THE LRP5/6 EXTRACELLULAR DOMAIN

LRP5 and LRP6 have more than 1600 amino

acids and represent a unique group of the

LDLR family. LRP5 and LRP6 proteins are
70% identical, and each is 45% identical to Ar-

row (He et al. 2004). These single transmem-

brane receptors have an extracellular domain
containing four tandem b-propeller/epidermal

growth factor (EGF) repeats followed by three

LDLR type A repeats (Fig. 2A). The b-propeller
domainwasfirst proposedbySpringer,whopre-

dicted a layout of a six-bladed propeller, with

each blade consisting of four short b-strands
and a YWTD motif in strand 2 that acts to sta-

bilize the neighboring b-sheets and is key to the

blade structure (Springer 1998). The structure
for the single LDLR b-propeller-EGF (PE) unit

was solved confirming the predicted six-bladed

propeller, which intimately interacts with the
EGF repeat (of 50 amino acids) with six cyste-

ines in a disulfide bond pattern of C1–C3, C2–

C4, and C5–C6 (Jeon et al. 2001).
Earliermapping studies divided the LRP5/6

extracellular domain into three segments: b-

propeller-EGFs 1 and 2 (P1E1-P2E2),b-propel-
ler-EGFs 3 and 4 (P3E3–P4E4), and the three

LDLR type A repeats (Fig. 2A) (He et al. 2004).

Deletion of a single b-propeller in LRP5/6 typ-
ically interferes with receptor biogenesis, and

better stability and recombinant protein pro-

duction were achieved using tandem pairs of
P1E1–P2E2 and P3E3–P4E4, but not P2E2–

P3E3 (Liu et al. 2009; Bourhis et al. 2010).
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Figure 2. LRP5/6 and Axin. (A) Arrow, LRP5, and LRP6 are shown schematically together with LDLR. LRP6
binding to different Wnt proteins and antagonists SOST and DKK1 are shown. (B) Phylogeny of the four b-
propellers (P1–4) in LRP5 and LRP6. (C,D) Side and top views of the atomic structure of LRP6 P3E3–P4E4
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Recent crystal structures of LRP6 P1E1–P2E2

and P3E3–P4E4 highlighted the tandem nature
of these repeating units (Fig. 2C,D) (Ahn et al.

2011; Chen et al. 2011; Cheng et al. 2011). Al-

though conforming to the prototypic PE struc-
ture of LDLR, extensive interface interactions

between P1E1 and P2E2, and between P3E3

and P4E4 were observed, for example, between
P3 and P4 and between E3 and P4 (Fig. 2C,D),

and these inter-PE interactions were shown to

be critical for LRP6 biogenesis and maturation
to the plasmamembrane. The interface between

P2E2 and P3E3 is unresolved but is likely to be

different. A low-resolution electron microscop-
ic structure of the entire LRP6 extracellular do-

main suggested a compact horseshoe platform

configuration (Fig. 2F,G), which may be consis-
tent with the notion of a P2E2–P3E3 interface

that is distinct from those of P1E1–P2E2 and of

P3E3–P4E4 (Chen et al. 2011). A platform con-
figuration of a different kind was also suggested

for the LRP6 extracellular domain (lacking the

LDLR-A repeats) via a low-resolution small-an-
gle X-ray scattering analysis (Ahn et al. 2011).

The endoplasmic reticulum chaperone pro-

tein MESD is required for proper folding of the
LRP5/6 extracellular domain (Culi and Mann

2003; Hsieh et al. 2003). MESD also facilitates

the folding of other LDLR family members and
interacts with multiple b-propellers of LRP5/6
(Culi et al. 2004; Lighthouse et al. 2011). Exam-

ination of LRP5/6 via western blotting often
reveals two bands, a lower (faster migrating)

immature form and a higher fully glycosylated

form. Mest (also known as Paternally expressed
gene 1, or Peg1), a multispan transmembrane

protein that resides in the ER and contains ana/
b hydrolase domain, modifies LRP6 glycosyla-
tion resulting in less mature LRP6 at the plasma

membrane, therebymodulating LRP6 in aman-

ner that appears to be analogous to Shisa inhi-
bition of FZD receptors (Jung et al. 2011).

TWO OR MORE WNT-BINDING
SURFACES OF LRP6

Early studies suggested thatWnt1 bridges extra-
cellular domains of a FZD (mFZD8CRD) and

LRP6 into a receptor complex via direct binding

(Tamai et al. 2000). Consistent with this notion,

an LRP6 mutant that lacks the cytoplasmic do-
main (and is thus membrane bound) or lacks

transmembrane plus cytoplasmic domains (and

is thus secreted) behaves as a dominant-negative
receptor forWnt/b-catenin signaling (Fig. 3A),
presumably via binding to Wnt ligands (Tamai

et al. 2000; He et al. 2004). Wnt1 signaling via
LRP6 is mediated through the PE domains

(P1E1–P4E4) (Mao et al. 2001a). A recent study

showed a Kd between the LRP6 extracellular
domain and Wnt3a or Wnt9b to be ≏10 nM

(Bourhis et al. 2010). Unexpectedly, however,

Wnt3a andWnt9b were shown to preferentially
interact with P3E3–P4E4 and P1E1–P2E2, re-

spectively, and a Wnt3a–Wnt9b–LRP6 (extra-

cellular domain) complex could be detected
in vitro (Bourhis et al. 2010), suggesting a pos-

sibility that a single LRP6 may engage two dif-

ferent Wnt proteins simultaneously. Further-
more, functional-blocking monoclonal anti-

bodies (mAbs) against epitopes in P1 and P3,

respectively, show a distinct inhibition profile
toward different Wnt proteins, presumably via

blockingWnt binding to either P1 or P3 (Etten-

berg et al. 2010; Gong et al. 2010). These data
infer that many Wnts (Wnt1, Wnt2, Wnt2b,

Wnt6,Wnt8a,Wnt9a,Wnt9b, andWnt10a) in-

teract with P1, whereas Wnt3 andWnt3a prefer
P3 (Fig. 2A). Other Wnts (Wnt7a, Wnt7b, and

Wnt10a) could not be assigned into either

group because they were not inhibited by the
mAbs alone or in combination (Gong et al.

2010), raising the possibility that these Wnts

may bind to regions outside P1 and P3. The
remaining Wnts have not been tested in these

assays. The top surfaces of P1 and P3 (and P2

and P4 as well) do not harbor N-glycosylation
sites (Ahn et al. 2011; Bourhis et al. 2011; Chen

et al. 2011; Cheng et al. 2011) and are likely the

Wnt-binding interface. Indeed, missense sub-
stitutions of multiple top surface residues of

P3 of LRP6, designed based on the crystal struc-

ture, diminish or enhance Wnt3a binding and
signaling (Fig. 2E) but show minimal effect on

signaling by Wnt1 (Chen et al. 2011), which

prefers to bind to P1. Therefore, an emerging
model is that LRP6, and likely LRP5, engage

different Wnts via multiple ligand interfaces
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(Fig. 2A). The LRP6 platform configuration

seems to suit this model (Fig. 2F,G). Sequence

analysis of LRP5 and LRP6 reveals that P1, P2,
and P3 are most related by homology, but P4

is more divergent (Fig. 2B). Further studies of

LRP5/6 will be needed to parse out different
binding sites for Wnts and other ligands, in-

cluding whether P2 or P4 also represents a

Wnt docking site. The role of three LDLR-A
repeats in LRP5/6 remains unknown.

THE WNT–FZD–LRP5/6 COMPLEX

A distinguishing feature of the Wnt/b-catenin
pathway is the requirement for both FZD and
LRP5/6 receptors (He et al. 2004). Extracellular

domains of LRP6 and FZD8 were shown to

form a complex in vitro in the presence of

Wnt1 (Tamai et al. 2000). A similar trimeric

complex was confirmed using recombinant
Wnt3a and extracellular domains of FZD8 and

LRP6 (Bourhis et al. 2010). These results suggest

that Wnts can interact with both receptors si-
multaneously, perhaps via different parts of the

Wnt molecule, although this important ques-

tion has not been addressed (because of the
prior lack of Wnt structural information and

the difficulty in generating soluble Wnt protein

fragments necessary for mapping studies). The
Wnt8–FZD8CRD structure (Janda et al. 2012)

will help resolve this issue. Also not addressed

is the stoichiometry of the putative Wnt–
FZD–LRP6 (or LRP5) complex, which is com-

monly drawn at a 1:1:1 ratio in models. The

Ligand-induced phosphorylation

FZD

A

B

LRP5/6 LRP6 ECD LRP6ΔC
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Figure 3. LRP6 phosphorylation and phosphorylation sites. (A) Wnt induces LRP6 phosphorylation in the
FZD–LRP6 complex. Dominant-negative LRP6 mutants are generated by deleting the cytoplasmic domain or
mutating all five PPPSPxS motifs (S to A). Constitutively activated LRP6DN and LDLRDN-PPPSP are consti-
tutively phosphorylated. (B) Alignment of the cytoplasmic domain of LRP6, LRP5, Arrow, and theNematostella
LRP5/6 homolog. Identified phosphorylation sites by various kinases in LRP6 are indicated.
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observation in vitro that an LRP6 can simulta-

neously bind two different Wnt proteins sug-
gests the possibility that various combinations

of Wnt–FZD–LRP6 complexes may exist in

vivo. An LRP6 platformmodel (Fig. 2F,G) spec-
ulates thatb-propeller topsurfaces/ligandbind-
ing regions may position at roughly the same

height relative to the plasma membrane, po-
tentially facilitating engagement of the CRD

domain of a single FZD or more FZDs (Ahn

et al. 2011; Chen et al. 2011). Interestingly, the
Wnt8–FZD8CRD structure suggests a possibil-

ity of asymmetric Wnt–FZD oligomers that are

formed to fully shield the palmitoleic acid ad-
duct from aqueous solvent (Janda et al. 2012).

Whether such asymmetric Wnt–FZD oligomer

formation occurs in vivo and has a role in sig-
naling deserves further investigation.

Another limiting factor for understanding

the Wnt–FZD–LRP5/6 complex is our poor
knowledge of Wnt–FZD and Wnt–LRP5/6
binding specificity and affinity, because most

Wnts are not available in soluble forms (Mulli-
gan et al. 2012). FZD8 appears to bind Wnt3a

with 2� –3� stronger affinity than LRP6 does

(Bourhis et al. 2010), seemingly consistent with
some anecdotal experience that Wnt–LRP6

binding appears to be weaker than that of

Wnt–FZD (He et al. 2004). In contrast, the re-
verse is true for Wnt9b, which displays weak

binding to FZD8 but binds to LRP6 comparably

to how Wnt3a does (Bourhis et al. 2010). It re-
mains possible, however, that Wnt9b may pre-

fer a FZD or FZDs other than FZD8. Some of

the questions on the Wnt–FZD–LRP6 com-
plex may have to wait until more recombinant

Wnt proteins become available and a high-res-

olution structure of a Wnt protein in complex
with an FZD plus LRP6 is achieved.

WNT RECEPTOR SIGNAL TRANSDUCTION:
INSIDE THE CELL

Dishevelled and Axin

FZD and LRP5/6 transduce Wnt signal via en-

gaging downstream cytoplasmic components,
among which two scaffolding proteins, Dishev-

elled and Axin, have prominent roles.

Dishevelled (DVL1-3 in human, Dsh in

Drosophila, and Xdsh in Xenopus) is a multi-
functional protein that serves as a hub for ca-

nonical and noncanonical Wnt signaling. First

identified in Drosophila, most fly dsh mutants
are embryonic lethal because of their loss in wg

signaling (Perrimon andMahowald 1987). DVL

proteins are about 700 amino acids in length
and contain three main domains of about 80–

90 amino acids each: DIX (Dishevelled, Axin),

PDZ (Postsynaptic density 95, discs large, zona
occludens-1), and DEP (Dishevelled, Egl-10,

Pleckstrin) (Fig. 1B). The PDZ domain is essen-

tial for binding to a juxtamembrane KTxxxW
motif (Umbhauer et al. 2000) in the FZD car-

boxyl cytoplasmic region (Wong et al. 2003).

The first dsh mutant identified, dsh1, displays
a PCP phenotype (Fahmy and Fahmy 1959),

and is a missense mutation (K417M) in the

DEP domain (Axelrod et al. 1998; Boutros et
al. 1998). Further studies have shown that the

DEP domain has a positively charged surface

that may interact with phospholipids in the
plasma membrane (Wong et al. 2000; Simons

et al. 2009) and additional surfaces for interact-

ing proteins including the endocytic adaptor
protein 2 (AP-2) complex (Yu et al. 2010). A

recent study further suggests that DEP plus

the carboxyl region of DVL interact with FZD
ICL3 (via the so-called motif I and motif II)

(Fig. 1B) and the KTxxxW region (so-called

motif III) (Fig. 1B), thereby facilitating DVL
association with a discontinuous cytoplasmic

surface of FZD (Tauriello et al. 2012). Thus,

PDZ and DEP domains have roles in recruiting
DVL to FZD at the plasmamembrane (Fig. 1B).

The DIX domain shows an interesting property

of head-to-tail polymerization (Schwarz-Ro-
mond et al. 2007a). This property correlates

well with DVL aggregates under the overexpres-

sion condition, and it has been argued that the
endogenous DVL may form such aggregates,

which are highly dynamic (Schwarz-Romond

et al. 2005). DIX oligomerization/polymeriza-
tion is proposed to provide a DVL platform

for dynamic assembly of protein–protein inter-

actions of low avidity, such as between DVL
and Axin (Schwarz-Romond et al. 2007b), and

is a main underpinning for the receptor
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“signalosome” hypothesis (Bilic et al. 2007) (see

below). However, some have suggested that
the DVL “aggregates” (or “dots” under micro-

scopes) represent endocytic vesicles (Capelluto

et al. 2002; Taelman et al. 2010). The simplest
model states that DIX and PDZ domains, but

not DEP, are required for Wnt/b-catenin sig-

naling, as seen in some overexpression studies.
However, evidence exists that the DEP domain

influences b-catenin signaling (Wong et al.

2000; Simons et al. 2009; Tauriello et al. 2012).
DVL associates with kinases such as CK11 and

CK2, and becomes hyperphosphorylated upon

Wnt signaling (Willert et al. 1997; Peters et al.
1999; Kishida et al. 2001; Cong et al. 2004a;

Klein et al. 2006). These kinases, in particular

CK11, have been documented to have activating
roles in Wnt/b-catenin signaling, but the role

of DVL phosphorylation remains unclear.

Axin was identified as the gene mutated in
Fused mice (Zeng et al. 1997), which display a

dominant phenotype of vertebral fusions or

kinked tails,withhomozygousmutants showing
more severe phenotypes including axis duplica-

tion of the tail (Reed 1937). Axin has about 850

amino acids and has a close homolog in ver-
tebrates (Behrens et al. 1998; Yamamoto et al.

1998). Axin is a key negative component of

the b-catenin pathway, owing to its scaffolding
function in promoting b-catenin phosphoryla-

tion and degradation (Behrens et al. 1998; Ikeda

et al. 1998; Kishida et al. 1998; Liu et al. 2002).
Axin directly binds to b-catenin, GSK3, CK1a,

and APC (Fig. 2), and additional proteins in

the assembly of the “b-catenin destruction
complex,” in which b-catenin phosphorylation

(and degradation) is performed (MacDonald

et al. 2009; Stamos andWeis 2012). In relevance
to Wnt receptor and DVL functions, Axin has a

carboxy-terminal DIX domain, which was also

called for convenience DAX to distinguish it
from the DVL DIX domain (Schwarz-Romond

et al. 2007b). DAX shows an oligomerization/
polymerization property similar to but less dy-
namic than DIX (Schwarz-Romond et al.

2007a). Studies in mammalian and Drosophila

models argue that DAX oligomerization is crit-
ical for Axin function in b-catenin phosphory-

lation/degradation (Kishida et al. 1999b; Fied-

ler et al. 2011). Axin binds directly with DVL

and is recruited into DVL aggregates (under
overexpression) via, in part, DAX–DIX interac-

tion (Kishida et al. 1999b; Schwarz-Romond

et al. 2007b), which may represent one mecha-
nism by which DVL inhibits Axin (Kishida et al.

1999b; Fiedler et al. 2011). But it is unclear

whether/how Wnt signaling regulates DVL–
Axin interaction.

FZD AND DVL INTERACTION

The characterized FZD–DVL binding involves

PDZ interaction with the juxtamembrane
KTxxxW motif in the FZD carboxyl terminus

(Umbhauer et al. 2000; Wong et al. 2003), DEP

interaction with the same or an overlapping
KTxxxW motif, and the interaction of the

DVL carboxyl region with FZD ICL3 (motif I

and motif II) (Fig. 1B) (Tauriello et al. 2012).
Thus, multiple DVL domains/regions appear

to engage a discontinuous cytoplasmic surface

of FZD, and FZD–DVL association, which
derives from a sum of multiple relatively weak

interactions, may be further stabilized by the

DEP–phospholipids (in the plasmamembrane)
interaction (Fig. 1B). It is unknown how PDZ

and DEP may bind to the same or overlapping

KTxxxW region, or whether each binding may
be exclusive of the other and related to FZD

activation status. A common feature of GPCRs

is an intracellular helical region in the carboxyl
tail, sometimes referred to as helix 8 taking into

account the seven transmembrane helices. Crys-

tal structures commonly show helix 8 to be per-
pendicular to TM7 and parallel with the mem-

brane and often amphipathic to enable an

interaction with the lipid membrane. In the
case of FZD, a predicted helix 8 begins at the

KTxxxWmotif and extends for 14 amino acids

in most receptors (Fig. 1B). Given the impor-
tance of theKTxxxWregion forDVL(PDZand/
or DEP) binding (Punchihewa et al. 2009; Taur-

iello et al. 2012), one potential mechanism for
FZD activation would be aWnt-induced move-

ment of TM7 to expose the key FZD–DVL in-

teraction site, if we assume that Wnt regulates
FZD–DVL interaction. It should be noted that

FZD–DVL interaction has thus far been studied
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either in vitro or under overexpression condi-

tions in vivo, and it remains unknown whether
this interaction is under Wnt regulation. How-

ever, because Dfz1/Dsh PCP signaling in Dro-

sophila appears to be Wnt independent (Bayly
and Axelrod 2011), it is conceivable that FZD–

DVL interaction can occur withoutWnt, at least

in some circumstances.
In addition to the helix 8 region, many

GPCRs use a region in intracellular loop (ICL)

2 that serves as an interaction site for the Ga
protein. However, ICLs are divergent between

GPCRs and FZD. Comparison of the 10 FZDs

reveals conserved residues in the ICLs (Fig. 1B).
The importance of these residues for signaling

has been shown by fly Fz/Dfz1 mutants, patient

mutations in FZD4, and site-directed mutagen-
esis studies (Robitaille et al. 2002; Cong et al.

2004b; Povelones et al. 2005; Zeng et al. 2008;

Nikopoulos et al. 2010). Some of these findings
can potentially be explained by DVL interaction

with FZD ICL3 (Tauriello et al. 2012). Whether

ICL1 and ICL2 residues are also involved in in-
teractionwithDVL, orG-proteins (see below), or

unidentified proteins remains to be investigated.

Most FZD receptors, except for the nonca-
nonical FZD3/6 group, contain a carboxy-ter-

minal S/TxV motif (Fig. 1A), which is com-

monly involved in PDZ binding (Hering and
Sheng 2002) and may serve as an accessory site

to augment FZD clustering by perhaps PDZ

proteins. Phosphorylation of the FZD carboxyl
region has been observed and is associated with

down-regulation of FZD/PCP signaling, such

as Fz/Dfz1 phosphorylation by aPKC around
the DVL-interacting SxKTxxSW motif in Dro-

sophila (Djiane et al. 2005), and Dvl-dependent

FZD3 phosphorylation, which inhibits FZD3
endocytosis and signaling, in axon guidance

(Shafer et al. 2011) and possibly in neural crest

induction (Yanfeng et al. 2006). However, it is
unknown whether phosphorylation regulates

FZD function in b-catenin signaling.

LRP6 PHOSPHORYLATION AND
AXIN RECRUITMENT

The LRP5/6 cytoplasmic region has about

200 amino acids and contains five signature

PPPSPxS motifs named from A to E, which are

conserved from invertebrates to human (Fig.
3B). LRP6mutants that lack the entire cytoplas-

mic region (LRP6DC), or have all five PPPSPxS

motifs changed to PPPAPxA (LRP6m10), or
have all five PPPSP motifs changed to PPPAP

(LRP6m5), behave each as a loss-of-function

and, in fact, dominant-negative mutant (Fig.
3A) (Tamai et al. 2000, 2004; Zeng et al. 2005).

Conversely, LRP6 (and LRP5) mutants that lack

the extracellular domain (LRP6DN) behave as
constitutively activated Wnt receptors (Mao

et al. 2001a,b; Tamai et al. 2004). Most tellingly,

a single PPPSPxS motif is sufficient to transfer
Wnt signaling activation function to a heterol-

ogous receptor (Fig. 3A) (Tamai et al. 2004;

MacDonald et al. 2008). These results highlight
the critical importance of the PPPSPxS motif.

The PPPSPxS motif is dually phosphorylat-

ed in the endogenous LRP6 in response to Wnt
but is constitutively phosphorylated in either

LRP6DN or in any single PPPSPxS motif that

is transferred to a heterologous receptor (Fig.
3A) (Tamai et al. 2004; Zeng et al. 2005; Mac-

Donald et al. 2008), correlating fully with the

signaling activity. The phosphorylatedPPPSPxS
motif, but not the unphosphorylated one, is

a docking site for Axin (Tamai et al. 2004),

explaining, in part, Wnt-induced recruitment
of Axin via LRP5/6 to the plasma membrane

(Mao et al. 2001b). Axin binding to the phos-

phorylated PPPSPxS motif is likely direct
(Tamai et al. 2004; Zeng et al. 2005; MacDonald

et al. 2008, 2011), but it remains unclear which

part of Axin is involved in the binding, with the
earliermapping studies implicating a broad seg-

ment of Axin (Fig. 2) (Mao et al. 2001b). This

critical but unresolved issue has fueled an alter-
native model in which LRP6–Axin interaction

may be indirectly mediated by other factors

such as GSK3 (Piao et al. 2008).

LRP6 PHOSPHORYLATION: KINASES
AND REGULATION

Of the kinases that have been implicated in

LRP6 phosphorylation, the GSK3 and CK1
families are the most prominent in their phos-

phorylation of PPPSP and xS, respectively (Fig.
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3B) (Davidson et al. 2005; Zeng et al. 2005).

PPPSP phosphorylation has been mostly stud-
ied using Ab1490, which corresponds to motif

A (Tamai et al. 2004), and studies of other

PPPSP motifs (C and E) suggested similar reg-
ulation (MacDonald et al. 2008, 2011). PPPSP is

phosphorylated by GSK3, which primes xS

phosphorylation by CK1 (Zeng et al. 2005).
This dual kinase model contrasts that for b-cat-

enin, whose phosphorylation by CK1a primes

phosphorylation by GSK3 (Liu et al. 2002). In
many cases such as in b-catenin phosphoryla-

tion, GSK3 requires a priming kinase, but in

its PPPSP phosphorylation, there does not
seem to be a priming requirement (Zeng et al.

2005). GSK3 phosphorylation and activation of

LRP6, which also contrasts its phosphorylation
and degradation of b-catenin, is supported by

two key pieces of evidence: (1) Wnt-induced

LRP6 PPPSP phosphorylation does not occur
in cells that lack both Gsk3a andGsk3b; and (2)

inhibition of GSK3 by a plasma membrane-

tethered inhibitor blocksWnt signaling, where-
as the same inhibitor in the cytoplasm activates

Wnt signaling (Zeng et al. 2005, 2008). Such

dichotomic roles of GSK3 are not without par-
allel: in Drosophila, protein kinase A (PKA) an-

tagonizes Hedgehog (Hh) signaling by phos-

phorylating and inhibiting the Ci transcription
factor in the absence of Hh but activates Hh

signaling by phosphorylating and activating

Smo in response to Hh (Jiang and Hui 2008).
FZD is required for Wnt-induced PPPSP

phosphorylation by GSK3, and forced FZD–

LRP6 association is sufficient to induce PPPSP
phosphorylation (Zeng et al. 2008), consistent

with the importance of Wnt-induced FZD–

LRP6 complex formation in Wnt signaling.
Mutations in FZD intracellular loops or the car-

boxyl tail that prevent FZD–DVL interaction

(Wong et al. 2003; Cong et al. 2004b) abolish
the ability of FZD to promote LRP6 phosphor-

ylation, implying that DVL is required to medi-

ate FZD regulation of LRP6 PPPSP phosphory-
lation (Fig. 4), a notion that is supported by Dvl

depletion experiments (Zeng et al. 2008). The

recent observation in Drosophila that Dsh acts
upstream of Arrow further corroborates this

biochemical relationship (Metcalfe et al. 2010).

Unexpectedly, Axin is also required for

Wnt-induced LRP6 PPPSP phosphorylation,
andAxin overexpression enhances PPPSP phos-

phorylation (Tamai et al. 2004; Yamamoto et

al. 2006), but only if Axin is not impaired in
GSK3 binding (Zeng et al. 2008). These findings

led to a model that DVL binding to and recruit-

ment of Axin into the FZD–LRP6 complex
initiates GSK3 phosphorylation of LRP6 on

PPPSP motifs (Zeng et al. 2008). This model

posits that the Axin–GSK3 complex phosphor-
ylates b-catenin in the absence of Wnt but

switches to phosphorylate LRP6 under the

FZD/DVL control. DIX/DAX-mediated DVL
and Axin oligomerization is compatible with

this model.

Wnt-induced CK1 phosphorylation of
LRP6 presents a more complicated picture.

Firstly, there are CK1 phosphorylation sites

within and outside the PPPSPxS motif, such as
the conserved region that precedes the first

PPPSPxSmotif and contains residues “YDRxH”

and a block of serine and threonine residues,
referred to as the S/T cluster (Fig. 3B). This re-

gion is likely phosphorylated by CK1, including

the nearby T1479 by CK1g (Davidson et al.
2005). The functional significance of this S/T
cluster is unclear, although one study suggests

it as a GSK3-binding site upon CK1 phosphor-
ylation (Piao et al. 2008). Secondly, there exist

sevenmammalian CK1s (a,b, g1, g2, g3, d, and

1) (Price 2006). CK1a and CK11/d are associ-
ated with Axin and DVL, respectively, whereas

CK1g is membrane tethered via isoprenylation

(Price 2006; MacDonald et al. 2009), and there-
fore these CK1s are each in proximity to LRP6 in

the receptor complex. xS phosphorylation by

CK1 is proceeded/primed by PPPSP phosphor-
ylation (Zeng et al. 2005), and therefore appears

to be secondary to regulation of PPPSP phos-

phorylation by Wnt through FZD, DVL, and
Axin, although independent layers of CK1 reg-

ulation may exist. Indeed, the transmembrane

protein TMEM198 enhances LRP6 signaling
and phosphorylation by CK1 through its bind-

ing to CK1a, 1, and g (Liang et al. 2011). Efforts

have been taken to distinguish roles of differ-
ent CK1s in multiple steps in Wnt signaling

(Del Valle-Perez et al. 2011), but the available
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evidence suggestsoverlapping functionsofCK1s

in LRP6 phosphorylation.

LRP6 PHOSPHORYLATION: ROLES OF
PIP2, G-PROTEIN, AND OTHER KINASES

Two lipid kinases, phosphatidylinositol 4-ki-

nase type II (PI4KIIa) and phosphatidylino-

sitol-4-phosphate 5-kinase type I (PIP5KI),
which are bound and activated byDVL,mediate

Wnt-induced PIP2 (phosphatidylinositol 4,5-

bisphosphate) production that promotes LRP6

phosphorylation by GSK3 and CK1 (Pan et al.

2008; Qin et al. 2009). One model suggests that
PIP2 enhances LRP6 aggregation/signalosome

formation (see below) and thereby phosphory-

lation (Pan et al. 2008). An alternative mecha-
nism has been suggested by a study of WTX/
Amer1, which is an X-linked tumor suppressor

in Wilms tumor. WTX binds to Axin and pro-
motes b-catenin degradation in absence of

Wnt (Major et al. 2007). However, upon Wnt
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stimulation, WTX via its PIP2-binding motif

recruits Axin into the Wnt receptor complex,
where PIP2 is high, thereby facilitating LRP6

phosphorylation by GSK3 and CK1g (Regim-

bald-Dumas and He 2011; Tanneberger et al.
2011). WTX, which is vertebrate specific, thus

has dichotomic roles in Wnt signaling, analo-

gous to those for Axin and GSK3.
The FZD topology invites GPCR compari-

sons, and FZD coupling to trimeric G-proteins

in Wnt/b-catenin signaling has received cer-
tain support from pharmacological and genetic

studies (Ahumada et al. 2002; Katanaev et al.

2005; Liu et al. 2005; Schulte and Bryja 2007),
although this remains a debated issue. Although

Gao and Gaq are suggested to regulate Axin–

GSK3 interaction (Liu et al. 2005),Gbg is shown
to be in complex with LRP6, DVL, and Axin

and to recruit GSK3 to phosphorylate LRP6

(Jernigan et al. 2010). Thus, multiple routes
through DVL, G-protein, and WTX promote

LRP6 phosphorylation, and DVL is essential in

this capacity (Bilic et al. 2007; Zeng et al. 2008).
The SP motif is preferred by the so-called

proline-directed kinases, which include GSK3,

MAPK, and CDK subfamilies (Manning et
al. 2002). PFTK, a CDK, and several MAPKs

have been suggested to phosphorylate PPPSP

in LRP6 in contexts in which cross-regulation
with Wnt signaling may occur. A study showed

that the PFTK/CyclinY pair phosphorylates

LRP6 in G2/Mof the cell cycle, and thus “pois-
es” LRP6 for Wnt signaling to peak at G2/M
(Davidson et al. 2009). This notion, however,

contrasts the conventional view that prolifera-
tive signaling pathways commonly act during

G1/S transition (to regulate DNA synthesis).

Indeed, a recent study suggests that Wnt signal-
ing is highest at G1/S but lowest at G2/M (Had-

jihannas et al. 2012).MAPKphosphorylation of

LRP6 PPPSP was also suggested and may un-
derlie synergy between FGF and Wnt signaling

(Cervenka et al. 2011). This is likely context

dependent, however, because antagonism be-
tween Wnt and MAPK signaling pathways has

been observed in development (Szuts et al.

1997; Freeman and Bienz 2001) and in cancer
such as melanoma (Biechele et al. 2012).

GRK5/6 kinases, which are mostly associated

with down-regulation of GPCR signaling, can

phosphorylate LRP6 on PPPSP motifs and oth-
er sites in vitro (Chen et al. 2009), although the

significance in vivo is unclear. Finally, evidence

also exists that PKA can phosphorylate LRP6 at
a site between PPPSPxS motifs (Fig. 3B) in re-

sponse to activation of PTHR, a GPCR, and this

event correlates with b-catenin signaling (Wan
et al. 2011).

LRP6 SIGNAL INITIATION-AMPLIFICATION,
SIGNALOSOMES, AND ENDOSOMAL
SIGNALING

Several models have been elaborated based on

Wnt-induced LRP6 phosphorylation/activa-
tion. FZD/DVL recruitment of Axin–GSK3 in-
itiates PPPSPxS phosphorylation, which, in

turn, reinforces Axin interaction, thereby form-

ing a local positive feed-forward loop that pro-
motes further PPPSPxS phosphorylation and

enhances further Axin recruitment (Fig. 4A)

(MacDonald et al. 2008; Zeng et al. 2008). This
feed-forward loop between LRP6 and Axin may

act in cis (among five PPPSPxSmotifs within an

LRP6 molecule) or in trans (among PPPSPxS
motifs of different LRP6 molecules if LRP6

forms higher orders of oligomers), and has in-

spired the Wnt receptor “initiation- amplifi-
cation” model (MacDonald et al. 2008; Zeng

et al. 2008), which is consistent with transgenic

experiments in Drosophila suggesting that Dfz2
and Arrow initiate whereas Arrow amplifies Wg

signaling (Baig-Lewis et al. 2007). Supporting

this model, phosphorylation of an individual
PPPSP motif depends profoundly on neighbor-

ing PPPSPmotifs, and LRP6 requiresminimally

four PPPSPxS motifs to be quasi-competent for
signaling (and LRP6 mutants with combina-

tions of three PPPSPxS motifs are mostly in-

active or even dominant negative) (MacDonald
et al. 2008; Wolf et al. 2008). Therefore, five

PPPSPxSmotifs in LRP6 act like an in cis ampli-

fier for signaling. Why then is a single PPPSPxS
motif sufficient to transfer signaling to a heter-

ologous receptor, LDLRDN (Tamai et al. 2004;

Zeng et al. 2005; MacDonald et al. 2008)?
LDLRDN, and therefore LDLRDN-PPPSP, for-

tuitously form on membrane large aggregates
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(Bilic et al. 2007; X-J Zhang and XHe, unpubl.),

which likely constitute in trans amplification.
The LRP6 “signalosome” model is based

on observations that Wnt induces large-sized

LRP6 aggregates in fractionation and immu-
nostaining (Bilic et al. 2007), and that DVL is

required for LRP6 phosphorylation in these ag-

gregates in a manner that correlates with DIX-
mediated polymerization (Schwarz-Romond

et al. 2007a). When LRP6 is overexpressed to-

gether with FZD, DVL, Axin, and GSK3, LRP6
aggregates become particularly prominent and

likely contain these other components (Fig. 4B)

(Bilic et al. 2007; Schwarz-Romond et al. 2007a).
Note that these results are consistent with

those that led to the “initiation-amplification”

model, suggesting that the two models may de-
scribe the same receptor activation events from

different temporal/molecular and spatial/cel-
lular perspectives, with DVL polymerization
underlying and being emphasized in the signal-

osome model.

Another model, in which phosphorylated/
activated LRP6 signals in an endosomal plat-

form, posits that LRP6 and phosphorylation

in lipid rafts (a cholesterol-rich microdomain
in the plasma membrane) and its subsequent

endocytosis through caveolin are both required

for signaling (Yamamoto et al. 2006, 2008).
Caveolin binds to LRP6 upon Wnt stimulation

and is required for phosphorylated LRP6 to

recruit Axin (Yamamoto et al. 2006). One may
notice significant similarities between lipid

raft/endosomal LRP6 versus signalosomes, be-

cause methods (gradient fractionation and im-
munostaining) used to define them are similar,

and signalosomes indeed contain caveolin (Ya-

mamoto et al. 2006; Bilic et al. 2007), suggesting
that these two models overlap despite different

emphases. PIP2 is suggested to promote LRP6

signalosome formation and thus phosphoryla-
tion (Pan et al. 2008), but its key roles in recep-

tor endocytosis should be noted (Di Paolo and

De Camilli 2006). A new transmembrane Wnt
inhibitor, Waif1, binds to LRP6 and prevents

LRP6 endocytosis but not its phosphorylation

(Kagermeier-Schenk et al. 2011), lending sup-
port to this “endosomal signaling” model. An-

other transmembrane protein, PRR (prorenin

receptor), which binds to FZD and LRP6 and

also to the vacuolar Hþ-adenosine triphospha-
tase (V-ATPase) complex that acidifies vesicles,

is required for LRP6 phosphorylation by CK1

(Cruciat et al. 2010), consistent with the possi-
bility of a vesicular LRP6 signalosome (or en-

dosome) where LRP6 phosphorylation occurs.

An extension of the endosomal signaling
model posits that LRP6 endocytosis via caveolin

versus clathrin activates and inhibits signaling,

respectively (Yamamoto et al. 2008). However,
different results exist regarding this issue (Blit-

zer and Nusse 2006). Another obstacle is that

caveolin12/2 mice show apparently higher b-
catenin signaling in mammary and intestinal

stem cells (Li et al. 2005; Sotgia et al. 2005). In

addition, caveolin does not exist in Drosophila,
and therefore a different mechanism has to be

envisioned for Wg signaling. Thus, some cau-

tions are warranted, particularly when pertur-
bations of general endocytic pathways are per-

formed and thus broad cellular events beyond

Wnt signaling are affected (Gagliardi et al.
2008). Indeed, manipulating endocytic mole-

cules inDrosophila has also yielded contradicto-

ry results regarding Wg signaling (Piddini et al.
2005; Rives et al. 2006; Seto and Bellen 2006).

Finally, some of the cell biological studies of

LRP6 and Wnt signaling have relied on over-
expression of LRP6 and other components.

Whether the endogenous LRP6 and other Wnt

signaling proteins behave similarly is a major
caveat that needs to be taken into account.

INHIBITION OF b-CATENIN
PHOSPHORYLATION POST RECEPTOR
ACTIVATION

How activation of theWnt receptor complex, in

particular phosphorylation of LRP6, leads to

inhibition of b-catenin phosphorylation re-
mains not fully understood and debated. An

earlier model (Fig. 5A), prior to knowledge of

LRP6 phosphorylation, suggests that Wnt sig-
naling via DVL leads to disruption of the Axin

complex (Kimelman and Xu 2006; MacDonald

et al. 2009). Indeed, upon Wnt stimulation, re-
duced association of Axin with b-catenin and

GSK3 is observed (Kishida et al. 1999a; Li et al.
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1999; Itoh et al. 2000; Liu et al. 2005), and this is
accompanied by hypophosphorylation of Axin

(Willert et al. 1999; Yamamoto et al. 1999),

which itself is a substrate for GSK3 (and CK1)
(Ikeda et al. 1998; Jho et al. 1999). This model

suggests that displacement from or inhibition of

GSK3 in the Axin complex causes Axin hypo-
phosphorylation, which further results in re-

duced b-catenin binding to Axin and thus b-

catenin phosphorylation (Kimelman and Xu

2006). Some of these earlier studies included
a role for FRAT/GBP (Frequently Rearranged

in Advanced T-cell lymphoma/GSK3-Binding
Protein), which is a family of GSK3-binding
proteins that displace GSK3 from Axin and

thus inhibit GSK3 (Yost et al. 1998; Ferkey and

Kimelman 2002; Dajani et al. 2003). Because
FRAT also binds to DVL, an extension of the

model is that DVL through FRAT displaces

GSK3 in theAxin complex, leading to inhibition
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of b-catenin phosphorylation. However, triple

knockouts of all three Frat genes produced via-
ble and fertile mice, arguing that FRAT is dis-

pensable for Wnt signaling (van Amerongen

et al. 2005). This is also true for Wg signaling,
because Drosophila does not have a FRAT ho-

molog. Although a FRAT-based model is no

longer favored, the core part of the “complex
disruption”model and data leading to it remain

valid and should not be discounted. A recent

study showed that protein phosphatase 1 (PP1)
is required for Wnt signaling through Axin

dephosphorylation that disrupts Axin–GSK3

interaction (Luo et al. 2007), consistent with
the suggestion that active Axin dephosphoryla-

tion together with inhibition of Axin phosphor-

ylation by GSK3 are involved in Axin complex
disruption (Willert et al. 1999).

A study suggests that APC, via an unknown

mechanism, is broadly required for GSK3 activ-
ity and that Wnt stimulation results in dissoci-

ation of APC from the Axin–GSK3 complex,

resulting in down-regulation of GSK3 (Valvezan
et al. 2012), again consistent with the complex

disruption model.

Earlier results showed that overexpression
of constitutively activated LRP5 or Arrow re-

sulted in decreased Axin protein levels in mam-

malian and Drosophila systems (Fig. 5B) (Mao
et al. 2001b; Tolwinski et al. 2003). However, the

Wnt-induceddecrease inAxinprotein levels lags

behind the increase in b-catenin protein levels
(Willert et al. 1999; Yamamoto et al. 1999), and

thus is unlikely to be theprimarymechanism for

b-catenin stabilization.However, Axin degrada-
tionmay be important for long-term or chronic

Wnt stimulation. It is worth noting that Tank-

yrase has been shown to promote Axin PARsy-
lation and degradation (Huang et al. 2009), but

Tankyrase-induced Axin degradation does not

seem to be under Wnt regulation.
To integrate recent findings of LRP6 phos-

phorylation and DVL acting primarily through

LRP6 phosphorylation, a newer model has
emerged in which phosphorylated PPPSPxS

motifs directly inhibit GSK3 (Cselenyi et al.

2008; Piao et al. 2008; Wu et al. 2009). This
model is based on findings that LRP6 binds

to GSK3 (Zeng et al. 2005; Mi et al. 2006) and

that phosphorylated recombinant LRP6 cyto-

plasmic domain and, in fact, phosphorylated
PPPSPxS peptides bind to and inhibit b-cate-

nin phosphorylation by GSK3 in vitro and ac-

tivate b-catenin signaling in vivo (Cselenyi et
al. 2008; Piao et al. 2008; Wu et al. 2009). This

inhibitionmechanism bears apparent similarity

to GSK3 inhibition during insulin signaling
by its own amino-terminal region, whose phos-

phorylation (at S21 in GSK3a or S9 in GSK3b

by the AKT kinase) creates an inhibitory and
binding pseudosubstrate for GSK3 inhibition

(Dajani et al. 2001; Frame et al. 2001). This

model fits well with the requirement of LRP6
PPPSPxS phosphorylation in signaling and the

hypothesis of DVL-dependent signalosomes in

recruitment of Axin–GSK3 to the proximity of
LRP6 and can account for the specificity of in-

hibition of GSK3 phosphorylation of b-catenin

(but not of other GSK3 substrates outside of the
Axin complex). This model is also compatible

with the “complex disruption” model, because

LRP6 inhibition of GSK3 will also result in Axin
hypophosphorylation and thus Axin complex

disruption. Implicit in this model is that phos-

phorylated PPPSPxS motifs may have multiple
roles inWnt signaling: binding toAxin, enhanc-

ing mutual PPPSPxS phosphorylation, and

binding to and inhibition of GSK3. In this con-
text, it is noted that five PPPSPxS motifs in

LRP5/6 are spaced tightly within a region of

120 residues (Fig. 3B), leading to speculation
that an LRP6 may only interact with a single

Axin molecule at any given time, that is, only

one phosphorylated PPPSPxSmotif is occupied
byAxin,while the remainingonesprovide ahigh

local concentration to sustainLRP6–Axin inter-

action (Wu et al. 2009). In this scenario, LRP6
via its five phosphorylated PPPSPxS motifs can

engage Axin and inhibit GSK3 simultaneously,

a possibility that is also conceivable if LRP6 ag-
gregates in trans in signalosomes. Related to this

issue is whether Axin binds to LRP6 indirectly

via GSK3 (Piao et al. 2008), but recent evidence
does not support the view of indirect LRP6–

Axin interaction (MacDonald et al. 2011). Fur-

ther studies will be needed to clarify the mech-
anism of phosphorylated PPPSPxS motifs in

Axin and GSK3 binding and GSK3 inhibition.
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A drastically different model was proposed

recently, in which multivesicular body (MVB)
formation after endocytosis of theWnt receptor

wraps GSK3 into the deep interior of the MVB,

thereby physically separating GSK3 from its cy-
toplasmic substrates including b-catenin (Fig.

5D) (Taelman et al. 2010). This “MVB inclu-

sion” model has several features: (1) It requires
MVBs to round up most of the cellular GSK3

proteins upon Wnt signaling, because gene de-

letions of Gsk3a and/or Gsk3b suggest that
cells can perform Wnt signaling when two (or

less than three) of the four Gsk3 alleles are de-

leted (Doble et al. 2007). (2)BecauseGSK3 levels
do not overtly decrease duringWnt signaling, it

requires amechanism for GSK3 subsequently to

escapeMVBs,which normally shuttles the cargo
to lysosomes for degradation. (3) It suggests that

genes involved in MVB formation are required

for Wnt signaling, for which supporting evi-
dence exists in Xenopus but not in Drosophila

(Piddini et al. 2005; Rives et al. 2006; Seto and

Bellen 2006; Taelman et al. 2010). (4) It predicts
that most GSK3 substrates (in fact, ≏20% of

cellular proteins) in addition to b-catenin are

under Wnt regulation (Taelman et al. 2010),
thus departing from the prevailing view that

roles of GSK3 in Wnt and other signaling

(such as insulin) pathways are insulated from
one another. Another unexpected finding is

that b-catenin itself promotes inclusion of

GSK3 into MVBs (Taelman et al. 2010), imply-
ing a newb-catenin function downstreamof the

Wnt receptors, acting before its role as a tran-

scription coactivator in the nucleus. How to
integrate/reconcile this provocative MVBmod-

el with the existing data and models remains to

be considered (Metcalfe and Bienz 2011), al-
though the possibility of MVB actions in the

longer time course of Wnt treatment has been

discussed.

CONCLUDING REMARKS

Our understanding of the Wnt receptor com-

plex has progressed tremendously but remains

rudimentary. Many unanswered questions lin-
ger, including the specificity and stoichiometry

of the receptors with Wnt ligands and their an-

tagonists, newly and yet-to-be identified com-

ponents of the receptor complex, molecular and
dynamic interactions that assemble and disas-

semble the receptor complex and downstream

signaling components, and ultimately the
atomic structures of some or all of these com-

ponents inWnt-OFFandWnt-ON states. These

will represent huge challenges for generations of
researchers to accomplish.
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