
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 349, Number 12, December 1997, Pages 4857–4895
S 0002-9947(97)01814-X

FROBENIUS EXTENSIONS OF SUBALGEBRAS

OF HOPF ALGEBRAS

D. FISCHMAN, S. MONTGOMERY, AND H.-J. SCHNEIDER

Abstract. We consider when extensions S ⊂ R of subalgebras of a Hopf
algebra are β-Frobenius, that is Frobenius of the second kind. Given a Hopf
algebra H, we show that when S ⊂ R are Hopf algebras in the Yetter-Drinfeld
category for H, the extension is β-Frobenius provided R is finite over S and
the extension of biproducts S ? H ⊂ R ?H is cleft.

More generally we give conditions for an extension to be β-Frobenius; in
particular we study extensions of integral type, and consider when the Frobe-
nius property is inherited by the subalgebras of coinvariants.

We apply our results to extensions of enveloping algebras of Lie coloralge-
bras, thus extending a result of Bell and Farnsteiner for Lie superalgebras.

0. Introduction

In this paper we consider when various extensions S ⊂ R of subalgebras of a Hopf
algebra are β-Frobenius; such extensions generalize the usual notion of Frobenius
extensions by having the module action on one side twisted by an automorphism β
of S. It was already known that any extension of finite-dimensional Hopf algebras
is β-Frobenius (a result of the third author [Sch 92]) as is any finite extension
U(K) ⊂ U(L) of enveloping algebras of Lie superalgebras (a result of Bell and
Farnsteiner [BF]). Note that U(L) is not an ordinary Hopf algebra, but rather a
Hopf algebra in the category of Z2-graded modules. These results were an important
motivation for this paper, and raised the question as to when an extension of Hopf
algebras in a category was β-Frobenius.

One of the main results of this paper is that an extension S ⊂ R of Hopf algebras
of finite index in the Yetter-Drinfeld category H

HYD for a given Hopf algebra H is
β-Frobenius provided that the associated extension of Hopf algebras S ?H ⊂ R?H
(the biproducts of S and R with H) has a normal basis (Theorem 5.6); this will
happen whenever R and H are finite-dimensional, or when R ? H is pointed. As
an application we are able to generalize the [BF] result to Lie coloralgebras: if
U(K) ⊂ U(L) is a finite extension of enveloping algebras of Lie coloralgebras, then
it is β-Frobenius. Moreover we give an explicit description of the automorphism β
of U(K), and of the Frobenius homomorphism f : U(L)→ U(K) (Corollary 6.3).

Along the way we prove a number of other results about β-Frobenius extensions
and conditions that ensure that an extension is β-Frobenius.

In Section 1 we give a short direct proof of the fact that an extension B ⊂ A of
finite-dimensional Hopf algebras is always β-Frobenius; moreover we give explicit
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formulae for the automorphism β of B, the Frobenius homomorphism f : A → B,
and the dual bases of A over B with respect to f and β. We also discuss the
notion of extensions of “integral type”; this definition, from [Sch 92], basically says
that a finite extension B ⊂ A of Hopf algebras has associated to it integral-like

elements in A and in A
∗
, where A = A/AB+. These elements behave as though A

were a finite-dimensional Hopf algebra. The existence of such elements is crucial in
showing that an extension is β-Frobenius.

In Section 2 we consider a more general situation to which our results apply: that
of bi-Galois extensions. Our main example of this set-up is the following: assume
that B ⊂ A and H are Hopf algebras, and π : A→ H is a surjective Hopf algebra
map such that π restricted to B is also surjective. Then A is an H-comodule in the
natural way, so we may define R = Aco H and S = Bco H . This gives a bi-Galois
extension for the pair (W,H), where W is the coalgebra A/AB+; it is summarized
in the diagram

S ⊂ B � H
∩ ∩ ‖
R ⊂ A � H.

In the example of Hopf algebras S ⊂ R in the Yetter-Drinfeld category H
HYD, we

have B = S ? H and A = R ? H . In a more general bi-Galois extension, B and A
are not themselves Hopf algebras, but rather bicomodule algebras with respect to
another pair of Hopf algebras.

The main result of Section 3 is that under suitable conditions (including a cer-
tain Hopf extension being of integral type), the property of being a β-Frobenius
extension is inherited by the subalgebras of coinvariants. That is, if the pair of
algebras B ⊂ A in a bi-Galois extension is β-Frobenius then the subalgebras of
coinvariants S ⊂ R will also be β-Frobenius. This will be applied to the case of
Hopf algebras in categories in Section 5.

Section 4 is concerned with conditions under which extensions are of integral
type. In fact we consider a more general situation: we look at extensions K ⊂ H ,
where H is a Hopf algebra but K is only a right coideal subalgebra. We prove
(Theorem 4.8) that for H = H/HK+, the extension K ⊂ H is of integral type

provided dimH <∞ and H has a (right) normal basis over K; moreover, H
∗

is a
Frobenius algebra. As a consequence we show that an extension of Hopf algebras
K ⊂ H is β-Frobenius if the coradical of H is cocommutative and H is finite
dimensional (Corollary 4.9). We also show (Theorem 4.10) that if dimK <∞ and
H has a right normal basis over K, then K is a Frobenius algebra. This is applied
to prove a Maschke-type theorem for (left) coideal subalgebras.

Section 5 studies Hopf algebras in the Yetter-Drinfeld category H
HYD. Our main

result, Theorem 5.6, has already been mentioned above; in addition we also give a
description of the automorphism β of S, the Frobenius map f : R → S, and the
dual bases of R over S. We also show that any finite-dimensional Hopf algebra
R in H

HYD behaves like an ordinary Hopf algebra in that it is always a Frobenius
algebra and satisfies a Maschke-type theorem: R is semisimple ⇔ ε(t) 6= 0, for t
an integral in R (Corollary 5.8). An important example of Hopf algebras in H

HYD
is given by G-graded Hopf algebras. We discuss an old example of Radford in this
context, and explicitly compute various data for it such as the integral and dual
bases.
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Finally in Section 6 we give our application to enveloping algebras of Lie col-
oralgebras. The results of Section 5 apply, since for a G-Lie coloralgebra L, where
G is an abelian group with a given bicharacter, the enveloping algebra U(L) is a
G-graded Hopf algebra, and so is a Hopf algebra in the Yetter-Drinfeld category
for H = kG.

We fix some notation. Throughout we work with algebras over a field k. For
a Hopf algebra H , we denote the comultiplication 4 : H → H ⊗ H by h 7→∑
h1 ⊗ h2. H has counit ε : H → k and antipode S : H → H . When S is

(composition) invertible, we denote its inverse by S. Although sometimes S also
denotes a subring, the meaning should be clear from the context. Let A be a right
H-comodule, via δ : A → A ⊗ H, a 7→ ∑

a0 ⊗ a1. If π : H → H is a coalgebra

surjection, then A is also a right H-comodule in the natural way, via δ = (id⊗π)◦δ.
In this situation we say that A has the induced H-comodule structure.

Recall that for any algebra A, there is a left (right) action of A on its dual A∗

given by the transpose of right (left) multiplication of A on itself. As in [Sw], we
write a ⇀ f for this left action and f ↼ a for the right action, for all a ∈ A, f ∈ A∗.
Equivalently (a ⇀ f)(b) = f(ba) and (f ↼ a)(b) = f(ab), for all b ∈ A. When f
is in the coalgebra A◦ ⊆ A∗, we have the usual formulas a ⇀ f =

∑
f2(a)f1 and

f ↼ a =
∑
f1(a)f2.

If A is any augmented algebra with augmentation ε : A→ k, one can define (left

and right) integrals for A. That is,
∫ l
A

= {t ∈ A | at = ε(a)t, all a ∈ A} is the space

of left integrals; similarly for
∫ r
A
, the right integrals. If A is a Frobenius algebra,

then the spaces of left and right integrals are each one-dimensional. In this case,
if f ∈ A∗ is the Frobenius homomorphism for A and we choose t ∈ A such that
f ↼ t = ε, then it is easy to see that t ∈ ∫ r

A
. If also A∗ is augmented then f ∈ ∫ rA∗ .

Finally, we call an extension of algebras B ⊂ A faithfully flat if A is a faithfully
flat left and right B-module. When A and B are Hopf algebras and the antipode
is bijective, assuming faithful flatness on one side is sufficient, since S is then an
antiautomorphism.

1. β-Frobenius extensions

We begin by reviewing some known results about β-Frobenius extensions, with
some additional facts and characterizations which will be used later. β-Frobenius
extensions generalize classical Frobenius extensions [K] and were introduced by
Nakayama and Tsuzuku [NT 60], [NT 61]; they are also called Frobenius extensions
of the second kind. Recall the definition:

1.1. Definition. Let B ⊂ A be a ring extension and β : B → B a ring automor-
phism.

(a) If M is a left B-module then βM is defined to be the left β-twisted B-module
with underlying set M and left action b ·β m = β(b) ·m for all m ∈M, b ∈ B.

Similarly, one can define a right β-twisted B-module.
(b) B ⊂ A is called a (left) β-Frobenius extension if

(i) A is a finitely generated projective right B-module, and
(ii) A ∼= β HomB(AB , BB) as (B,A)-bimodules, where β HomB(AB, BB) is a

left β-twisted (B,A)-bimodule via (b ·ψ ·a)(x) = β(b)ψ(ax), for all b ∈ B, a, x ∈ A,
and ψ ∈ HomB(AB , BB).
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1.2. Remark. (a) In the case when β = id we recover the classical notion of a Frobe-
nius extension. If also B = k, then A is a Frobenius algebra since the isomorphism
AA → (A∗)A of part (ii) of the definition is the classical Frobenius isomorphism.

(b) It will follow from Proposition 1.3 (c) that the choice of sides for a β-Frobenius
extension does not matter; any (left) β-Frobenius extension is also a (right) β−1-
Frobenius extension. Note also that for any B-modules XB and BY , we have

Xβ ⊗B Y ∼= X ⊗B β−1Y

as vector spaces, via x⊗ y 7→ x⊗ y.
As in the classical case, dual bases exist for a β-Frobenius extension. In fact,

these concepts are equivalent, as we show next. A similar result is shown in [BF,
Theorem 1.1]; see Remark 1.4 (a).

1.3. Proposition. Let B ⊂ A be a ring extension, β : B → B a ring automor-
phism, and f : A→ βB any (B,B)-bimodule map. Define

F : A→ HomB(AB , BB) by F (x) = fx, where fx(a) = f(xa);

F̃ : Aβ ⊗B A→ HomB(AB, AB) by F̃ (x⊗ y) = xfy = xF (y), where
xF (y)(a) = xf(ya)

for all x, y ∈ A. Then the following are equivalent:
(a) B ⊂ A is a β-Frobenius extension via F .

(b) F and F̃ are bijections.
(c) There exist ri, li ∈ A, i = 1, ..., n, such that ∀a ∈ A,

(i) a =
n∑
i=1

rif(lia),

(ii) a =
n∑
i=1

(β−1 ◦ f)(ari)li.

Proof. (a)⇒ (b). First note that F is indeed a map of (B,A)-bimodules and F̃ is
well defined. Next, F is bijective by the definition of a β-Frobenius extension; to
see that F̃ is bijective, we note that F̃ is defined via F as follows:

Aβ ⊗B A id⊗F−→ Aβ ⊗B β HomB(AB, BB)
∼= A⊗B HomB(AB , BB) by 1.2 (b)
∼= HomB(AB , (A⊗B B)B)

(since A is finitely generated projective over B)
∼= HomB(AB , AB).

For, following the isomorphisms, for any x, y ∈ A we have x ⊗ y 7→ x ⊗ F (y) =

x⊗fy 7→ x⊗fy. This now goes to the map a 7→ xf(ya), which is precisely F̃ (x⊗y).
(b) ⇒ (c). Since F̃ : Aβ ⊗B A → HomB(AB , AB) is bijective, we may choose

n∑
i=1

ri ⊗ li ∈ Aβ ⊗B A such that F̃ (
∑
ri ⊗ li) = idA. But then∑

ri f(lia) = F̃ (
∑

ri ⊗ li)(a) = a,

so (i) holds.
As for (ii), let x, y ∈ A. Then

F
(∑

(β−1 ◦ f)(xri)li

)
(y) = f

(∑
β−1(f(xri))liy

)
=
∑

f(xri)f(liy) = f
(
x
∑

ri f(liy)
)

= f(xy) = F (x)(y).

Bijectivity of F now yields (ii).
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(c)⇒ (a). AB is finitely generated by (i), using the dual basis lemma. Moreover,
A ∼= β HomB(AB , BB) via the inverse bijections:

x
F7→ fx and

∑
β−1(ψ(ri))li

G←7 ψ,

using (i) to see that F ◦ G = id and (ii) to see that G ◦ F = id. It is easy to see
that F is indeed a (B,A)-bimodule map.

1.4. Remark. (a) Any f : A→ B satisfying part (c) is called a β-Frobenius homo-
morphism, and {ri}, {li} are a pair of dual bases. The Frobenius homomorphism f
determines a B-semi-linear associative form ( , ) : A⊗A→ B via (a, a′) := f(aa′),
and it follows from 1.3 (c) that this form is nondegenerate. Here “semi-linear”
means that for b, b′ ∈ B, (ba, a′b′) = β(b)(a, a′)b. Conversely the existence of such
a form determines an isomorphism F : A→ Hom (A,B) given by Fx(a) := (x, a).
This characterization of β-Frobenius is the one given in [BF, 1.1].

(b) In the classical case of a Frobenius algebra A, one may define the Nakayama
automorphism η of A by f(xy) = f(yη(x)), for all x, y ∈ A. Equivalently (x, y) =
(y, η(x)), where the bilinear form is as in (a).

(c) When B ⊂ A is a β-Frobenius extension as above, A satisfies the separability
condition ∑

ari ⊗ li =
∑

ri ⊗ lia
in the twisted tensor product Aβ ⊗B A, for all a ∈ A. For, given a, x ∈ A,

F̃
(∑

ari ⊗ li
)

(x) =
∑

arif(lix) = ax =
∑

rif(liax) = F̃
(∑

ri ⊗ lia
)

(x);

the bijectivity of F̃ now yields the result.
(d) If B ⊂ A are finite-dimensional and AB is free, then (c) (ii) in the proposition

is not needed; that is, B ⊂ A is β-Frobenius if there exist a (B,B)-bimodule map
f : A → βB and {ri, li} in A such that a =

∑
rif(lia), for all a. For, by the

comment in the proof of (c)⇒ (a), (i) implies F ◦G = id, and thus F is surjective.
Since A ∼= B(n) for some n, it follows that HomB(A,B) ∼= HomB(B,B)(n) ∼= B(n)

and so dimA = dim HomB(A,B). Thus F is bijective, and soB ⊂ A is β-Frobenius.
A major example of β-Frobenius extensions is given by any pair B ⊂ A of

finite-dimensional Hopf algebras; this is essentially [Sch 92, 3.6 II]. We give here a
shorter proof of this fact, and also obtain some new information about the form of
the automorphism β, the map f , and the dual bases.

We fix the following notation. Let A be a finite-dimensional Hopf algebra, fA
a right integral in A∗, and t ∈ A such that fA ↼ t = ε (that is, fA(ta) = ε(a), for
all a ∈ A). We may choose t in this way since by the Larson-Sweedler theorem [LS]
fA is a generator for A∗ as a (cyclic) right A-module. As noted in the introduction,
it follows that t ∈ ∫ r

A
. Let α ∈ A∗ be the (right) modular function for A; that is,

at = α(a)t, for all a ∈ A.
Parts of the next lemma are known: the fact that A is Frobenius is in [LS],

and the form of the dual bases and the Nakayama automorphism η were shown in
[OSch] under an additional hypothesis.

1.5. Lemma. Let A be any finite-dimensional Hopf algebra with fA, t, and α as
above. Then A is a Frobenius algebra with Frobenius homomorphism fA and dual
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bases {St2, t1}. The Nakayama automorphism η : A→ A has the following form:

η(a) = S
2
(a ↼ α) = (S

2
a) ↼ α,

η−1(a) = S2(a ↼ α−1) = (S2a) ↼ α−1

for all a ∈ A. It follows that η has finite order dividing 2 dimk A.

Proof. Since fA is a right integral of A∗, a ↼ fA = fA(a)1A, for all a ∈ A. It
follows that ∑

(St2)fA(t1a) =
∑

(St3)fA(t1a1)t2a2

=
∑

fA(ta1)a2 =
∑

ε(a1)a2 = a,

and thus {St2, t1} are dual bases of A and fA is the Frobenius homomorphism.
Now replace a by η(a) in the above formula:

η(a) =
∑

(St2)fA(t1η(a)) =
∑

(St2)fA(at1),

since fA is the Frobenius homomorphism. Thus

S2(η(a)) =
∑

fA(at1)(St2) =
∑

fA(a1t1)a2t2(St3)

=
∑

fA(a1t)a2 =
∑

α(a1)a2 = a ↼ α.

Hence η(a) = S
2
(a ↼ α). Since αS

2
= α, it follows that η(a) = (S

2
a) ↼ α.

Similarly, using αS = α−1 and αS2 = α, it follows that η−1(a) = S2(a ↼ α−1) =
(S2a) ↼ α−1, for all a ∈ A.

We now consider the order of η. First, for a ∈ A,

η2(a) = S
2
((S

2
a) ↼ α) ↼ α

= (S
4
a) ↼ α2.

By induction it follows that ηn(a) = (S
2n
a) ↼ αn. Since α ∈ G(A∗), the order of α

divides n = dimA [NZ] and so ηn(a) = S
2n

(a); similarly the order of the modular
function for A∗, c ∈ A∗∗ ∼= A, divides n. Since S4(a) = c(α−1 ⇀ a ↼ α)c−1 by

Radford’s therorem [R 76], it follows that S4n = id. Thus η2n(a) = S
4n

(a) = a,
and so the order of η divides 2n.

We remark that as a consequence of Lemma 1.5, fA(St) = 1. For, set a = St in

the dual basis formula in the proof. Since St ∈ ∫ l
A
, this gives StfA(St) = St, and

so fA(St) = 1.
Now assume that B is a Hopf subalgebra of A; let tB be a right integral in B

and let αB ∈ B∗ be the right modular function for B. Since A is free over B, by
[NZ], we may write

t = tA = Λ̃tB

for some Λ̃ ∈ A.

1.6. Definition. Let B ⊂ A be finite-dimensional Hopf algebras, with right mod-
ular functions αA and αB and Nakayama automorphisms ηA and ηB respectively.
Let

χ = αA ∗ α−1
B ∈ Alg(B, k)

and

β = η−1
B ◦ ηA ∈ Aut(B),
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where here αA and ηA are the respective restrictions to B. Then χ is the relative
modular function and β the relative Nakayama automorphism.

It is easy to see that the Nakayama automorphism of A restricts to an automor-
phism of B and that β(b) = Σχ(b1)b2 = b ↼ χ, using the formulas in Lemma 1.5.

1.7. Theorem. Let B ⊂ A be finite-dimensional Hopf algebras, and consider A
as a left A = A/AB+-comodule via the induced coaction. Choose fA ∈

∫ r
A∗

and

tA ∈
∫ r
A

such that fA ↼ tA = ε. Let tB ∈
∫ r
B
, and write tA = Λ̃tB. Then B ⊂ A is

a β-Frobenius extension, with

(a) automorphism β : B → B given by β = η
−1

B
◦ ηA , the relative Nakayama

automorphism as in 1.6,
(b) Frobenius homomorphism f : A→ B, via f(a) =

∑
fA(a1StB)a2,

(c) dual bases {SΛ2,Λ1}, where Λ = (SΛ̃) ↼ α−1 = η−1(SΛ̃).

Proof. We first note several consequences of the fact that A is free over B [NZ].
Setting A = A/AB+, we may consider A as a left A-comodule in the natural way;

it follows that B = co AA (as in 2.4 (b)). Also by Remark 1.4 (d), it will suffice to
show that the given dual bases satisfy 1.3 (c) (i).

The fact that B = co AA implies that Imf ⊆ B. For, the comodule map
ρ : A→ A⊗A is given by ρ = (π ⊗ id) ◦ 4. Writing u = StB, we have:

ρ(f(a)) = (π ⊗ id) ◦ 4(
∑
fA(a1u)a2)

=
∑
fA(a1u)a2 ⊗ a3

=
∑
fA(a1u1)a2ε(u2)⊗ a3

=
∑
fA(a1u1)a2u2 ⊗ a3 since u2 ∈ B

=
∑
a1u ↼ fA ⊗ a2

=
∑
fA(a1u)1⊗ a2 since fA ∈

∫ r
A∗

= 1⊗ f(a).

Thus f(a) ∈ B.

Since u ∈ ∫ l
B
, for all b ∈ B we have

f(ab) =
∑

fA(a1b1u)a2b2 =
∑

fA(a1ε(b1)u)a2b2 = f(a)b

and so f is a right B-map. On the left, using the Nakayama automorphism ηA,

f(ba) =
∑
fA(b1a1u)b2a2 =

∑
fA(a1uηA(b1))b2a2

=
∑
fA(a1u α

−1
B (ηA(b1)))b2a2

=
∑
α−1
B (S

2
(b1 ↼ αA))b2fA(a1u)a2 by Lemma 1.5

=
∑
αA(b1)α

−1
B (b2)b3f(a)

=
∑
χ(b1)b2f(a) = β(b)f(a).

Thus f is a left β-twisted B-map.
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It remains only to check 1.3 (c) (i) for the dual bases {SΛ2,Λ1}, where η(Λ) = SΛ̃

and tA = Λ̃tB . Now for a ∈ A,∑
(SΛ2)f(Λ1a) =

∑
(SΛ3)fA(Λ1a1StB)Λ2a2

=
∑
fA(Λ1a1StB)ε(Λ2)a2

=
∑
fA(Λa1StB)a2

=
∑
fA(a1StBη(Λ))a2

=
∑
fA(a1S(Λ̃tB))a2 by the form of η(Λ)

=
∑
fA(a1StA)a2

=
∑
fA(ε(a1)StA)a2 since StA ∈

∫ l
A

= fA(StA)a = a

since fA(StA) = 1 by choice of tA with respect to fA, as noted after Lemma 1.5.
Thus B ⊂ A is β-Frobenius.

1.8. Corollary. Let B ⊂ A be finite-dimensional Hopf algebras. Then the follow-
ing are equivalent:

(a) B ⊂ A is a classical Frobenius extension;
(b) β = id, where β is the relative Nakayama automorphism as in 1.6;
(c) αA|B = αB , where αA and αB are the right modular functions for A and B,

respectively.

Proof. (c) ⇒ (b) by the form of χ in Definition 1.6, and (b) ⇒ (a) is trivial. Thus
it remains to prove (a) ⇒ (c). The argument is the same as that in [OSch, 4.8,
(2)⇒ (3)] : since A is both Frobenius and β-Frobenius, there exists an isomorphism
φ : A → β−1A from A as an ordinary (B,A)-module to A as a left β−1-twisted
(B,A)-module. Let u = φ(1); then u is a unit in A, with inverse w = φ−1(1). It
follows that for all b ∈ B,

ub = φ(1)b = φ(b) = β−1(b)φ(1) = β−1(b)u.

Applying ε, we see that ε(b) = ε(β−1(b)), for all b, since ε(u) 6= 0. Thus εβ = ε.
But since β(b) =

∑
χ(b1)b2, it follows that εβ = χ. Thus χ = ε. Now by 1.6 again,

the restriction of the modular function of A to B is the modular function of B:
α|B = αB.

We remark that this result is reminiscent of a classical result on locally compact
groups [We, Ch. II, Sec. 9]: if G is such a group and L a closed subgroup of G,
consider the locally compact topological space X = G/L of left cosets of L in G; G
acts on X by left translation. Then X has a non-zero G-invariant Radon measure
⇔ the modular function for G restricted to L is the modular function for L.

1.9. Example. Let H be any finite-dimensional Hopf algebra and D(H) its Drin-
feld double [Dr 86]. Following the relations for D(H) given in [R 93], we may write
D(H) = H∗cop ./ H ; thus D(H) = H∗cop ⊗ H as coalgebras, and the multiplica-
tion is given by H∗cop and H acting on each other via the right and left coadjoint
actions. See also [M, 10.3.5] for details. In particular we may consider H ⊂ D(H),
via H ∼= ε ./ H , and apply the above results to this extension, which is always
β-Frobenius by Theorem 1.7.

By [R 93], D(H) is always unimodular, and thus α = ε in A = D(H). Conse-
quently, for χ as in Definition 1.6 and Theorem 1.7, χ = (αH)−1, where αH is the
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right modular function for B = H . It follows that the automorphism β is given by

β(h) =
∑

α−1
H (h1)h2

for all h ∈ H . Thus, as in Corollary 1.8, the extension H ⊂ D(H) is Frobenius
⇔ αH = ε⇔ H is unimodular. This last fact is also noted in [CMZ, Cor.4.5]. We
may also describe the Frobenius homomorphism f as follows. Using Theorem 1.7(b)

and Example 1.12, we see that f(a) =
∑
λ(a1)a2, where λ ∈ ∫ r

D(H)∗
. Now, D(H) =

D(H)/D(H)H+ ∼= H∗cop as coalgebras, and thus a right integral λ inD(H)
∗ ∼= Hop

corresponds to a left integral in H . That is, we may write λ = u ∈ ∫ l
H

. Then

for an element γ ./ h ∈ D(H), where γ ∈ H∗cop, h ∈ H , we have λ(γ ./ h) =

λ(γ ./ ε(h)1) = ε(h)γ(u), and thus

f(γ ./ h) :=
∑
λ(γ2 ./ h1)(γ1 ./ h2)

=
∑
γ2(u)γ1 ./ h

=
∑

(u ⇀ γ) ./ h = γ(u)ε ./ h.

Thus in fact f : D(H) → ε ./ H ∼= H ; one may check that f is a left β-twisted
map.

We may also find a dual basis for D(H) over H . For, let Λ̃ be a left integral in

H∗ cop and tH a right integral in H . Then t = Λ̃ ./ tH is a (left and right) integral

in D(H) [R 93]. Since α = ε in D(H), Theorem 1.7 (c) gives that Λ = SΛ̃. Thus

the dual bases are {SΛ2,Λ1} = {Λ̃1, SΛ̃2}.
We next turn to studying more general conditions which will guarantee that a

given extension B ⊂ A is β-Frobenius. Although we may no longer have actual
integrals in A and B, the hypotheses we use involve the existence of integral-like
elements, as used in [Sch 92]. If A is any augmented algebra with augmentation

ε : A→ k, let
∫ r
A

(respectively
∫ l
A
) denote the space of right (left) integrals of A.

1.10. Definition. Let W be a Hopf algebra, U ⊂ W a Hopf subalgebra, and

W = W/WU+ the (left) quotient coalgebra; note that W
∗

is an augmented algebra
by evaluation at 1. Then the extension U ⊂W is of (right) integral type if
(a) there exists 0 6= λ ∈ ∫ r

W∗ ,

(b) there exists Λ ∈ W such that λ ↼ Λ = ε on W ,
(c) there exists χ ∈ Alg(U, k) such that λ ↼ u = χ(u)λ, for all u ∈ U .

Note that (b) means that λ(Λ · w) = λ(Λw) = ε(w) = ε(w), for all w ∈ W (in

particular λ(Λ) = 1); alternatively,
∫ r
W∗ ↼ W = W

∗
. Similarly (c) means that

λ(uw) = χ(u)λ(w), for all u ∈ U,w ∈ W ; or alternatively λ ↼ U = kλ.
Similarly we may define an extension U ⊂W to be of left integral type by using

W = W/U+W and assuming there exist 0 6= λ ∈ ∫ l
W∗ ,Λ, and χ with the appropriate

properties. In either case the hypothesis generalizes properties of normal Hopf
subalgebras.

1.11. Example. Let U be a normal Hopf subalgebra of W of finite index (that
is, dimW is finite). Then U ⊂ W is of right and left integral type. For, since U
is normal, U+W = WU+ and W = W/WU+ is a finite-dimensional Hopf algebra.

Thus W
∗

is also a finite-dimensional Hopf algebra, and so by the Larson-Sweedler

theorem contains a right (left) integral λ 6= 0; moreover λ ↼ W ∼= W
∗
. Thus there

exists Λ ∈ W such that λ ↼ Λ = ε; in fact Λ is a right integral in W . Choose
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Λ ∈ W to be any pre-image of Λ; then (b) holds. For (c), we may choose χ = ε.

For, if u ∈ U and w ∈ W , then uw = ε(u)w since U+W = WU+ = 0. Thus
λ ↼ u = ε(u)λ, for all u ∈ U .

In fact U ⊂W is always of (right and left) integral type ifW is finite-dimensional.

1.12. Example. We reconsider the case of finite-dimensional Hopf algebras of

Theorem 1.7. It is not difficult to check that we may use λ ∈ A
∗

defined by
λ(a) := fA(aStB), and that Λ and χ are exactly as given in 1.7. Thus any such
extension is of right (left) integral type. This fact was shown in [Sch 92], though
without the explicit formulas for λ,Λ, and χ.

1.13. Example. We show in Corollary 4.9 that any extension B ⊂ A of pointed
Hopf algebras of finite index is always of integral type.

The importance of integral-type extensions comes from the following result of
Schneider. Recall that if A is a leftW -comodule via σ : A→W⊗A and π : W →W
is a coalgebra morphism, then A has an induced left W -comodule structure via
(π ⊗ id) ◦ σ.

1.14. Theorem ([Sch 92, 3.3]). Let W be a Hopf algebra with bijective antipode,
let U be a Hopf subalgebra such that U ⊂ W is a faithfully flat extension of right
integral type, and let W = W/WU+. Let A be a left W -comodule algebra such that
coWA ⊂ A is W -Galois, and let B = coWA, where A has the induced W -comodule
structure. Then B ⊂ A is a β-Frobenius extension.

In particular the Frobenius homomorphism f : A → B is given by f(a) =∑
λ(a−1)a0, for all a ∈ A, and the automorphism β : B → B is given by β(b) =∑
χ(b−1)b0, for all b ∈ B, where λ and χ are as in Definition 1.10.

In fact the result in [Sch 92] is stated for extensions of left integral type; the
present version follows from that one by using H := W op cop, H ′ := Uop cop, and
the right H-comodule algebra Aop → Aop⊗W op cop determined by σ : A→W ⊗A.

2. Bicomodule algebras and bi-Galois extensions

Since we wish to show that in a Frobenius extension B ⊂ A, certain well-behaved
subalgebras S ⊂ R are also Frobenius, we introduce in this section the kind of
extensions we will be looking at. We first consider a more general situation.

2.1. Definition. Let C and D be k-coalgebras and A a k-vector space.
(1) A is a left (C,D)-bicomodule if
(a) A is a left C-comodule, with coaction σ : A→ C ⊗A,
(b) A is a right D-comodule, with coaction ρ : A→ A⊗D, and
(c) ρ is a left C-comodule map (equivalently, σ is a right D-comodule map).

That is, the following diagram commutes:

A
σ−→ C ⊗A

ρ ↓ ↓id⊗ρ
A⊗D −−→

σ⊗id C ⊗A⊗D
(2) Now assume that C and D have grouplike elements c0 and d0 respectively.

Then we may define the coinvariants of A with respect to these grouplikes to be
coCA = {a ∈ A | σ(a) = c0 ⊗ a} and AcoD = {a ∈ A | σ(a) = a⊗ d0}.

Then the set S = (co CA) ∩ (Aco D) is the set of bicoinvariant elements.
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(3) If also C and D are bialgebras and A is an algebra, then A is a (C,D)-
bicomodule algebra if σ and ρ are algebra maps.

2.2. Remark. (a) An easy example of a bicomodule is given as follows: Let A be
any coalgebra, and C and D two quotient coalgebras of A. Then A becomes a right
D-comodule and a left C-comodule via the induced coactions, and it is easy to see
that A is a (C,D)-bicomodule.

(b) If a ∈ A, then we may write σ(a) =
∑
a−1 ⊗ a0 ∈ C ⊗ A and ρ(a) =∑

a0 ⊗ a1 ∈ A ⊗ D. This double usage of a0 is justified since the compatibility
condition 2.1 (c) allows us to write

(id⊗ ρ)σ(a) = (σ ⊗ id)ρ(a) =
∑

a−1 ⊗ a0 ⊗ a1.

In the next two lemmas we relate the comodule structures of various subcomod-
ules of coinvariants of a bicomodule A.

2.3. Lemma. Suppose C and D are coalgebras with grouplikes co and d0 (as in
Definition 2.1(2)). Let A be a (C,D)-bicomodule and set B = co CA and E =
Aco D. Then:

(a) B is a right D-comodule via ρ,
(b) E is a left C-comodule via σ;
(c) set S = B ∩ E; then S = Bco D = co CE.

Proof. (a) First note that A ⊗ D is a left C-comodule via σ ⊗ id. Moreover B =
co CA implies that co C(A⊗D) = B ⊗D. Now if b ∈ B, then σ(b) = c0 ⊗ b. By the
bicomodule property,

(σ ⊗ id)ρ(b) = (id⊗ ρ)σ(b)
= (id⊗ ρ)(c0 ⊗ b) = c0 ⊗ ρ(b).

Thus ρ(b) ∈ co C(A⊗D) = B ⊗D.
(b) This is similar, using (C ⊗A)co D = C ⊗ E.
(c) Since E is a left C-comodule by (b), B ∩ E = (co CA) ∩ E = co CE. Also B

is a right D-comodule by (a), and so B ∩ E = B ∩ (Aco D) = Bco D.

We next require a known lemma [Sch 92, 1.3] although we sketch a proof for
completeness, since we are working on the other side. Recall that if W is a Hopf
algebra, U ⊂W is a right coideal subalgebra if U is a subalgebra and 4U ⊆ U ⊗W .
It follows that WU+ is a coideal and a left ideal of W , and we have the canonical
quotient map

µ : W →W := W/WU+.

W is a coalgebra and a left W -module, and W is a left W -comodule via the induced
coaction.

2.4. Lemma. Let W be a Hopf algebra and U ⊂W a right coideal subalgebra such
that U ⊂W is faithfully flat. Then

(a) the Galois map γ : W ⊗U W → W ⊗W given by x ⊗ y 7→ ∑
x1 ⊗ x2y is

bijective, and

(b) U = co WW.

Proof. We follow the argument in [Sch 92, 1.3], switching from left to right.
(a) The map γ is a bijection since it has the inverse γ : v⊗w 7→∑

v1⊗ (Sv2)w,
for all v, w ∈W , where here S is the antipode in W .
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(b) This will follow from the commutativity of the diagram

U ⊂ W
i1→→
i2

W ⊗U W
↓ ‖ ‖oγ

co WW ⊂ W
4W→→
i2

W ⊗W

x, y ∈ W . The top row of the diagram is exact since U ⊂ W is faithfully flat
[Wa, Th.13.1], and the bottom row is also exact. But then U = Ker (4W , i2) =
co WW .

We now specialize to the following situation. Let W andH be Hopf algebras, U a
Hopf subalgebra of W , and let W be as above. If A is a (W,H)-bicomodule algebra,
then A is a (W,H)-bicomodule in the natural way, via σ = (µ⊗id)◦σ : A→W⊗A,

and the W -coinvariants coWA are a subring of A since W is a left W -module. From
now on we use the notation

R = Aco H , B = co WA, S = R ∩B.
By Lemma 2.3, S = co WR = Bco H . We next show that these subrings are
U -comodules.

2.5. Lemma. Assume U ⊂ W is a faithfully flat extension of Hopf algebras, and
let W,A,B,R, and S be as above. Then:

(a) B is a left U -comodule via σ,
(b) S is a left U -comodule via σ.

Proof. (a) We first show that σ−1(U ⊗ A) = B. Choose a ∈ σ−1(U ⊗ A). Then

(µ⊗ id)σ(a) = 1⊗ a, and thus a ∈ coWA = B. Hence σ−1(U ⊗A) ⊆ B.

On the other hand, choose b ∈ B. By Lemma 2.4, U = co WW , and thus
co W (W ⊗A) = U ⊗A, where W ⊗A is a W -comodule via 4W ⊗ id. Now

(4W ⊗ id)σ(b) = (µ⊗ id2)(4W ⊗ id)σ(b)
= (µ⊗ id2)(id⊗ σ)σ(b) since σ is a comodule map

=
∑
b−1 ⊗ (b0)−1 ⊗ (b0)0

= 1⊗ σ(b) since b ∈ co WA.

Thus σ(b) ∈ co W (W ⊗A) = U ⊗A, and so b ∈ σ−1(U ⊗A).
Now note that if U ⊂ W is any inclusion of coalgebras and A is a left W -

comodule via σ : A→ W ⊗ A, then σ−1(U ⊗A) is a left U -comodule. In our case
this means that B is a left U -comodule.

(b) Recall that S = R ∩B by Lemma 2.3. The result now follows since σ(S) ⊂
σ(R) ⊂ W ⊗ R by 2.3 (b) and since σ(S) ⊂ σ(B) ⊂ U ⊗ B by (a) above, for then
σ(S) ⊂ (W ⊗R) ∩ (U ⊗B) = U ⊗ (R ∩B) = U ⊗ S.

We now come to the situation we wish to study. Note that coWA ⊂ A is left
W -Galois if the map A⊗coWAA→W⊗A given by x⊗y 7→∑

x−1⊗x0y is bijective;
when SW is bijective this is equivalent to x ⊗ y 7→ ∑

x−1 ⊗ yx0 being bijective.
Thus A is left W -Galois ⇐⇒ Acop is right W op cop-Galois. The second map will
be used later on.

2.6. Definition. Let W and H be Hopf algebras with bijective antipodes, U ⊂W
a Hopf subalgebra such that U ⊂W is a faithfully flat extension of algebras, andA a
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(W,H)-bicomodule algebra. As above, set W = W/WU+, B = co WA,R = Aco H ,
and S = R ∩B. Assume:

(a) R ⊂ A and S ⊂ B are faithfully flat H-Galois extensions, and
(b) co WA ⊂ A is a W -Galois extension.
Then (U,W,H,A) is called a faithfully flat bi-Galois extension.

We represent this situation in the following commutative diagram:

S ⊂ B
ρ→−→i1 B ⊗H

∩ ∩ ∩
R ⊂ A

ρ→−→i1 A⊗H
σ ↓↓i2
W ⊗A

.

We note that bi-Galois extensions have also been studied recently by Schauen-
burg [Sb] in the following special case: U = k1 (so W = W ) and B = R = k; that
is, the coinvariants in A for both W and H are trivial.

In all of our applications, we consider the following case:

2.7. Main Example. Let H and A be Hopf algebras with bijective antipodes and
a surjective Hopf algebra map π : A → H . Suppose B is a Hopf subalgebra of A
such that B ⊂ A is faithfully flat and such that π : B → H is also surjective.
Consider A as a left A-comodule via σ = 4A and as a right H-comodule via
ρ = (id⊗ π) ◦ 4A. Now set R = Aco H and S = Bco H . Using W = A and U = B,

we have W = A = A/AB+, and so B = co AA by Lemma 2.4 (a). Because of these
simplifying assumptions, (B,A,H,A) will be a faithfully flat bi-Galois extension
provided R ⊂ A and S ⊂ B are faithfully flat H-Galois extensions.

We express this in the diagram

S ⊂ B
π� H

∩ ∩ ‖
R ⊂ A

π� H

One property which will guarantee that the H-Galois extensions R ⊂ A and
S ⊂ B are faithfully flat is the existence of a total integral, that is, a right H-
comodule map Γ : H → B such that Γ(1) = 1; see [KT] or [Sch 90]. We consider
two important special cases in which this property holds:

(a) The extension S ⊂ B is cleft; that is, such a Γ : H → B exists which is
(convolution) invertible. This is equivalent to assuming that A and B are crossed
products; that is, A = R#σH and B = S#σH , for some invertible cocycle σ :
H ⊗H → S. In fact this will happen whenever A is finite-dimensional or pointed,
by [Sch 92]. Cleft extensions will be considered further in Section 4.

(b) Assume in addition that Γ : H → B is a Hopf algebra map such that πΓ = id;
that is, B is a Hopf algebra with a projection. It now follows by Radford’s theorem
[R 85] that B = S ?H , a biproduct; similarly A = R ?H. The above diagram then
becomes

S ⊂ S ? H
ε⊗id� H

∩ ∩ ‖
R ⊂ R ? H

ε⊗id� H

(2.8)
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This is the situation discussed in detail in Section 5: that is, S ⊂ R are Hopf
algebras in the Yetter-Drinfeld category H

HYD.
In fact the situation in (b) will always occur in the set-up of Example 2.7 when-

ever S = k. For, R ⊂ A being H-Galois means that the Galois map γ : A⊗R A→
A ⊗ H given by a ⊗ b 7→ ∑

ab1 ⊗ π(b2), for all a, b ∈ A, is bijective. Tensoring
on the left by k ∼= A/A+ as a right A-module, we see that k ⊗R A ∼= H , given by
1 ⊗ b 7→ π(b). Restricting this map to the H-Galois extension k ⊂ B, we see that
π restricted to B is an isomorphism. Thus B ∼= H , and there exists a Hopf algebra
map Γ : H → B ⊂ A such that πΓ = id.

We record some general facts about the situation of our main example.

2.8. Proposition. Let (B,A,H,A) be a faithfully flat bi-Galois extension as in
Example 2.7, with R = Aco H and S = Bco H . Then:

(a) R⊗S B ∼= A via multiplication,
(b) B ⊗S R ∼= A via multiplication,
(c) Let R = R/RS+ and A = A/AB+. Then R ∼= A, as left R-modules and

right S-modules, via the map induced by the inclusion R ⊂ A.

Proof. (a) Let MH
B be the category of right (B,H)-Hopf modules. Since S ⊂ B is

H-Galois and faithfully flat, by [Sch 90] there is a category equivalenceMS �MH
B ,

given by M 7→ M ⊗S B and V 7→ V co H , for M ∈ MS, V ∈ MH
B . Now A ∈ MH

B

using the given H-comodule structure ρ : A→ A⊗H , and Aco H = R; hence using
M = R, the map R⊗S B → A, given by r ⊗ b 7→ rb, is a bijection.

(b) This is similar to (a), using the equivalence SM�BMH .
(c) First note that given any S-module M and ideal I of S,M ⊗S S/I ∼= M/MI.

Thus using I = S+, we have M ⊗S k ∼= M/MS+. We apply this fact for M = R
and use R⊗S B ∼= A from part (a): R/RS+ ∼= R⊗S k ∼= R⊗S B⊗B k ∼= A⊗B k ∼=
A/AB+.

3. Frobenius extensions of subalgebras

In this section we prove our main result about when the coinvariants in a bi-
Galois extension are β-Frobenius.

We recall the notion of bi-Galois extensions from Definition 2.6: U ⊂ W and
H are Hopf algebras with bijective antipodes, A is a (W,H)-bicomodule algebra,

W = W/WU+, R = Aco H , B = co WA, and S = R ∩ B, with various Galois and
faithful flatness assumptions. The diagram in 2.6 may be helpful. Part (a) of the
theorem is due to Schneider, as noted in Theorem 1.14.

3.1. Theorem. Let (U,W,H,A) be a faithfully flat bi-Galois extension, and as-
sume that U ⊂ W is of right integral type, with λ and χ as in Definition 1.10.
Define

f : A→ B by f(a) :=
∑
λ(a−1)a0,

β : B → B by β(b) :=
∑
χ(b−1)b0

for all a ∈ A, b ∈ B. Then:
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(a) B ⊂ A is a β-Frobenius extension with Frobenius map f .
(b) S ⊂ R is a βR-Frobenius extension with Frobenius map fR, where

fR : R→ S and βR : S → S are the restrictions of f and β to R and S.
(c) We may choose dual bases as follows:

Let γ : A⊗co WA A→W ⊗A, via x⊗ y 7→∑
y−1 ⊗ xy0, be the Galois iso-

morphism, and let ri, li ∈ A, 1 ≤ i ≤ n, be such that γ(
∑
ri ⊗ li) = Λ⊗ 1.

Then {ri, li} are dual bases of B ⊂ A.
Moreover, there exist xj , yj ∈ R, 1 ≤ j ≤ m, such that∑

j

xj ⊗ yj =
∑
i

ri ⊗ li in Aβ ⊗B A,

and all elements {xj , yj} having this property are dual bases of the βR-Frobenius
extension S ⊂ R with respect to fR (and of the β-Frobenius extension B ⊂ A).

Proof. (a) This is Theorem 1.14, which was shown by constructing dual bases and
using part (c) of Proposition 1.3.

(b) We make three preliminary observations.
(1) f and β restrict to fR and βR:
First, if a ∈ R, then f(a) =

∑
λ(a−1)a0 ∈ R since σ(R) ⊂W ⊗R by Lemma 2.3

(b), with C = W,D = H , and E = R. Similarly, if b ∈ S, then β(b) =
∑
χ(b−1)b0 ∈

S since σ(S) ⊂ U ⊗ S by Lemma 2.5 (b).
Note that χ : U → k is an algebra map by 1.10 (c), and hence both β and βR are

algebra automorphisms of B and S, respectively, with inverse b 7→∑
χ(Sb−1)b0.

(2) RS is flat:
For X ∈ SM, the functor

X 7→ A⊗S X ∼= A⊗B B ⊗S X ∼= A⊗R R⊗S X

is exact since BS is flat by the bi-Galois extension hypothesis and AB is flat since
B ⊂ A is β-Frobenius, by (a). Since also R ⊂ A is faithfully flat by the bi-Galois
hypothesis, it follows that X 7→ R⊗S X is exact.

(3) RβR ⊗S A→ Aβ ⊗B A, via r ⊗ a 7→ r ⊗ a, is bijective:
Note that

RβR ⊗S A ∼= R⊗S β−1
R
A, via r ⊗ a 7→ r ⊗ a, by 1.2(b), and

Bβ ⊗B A ∼= β−1A, via b⊗ a 7→ β−1(b)a.

Thus

RβR ⊗S A ∼= R⊗S β−1
R
A ∼= R⊗S Bβ ⊗B A ∼= Aβ ⊗B A,

where the last isomorphism is Proposition 2.8 (a).

We now prove (b) by applying Proposition 1.3(b). Define F and F̃ in terms of

f and β and also FR, F̃R in terms of fR and βR; that is,

FR : R→ HomS(RS , SS) via FR(x) = (fR)x, and

F̃R : RβR ⊗S R→ HomS(RS , RS) via F̃R(x⊗ y)(a) = xf(y a).

By 1.3 and part (a) above, F and F̃ are bijective, and we must show that FR
and F̃R are bijective.
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To check that FR is bijective, we claim that the following diagram commutes:

R ⊂ A

ρ−−−−−→
−−−−−→

i1

A⊗H
FR ↓ ↓φ ↓ψ

HomS(RS , SS) ↪→ HomS(RS , BS)

Hom(id,ρ)−−−−−−−−→
−−−−−−−−→

Hom(id,i1)

HomS(RS , BS ⊗H)

where φ(a)(r) := f(ar) and ψ(a ⊗ h)(r) := f(ar) ⊗ h. Clearly the left square
commutes since both directions give r 7→ (x 7→ f(rx)), and similarly the right
lower square commutes, with a 7→ (x 7→ f(ax) ⊗ 1). It remains to consider the
upper right square. If a ∈ A, then ψρ : a 7→ ψ(

∑
a0 ⊗ a1) = (x 7→∑

f(a0x) ⊗ a1)
and Hom(id, ρ)φ : a 7→ (x 7→ f(ax)) 7→ (x 7→ ρ(f(ax))). But now

ρ(f(ax)) = ρ(
∑
λ(a−1x−1)a0x0)

=
∑
λ(a−1x−1)(a0)0(x0)0 ⊗ (a0)1(x0)1

=
∑
λ(a−1x−1)(a0)0x0 ⊗ (a0)1

=
∑
λ((a0)−1x−1)(a0)0x0 ⊗ a1

=
∑
f(a0x)⊗ a1,

where the third equality follows since x ∈ R implies x0 ∈ R (since σ(R) ⊂W⊗R by
Lemma 2.3 (b)) and thus ρ(x0) = x0 ⊗ 1 since R = Aco H , and the fourth equality
follows from the bicomodule condition. Thus the diagram commutes.

Now, the top row is exact since R = Aco H ; the bottom row is exact since
S = Bco H and since HomS(RS ,−) is left exact.
φ is bijective, since R⊗S B → A is bijective by Proposition 2.8, and hence

φ : A
F→ HomB(AB , BB) ∼= HomB(R⊗S B,BB) ∼= HomS(RS , BS)

is bijective since F is bijective.
Finally, ψ is bijective. For,

ψ : A⊗H F⊗id−−→ HomB(AB, BB)⊗H ∼=→ HomB(AB , BB⊗H) ∼= HomS(RS , BS⊗H)

where the last isomorphism follows from R ⊗S B ∼= A as above and the middle
mapping is given by ϕ ⊗ h 7→ (a 7→ ϕ(a) ⊗ h); it is an isomorphism since AB is
finitely-generated projective by part (a). Thus ψ is bijective, and so FR is bijective
using the diagram.

Now we show that F̃R is bijective. We claim that the following diagram com-
mutes:

RβR ⊗S R ⊂ RβR ⊗S A
id⊗ρ−−−−→
−−−−→
id⊗i1

RβR ⊗S A⊗H
F̃R ↓ ↓ φ̃ ↓ ψ̃

HomS(RS , RS)
Hom(id,i)
↪→ HomS(RS , AS)

Hom(id,ρ)−−−−−−−−→
−−−−−−−−→

Hom(id,i1)

HomS(RS , AS ⊗H)

where i : R ⊂ A is the inclusion map,

φ̃(x⊗ y)(r) := xf(yr), and ψ̃(x ⊗ y ⊗ h)(r) := xf(yr) ⊗ h.
The left square commutes since both possibilities give x ⊗ y 7→ (r 7→ xf(yr)), and
similarly the right lower square commutes, with x ⊗ y 7→ (r 7→ xf(yr) ⊗ 1). It
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remains to consider the right upper square. For x ∈ RβR , y ∈ A, we have

ψ̃ ◦ (id⊗ ρ) : x⊗ y 7→ ψ̃(
∑

x⊗ y0 ⊗ y1) = (r 7→
∑

xf(y0r) ⊗ y1).

The fact that Hom(id, ρ) ◦ φ̃ gives the same result follows using ρ(f(yr)) =∑
f(y0r) ⊗ y1, which we showed above in the argument for FR. Thus the dia-

gram commutes.
The upper row is exact since, first, R = Aco H implies R ⊂ A →→ A⊗H is exact,

and second, RβR is flat as a right S-module (since Xβ ⊗S Y ∼= X ⊗S β−1Y for all
S-modules X and Y by 1.2 (b), and hence X flat as an S-module implies Xβ is
also flat over S).

The lower row is also exact, since in fact R ⊂ A →→ A ⊗H is exact as (R,R),
and hence (S, S)-bimodules, and because HomS(RS ,−) is left exact.

Next, φ̃ and ψ̃ are bijective. φ̃ is bijective since it is the composition of the
isomorphisms

RβR ⊗S A
∼=→ Aβ ⊗B A by (3)

F̃→ HomB(AB , AB)

∼= HomS(RS , AS)

where the last isomorphism is induced by R ⊗S B ∼= A, which is 2.8(a). ψ̃ is the
composition of the isomorphisms

RβR ⊗S A⊗H
∼=→ Aβ ⊗B A⊗H by (3) again

F̃⊗id−→ HomB(AB , AB)⊗H
∼= HomB(AB , AB ⊗H) since AA is fin. gen. projective
∼= HomS(RS , AS ⊗H) by 2.8(a) as above.

Using the diagram, it now follows that F̃R is bijective, proving (b).
(c) The following diagram commutes:

RβR ⊗S R
F̃R−−−−−−−−−−→ HomS(RS , RS)

g ↓ ↓Hom(id,i)

Aβ ⊗B A
F̃−→HomB(AB, AB) ∼= HomS(RS , AS)

where the lower right isomorphism is induced by R⊗S B ∼= A and the map g is the
isomorphism of (b) (3) restricted to RβR ⊗S R.

Now by Proposition 1.3 and the proof there of (b)⇒ (c), it follows that if B ⊂ A
is a β-Frobenius extension with Frobenius homomorphism f , and F̃ is as above,
then {ri, li} are dual bases ⇔ F̃ (

∑
i

ri ⊗ li) = idA ⇔
∑
i

rif(lix) = x, for all x ∈ A,

where we consider
∑
ri ⊗ li ∈ Aβ ⊗B A.

It follows that if {ri, li} are chosen in A such that γ(
∑
ri ⊗ li) = Λ ⊗ 1, then

{ri, li} are dual bases of B ⊂ A. Indeed, for all x ∈ A,∑
rif(lix) =

∑
riλ((li)−1x−1)(li)0x0

=
∑
λ(Λx−1)x0 since

∑
(li)−1β ⊗ ri(li)0 = Λ⊗ 1

=
∑
ε(x−1)x0 = x.
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Now by (b), since S ⊂ R is β-Frobenius, there exist dual bases {xj , yj} of S ⊂ R;

thus F̃R(
∑
xj ⊗S yj) = idR by the above. By commutativity of the diagram, it

must be that g(
∑
xj ⊗S yj) =

∑
xj ⊗B yj =

∑
ri ⊗ li in Aβ ⊗B A.

Finally, given {ri, li} dual bases for B ⊂ A, assume that {xj , yj} are elements of
R such that

∑
xj ⊗ yj =

∑
ri ⊗ li in Aβ ⊗B A. Then

F̃ (
∑

xj ⊗B yj) = F̃ (
∑

ri ⊗ li) = idA.

Since the above diagram commutes, it follows that Hom(id, i)F̃R(
∑
xj ⊗S yj) = i

and thus that F̃R(
∑
xj⊗Syj)= idR, since Hom(id, i) is injective and Hom(id, i)(idR)

= i. Thus {xj , yj} are dual bases of S ⊂ R.

3.2. Remark. In the theorem, β−1 can be described as the restriction of a function
which is defined on A and not just on B. For

β−1(a) :=
∑
λ(S(a−1)Λ)a0, for all a ∈ A,

β−1(ab) = β−1(a)β−1(b), for all a ∈ A, b ∈ B.
Consequently

∑
j

β−1(xj)yj = ε(Λ), where {xj , yj} are as in Theorem 3.1(c).

Proof. (a) First note that for b ∈ B, β−1(b) =
∑
χ(Sb−1)λ(Λ)b0 =

∑
χ(Sb−1)b0

using the form of β in Theorem 3.1 (and 1.14) and the fact that λ(Λ) = 1, as noted
after Definition 1.10. Consequently β−1(β(b)) = b since χ is multiplicative. Now
for all a ∈ A, b ∈ B,

β−1(ab) =
∑
λ(S(a1b−1)Λ)a0b0

=
∑
χ(Sb−1)λ(Sa−1Λ)a0b0 by 1.10 (c)

= β−1(a)
∑
χ(Sb−1)b0

= β−1(a)β−1(b).

(b) Now by (a), the map Aβ ⊗B A → A, via x ⊗ y 7→ β−1(x)y, is well-defined,
and thus

∑
j

β−1(xj)yj =
∑
i

β−1(ri)li.

Recall we have chosen {ri, li} so that γ(
∑
ri ⊗ li) =

∑
(li)−1 ⊗ ri(li)0 = Λ⊗ 1.

Under the map W ⊗ A → W ⊗ A, via w ⊗ a 7→ ∑
a−1Sw ⊗ a0, we see that

Λ⊗ 1 7→ SΛ⊗ 1. It follows that

γ(
∑

li ⊗ ri) =
∑

(ri)−1 ⊗ (ri)0li = SΛ⊗ 1.

Now ∑
β−1(ri)li =

∑
λ(S((ri)−1)Λ)(ri)0li

= λ(S(SΛ)Λ)
= λ(Λ · Λ) = ε(Λ) by 1.10 (b).

We consider the case of our main example, 2.7, and show that more can be said.
The reader should compare this result with Theorem 1.7.

3.3. Corollary. Assume we are in the situation of Example 2.7, that is, B ⊂ A
and H are Hopf algebras, B ⊂ A is a faithfully flat extension, π : A → H is a
Hopf surjection which is also surjective when restricted to B. Let R = AcoH and
S = BcoH using the H-comodule structure induced on A and B by π. Assume that
R ⊂ A and S ⊂ B are faithfully flat H-Galois extensions, and that B ⊂ A is of
right integral type. Then S ⊂ R is β-Frobenius, with β and f as in Theorem 3.1,
and:
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(a) The element Λ ∈ A(= W ) in 1.10 (b) can be chosen in R.
(b) Dual bases of S ⊂ R may be found as follows:
There exist xi, yi ∈ R, 1 ≤ i ≤ m, such that in Aβ ⊗B A,∑

xi ⊗ yi =
∑

SΛ2 ⊗ Λ1.

More generally, for any r ∈ R, there exist xi, yi ∈ R such that in Aβ ⊗B A,∑
xi ⊗ yi =

∑
Sr2 ⊗ r1.

In particular {SΛ2,Λ1} are dual bases for B ⊂ A, and {xi, yi} are dual bases for
S ⊂ R.

Proof. UsingW =A and U=B, we see that the assumptions imply that (B,A,H,A)
is a faithfully flat bi-Galois extension. Thus Theorem 3.1 applies.

(a) By 2.8 (b), A = BR; hence there exist bi ∈ B, ui ∈ R, 1 ≤ i ≤ n, such that
Λ =

∑
i

biui. Then, using 1.10 (b) and (c),

ε = λ · Λ =
∑
i

(λ · bi)ui =
∑
i

χ(bi)λ · ui = λ ·
∑
i

χ(bi)ui = λ · Λ′
,

where Λ
′
=
∑
i

χ(bi)ui ∈ R.

(b) Given r ∈ R, and any z ∈ R,

F̃ (
∑
Sr2 ⊗ r1)(z) =

∑
(Sr2)f(r1z)

=
∑
Sr3λ(r1z1)r2z2 by the definition of f

=
∑

(Sr3)r2λ(r1z1)z2
=

∑
λ(rz1)z2 ∈ R.

Thus F̃ (
∑
Sr2 ⊗ r1) ∈ HomS(R,R).

By the diagram used in the proof of Theorem 3.1 (c), it follows that
∑
Sr2 ⊗ r1

lies in the image of RβR ⊗S R under g; that is,
∑
Sr2 ⊗ r1 =

∑
xi ⊗ yi, for some

xi, yi ∈ R.
The first statement now follows, choosing Λ ∈ R as in (a), or using Theo-

rem 3.1(c) since under the Galois map γ : A ⊗ A → A ⊗ A given by x ⊗ y 7→∑
y1 ⊗ xy2, we have γ(

∑
SΛ2 ⊗ Λ1) = Λ⊗ 1.

4. Extensions of integral type

It is clear from Theorem 1.14 (from [Sch 92]) and from our Theorem 3.1 that it
is important to find conditions which guarantee that an extension of Hopf algebras
is of integral type. We do this here by generalizing the methods of Larson and
Sweedler [LS] to cleft extensions of finite index. In fact we consider a more general
situation than that of Hopf subalgebras; for most of what we do, a right coideal
subalgebra will suffice.

As in Section 2, let K be a right coideal subalgebra of the Hopf algebra H and
let H = H/HK+; H is a coalgebra and a left H-module.

4.1. Definition. Let K ⊂ H be a right coideal subalgebra of H and let H =
H/HK+. Then H has a right normal basis over K if H ∼= H ⊗ K as right K-
modules and left H-comodules. Here H has the induced left H-comodule structure.
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4.2. Remark. If H has a right normal basis over K, then H is free over K, and so

K ⊂ H is right faithfully flat. Thus, by Lemma 2.4 we know that K = co HH and
that the Galois map γ : H⊗K H → H ⊗H , via x⊗ y 7→∑

x1⊗x2y, is a bijection.

In addition, the Galois map γ is also a bijection, when applied to H ⊗k K:

γ : H ⊗K → H2HH.

This last fact is dual to Lemma 2.4(a) and requires K = coHH .
Similarly, one could define a normal basis property given a quotient left module

and coalgebra of H . We next require a known lemma [T 79, Theorem 1], although
we sketch a direct proof for completeness.

4.3. Lemma. Let H = H/I be a quotient coalgebra and left H-module. Define

K := co HH, a right coideal subalgebra. Assume H ∼= H ⊗K as right K-modules
and left H-comodules. Then I = HK+, and so H has a right normal basis over K
as in Definition 4.1.

Proof. This is dual to Lemma 2.4(b), since H is left H-faithfully coflat. For, con-
sider the diagram

H ⊗K −→−→ H −→ H/HK+

‖o ‖ ↓

H2HH

ε⊗1−−→
−−→
1⊗ε

H −→ H/I

Note that HK+ ⊂ I, and hence the diagram is commutative.

4.4. Remark. In the situation of Definition 4.1, the following are all well-defined
categories of Hopf modules:

H
HM, HMH , MH

K , KMH .

For, a k-space M is in H
HM if it is a left H-module, a left H-comodule via ρ :

M → H ⊗M , and ρ is a left H-module map. This is well-defined since H is a left

H-module; similarly for HMH . The second two are well-defined because K is a
right coideal subalgebra.

We require some known facts about Hopf modules.

4.5. Proposition ([Sch 90], [MD]). Assume that H is H-cleft, with K = co HH.
Then the following are inverse equivalences:

(a)

KM � H
HM,

M 7→ H ⊗K M,

co HV ←7 V.

In particular, for any V ∈HHM, H ⊗ co H
K V →̇ V is an isomorphism, where · is the

action of H on V .
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(b)

MH � MH
K ,

M 7→ M2H H,

V := V/V K+ ←7 V.

In particular, for any V ∈ MH
K , V → V2HH is an isomorphism, given by the

comodule structure of V .

Proof. (a) is a special case of [Sch 90, 3.7], since K ⊂ H is faithfully flat, and (b)
is a special case of [Sch 90, 4.7].

(a) and (b) also follow from [MD] using γ and its dual in 4.2.

We consider various structures on duals of (co)modules.

4.6. Definition. (a) Transposed (co)actions: If A is an algebra and V a left
A-module, then V ∗ = Hom(V, k) becomes a right A-module via (f · a)(v) := f(av),
for all v ∈ V . V ∗ is called the transposed A-module; similarly for right A-modules.

Note that if A acts on V = A by left multiplication, then the transposed action
of A on A∗ is simply f · a = f ↼ a, as discussed in Section 0.

Dually, let C be a coalgebra and V → V ⊗C, v 7→∑
v0⊗v1, a finite-dimensional

right C-module. Then V ∗ is a left C-comodule via V ∗ → C⊗V ∗, f 7→∑
f−1⊗ f0,

where for all v ∈ V , ∑
f0(v)f−1 :=

∑
f(v0)v1.

V ∗ is called the transposed C-comodule. Similarly we may begin with a finite-
dimensional left C-comodule.

(b) Contragredient (co)actions: Let H be a Hopf algebra. If V is a left
H-module, then the contragredient left H-module structure on V ∗ is defined by
(h · f)(v) := f((Sh) · v), for all v ∈ V . Similarly we may begin with a right
H-module.

Note that if H acts on V = H by left multiplication, then the contragredient
left H-action on H∗ is h · f = f ↼ Sh.

If V is a finite-dimensional right H-comodule, then the contragredient right H-
comodule structure on V ∗ is defined by f 7→∑

f0 ⊗ Sf−1, where f 7→∑
f−1 ⊗ f0

is the transposed left comodule structure above. Similarly we may begin with a
finite-dimensional left H-comodule.

4.7. Lemma. Let H be a Hopf algebra, K ⊂ H a right coideal subalgebra, and
H = H/I a left H-module coalgebra quotient.

(a) Let V ∈ HMH with dimV <∞. Then V ∗ ∈ H
HM, where V ∗ is the transposed

H-comodule and the contragredient H-module.
(b) Let V ∈ KMH with dimV < ∞. Then V ∗ ∈ MH

K, where V ∗ is the contra-
gredient H-comodule and the transposed K-module.

Proof. (a) This is similar to the Larson-Sweedler argument [LS]. Let δV : V →
V ⊗ H , v 7→ ∑

v0 ⊗ v1, and δV ∗ : V ∗ → H ⊗ V ∗, via f 7→ ∑
f−1 ⊗ f0, be

the H-comodule structure and its transpose, as in 4.6. We must show δV ∗(h · f) =∑
h1f−1⊗h2 ·f0, for all f ∈ V ∗, h ∈ H , where h ·f is the contragredientH-module

action. That is, for all v ∈ V , we need∑
(h2 · f0)(v)(h1 · f−1) =

∑
(h · f)(v0)v1
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or equivalently
∑
f0((Sh2) · v)(h1 · f−1) =

∑
f(Sh · v0)v1. Now∑

f0((Sh2) · v)(h1 · f−1) =
∑
h1 · (f((Sh2) · v)0)(Sh2 · v)1) by 4.6(a)

=
∑
h1 · (f((Sh3) · v0)(Sh2 · v1)) since V ∈ HMH

=
∑
f((Sh) · v0)v1.

(b) This is dual to (a). Let 4V : V → V ⊗ H, v 7→ ∑
v0 ⊗ v1, and V ∗ →

H ⊗ V ∗, f 7→ ∑
f−1 ⊗ f0, be the H-comodule structure and its transpose. Then

4V ∗ : V ∗ → V ∗⊗H , f 7→∑
f0⊗Sf−1, is the H-comodule structure of V ∗ ∈ MH

K .
We must show that 4V ∗(f · k) =

∑
f0 · k1 ⊗ (Sf−1)k2, for all k ∈ K, f ∈ V ∗;

that is, for all v ∈ V ,∑
(f0 · k1)(v)(Sf−1)k2 =

∑
(f · k)(v0)Sv1,

or equivalently ∑
f0(k1 · v)(Sf−1)k2 =

∑
f(k · v0)Sv1.

Now ∑
f0(k1 · v)(Sf−1)k2 =

∑
f((k1 · v)0)S((k1 · v)1)k2 by 4.6(1)

=
∑
f(k1 · v0)S(k2 · v1)k3 since V ∈ KMH

=
∑
f(k · v0)Sv1.

We return now to the situation of Definition 4.1. That is, K is a right coideal

subalgebra of the Hopf algebra H , and H = H/HK+. Then H
∗

is an algebra,

since H is a coalgebra; moreover H
∗

is augmented via f 7→ f(1), and thus we may

discuss the existence of integrals in H
∗
. Note also that H

∗
is a right H-module,

considered as the transposed right H-module of H considered as a left H-module.

That is, given f ∈ H∗
, h ∈ H, and g ∈ H, we have (f · h)(g) = f(hg).

The following theorem lays the foundation to give cases of extensions that are
of (right) integral type.

4.8. Theorem. Let H be a Hopf algebra, K a right coideal subalgebra, and H =
H/HK+ as above. Assume H has a right normal basis over K, and that dimH <
∞. Then:

(a)
∫ r
H∗

is one-dimensional, with basis λ 6= 0.

(b) There exists Λ ∈ H such that λ ↼ Λ = ε on H.
(c) There exists χ̃ ∈ Alg(K, k) such that λ ↼ Sk = χ̃(k)λ for all k ∈ K.

(d) H
∗

is a Frobenius algebra.

Proof. First, H ∈ HMH , where the right H-comodule structure is given by 4H ,

that is, H → H ⊗H via h 7→∑
h1 ⊗ h2, and H is a left H-module as usual. Thus

H
∗ ∈ H

HM by Lemma 4.7(a), and so, by Proposition 4.5,

H ⊗K co HH
∗

˙−→ H
∗

(∗)
is an isomorphism. H

∗
is the transposed H-comodule; hence

co HH
∗

= {ϕ ∈ H∗ | ∀h ∈ H, ∑ϕ0(h)ϕ−1 = ϕ(h)1}
= {ϕ ∈ H∗ | ∀h ∈ H, ϕ(h)1 =

∑
ϕ(h1)h2)} by 4.6(1)

=
∫ r
H∗
,
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where the last equality follows as noted in Section 0.
Also H ∼= H⊗K as right K-modules and left H-comodules by assumption. Thus

using (∗), we obtain

H
∗ ∼= H ⊗K

∫ r

H∗

∼= (H ⊗K)⊗K
∫ r

H∗

∼= H ⊗
∫ r

H∗
,(∗∗)

where the isomorphism is as left H-comodules. The result now follows:
(a) Clearly

∫ r
H∗

is one-dimensional (hence in particular non-zero), since dimH =

dimH
∗
<∞. Pick 0 6= λ ∈ ∫ r

H
∗

(b) Since H ⊗K
∫ r
H∗

˙−→ H
∗

is surjective, given by h ⊗ λ 7→ h · λ = λ ↼ Sh, it

follows that there exists Λ̃ ∈ H such that λ ↼ SΛ̃ = ε on H . Pick Λ = SΛ̃; then
λ ↼ Λ = ε on H .

(c) Since
∫ r
H∗

= co HH
∗ ∈ KM, it follows that

∫ r
H∗

↼ SK =
∫ r
H∗
. and so there

exists χ̃ ∈ K∗ such that λ ↼ Sl = χ̃(l)λ ∀l ∈ K. Note that by its definition, χ̃
must be in Alg(K, k).

(d) First, we see that (∗∗) determines an isomorphism φ : H → H
∗

of left
H-comodules.

Taking transposes, φ∗ : (H
∗
)∗ → H

∗
is an isomorphism of left H

∗
-modules

(for since C = H is finite-dimensional, any finite-dimensional left C-comodule V
dualizes to a left C∗-module; that is, V → C ⊗ V gives C∗⊗ V ∗ → V ∗). Now since

H
∗ ∼= H

∗∗
as H

∗
-modules, H

∗
is Frobenius.

It may be useful to describe these isomorphisms more explicitly. Let λ be a
basis of

∫ r
H∗

. For h ∈ H , the action of h on λ in the isomorphism (∗) is given by

h · λ = λ ↼ Sh. In (∗∗) we have identified H as a subspace of H via the cleft

map. That is, let γ : H → H ⊗ K ∼= H via h 7→ h ⊗ 1. Then φ is given by
h 7→ λ ↼ (Sγ(h)).

Now consider the isomorphism φ∗ : H
∗∗ → H

∗
, where H

∗
is a left H

∗
-module by

left multiplication. The left H
∗
-module structure of H

∗∗
is transposed to the right

H
∗
-module structure defined by multiplication on H

∗
as noted above; explicitly,

the transposed H-comodule structure H
∗ → H ⊗H∗

, g 7→∑
g−1 ⊗ g0, is defined

by
∑
g0(h)g−1 =

∑
g(h1)h2, for all h ∈ H . Thus, the dual H

∗
-module structure

on H
∗∗

is given by

H
∗ ⊗ H

∗∗ → H
∗∗
,

f ⊗ ϕ 7→ (g 7→∑
f(g−1)ϕ(g0)).

This action is in fact f ⇀ ϕ. For, note that for all h ∈ H,
∑
f(g−1)g0(h) =∑

g(h1)f(h2) = gf(h), and so
∑
f(g−1)g0 = gf . Thus

(f · ϕ)(g) :=
∑
f(g−1)ϕ(g0) = ϕ(

∑
f(g−1)g0)

= ϕ(gf) = (f ⇀ ϕ)(g),

which is what we would expect.
Part (b) of the next result has already been shown in Example 1.12. Part (c)

extends work of [Sch 92], where it was shown that when H is pointed then K ⊂ H
is H-cleft.

4.9. Corollary. Let H be a Hopf algebra, K ⊂ H a Hopf subalgebra, and H =
H/HK+ as above. Assume that H is finite dimensional, and that either
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(a) H has a right normal basis over K and the antipode of K is bijective, or
(b) H is finite-dimensional, or
(c) the coradical of H is cocommutative.
Then K ⊂ H is of right integral type and is a β-Frobenius extension. Moreover,

H
∗

is a Frobenius algebra.

Proof. (a) Since H has a right normal basis over K, Theorem 4.8 applies. Noting
that K is a Hopf subalgebra, we see that SK ⊂ K, and so we may take χ = χ̃ ◦ S
to get 1.5 (c). Thus K ⊂ H is of right integral type.

(b) This is a special case of (a), since by [Sch 92, 2.4(2b)], K ⊂ H is H-cleft
whenever H is finite-dimensional. But cleftness implies the normal basis isomor-
phism.

For case (c), let k denote the algebraic closure of our base field k and consider
K ′ = k ⊗K ⊂ H ′ = k ⊗H . Now H ′ is pointed, and thus K ′ ⊂ H ′ is H ′-cleft by
[Sch 92, 4.3(2)]. Thus Theorem 4.8 applies to give that K ′ ⊂ H ′ is of right integral

type, and that H ′∗ is a Frobenius algebra.

However H ′ = H ′/H ′(K ′)+ ∼= k ⊗ H as coalgebras, and so k ⊗ H∗ ∼= H ′∗ as

algebras. Thus H
∗

is Frobenius, and
∫ r
H∗

is one-dimensional. The other properties

also clearly descend from K ′ ⊂ H ′ to K ⊂ H . Thus K ⊂ H is of right integral
type.

Finally, when H0 is cocommutative K ⊂ H is faithfully flat by [T 72]. It now
follows by Theorem 1.14 with A = W = H and B = U = K that in all these cases
K ⊂ H is β-Frobenius.

The next result can be considered a “dual version” of Theorem 4.8.

4.10. Theorem. Let H be a Hopf algebra, K a right coideal subalgebra, and H =
H/HK+. Assume H has a right normal basis over K and that dimK <∞. Then

(a) K∗ := K∗/K∗ ·K+ is one-dimensional, and
(b) K is a Frobenius algebra.

Proof. First, note that K ∈ KMH , where the H-comodule structure is given by
4 : K → K ⊗H . Thus by Lemma 4.7(b), K∗ ∈ MH

K , where K acts on K∗ via ↼.
Now

K∗ ∼= K∗2HH by 4.5(b) with M = K∗
∼= K∗2H(H ⊗K) by the normal basis isomorphism
∼= K∗ ⊗K,

where the isomorphisms are as right K-modules. The isomorphism K∗ → K∗ ⊗K
is given explicitly by f 7→∑

f0⊗ϕ(f1), where ϕ : H → K defines the normal basis

isomorphism H
∼=→ H ⊗K, via h 7→∑

h1 ⊗ ϕ(h2).
Since dimK = dimK∗ <∞, clearly dimK∗ = 1, proving (a). Since K∗ ∼= K as

right K-modules, K is Frobenius, proving (b).

All of this section could have been proved on the other side as well. The next
corollary will be used for Corollary 5.8, where it is needed on the other side, so we
will state and prove it on the other side here.

4.11. Corollary. Let A and H be Hopf algebras and π : A→ H a surjective Hopf
algebra map. Consider A as a right H-comodule via π and define R := Aco H .
Assume that dimR < ∞ and that there exists a right H-colinear and invertible
map γ : H → A. Then
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(a) R is a Frobenius algebra and has non-zero left integrals and right integrals.
(b) Choose 0 6= t ∈ ∫ r

R
. Then ε(t) 6= 0⇔ R is separable.

Proof. (a) More generally, let A → A = A/I be a quotient right A-module and
coalgebra and assume there exists γ : A→ A which is right A-colinear and invert-

ible. Let R := Aco A, a left coideal subalgebra of A, and assume that dimR < ∞.
Then by [MD, (1.4),(1.5)],

R⊗A→ A, given by r ⊗ a 7→ rγ(a),

is bijective, left R-linear, and right A-colinear. By Lemma 4.3, I = R+A, and so
Theorem 4.10 (on the other side) applies. Thus R is Frobenius. The algebra R is
augmented via the restriction of εA, so

∫ r
R

is one-dimensional since it is the right

annihilator of R+; similarly for
∫ l
R
.

(b) If R is separable, then R
ε→ k splits, as right R-modules, and thus ε(t) 6= 0

for 0 6= t ∈ ∫ r
R
.

Conversely, we first show that S2
A(R) ⊂ R. To see this, first note that π is a

Hopf algebra map, so in particular π ◦ SA = SH ◦ π, where SH is the antipode for
H . Thus, ∀r ∈ R,

(π ⊗ id)4S2
Ar = (π ⊗ id)

∑
S2
Ar1 ⊗ S2

Ar2 =
∑

(SH)2π(r1)⊗ S2
Ar2 = 1⊗ S2

Ar,

and so S2
A(R) ⊂ R

Now part (b) follows from the next lemma, which is [K, 5.2] on the other side.
We give the argument for completeness.

Lemma [K]. Let R ⊂ A be a finite-dimensional left coideal subalgebra of A such
that S2(R) ⊂ R. Let 0 6= t ∈ ∫ r

R
such that ε(t) = 1. Then

(a)
∑
rSt1 ⊗ t2 =

∑
St1 ⊗ t2r, for all r ∈ R,

(b)
∑
St1 ⊗ t2 ∈ R⊗R.

In particular, R is separable, since
∑

(St1)t2 = ε(t) = 1.

Proof. (a) Indeed, ∑
St1 ⊗ t2r =

∑
r1S(t1r2)⊗ t2r3

=
∑
r1S((tr2)1)⊗ (tr2)2

=
∑
r(St1)⊗ t2,

since t is a right integral.
(b) Write 4t =

∑
i

t1,i ⊗ t2,i, where {t2,i} is a k-basis of R, and consider X =∑
i

k(St1,i). Then RX ⊂ X by (a), and also 1 ∈ X , since 1 = ε(t) =
∑
S(t1(St2)) =∑

S2(t2)St1 ∈ RX , because t2 ∈ R. Hence R ⊂ RX ⊂ X , and so R = X , since
dimX ≤ dimR by construction. Thus

∑
St1 ⊗ t2 ∈ R⊗R.

5. Hopf algebras in Yetter-Drinfeld categories

Let H be a Hopf algebra with a bijective antipode. The Yetter-Drinfeld category
H
HYD is the braided monoidal category whose objects M are both left H-modules
and left H-comodules and satisfy the compatibility condition∑

h1m−1 ⊗ h2 ·m0 =
∑

(h1 ·m)−1h2 ⊗ (h1 ·m)0(5.1)
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for all h ∈ H, m ∈M . The braiding τ : V ⊗W 7→W ⊗ V in this category is given
by

τ(v ⊗ w) =
∑

v−1 · w ⊗ v0.(5.2)

For details, see [Y]. Now, R ∈ H
HYD is a bialgebra in this category if it is both

an algebra and a coalgebra, and the bialgebra structure maps are all category
morphisms. Moreover, 4R must be multiplicative in H

HYD, using τ on R⊗R; that
is

4R(rs) =
∑

r1((r2)−1 · s1)⊗ (r2)0s
2,(5.3)

where 4R(r) =
∑
r1 ⊗ r2 denotes the comultiplication of R. For a given H , an

R which was an algebra and a coalgebra in HM and in HM, and satisfied the
compatibility conditions (5.1) and (5.3), was called admissible in [R 85]. The fact
that this is the same as R being a bialgebra in H

HYD is noted in [Mj]. Given such
an R, we can form Radford’s biproduct A = R ? H [R 85, Theorem 1], which is a
usual bialgebra. As an algebra, A = R ? H is the smash product R#H , and as a
coalgebra it is the smash coproduct, that is

4A(r ? h) =
∑

(r1 ? (r2)−1h1)⊗ ((r2)0 ? h2).

R is a Hopf algebra in H
HYD if it has an antipode SR, that is, a convolution inverse

to the identity. R ? H is then a Hopf algebra with antipode given by S(r ? h) =∑
(1?SH(r−1h))(SRr0?1) [R 85, Theorem 2]. SR is a map in H

HYD, so it is both H-
linear and H-colinear. For details of these constructions, see also [M, Section 10.6].
Note that under 4A, R is a left coideal subalgebra of A, but not a subcoalgebra.

Now let S ⊂ R be an extension of Hopf algebras in the Yetter-Drinfeld category
H
HYD. Set A = W = R ? H and B = U = S ? H, σ = 4A and ρ = id ⊗ 4H ,
and assume that A is left or right faithfully flat over B. Then R ∼= Aco H and

B = co AA, where A = W = (R ? H)/(R ? H)(S ? H)+. In fact A ∼= R = R/RS+;
see Lemma 5.5 below.

Note that we now have a Hopf algebra surjection π : R?H � H, r?h 7→ εR(r)h,
and so also have the commutative diagram as in Example 2.7 (b),

S ⊂ S ? H
π� H

∩ ∩ ‖
R ⊂ R ? H

π� H

(5.4)

This diagram will be used frequently in the following sections.
Now S ⊂ S ? H and R ⊂ R ? H are faithfully flat H-Galois extensions, and

k = co AA ⊂ A is A-Galois; thus (S ? H,R ? H,H,R ? H) is a faithfully flat
bi-Galois extension.

5.5. Lemma. Let S ⊂ R be an extension of Hopf algebras in the category H
HYD.

Then RS+ is a coideal of R. If also B ⊂ A is left or right faithfully flat, then the
inclusion R ⊂ A induces an isomorphism of coalgebras R ∼= A.

Proof. We first check that RS+ is a coideal of R; note that there is something to
prove here since 4R is not a usual algebra map. Thus, choose r ∈ R, s ∈ S+. Since
S+ is a coideal of S, and S is a subcoalgebra of R, we have4Rs ∈ S⊗S++S+⊗S.
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Since S is in H
HYD and εS is an H-module map, if follows that H ·S+ ⊆ S+. Then

4R(rs) =
∑
r1((r2)−1 · s1)⊗ (r2)0s

2

∈∑ r1((r2)−1 · S)⊗ (r2)0S
+ +

∑
r1((r2)−1 · S+)⊗ (r2)0S

∈ R⊗RS+ +RS+ ⊗R.
Thus RS+ is a coideal and R = R/RS+ is a coalgebra.

Now assume the faithfully flat hypothesis. Then by the above remarks, we are in
the situation of 2.7, and thus Proposition 2.8 applies. Consider R ⊂ A via r 7→ r?1.
Then

4A(r ? 1) =
∑

((r1 ? 1)(1 ? (r2)−1))⊗ ((r2)0 ? 1).

Under the map A→ A, r ? h 7→ (r ? 1)(1 ? h) = ε(h)(r ? 1). Thus

4A(r ? 1) =
∑
ε((r2)−1)(r1 ? 1)⊗ ((r2)0 ? 1)

=
∑

(r1 ? 1)⊗ (r2 ? 1).

Thus the inclusion R ⊆ A is a coalgebra isomorphism.

We write the H-comodule structure of R as δR : R → H ⊗R, r 7→∑
r−1 ⊗ r0.

We say S ⊂ R has finite index if R = R/RS+ is finite dimensional.

5.6. Theorem. Let S ⊂ R be an extension of Hopf algebras of finite index in
H
HYD, and let A = R ?H and B = S ?H. Assume that A has a right normal basis

over B and that R, S and H have bijective antipodes. Then
∫ r
R∗

= kλ for some

λ 6= 0, we may choose Λ ∈ R such that λ ↼ Λ = ε, and there exist χ
H
∈ Alg (H, k)

and χ ∈ Alg (S, k) such that

λ(h · r) = χ
H

(h)λ(r) and λ(sr) = χ(s)λ(r),

for all r ∈ R, s ∈ S, and h ∈ H.
Consequently S ⊂ R is β-Frobenius, where β : S → S and the Frobenius homo-

morphism f : R→ S are given by

β(s) :=
∑
χ(s1)χH ((s2)−1)(s

2)0,

f(r) :=
∑
λ(r1)r2,

for all s ∈ S, r ∈ R. Moreover, dual bases (with respect to f) are given by

{SR((Λ2)0), χ
H

((Λ2)−1)SH((Λ2)−2) · Λ1}
Proof. Since A has a right normal basis over B, B ⊂ A is of right integral type, by
Corollary 4.9. Since R ⊂ A = R ? H and S ⊂ B are faithfully flat, Theorem 3.1

and Corollary 3.3 apply to give
∫ r
A∗

=
∫ r
R∗

= kλ, for some λ 6= 0, and Λ ∈ R, χ ∈
Alg (B, k), such that λ ↼ Λ = ε and λ ↼ b = χ(b)λ, for all b ∈ B.

Moreover S ⊂ R is β-Frobenius, with β(s) :=
∑
χ(s1)s2, for all s ∈ S, and the

Frobenius homomorphism f(r) :=
∑
λ(r1)r2, for all r ∈ R. Dual bases of B ⊂ A

are given by {SΛ2,Λ1}.
The difficulty is that these descriptions of β, f , and the dual bases use 4A and

not 4R. To express them in terms of 4R, we use [R 85, Theorem 3]. That is,
A = R ? H has a projection π onto H , so that there exists γ : H → A, a Hopf
algebra map, satisfying πγ = idH . In our case, clearly γ(h) = 1 ? h; in particular,
γ(H) ⊂ B. Then Aco H = R is a coalgebra, via

4R(r) =
∑

r1 ⊗ r2 :=
∑

r1γπ(SAr2)⊗ r3,
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an H-module algebra via

h · r :=
∑

γ(h1)rγ(SHh2),

and an H-comodule algebra via∑
r−1 ⊗ r0 :=

∑
π(r1)⊗ r2.

The antipode on R is SRr :=
∑
γπ(r1)SAr2, with inverse SRr =

∑
(SAr2)γπ(r1),

where the antipode SA of A is bijective. See [R 85, p. 337].
First note that χ

H
= χ

A
◦ γ. Using R ∼= A = A/AB+, we get

λ(h · r) = λ(
∑
γ(h1)rγ(SHh2))

= λ(
∑
γ(h1)rε(γ(SHh2))) since γ(H) ⊆ B

= λ(γ(h)r)
= χ(γ(h))λ(r).

We can now check the formulas for β and f . Using 4R as above, for all s ∈ S
we have ∑

χ(s1)χH((s2)−1)(s
2)0 =

∑
χ(s1γπ(SAs2))χH(πs3)r4

=
∑

χ(s1)χ(γπ(SAs2))χγ(πs3)s4
=
∑

χ(s1)s2 = β(s),

and for all r ∈ R,∑
λ(r1)r2 =

∑
λ(r1γπ(SAr2))r3

=
∑

λ(r1ε(γπ(SAr2)))r3 as γ(H) ⊆ B
=

∑
λ(r1)r2 = f(r).

Finally, the fact that the dual bases {SAΛ2,Λ1} can be rewritten as the desired
elements in the statement of the theorem follows from the next lemma. We would
like to thank N. Andruskiewitsch for help in the computations in the lemma.

5.7. Lemma. In Aβ ⊗B A, we have, for all r ∈ R,

(a)
∑

SAr2 ⊗ r1 =
∑

(SAr5)γπ(r4)⊗ χ(γπ(r3))(γπ(SAr2))r1.
(b)

∑
SAr2 ⊗ r1 =

∑
SR(r2)0 ⊗ χH ((r2)−1)SH((r2)−2) · r1.

Proof. For (a), since γ(H) ⊆ B,∑
SAr2 ⊗ r1 =

∑
(SAr4)γπ(r3)γπ(SAr2)⊗ r1

=
∑

(SAr4)γπ(r3)⊗ β−1(γπ(SAr2))r1.

Since β−1(γπ(SAr2)) =
∑

χ−1(γπ(SAr3))γπ(SAr2), it follows that∑
SAr2 ⊗ r1 =

∑
(SAr5)γπ(r4)⊗ χγπ(r3)γ(π)(SAr2)r1.

(b) Since 4Rr =
∑
r1 ⊗ r2 =

∑
r1γπ(SAr2)⊗ r3, it follows that∑

r1 ⊗ (r2)−2 ⊗ (r2)−1 ⊗ (r2)0 =
∑

r1γπ(SAr2)⊗ π(r3)⊗ π(r4)⊗ r5.
Thus ∑

SR(r2)0 ⊗ χH ((r2)−1)SH ((r2)−2)) · r1
=
∑

(S
A
r6)γπ(r5)⊗ χγ(π(r4))SH

(π(r3)) · (r1γπ(S
A
r2))

=
∑

(S
A
r7)γπ(r6)⊗ χγ(πr5)γ(SH

(πr4))r1γπ(S
A
r2)γ(SHSH (πr3))

=
∑

(SAr5)γπ(r4)⊗ χ(γπ(r3))γπ(Sr2)r1.

This finishes the proof of the lemma.
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Note that the hypotheses of Theorem 5.6 are always satisfied if either A = R?H
is finite-dimensional or A is pointed. In either case, A is A-cleft by [Sch 92] and
thus has the normal basis property (see also Corollary 4.9).

As a corollary, we obtain analogues of the Larson-Sweedler results [LS] for ordi-
nary finite-dimensional Hopf algebras.

5.8. Corollary. Let R be a finite-dimensional Hopf algebra in H
HYD. Then R is a

Frobenius algebra, and
∫ r
R

is one-dimensional. If 0 6= t ∈ ∫ r
R
, then ε(t) 6= 0⇔ R is

a separable k-algebra.

Proof. Let A = R ? H , the biproduct as above; A is a Hopf algebra. Then π :
A → H , via r ? h 7→ ε(r)h, is a surjective Hopf algebra map with R = Aco H .
Thus π is split, via γ : H → A, h 7→ 1 ? h. The result is now a special case of
Corollary 4.11.

In fact Theorem 5.6 gives more information in this case: the Frobenius homo-
morphism f : R → k is given by f(r) =

∑
λ(r1)r2 = λ(r) (since f(r) ∈ k), and

dual bases for R (with respect to f) are given by

{SR((t2)0), χH ((t2)−1)SH ((t2)−2) · t1}.
We remark that it is quite complicated to prove directly the equations showing

that the given elements in Theorem 5.6 are dual bases. The direct proof, entirely
inside HHYD, is difficult even for the special case above when R is finite-dimensional
and S = k. If also H is finite-dimensional, then the computations simplify slightly
and we have an explicit formula for χH , as we see next.

5.9. Remark. Let H be finite-dimensional; we give an elementary proof of Corol-
lary 5.8 as well as an explicit formula for χ

H
. For then A = R ? H is a finite-

dimensional Hopf algebra, so it is a Frobenius algebra. Since A is free over R on
both sides, it follows that R is also Frobenius. If 0 6= t ∈ ∫ r

R
and u ∈ ∫ r

H
, then one

can check directly that w = t ? u ∈ ∫ r
A
, using that εR is an H-module map.

Now for any h ∈ H ,

αA(h)w = hw =
∑

(h1 · t) ? h2u =
∑

(h1 · t)αH(h2) ? u,

and thus αA(h)t =
∑

(h1 · t)αH(h2), where αA and αH are the right modular
functions for A and H , respectively. It follows that h · t = χH(h)t, where

χH = αA|H ∗ α−1
H ∈ H∗.

Since εR is an H-module map, it follows that εR(h · t) = εH(h)εR(t) = χ(h)εR(t).
Thus if εR(t) 6= 0, it follows that χ

H
= εH and so t ∈ RH . Using this fact, a twisted

version of the usual Maschke argument shows that
∑
t1⊗St2 centralizes R. To see

this, first note that since R is Frobenius,
∫ r
R

is one-dimensional, and thus (as for

usual Hopf algebras) t is also in
∫ l
R

since ε(t) 6= 0. Using (5.3), it then follows that

for all r ∈ R,

4Rt⊗ r =
∑
4R(ε(r1)t)⊗ r2 =

∑
4R(r1t)⊗ r2

=
∑

r1((r2)−1 · t1)⊗ (r2)0t
2 ⊗ r3.

(∗)

Also

ε(h)4(t) = 4(ε(h)t) = 4R(h · t) = h · 4(t) =
∑

h1 · t1 ⊗ h2 · t2,(∗∗)
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for all h ∈ H , since t ∈ RH . Now for any r ∈ R, we have∑
t1 ⊗ (St2)r =

∑
r1((r2)−1 · t1)⊗ S((r2)0t

2)r3 using (∗)
=

∑
r1((r2)−2 · t1)⊗ S((r2)−1 · t2)S((r2)0)r

3

=
∑

r1t1 ⊗ (St2)ε((r2)−1)S((r2)0)r
3 using (∗∗)

=
∑

r1t1 ⊗ (St2)(Sr2)r3

=
∑

rt1 ⊗ St2.
Since

∑
t1St2 = ε(t) 6= 0, it follows that R is separable.

We will see in Example 5.12 that if R is not separable, then χH can be non-trivial
and t 6∈ RH .

5.10. Example: Graded Hopf algebras. Let H = kG, where G is an abelian
group with a bicharacter 〈 | 〉 : G × G → k∗, and consider the category of kG-
comodules kGM. Recall that kGM is just the category of G-graded k-modules;
moreover it is contained in the Yetter-Drinfeld category H

HYD, for H = kG, since
any M ∈ kGM is also a left kG-module via g · mh = 〈g|h〉mh, for all g, h ∈ G
and mh ∈Mh, the h-component of M . Then for G-graded modules V and W, and
homogeneous elements v ∈ Vg and w ∈ Wh, the twist is given by

τ : V ⊗W →W ⊗ V, via v ⊗ w 7→ 〈g|h〉w ⊗ v.
For A and B G-graded algebras, A⊗B becomes an associative algebra via

(mA ⊗mB) ◦ (id⊗ τ ⊗ id) : A⊗B ⊗A⊗B → A⊗B.
R is a G-graded Hopf algebra if it is both a G-graded algebra and a G-graded

coalgebra, if 4R is multiplicative in kGM using the above multiplication in A⊗A,
and if the antipode S is a map in kGM. It will then follow that the biproduct
A = R ? kG is an ordinary Hopf algebra. If S ⊂ R are G-graded Hopf algebras,
diagram (5.4) becomes

S ⊂ S ? kG
π� kG

∩ ∩ ‖
R ⊂ R ? kG

π� kG

As a special case, we will consider extensions U(K) ⊂ U(L) of G-Lie coloralge-
bras in Section 6. We also consider an old example of Radford:

5.11. Radford’s example revisited. We reconsider the example of Radford
[R 85, Section 4]. We first rewrite it in the language of graded Hopf algebras,
which we believe simplifies the exposition, and then compute for it the data in
Theorem 5.6. Let G = Zn, and assume that the base field k contains a primitive
nth root of 1, say ω. Define

〈 | 〉 : Zn × Zn → k∗ by 〈 i | j 〉 = ωij ,

for all i, j ∈ Zn. Then 〈 | 〉 is a bicharacter on Zn, so as above it determines
a braiding on the category of Zn-graded modules: if M =

⊕
i∈Zn Mi and N =⊕

j∈Zn Nj , and mi ∈Mi, nj ∈ Nj , then

τ : M ⊗N → N ⊗M is given by mi ⊗ nj 7→ ωij(nj ⊗mi).
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Radford’s example (in the case m = 1) is defined to be the k-algebra

R = k〈u0, · · · , un−1 | uiuj = 0, i 6= j, and un+1
i = αiui, i = 0, · · · , n− 1〉

where the scalars αi ∈ k∗ will be determined below. Note that for all i, ei = α−1
i uni

is an idempotent and 1R =
n−1∑
i=0

ei. Thus as an algebra, R =
⊕n−1

i=0 Si, where Si =

k-span{uji | j = 1, · · · , n}, and so dimR = n2. If also α
−1/n
i = βi ∈ k, then

(βiui)
n = ei and so Si ∼= kZn, for all i. R becomes a Zn-graded algebra by defining

degree(ui) := i. That is, R =
⊕

i∈Zn Ri, with RiRj ⊆ Ri+j(mod n), where Ri =

k-span{ukj | kj ≡ i (mod n)}.
We next consider R as a graded coalgebra. Define

4ui =

n−1∑
l=0

ul ⊗ ui−l and ε(ui) = δ0,i,

for all i = 0, · · · , n − 1. Thus 4ui ∈
∑
l

Rl ⊗ Ri−l. We define 4(uki ) so that 4
becomes a graded-multiplicative map on R. Using induction, this means that

4(uki ) := (4ui)k (where we use the graded product on R⊗R)

=

n−1∑
l=0

ωl(i−l)(1+2+···+(k−1))ukl ⊗ uki−l

=

n−1∑
l=0

ωl(i−l)
k(k−1)

2 ukl ⊗ uki−l.

(∗)

For k = n + 1, (∗) must be compatible with the relations un+1
i = αiui in R.

Solving, we see that a necessary and sufficient condition on the αi for 4 to be
graded-multiplicative is that

αi =
(
ω
n(n+1)

2

)l(i−l)
αlαi−l,(∗∗)

for all i, l = 0, · · · , n−1. Now if n is odd, ω
n(n+1)

2 = 1 and if n is even, ω
n(n+1)

2 = −1.
Summarizing, we have:

Proposition. With generators and relations as above, R is a Zn-graded bialgebra
provided we can find αi ∈ k∗ such that

(1) αi = αlαi−l, all i, l, if n is odd, or
(2) αi = (−1)l(i−l)αlαi−l, all i, l if n is even.

Moreover R ∼= (kZn)(n) as an algebra if α
1/n
i ∈ k, for all i.

Example. If n is odd, condition (1) is satisfied by setting αi = ωi. If n is even
and k contains a primitive 4th root of 1, condition (2) is satisfied by setting α :=

(−1)
i(n−i)

2 ωi. We continue with these assumptions on k and the αi.

Now R becomes a Zn-graded Hopf algebra by defining SRui = α−1
n−iu

n−1
n−i ; note

that SRui ⊆ Ri since (n− 1)(n− i) ≡ i (mod n). SR is extended to R as a graded
(anti-) homomorphism; then for 1 ≤ k ≤ n

SR(uki ) = (αn−1)
−1ωi

2( k2 )un−kn−i .
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We check that SR ∗ id = ε on ui:

(SR ∗ id)(ui) =
n−1∑
l=0

(Sul)ui−l =
n−1∑
l=0

α−1
n−lu

n−1
n−l ui−l =

{
0 if i 6= 0
1 if i = 0

= δi,0 = ε(ui).

Radford shows that SR has order 2n. However in the biproduct A = R ? H =
R#kZn we have S2

A = id, and thus A is involutory.
Thus we have constructed a semisimple graded Hopf algebra which is not a usual

Hopf algebra, since 4R is not an algebra map in the usual sense. Such an example
is not possible if we use R = u(L), the restricted enveloping algebra of a restricted
Lie superalgebra L = L0 ⊕ L1, which is a Z2-graded Hopf algebra. For in that
case, it is shown in [Be] that u(L) is semisimple only if L1 = 0; that is, u(L) is an
ordinary Hopf algebra.

We now turn to the data in Corollary 5.4 and Theorem 5.6. First, it is easy to

see that t =
n∑
k=1

uk0 is a two-sided integral for R, since tuj = 0 = ε(uj) if j 6= 0, and

tu0 = t = ε(u0)t (since α0 = 1 implies un+1
0 = u0). Now ε(t) =

n∑
k=1

ε(u0)
k = n 6= 0

in k, as predicted since R is semisimple.
Next we compute the dual bases for R. In this case, the formula in Theorem 5.6

simplifies considerably. For, we may choose Λ to be any (right) integral in R; thus
let Λ = t as above. Since R is semisimple, χH = ε from Remark 5.9; thus the dual
bases after Corollary 5.8 become

{SR((t2)0), SH((t2)−1) · t′}.
More specifically,

4Rt =

n∑
k=1

4R(uk0) =
∑
k

n−1∑
l=0

ω−l
2( k2 )ukl ⊗ ukn−l.

Since S is the composition inverse of S, it is easy to see that

S(ukn−i) = αn−iω−i
2( k2 )un−ki .

For t2 = ukn−l ∈ R−lk, we have (t2)0 = t2 and (t2)−1 = −lk. Then the dual bases
for R are {

αn−iω−i
2(n2 ) + un−ki , uki

}
.

5.12. Example. Again we consider a Zn-graded Hopf algebra, with the same
bicharacter on Zn as in Example 5.11, and thus the same braiding. Let

R = k[x | xn = 0 ].

R is a Zn-graded algebra by setting Ri = kxi, and it is also a Zn-graded coalgebra
by setting 4Rx = x⊗ 1 + 1⊗ x and ε(x) = 0 and extending multiplicatively using
the twist map. Thus

4Rxk =
k∑
i=0

[
k

i

]
q

xi ⊗ xk−i,

where
[
k
i

]
q

is the q-binomial coefficient using q = ω. R is a Zn-graded Hopf algebra,

with
SR(xk) = (−1)kω( k2 )xk.
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It is easy to see that t = xn−1 is a left and right integral for R. As in Exam-
ple 5.10, Zn acts on rj ∈ Rj via i·rj = 〈i | j〉rj = ωijrj . Then i·t = ωi(n−1)t = ω−it.
Thus using Remark 5.9, we see that χH(i) = ω−i. In particular, χH 6= εH and
t 6∈ RG.

Using the comment after Corollary 5.8, we can find dual bases for R. Since

4Rt = 4Rxn−1 =

n−1∑
i=0

[
n− 1

i

]
q

xi ⊗ xn−1−i

and since xi ∈ Ri, the dual bases are{
SR(xn−1−i), χH(n− 1− i)SH(n− 1− i) ·

[
n− 1

i

]
ω

xi
}

for all i. Simplifying, the right-hand terms become[
n− 1

i

]
ω

ωi+1i+ 1 · xi =

[
n− 1

i

]
ω

ωi+1ω−(i+1)ixi =

[
n− 1

i

]
ω

ω−i
2+1xi.

Together with the above formulas for S and the action, this gives the dual bases:{
(−1)n−i−1ω−(n−i−1

2 )xn−i−1,

[
n− 1

i

]
ω

ω−i
2+1xi

}
.

We remark that in this case, A = R ? H is just the Taft algebra of dimension
n2 [Tf]. For, writing Zn = 〈g〉 multiplicatively, we have g · x = gxg−1 = ω−1x, or
xg = ωgx. In the Hopf algebra A, g ∈ G(A) and 4Ax = x⊗ g + 1⊗ x.

6. Lie superalgebras and Lie coloralgebras

We now apply our main theorem to recover the result of Bell and Farnsteiner
[BF] concerning when an extension U(K) ⊂ U(L) is β-Frobenius, where K ⊂ L are
Lie superalgebras. Moreover, with very little extra work, we generalize their result
to enveloping algebras of Lie coloralgebras. For basic facts on Lie coloralgebras, see
[Sche] or [BMPZ].

Thus as in Example 5.10, let H = kG, where G is an abelian group (written
multiplicatively) and 〈 | 〉 : G × G → k∗ is a symmetric bicharacter; that is, 〈 | 〉
is a bi-homomorphism and satisfies 〈g|h〉−1 = 〈h|g〉, for all g, h ∈ G. Then a
G-Lie coloralgebra with respect to 〈 | 〉 is a G-graded vector space L =

⊕
g∈G

Lg

with a G-graded k-linear binary operation [ , ] : L ⊗ L → L such that for any
x ∈ Lg, y ∈ Lh, z ∈ Ll,

(1) [x, y] = −〈g|h〉[y, x], and

(2) 〈l|g〉[x, [y, z]] + 〈h|l〉[z, [x, y]] + 〈g|h〉[y, [z, x]] = 0. These are the graded ver-

sions of anti-symmetry and the Jacobi identity, respectively. A universal enveloping
algebra U(L) of L exists [Sche], and a PBW theorem holds for U(L). However, to
describe it, we need more notation.

First, by the symmetry of 〈 | 〉, we have 〈g|g〉 = ±1 for each g ∈ G, and thus
G = G+ ∪G−, where

G+ = {g ∈ G | 〈g|g〉 = 1} and G− = {g ∈ G | 〈g|g〉 = −1}.
Then L = L+⊕L−, where L+ =

⊕
g∈G+

Lg and L− =
⊕

g∈G−
L−; note that [L+, L+] ⊆

L+ and that [L−, L−] ⊆ L+.
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For the special case of Lie superalgebras, in which G = Z2 = {0, 1}, the bichar-
acter is given by 〈g|h〉 = (−1)gh; note that here we write G under addition. Thus
G+ = {0} and G− = {1}, and so L+ = L0, which is an ordinary Lie algebra, and
L− = L1.

In general a G-homogeneous basis of L can be written as X = X+ ∪X−, where
X+ is a basis of L+ and X− is a basis of L−; in a total ordering of X , we assume
that y < x for all y ∈ X+ and x ∈ X−.

6.1. PBW Theorem ([BMPZ, p.85]). Assume that char k 6= 2, 3 and let X =
X+∪X− be a G-homogeneous basis of the G-Lie coloralgebra L. Then the universal
enveloping algebra U(L) has a G-homogeneous basis over k consisting of 1 and all
monomials of the form

yn1

i1
yn2

i2
· · · ynkik xj1xj2 · · ·xjl

where yi1 < yi2 < · · · < yik in X+ and xj1 < xj2 < · · · < xjl in X−, and ni ≥ 0.

For the rest of this section, assume that char k 6= 2, 3 and that K ⊂ L are G-Lie
coloralgebras. Since we wish to consider the situation when [U(L) : U(K)] < ∞,
it follows from the PBW theorem that we must assume that L+ ⊂ K ⊂ L, or
equivalently that K+ = L+, and that [L : K] <∞. We now follow the notation in
[BF], used there for Lie superalgebras.

Fix homogeneous elements x1, · · · , xn ∈ L− whose cosets {xi+K} form a basis of
L/K; note that [L : K] = n. Let F = {0, 1}n be the set of multi-indices of length n;
in particular let 1 = (1, 1, · · · , 1) and 0 = (0, · · · , 0). For any I = (i(1), · · · , i(n)) ∈
F , we define

xI = x
i(1)
1 · · ·xi(n)

n ;

thus x0 = 1 and x1 = x1x2 · · ·xn. Also define |I| :=
n∑
l=1

i(l), the weight of I; J ≤ I
if j(l) ≤ i(l) for all l = 1, · · · , n. By the PBW theorem, every element u of U(L)
can be written uniquely as

u =
∑
I∈F

uIx
I

where uI ∈ U(K). U(L) has a filtration via V (m) :=
m∑
i=0

U(K)(L−)i; note that

V (n) = U(L). V (m) is also a right U(K)-module, and again by PBW,

V (m) =
⊕
|I|≤m

U(K)xI =
⊕
|I|≤m

xIU(K).

We now put this setup into the format of Theorem 5.6. The Hopf algebra
in question is H = kG. H acts on U(L) as in Example 5.10: for any g ∈ G
and homogeneous element z ∈ U(L)h, g · z = 〈g|h〉z. Thus in the smash product
U(L)?H , (1?g)(z ?1) = (g ·z)?g = 〈g|h〉z ?g. We abbreviate this by gz = 〈g|h〉zg.
The diagram of 5.10 becomes

S = U(K) ↪→ B = U(K) ? kG
π→ kG

∩ ∩ ‖
R = U(L) ↪→ A = U(L) ? kG

π→ kG.

By Lemma 5.5, we know that A = A/AB+ ∼= R = R/RS+ as coalgebras. Moreover

dimk A = dimk R = 2n, and A ∼= R has k-basis {xI |I ∈ F}. Since the coalgebra
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structure of R is induced from that of R,4Rz = z ⊗ 1 + 1 ⊗ z for each z ∈ L, and
4R is graded-multiplicative, it follows that

4xI =
∑
J≤I

αI,JxJ ⊗ xI−J ,

for some scalars αI,J ∈ k. Now A
∗

has a basis {fI |I ∈ F} dual to the {xI}; that

is, fI(xJ ) = δI,J .

6.2. Proposition. The extension U(K) ? kG ⊂ U(L) ? kG is of (right) integral
type. The data λ and χ of Definition 1.10 may be constructed explicitly as follows:

(a) λ ∈ Ir(A?) is given by λ = f1.
(b) To define χ ∈ B?, we proceed as follows:
(i) Define ad : K → gl(L/K) ∼= gln(k) by ad(b)(y + K) := ad(b)(y) + K =

[b, y] +K, for b ∈ K, y ∈ L. Now let

χ(b) :=

 tr (ad(b)) for b ∈ K1,

0 for b ∈ Kg, g 6= 1.

χ is a morphism of Lie coloralgebras, and so extends to a homomorphism U(K)→k.
(ii) For g ∈ G, define

χ(g) := 〈g|g1g2 · · · gn〉,
where the xi ∈ Lgi , for gi ∈ L−, are the homogeneous basis of L/K fixed above.

Proof. (a) First, since U(L)?kG is pointed, the extension is of right integral type by

Corollary 4.9. The algebra structure of A
∗

is given by convolution, determined by

4 (given above) on A = R. Define f̃i ∈ R∗ by f̃i = fI , for I = (0, · · · , 1, 0, · · · , 0);

that is, with a 1 only in the ith position. One may check that f̃2
i = 0, for all i, and

that f̃if̃j = 〈gj |gi〉f̃j f̃i = f(i+j), for i < j, where I = (i + j) has a 1 in the ith and

jth position. It follows that

R
∗

= A
∗

= k〈f̃1, · · · , f̃n | f̃2
i = 0 for all i, f̃if̃j = 〈gj |gi〉f̃j f̃i for all i 6= j〉

with identity element ε. A
∗

is augmented via evaluation at 1; thus 〈f̃i, 1〉 = 0, for

all i. It is now straightforward to see that f1 is a right integral in A
∗
.

(b) We must check that for all b ∈ B and w ∈ W = A, λ(bw) = χ(b)λ(w).
First, since A is a left A-module, it suffices to check this for w such that w is a
basis element of A, that is, w = xI , for some I. Moreover, we may assume that
b ∈ U(K), for if b = z ? g, where z ∈ U(K) and g ∈ G, then gw ∈ kwg and thus

bw = (z ? g)w ∈ kzw.
If |I| < n, then bw ∈ V (m) =

⊕
|J|≤m

xJU(K) for m < n, and so λ(bw) ∈∑
|J|≤m

λ(xJU(K)). However if c ∈ U(K), then xJc = ε(c)xJ and thus λ(xJ ) = 0 by

(1), since λ = f1 and |J | < n. Thus λ(bw) = 0 = χ(b)λ(w) and there is nothing to
prove.

We may therefore assume that |I| = n and that w = x1x2 · · ·xn = x1. First
consider the case that a = g ∈ G. Then, assuming xi ∈ Lgi ,

gx1 · · ·xn = 〈g|g1〉x1gx2 · · ·xn = · · ·
= 〈g|g1〉〈g|g2〉 · · · 〈g|gn〉x1x2 · · ·xng
= 〈g|g1g2 · · · gn〉x1 · · ·xng.
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Thus
λ(gw) = 〈g|g1 · · · gn〉λ(x1 · · ·xng)

= 〈g|g1 · · · gn〉λ(w) = χ(g)1,

since g ∈ kG ⊂ U(K) ? kG and ε(g) = 1. This shows (ii).
Now assume that b ∈ K; in fact we may assume that b is homogeneous, say

b ∈ Kg. It follows that

bx1x2 · · ·xn = [b, x1]x2 · · ·xn + 〈g|g1〉x1[b, x2] · · ·xn
+ · · ·+ 〈g|g1 · · · gn−1〉x1 · · ·xn−1[b, xn] + 〈g|g1 · · · gn〉x1 · · ·xnb.

(∗)

This relation is easy to check using [b, xi] = bxi − 〈g|gi〉xib. Note that x1 · · ·xnb =
ε(b)x1 · · ·xn = 0 and thus we may ignore the last term. If b ∈ K−, then [b, xi] ∈
[L−, L−] ⊆ L+ = K+. Thus each term

x1 · · ·xi[b, xi+1] · · ·xn ∈ V (n− 1)

and so we see immediately that λ(bx1 · · ·xn) = 0. This agrees with our definition
of χ(b) = 0 for b /∈ K1.

We may therefore assume that b ∈ K+. Now consider the map φ : K → gl(L/K)
given by φ(b)(xi + K) = [b, xi] + K, and write [b, xi] =

∑
j

αijxj + K; that is,

φ(b) has matrix [αij ]. Now for any c ∈ K,x1 · · ·xicxi+2 · · ·xn ∈ V (n− 1), and

we know λ(V (n− 1)) = 0 by the above. Similarly, since x2
i ∈ K for all i, and

[xi, xj ] ∈ [L−, L−] ⊆ L+ = K+, any monomial m obtained from w by replacing
some xk by xi, k 6= i, satisfies m ≡ 0 mod V (n−2) ⊂ V (n−1), and thus λ(m) = 0.
Using these observations in (∗), we see that

λ(bx1 · · ·xn) = (α11 + 〈g|g1〉α22 + · · ·+ 〈g|g1 · · · gn−1〉αnn)λ(x1 · · ·xn).
Now if g 6= 1, then [b, xi] ∈ Lgi 6= Lgi , and so αii = 0, for all i = 1, · · · , n. It follows

that λ(bx1 · · ·xn) = 0 = χ(b)1. Thus we may assume g = 1. But now 〈g|h〉 = 1 for
all h ∈ G, by properties of the bicharacter, and so

λ(bx1 · · ·xn) = (α11 + α22 + · · ·+ αnn)λ(w) = χ(b)1.

Thus χ(b) = trace (ad(b)), proving (i).

We note that the remaining piece of data in Definition 1.10, namely Λ, does
not seem to be easy to compute explicitly. This is analogous to the difficulty of
computing the integral in a restricted enveloping algebra of a (usual) restricted Lie
algebra.

6.3. Corollary. Assume K ⊂ L are Lie coloralgebras such that K+ = L+ and
[L : K] < ∞. Then U(K) ⊂ U(L) is a β-Frobenius extension. The Frobenius

homomorphism f : U(L)→ U(K) is given by f(r) =
∑
f1(r1)r2, for all r ∈ U(L),

where 4U(L)(r) =
∑
r1⊗ r2 and f1 is the integral in U(L)

∗
, as in Proposition 6.2.

The automorphism β : U(K)→ U(K) is given as follows:

β(b) =

{
b+ tr(ad(b)) if b ∈ K1, for ad(b) ∈ gl(L/K)
〈g|g1 · · · gn〉b if b ∈ Kg, for g 6= 1,

where {xi +K}, i = 1, · · · , n, xi ∈ Lgi , form a basis for L over K.
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Proof. The first part of the corollary follows from Proposition 6.2 and our main
theorem, 3.1, since U(K)?kG ⊂ U(L)?kG is a (B,A,H,A) faithfully-flat bi-Galois
extension, with H = kG,A = U(L)?kG,B = U(K)?kG,R = U(L), and S = U(K).
Thus U(K) ⊂ U(L) is a β-Frobenius extension, with β(b) =

∑
χ(b−1)b0, where

χ is described as in 6.2. The Frobenius homomorphism is f = f1, the integral in

U(L)
∗
, since A ∼= R by Lemma 5.5. Note also that we may use4U(L)(r) in f rather

that 4A(r) by Theorem 5.6. Thus we need only check what β does to elements of
K.

For any b ∈ K, 4Rb = b ⊗ 1 + 1 ⊗ b. Passing to B = U(K) ? H , we have
4Ab =

∑
(b1?(b2)−1)⊗((b2)0?1). The kG-comodule structure on K gives b 7→ g⊗b

if b ∈ Kg, and thus 4Ab = b⊗ 1 + g ⊗ b. Thus:

(a) if b ∈ K1, β(b) = χ(b) · 1 + χ(1)b = b+ χ(b) · 1 = b+ tr(ad(b)) · 1, and
(b) if b ∈ Kg, for g 6= 1, then

β(b) = χ(b) · 1 + χ(g) · b = 0 + 〈g|g1 · · · gn〉b.
Thus β is as claimed.

6.4. Remark. (1) When K ⊂ L are Lie superalgebras, we recover Bell and Farn-
steiner’s result [BF]. For then G = Z2 = {0, 1}, and we see that our χ is exactly
their λ on K itself. For the automorphism β, note that when g = 1, 〈g|g1 · · · gn〉 =

〈1|1n〉 = (−1)n, where n = dim(L/K), and thus β(b) = (−1)nb if b ∈ Kg. When
g = 0, β(b) = b+ χ(b)1 for b ∈ Kg, as before. This agrees with the automorphism
α in [BF].

(2) If K is a Lie ideal of L, that is [K,L] ⊂ K, then one might expect as in
Example 1.11 that the extension U(K) ⊂ U(L) is actually Frobenius, and not just
β-Frobenius (for when K and L are ordinary Lie algebras,K a Lie ideal of L implies
that U(L) is a normal Hopf subalgebra of U(L)). However, this is not the case.

It is true that ad(b) = 0, for b ∈ K1, and thus β(b) = b, as in Corollary 6.3. But
if b ∈ Kg, for g 6= 1, then β(b) = 〈g|g1 · · · gn〉b as before; thus β(b) = b only if
〈g|g1 · · · gn〉 = 1. For the case of superalgebras, this happens ⇔ n is even.

The difficulty here is that U(K) ? kG is not, in general, normal in U(L) ? kG, for
U(K) is not a Hopf subalgebra of U(L) ? kG under the new comultiplication.

Note added in proof

M. Takeuchi has pointed out to us a more conceptual approach to Theorem 3.1.
He defines a β-H-Frobenius extension to be an extension B ⊂ A of right H-
comodule algebras, which is β-Frobenius with Frobenius map f , such that β and
f are H-colinear. For example B ⊂ A in our 3.1 is β-H-Frobenius, and U ⊂W in
our 1.14 is β-W -Frobenius. In the other direction he shows that if U ⊂W is a right
coideal subalgebra of the Hopf algebra W and if the extension is β-W -Frobenius,
then it is an extension of right integral type.

Takeuchi proves the following: let B ⊂ A be β-H-Frobenius, with R = AcoH

and S = BcoH , and assume the following functor is a category equivalence:

MS →MH
B

M 7→M ⊗S B.

Then S ⊂ R is a β-Frobenius extension.
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Theorem 3.1 is a consequence of this result. Takeuchi’s approach has been used
by Y. Doi in “A note on Frobenius extensions in Hopf algebras”, to appear in
Communications in Algebra.
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