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Abstrakt

We generalize, explain and simplify Langer’s results concerning Frobenius direct images of
line bundles on quadrics, describing explicitly the decompositions of higher Frobenius push-
forwards of arithmetically Cohen-Macaulay bundles into indecomposables, with an additional
emphasis on the case of characteristic two. These results are applied to check which Frobenius
push-forwards of the structure sheaf are tilting.

Słowa kluczowe

Frobenius morphism, Frobenius push-forward, Frobenius direct image, quadric, positive cha-
racteristic, Cohen-Macaulay module, spinor bundle

Dziedzina pracy (kody wg programu Socrates-Erasmus)

11.1 Matematyka

Klasyfikacja tematyczna

14 Algebraic geometry
14F (Co)homology theory
14F05 Sheaves, derived categories of sheaves and related constructions

14 Algebraic geometry
14F (Co)homology theory
14F17 Vanishing theorems

Tytuł pracy w języku angielskim

Frobenius Push-Forwards on Quadrics





Introduction

In [12], A. Langer computed the Frobenius push-forwards of line bundles on quadrics. Ho-
wever, the computations worked only for odd characteristic and explicit formulas for the
push-forward were given only for the first Frobenius direct image. In this paper, we deter-
mine the push-forwards of line and spinor bundles on smooth quadrics in arbitrary positive
characteristic. But mostly, we explain and simplify the aforementioned paper, reproving ne-
arly all of the statements.
To illustrate our method, we briefly show how it can be used to determine Frobenius

push-forwards of line bundles on a projective space P
N (this method is used in [17], Lemma

2.1). If the absolute Frobenius morphism on P
N is denoted by F, its s-th composition by Fs,

the push-forward in question can be written as

F
s
∗(O(a)) =

⊕

t∈Z

O(t)α
s(t,a)

for some integers αs(t, a) (the existence of such a decomposition follows directly from Hor-
rocks’ splitting criterion and the projection formula).
To compute αs(t, a), let us write the projection formula using the bundle Ω1

PN
(−b):

F
s
∗(F

s∗Ω1
PN
(a− bq)) = Fs∗(O(a)) ⊗Ω

1
PN
(−b).

Comparing dimensions of the first cohomology groups we get

h1(Fs∗Ω1
PN
(a− bq)) =

∑

t∈Z

αs(t, a) · h1(Ω1
PN
(t− b)).

But h1(Ω1
PN
(t− b)) = δt,b, so the right hand side is just α

s(b, a).
On the other hand, the dimension of H1(PN ,Fs∗Ω1

PN
(t)) can be computed as

dim


k[x0, . . . , xN ]/(xq0, . . . , x

q
N )︸ ︷︷ ︸

D(s)




t

=
N+1∑

j=0

(−1)j
(
N + 1

j

)(
N + t− jq

N

)

(see Lemma 3.1). Hence we obtain

αs(t, a) = dimD
(s)
a−tq =

N+1∑

j=0

(−1)j
(
N + 1

j

)(
N + a− tq − jq

N

)
.

On quadrics, the situation is quite similar. It is well known that any ACM (arithmetically
Cohen-Macaulay, i.e., with vanishing hi(E(t)) for 0 < i < n and all t) bundle on a smooth n-
dimensional quadric decomposes into a direct sum of line bundles and twisted spinor bundles.
We use the above method to compute the coefficients in this decomposition. The result (see
Theorem 1) is that

F
s
∗(O(a)) =

⊕

t∈Z

O(t)β
s(t,a) ⊕

⊕

t∈Z

S(t)γ
s(t,a),

where S is the spinor bundle or the sum of the two half-spin bundles on Qn (see Section 1.3)
and the coefficients β and γ are given by the formulas

βs(t, a) = dimC
(s)
a−tq ,

γs(t, a) =
1

2⌊n/2⌋+1
dimM

(s)
a−(t−1)q ,
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where C(s), and M (s) are certain graded modules defined in Section 2. The decomposition
of Fs∗(S(a)) is also given. This description allows us to give explicit vanishing criteria for
these coefficients (Theorems 2 and 3), from which we easily derive corollaries concerning the
push-forwards being tilting (Theorem 4). The last section of the paper contains a comment
on possible extension of these results to singular quadrics.
In particular, for p = 2 the formulas become easier and we can be a little bit more explicit.

We extend the main theorems of [12] to this case.
The paper [12] was inspired by Samokhin’s paper [18]. Frobenius direct images of the

structure sheaf are of particular interest because they can produce tilting bundles and allow
us to study D-affinity in positive characteristic ([18], [12], [19]).

Acknowledgements. I would like to thank Prof. Adrian Langer for giving me the idea
for writing this paper and for many helpful clues.
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1. Preliminaries

1.1. The Frobenius morphism and some projection formulas

Let X be a projective variety over an algebraically closed field k of characteristic p > 0. The
absolute Frobenius morphism F : X → X is the mapping of schemes acting as identity on
the underlying topological space and as the p-th power map on the structure sheaf. It is not
a map of k-schemes. Denote by Fs the s-th composition of the Frobenius morphism and set
q = ps once and for all.
Let F be a locally free sheaf of rank r on X. If X is smooth then F is flat and the sheaf

Fs∗F is also locally free, of rank rq
dimX . The sheaf Fs∗F is locally free of rank r, and it is glued

as a bundle using the cocycle obtained by raising the coefficients of the transition matrices
defining F to the q-th power. If F is a line bundle, we infer from the above description of
its pull-back that Fs∗F ≃ F⊗q.
Let G be a locally free sheaf. Since the Frobenius is an affine morphism, so that Hi(X,F ) =

Hi(X,F∗F ), we immediately deduce from the projection formula F
s
∗(F ⊗F

s∗G ) ≃ Fs∗(F )⊗G

the following formulas concerning cohomology:

H
i(X,F ⊗ Fs∗G ) ≃ Hi(X, (Fs∗F ) ⊗ G ), (1.1)

H
i(X,F (tq)) ≃ Hi(X, (Fs∗F )(t)), (1.2)

H
i(X, (Fs∗G )(a+ tq)) ≃ Hi(X,F∗(O(a)) ⊗ G (t)). (1.3)

Remark. These isomorphisms are not k-linear, but the dimensions over k on both sides agree.

Definition 1.1. A coherent sheaf F on a projective variety X with a very ample line bundle
L is called arithmetically Cohen-Macaulay (ACM ) if

⊕

t∈Z

H
i(X,F ⊗L

⊗t) = 0 for 0 < i < dimX.

Formula (1.2) shows that the Frobenius push-forward of any coherent ACM sheaf is ACM.

1.2. Quadrics

Let n be a positive integer. The smooth n-dimensional quadric Qn (or simply Q) is the
hypersurface in P

N , N = n+ 1 defined by the equation Qn = 0 where

Qn = x
2
0 + x1x2 + . . .+ xnxn+1

if n is odd and
Qn = x0x1 + . . .+ xnxn+1

if n is even. If char k 6= 2 then we can take a linear change of coordinates on P
N such that

the quadric Qn is given by the simpler equation x
2
0 + . . .+ x

2
N = 0.

For completeness, let us also state here that by the adjunction formula Qn is a Fano
variety with the canonical bundle ωX = OQ(−n) and Hilbert polynomial qt := χ(OQ(t))
equal to

qt =

(
N + t

N

)
−

(
N + t− 2

N

)
.

Remark. To simplify the calculations, we will assume that n > 2. This is not a real restriction
since Q1 ≃ P

1 (Q1 being the image of the Veronese embedding of P
1 in P

2) and Q2 ≃ P
1×P

1

(Q2 being the image of the Segre embedding of P
1×P

1 in P
3) and everything we would want

to say in these cases could be easily derived from what has been said in the example in the
Introduction.
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1.3. Spinor bundles

Now we shall recall the basic facts about the so-called spinor bundles on smooth quadrics. On
Qn, we have a single spinor bundle Σ if n is odd and two spinor bundles Σ+, Σ− (sometimes
called half-spin) if n is even. There are many equivalent ways of introducing them present in
the literature:

• Spin representations. a smooth quadric is a homogeneous space for the group SO(n+
2), thus also for Spin(n+2). If the corresponding parabolic subgroup is denoted by P ,
we thus have a principal P -bundleP over P . The the Lie algebra of the Levi quotient L
of P is o(n). Then the spinor bundles can be defined as associated bundles: Σ =P×P V ,
Σ± =P ×P V± where V is the spin and V± are the half-spin representations of o(n).

References: [20], [12], Section 2.2.

• Pull-backs of the tautological bundle by explicit maps from Qn to the Grassmannian
G(2⌊n/2⌋+1, 2 · 2⌊n/2⌋+1).

References: [16].

• Matrix factorizations. A matrix factorization of a polynomial f with f(0, . . . , 0) = 0
is a pair (ϕ,ψ) of square matrices of the same size such that ϕ · ψ = f · id = ψ · ϕ. It
was first observed by Eisenbud in [5] that given an appropriate notion of a morphism,
the matrix factorizations of f form a category that is equivalent to the stable category
of maximal Cohen-Macaulay modules over the local ring Okn,0/(f) of the hypersurface
defined by f = 0. The module corresponding to (ϕ,ψ) is Coker ϕ where ϕ is regarded
as a map Om → Om, m being the size of both matrices; it is an O/(f)–module.

Using this technique, Eisenbud, Buchweitz and Herzog in [4] then classified all inde-
composable graded maximal Cohen-Macaulay modules over k[x0, . . . , xN ]/(Qn). Their
description remains valid over any field k. It turns out that apart from the free MCMs,
there is (up to shift) only one indecomposable module M if n is odd and there are
two of them, M+ and M− if n is even. The corresponding matrix factorizations can be
defined inductively as follows (see [12], Section 2.2):

ϕ−1 = (x0) = ψ−1, ϕ0 = (x0), ψ0 = (x1),

ϕn =

(
ϕn−2 xn · id

xn+1 · id −ψn−2

)
, ψn =

(
ψn−2 xn · id

xn+1 · id −ϕn−2

)
.

To define the spinor bundles using these matrix factorizations, we consider ϕn and
ψn as maps between locally free sheaves on P

N , i.e., ϕn, ψn : OPN (−2)
2⌊(n+1)/2⌋ →

OPN (−1)
2⌊(n+1)/2⌋ . Then for odd n we can define Σ to be the cokernel of ϕn = ψn, which

is supported on Qn. For even n we define Σ+ to be the cokernel of ϕn and Σ− to be
the cokernel of ψn.

References: [21], [11] and [1].

As mentioned above, we have the following exact sequences of sheaves on P
N :

0→ OPN (−2)
2⌊(n+1)/2⌋ ϕn=ψn

−−−−→ OPN (−1)
2⌊(n+1)/2⌋ → i∗Σ→ 0

7



if n is odd and

0→ OPN (−2)
2⌊(n+1)/2⌋ ϕn

−−→ OPN (−1)
2⌊(n+1)/2⌋ → i∗Σ+ → 0,

0→ OPN (−2)
2⌊(n+1)/2⌋ ψn

−−→ OPN (−1)
2⌊(n+1)/2⌋ → i∗Σ− → 0

if n is even. It follows that the spinor bundles are arithmetically Cohen-Macaulay. In fact, as
implied by the Eisenbud-Buchweitz-Herzog theorem, they provide a full description of ACM
bundles on Qn:

Theorem. Any coherent ACM sheaf F on a smooth quadric Qn is a direct sum of line
bundles and twisted spinor bundles.

In what follows, we shall use the bundle S defined by S = Σ for n odd and S = Σ+ ⊕Σ−
for n even. We thus have the exact sequence of sheaves on P

N :

0→ OPN (−2)
2⌊n/2⌋+1 Φ−→ OPN (−1)

2⌊n/2⌋+1 → i∗S→ 0, (1.4)

where (Φn,Ψn) is the matrix factorization defined by Φn = ϕn, Ψn = ψn if n is odd and
Φn = ϕn⊕ψn, Ψn = ψn⊕ϕn if n is even. The exact sequence (1.4) allows us to compute the
Hilbert polynomial st := χ(S(t)) of S:

st = 2
⌊n/2⌋+1

(
n+ t− 1

n

)
.

1.4. Structure of the derived category

The structure of the derived category of a smooth quadric was first studied by Kapranov ([10],
[9]) in the case of characteristic zero, but it can also be easily seen in arbitrary characteristic
from the aforementioned theorem of Buchweitz-Eisenbud-Herzog [4] together with Orlov’s
theorem on Gorenstein varieties.
Indeed, for a smooth quadric Qn, Theorem 2.12 from [15] provides a semi-orthogonal

decomposition
Db(Qn) = 〈OQn(−n), . . . ,OQn ,D

gr
Sg(R)〉

where R = k[x0, . . . , xN ]/(Qn) and D
gr
Sg(R) is the „graded category of singularities”, which

coincides with the category MCMgr(R) (the stable category of graded maximal Cohen-
Macaulay modules) by [3]. The description of MCMgr(R) follows from the Buchweitz-
Eisenbud-Herzog theorem [4] – this category is generated by the direct summands of Γ∗(S).
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2. Some graded algebras and modules

As we shall see in Section 3, the Euler sequence allows us to translate dimensions of sheaf
cohomology groups into dimensions of gradings of certain 0-dimensional graded modules. In
this section we develop technical results which let us compute the decompositions in Section
4.

2.1. Definitions

Let Q be the equation of the n-dimensional quadric as in Section 1.2. Recall that q = ps and
N = n+ 1. We set

S = k[x0, . . . , xN ],

R = S/(Q),

A(s) = R/(xq0 + x
q
1, x

q
2, . . . , x

q
N ),

B(s) = A/(xq0) = R/(x
q
0, x

q
1, . . . , x

q
N ),

C(s) = A/(0 : xq0),

D(s) = S/(xq0, . . . , x
q
N ),

M (s) = (0 :A(s) x
q
0)A
(s)/(xq0)A

(s).

Remark. The strange generator xq0 + x
q
1 in the definition of A

(s) is used to make A(s) zero-
dimensional (or to ensure that (xq0 + x

q
1, x

q
2, . . . , x

q
N ) is an R-regular sequence). It is easy to

check that the ring S/(Q,xq1, . . . , x
q
N ) is one-dimensional when n is even, i.e., Q = x0x1 +

x2x3+ . . . and p = 2. This is due to the fact that x
2
0 does not appear in Q. In any other case,

we can assume that A = S/(Q,xq1, . . . , x
q
N ) as in [12].

By Section 1.3, we can write the module Γ∗(S) as the cokernel of a map Φ : S[−2]
2⌊n/2⌋+1 →

S[−1]2
⌊n/2⌋+1

(Φ is a 2⌊n/2⌋+1 × 2⌊n/2⌋+1 matrix of linear forms). The following definitions
pertain to spinor bundles and will be needed in Section 4:

Z = Γ∗(S) = Coker(Φ),

Ã(s) = Z/(xq0 + x
q
1, x

q
2, . . . , x

q
N )Z,

B̃(s) = Z/(xq0, x
q
1, . . . , x

q
N )Z,

C̃(s) = Ã/(0 : xq0),

M̃ (s) = (0 :
Ã(s)

xq0)Ã
(s)/(xq0)Ã

(s).

Recall that Z is a maximal Cohen-Macaulay R-module and that x1, . . . , xN is a Z-regular
sequence when Z is considered as an S-module. Moreover, dimZd = 2

⌊n/2⌋+1
(n+d−1

n

)
= sd.

2.2. Dividing MCMs by q-th powers

Recall that in the example in the Introduction, dimD
(s)
d is the number of monomials in

x0, . . . , xN of degree d with all exponents < q, so by the inclusion-exclusion principle we
obtain the combinatorial formula (which we already used there):

dimD
(s)
d =

N+1∑

i=0

(−1)j
(
N + 1

j

)(
N + d− jq

N

)
. (2.1)
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In our study of spinor bundles, we shall need a more general statement. The following lemma
explains this combinatorial formula in more algebraic terms.

Lemma 2.1. Let M be a graded module over a graded algebra R generated by R1 over a field
k = R0. Let (x1, . . . , xk) ∈ Rq be a regular sequence on M and I = (x1, . . . , xk). Then

dimk (M/IM)d =
k∑

j=0

(−1)j
(
k

j

)
dimkMd−jq.

Proof. We construct the Koszul complex C∗ = M ⊗ K(x1, . . . , xk). By [14], Theorem 43 (or
[6], Corollary 17.5) we have Hi(C∗) = 0 for i > 0 and H0(C∗) =M/IM . Hence

dimk(M/IM)d =
∑

i0

(−1)j dimk(Cj)d−jq,

since the maps in the Koszul complex have degree q. But Cj = Λ
N+1−jRN+1 ⊗M ≃ M(

k
j),

which finishes the proof.

Note also that by [6], Corollary 17.8, if (x0, . . . , xN ) is an M -regular sequence then so is
(xq0, . . . , x

q
N ). We deduce (2.1) once again, together with

dimA
(s)
d =

N∑

j=0

(−1)j
(
N

j

)
qd−jq, (2.2)

dim Ã
(s)
d =

N∑

j=0

(−1)j
(
N

j

)
sd−jq. (2.3)

2.3. Dimensions of B
(s)
d and B̃

(s)
d

We have the following two short exact sequences of graded modules:

0→ C(s)[−q]
xq0−→ A(s) → B(s) → 0, (2.4)

0→ C̃(s)[−q]
xq0−→ Ã(s) → B̃(s) → 0, (2.5)

Seeing that dimM
(s)
d = dimB

(s)
d − dimC

(s)
d , we obtain dimB

(s)
d = dimA

(s)
d + dimM

(s)
d−q −

dimB
(s)
d−q (and the same with the tildes). This gives the formulas

dimB
(s)
d =

∑

j0

(−1)j dimA
(s)
d−jq +

∑

j0

(−1)j dimM
(s)
d−(j+1)q , (2.6)

dim B̃
(s)
d =

∑

j0

(−1)j dim Ã
(s)
d−jq +

∑

j0

(−1)j dim M̃
(s)
d−(j+1)q . (2.7)

10



3. The Frobenius morphism
and the sheaf of differentials

Now let us relate the commutative algebra from Section 2 to some cohomology groups which
will be used in Section 4. The following standard result can be found, e.g., in [2] (see Theorem
3).

Lemma 3.1. Let H ⊆ P
N (N > 2) be the hypersurface given by f = 0. Then there is an

isomorphism of graded S/(f)-modules:

⊕

t∈Z

H
1(H, (Fs∗(Ω1

PN
|H))(t)) ≃ D

(s)/(f)

For s = 0 we obtain
h1(Ω1

PN
|H(t)) = δt,0 (3.1)

When Q is our quadric and S the spinor bundle (or the sum of the two half-spin bundles)
as defined in Section 1.3, we obtain the following lemma:

Lemma 3.2. We have the following isomorphism of R = S/(Q)-modules:

⊕

t∈Z

H
1(S⊗ Fs∗Ω1

PN
|Q(t)) ≃ B̃

(s).

Proof. Let us recall the exact sequence (1.4):

0→ OPN (−2)
2⌊n/2⌋+1 Φ−→ OPN (−1)

2⌊n/2⌋+1 → S→ 0.

Tensoring it by Fs∗Ω1
PN
(t) we get the following long cohomology exact sequence:

. . .→H1(PN ,Fs∗Ω1
PN
(t− 2))2

⌊n/2⌋+1 Φ
−→ H1(PN ,Fs∗Ω1

PN
(t− 1))2

⌊n/2⌋+1

→H1(Q,S⊗ Fs∗Ω1
PN
|Q(t))→ H

2(PN ,Fs∗Ω1
PN
(t− 2))2

⌊n/2⌋+1
.

Applying Fs∗(−)⊗OPN (d) to the Euler sequence and writing the cohomology exact sequence,
we see that the last group in the above sequence vanishes for N > 2. Hence H1(Q,S ⊗
Fs∗Ω1

PN
(t)) is the cokernel of the map

H
1(PN ,Fs∗Ω1

PN
(t− 2))2

⌊n/2⌋+1 Φ
−→ H1(PN ,Fs∗Ω1

PN
(t− 1))2

⌊n/2⌋+1
.

Using our description of these groups from the previous lemma we see that it is just the t-th
graded piece of the graded module B̃(s).

Clearly, this lemma works (with the definitions slightly adjusted) for an arbitrary ACM
sheaf over a hypersurface (since ACM sheaves are in this case given by matrix factorizations).
As a corollary, for s = 0 we obtain the following formula (see [12], Proposition 4.1):

h1(S⊗ Ω1
PN
|Q(t)) = 2

⌊n/2⌋+1 · δt,1. (3.2)
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4. Decompositions of Fs∗(O(a)) and F
s
∗(S(a))

Let βs(t, a), γs(t, a), δs(t, a) and εs(t, a) be defined by the decompositions

F
s
∗(O(a)) =

⊕

t∈Z

O(t)β
s(t,a) ⊕

⊕

t∈Z

S(t)γ
s(t,a),

F
s
∗(S(a)) =

⊕

t∈Z

O(t)δ
s(t,a) ⊕

⊕

t∈Z

S(t)ε
s(t,a),

where S is the spinor bundle or the sum of the two half-spin bundles as defined in 1.3.

1 By the projection formula ((1.2) for F = O(a) or S(a) and t = b) we obtain the following
equalities of Hilbert polynomials:

qa+bq =
∑

t∈Z

βs(t, a) · qt+b +
∑

t∈Z

γs(t, a) · st+b, (4.1)

sa+bq =
∑

t∈Z

δs(t, a) · qt+b +
∑

t∈Z

εs(t, a) · st+b. (4.2)

2 Let ψ = Ω1
PN
|Q. By the projection formula ((1.3) for G = ψ, i = 1 and t = −b) we get

H
1(Qn, (F

s∗ψ)(a − bq)) = H1(Qn,F
s
∗(O(a)) ⊗ ψ(−b)).

By Lemma 3.1 we then have

dimB
(s)
a−bq = dim (k[x0, . . . , xN ]/(Q,x

q
0, . . . , x

q
N ))a−bq = h

1(Fs∗(O(a)) ⊗ ψ(−b))

which can be rewritten as

dimB
(s)
a−bq =

∑

t∈Z

βs(t, a) · h1(ψ(t− b)) +
∑

t∈Z

γs(t, a) · h1(ψ ⊗ S(t− b)).

But h1(ψ(t−b)) = δt,b by (3.1) and h
1(ψ⊗S(t−b)) = 2⌊n/2⌋+1 ·δt,b+1 by (3.2), so this reduces

to dimB
(s)
a−bq = β

s(b, a) + 2⌊n/2⌋+1 · γs(b+ 1, a). Equivalently, we have

βs(t, a) = dimB
(s)
a−tq − 2

⌊n/2⌋+1 · γs(t+ 1, a). (4.3)

Similarly, using Lemma 3.2 and (3.1) one obtains

δs(t, a) = dim B̃
(s)
a−tq − 2

⌊n/2⌋+1 · εs(t+ 1, a). (4.4)

3 We put (4.3) into (4.1), thus obtaining

qa+bq =
∑

t∈Z

(dimB
(s)
a−tq − 2

⌊n/2⌋+1 · γs(t+ 1, a))qt+b +
∑

t∈Z

γs(t, a) · st+b

=
∑

t∈Z

dim(B
(s)
a−tq)qt+b +

∑

t∈Z

γs(t, a)(st+b − 2
⌊n/2⌋+1 · qt+b−1)

=
∑

t∈Z

dim(B
(s)
a−tq)qt+b − 2

⌊n/2⌋+1
∑

t∈Z

γs(t, a)

(
n+ t− 2 + b

n

)
.

We rewrite this as

∑

t∈Z

dim(B
(s)
a−tq)qb+t − qa+bq = 2

⌊n/2⌋+1
∑

t∈Z

γs(t+ 2, a)

(
n+ t+ b

n

)
. (4.5)

12



Similarly, we get

∑

t∈Z

dim(B̃
(s)
a−tq)qb+t − sa+bq = 2

⌊n/2⌋+1
∑

t∈Z

εs(t+ 2, a)

(
n+ t+ b

n

)
. (4.6)

We treat both sides as polynomials in b. Our goal is to rewrite the left hand side as a
combination of

(n+ti+b
n

)
for some ti (i = 0, . . . , n) and conclude that this determines the

numbers γs(t + 2, a). This will follow from the fact that for any pairwise distinct numbers
t0, . . . , tn the polynomials

(ti+x
n

)
are linearly independent, and γs(t, a), εs(t, a) do not vanish

only when t = ti for some i ∈ {0, . . . , n}.

4 Now we use the formulas (2.6) and (2.7) for dimB
(s)
d and dim B̃

(s)
d to expand the left

hand sides of (4.5) and (4.6), first calculating the sums

∑

t∈Z

dim(B
(s)
a−tq)qb+t =

∑

t∈Z

∑

j0

(−1)j dim(A
(s)
a−tq−jq)qb+t

︸ ︷︷ ︸
S1

+
∑

t∈Z

∑

j0

(−1)j dim(M
(s)
a−q−tq−jq)qb+t

︸ ︷︷ ︸
S2

,

∑

t∈Z

dim(B̃
(s)
a−tq)qb+t =

∑

t∈Z

∑

j0

(−1)j dim(Ã
(s)
a−tq−jq)qb+t

︸ ︷︷ ︸
S′1

+
∑

t∈Z

∑

j0

(−1)j dim(M̃
(s)
a−q−tq−jq)qb+t

︸ ︷︷ ︸
S′2

.

Lemma 4.1. Let α(t) =
∑
j0(−1)

j
(n+1
j

)
f(t− jq). Then

f(a+ bq) =
∑

t∈Z

α(a− tq)

(
n+ t+ b

n

)
.

Proof. Expanding the right hand side gives
∑
u∈Z

f(a+ uq)
(∑

i+j=b−u(−1)
j
(n+1
j

)(n+i
n

))
and

the nested sum is equal to the coefficient of zb−u in (1− z)n+1 · (1− z)−n−1 = 1. So it is just
δb,u.

Lemma 4.2. The following identities hold

qa+bq =
∑

t∈Z

dimA
(s)
a−tq

(
n+ b+ t

n

)
, sa+bq =

∑

t∈Z

dim Ã
(s)
a−tq

(
n+ b+ t

n

)
.

Proof. This follows immediately from Lemma 4.1 for f(t) = qt and f(t) = st and from the
formulas (2.2), (2.3) for the dimensions of Ad and Ãd.

Lemma 4.3. Let α(t) =
∑
j0(−1)

jf(t− jq). Then

∑

t∈Z

α(a− tq)qb+t =
∑

t∈Z

f(a− tq)

(
n+ t+ b

n

)
.

Proof. We expand the left hand side

LHS =
∑

t∈Z

∑

j0

(−1)jf(a− tq − jq)qb+t =
∑

u∈Z

f(a+ qu)


 ∑

i¬b+u

(−1)b+u−iqi


 .

and observe that
∑
i¬x(−1)

x−iqi =
(n+x
n

)
, which yields the result.
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Now by Lemma 4.2, S1 and S
′
1 cancel out with qa+bq and sa+bq on the left hand sides of

(4.5) and (4.6), respectively. Hence Lemma 4.3 shows that

S2 =
∑

t∈Z

dimM
(s)
a−(t+1)q

(
n+ t+ b

n

)
, S′2 =

∑

t∈Z

dim M̃
(s)
a−(t+1)q

(
n+ t+ b

n

)
.

Putting these into (4.5) and (4.6) (and replacing t by t− 2) yields

∑

t∈Z

(
1

2⌊n/2⌋+1
dimM

(s)
a−(t−1)q − γ

s(t, a)

)(
n+ t− 2 + b

n

)
= 0, (4.7)

∑

t∈Z

(
1

2⌊n/2⌋+1
dim M̃

(s)
a−(t−1)q − ε

s(t, a)

)(
n+ t− 2 + b

n

)
= 0. (4.8)

5 We want to conclude from (4.7) and (4.8) that

γs(t, a) =
1

2⌊n/2⌋+1
dimM

(s)
a−(t−1)q and εs(t, a) =

1

2⌊n/2⌋+1
dim M̃

(s)
a−(t−1)q ,

which with the formulas (4.3) and (4.4) immediately gives

βs(t, a) = dimC
(s)
a−tq and δs(t, a) = dim C̃

(s)
a−tq.

Observe that by the formula (4.3), γs(t+1, a) 6= 0 implies B
(s)
a−tq 6= 0. Note that B

(s)
d 6= 0

only for 0 ¬ d ¬ (q − 1)(n + 1) and K
(s)
d 6= 0 only for 1 ¬ d ¬ (q − 1)(n + 1) + 1 (since

D
(s)
d 6= 0 if and only if 0 ¬ d ¬ (q − 1)(n + 1)). Therefore if

1
2⌊n/2⌋+1

dimM
(s)
a−(t−1)q − γ

s(t, a)

is non-zero, then 0 ¬ a− (t− 1)q ¬ (n+ 1)(q − 1). This can happen for at most n+1 values
of t, so (4.7) is an equation of linear dependence of the polynomials

(ti+x
n

)
for n+ 1 distinct

values ti (similarly with (4.8)). As they are clearly linearly independent (by the Vandermonde
determinant), we conclude that all the coefficients are zero. This yields

Theorem 1. The coefficients βs(t, a) and γs(t, a) (resp. δs(t, a) and εs(t, a)) of O(t) and
S(t) in Fs∗(O(a)) (resp. F

s
∗(S(a))) are given by the formulas

βs(t, a) = dimC
(s)
a−tq, γs(t, a) =

1

2⌊n/2⌋+1
dimM

(s)
a−(t−1)q .

δs(t, a) = dim C̃
(s)
a−tq, εs(t, a) =

1

2⌊n/2⌋+1
dim M̃

(s)
a−(t−1)q .

Remark. Since h1(S(t)) = 0 and h1(S ⊗ S(t)) = δt,0 for n odd and 2 · δt,0 for n even ([12],
Lemma 2.3), by the projection formula ((1.1) with F = O(d), G = S and i = 1) we obtain

dimM
(s)
d = 2

⌈n/2⌉h1(Fs∗S(d− q)) and dim M̃
(s)
d = 2

⌈n/2⌉h1(S⊗ Fs∗S(d− q)).
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5. Vanishing and non-vanishing

5.1. Symmetry

For smooth complete varieties X, Y and a proper morphism f : X → Y , the relative Serre
duality ([7]) can be expressed in the following form (e.g. [8], 3.4, formula 3.20):

Rf∗D(E) = D(Rf∗E),

where D(E) = E∨ ⊗ ω. Now since the Frobenius morphism is an affine morphism, the higher
direct images vanish, and we get

Proposition. Let X be a smooth projective variety over an algebraically closed field k of
characteristic p > 0 and let F : X → X be the absolute Frobenius morphism. Then for any
vector bundle E on X we have

F∗(E
∨ ⊗ ωX) = (F∗E)

∨ ⊗ ωX .

On a smooth n-dimensional quadric Qn, we have ωQn = OQn(−n) and S
∨ = S(1). This

shows that, in the notation of Section 4,

βs(t, a) = βs(−t− n,−a− n), δs(t, a) = δs(−t− n,−a+ 1− n),

γs(t, a) = γs(−t+ 1− n,−a− n), εs(t, a) = εs(−t+ 1− n,−a+ 1− n).

Setting t = 0 and using Theorem 1 we deduce

Proposition 5.1.

C
(s)
d = C

(s)
n(q−1)−d, C̃

(s)
d = C̃

(s)
n(q−1)+1−d,

M
(s)
d =M

(s)
n(q−1)+q−d, M̃

(s)
d = M̃

(s)
n(q−1)+q+1−d.

We also need the symmetry of A(s) and Ã(s):

Proposition 5.2.

A
(s)
d = A

(s)
n(q−1)+q−d, Ã

(s)
d = Ã

(s)
n(q−1)+q+1−d.

Proof. Use formulas (2.2) and (2.3).

5.2. Which summands appear (p > 2)

In this section we assume that p > 2. We will be able to show precisely which summands do
appear in higher Frobenius push-forwards of ACM bundles. In the view of Theorem 1, this is
equivalent to determining which graded parts of the zero-dimensional graded modules C(s),
M (s), C̃(s) and C̃(s) treated in Section 2 are non-zero.
For brevity, let D = D(1) = k[x0, . . . , xN ]/(x

p
0, . . . , x

p
N ).

Langer’s Lemma (Proposition 3.1 in [12], see also [13]). Let 0 ¬ e ¬ p and let x ∈ Dd with
d ¬ 12(N +1)(p− 1)− e. Assume that Q

e ·x = 0. Then there exists a y ∈ Dd−2(p−e) such that
x = Qp−e · y.

Lemma 5.3. Let (Φ,Ψ), Φ,Ψ ∈ Mk×k(D1) be an arbitrary matrix factorization of Q over
the ring D. Let 0 < e ¬ p and let h ∈ Dk

d with d ¬
1
2(N + 1)(p − 1)− e.
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1. If Qe · h = 0 then there exists g such that h = Qp−e · g.

2. If Qe−1 · Φ(h) = 0 then there exists g such that h = Qp−e ·Ψ(g).

Proof.
1. This is Langer’s Lemma above.
2. Let us first show that there exists f such that h = Ψ(f). If e < p then since Qe · h =

Ψ(Qe−1 · Φ(h)) = 0, by (1) there exists f ′ such that h = Qp−e · f ′ = Ψ(Qp−e−1 · Φ(f ′)). So
we take f = Qp−e−1 · Φ(f ′). Assume that e = p. Applying (1) to Φ(h) and e = p − 1 gives
us u such that Φ(h) = Q · u. Therefore Φ(h−Ψ(u)) = 0. Now, because of what we have just
proven for e = 1, there exists v such that h−Ψ(u) = Ψ(v). So we can put f = u+ v.
To finish the proof, we observe that since h = Ψ(f), we have 0 = Qe−1Ψ(h) = Qe · f . So

again by (1) there exists g such that f = Qp−e · g and hence h = Qp−e ·Ψ(g).

Proposition 5.4.

1. M
(1)
d = 0 for d ¬

1
2n(p− 1) or d 

1
2n(p− 1) + p.

2. M̃
(1)
d = 0 for d ¬

1
2n(p− 1) or d >

1
2n(p− 1) + p.

Proof. By Proposition 5.1 it is sufficient to show the vanishings for d ¬ 12n(p− 1).
1. See the proof of Proposition 3.4 from [12].
2. We mimic the proof of the aforementioned Proposition. We need to prove that if g0 is

a vector of homogeneous polynomials of degree ¬ 12n(p− 1)− 1 such that

xp0 · g0 = Φ(h) +
N∑

i=1

xpi · gi (∗)

then there exist h′, hi, i = 0, . . . , N such that g0 = x
p
0 · h0 +

∑N
i=1 x

p
i · hi +Ψ(h

′).
By (∗) and the previous lemma, there exist h′, h0, h

′
1, . . . , h

′
n such that h = Q

p−1Φ(h′) +
xp0 · h0 +

∑N
i=1 x

p
i · h

′
i. Putting this back into (∗) yields

g0 · x
p
0 = Q

p · h′ + xp0 ·Ψ(h0) +
N∑

i=1

xpi · (Ψ(h
′
i) + gi)

= x2p0 · h
′ + (Q− x20)

p · h′ + xp0 ·Ψ(h0) +
N∑

i=1

xpi · (Ψ(h
′
i) + gi).

Hence xp0 · (g0 − x
p
0 · h

′ − Ψ(h0)) =
∑N
i=1 x

p
i · h

′′
i for some h

′′
i . But x

p
0 is not a zero divisor

in k[x0, . . . , xN ]/(x
p
1, . . . , x

p
N ), which shows that g0 − x

p
0 · h

′ − Ψ(h0) =
∑N
i=1 x

p
i · hi for some

hi.

Proposition 5.5.

1. C
(1)
d 6= 0 if and only if 0 ¬ d ¬ n(p− 1).

2. C̃
(1)
d 6= 0 if and only if 1 ¬ d ¬ n(p− 1).

Proof. Since dimC
(1)
0 = 1, dimC

(1)
−1 = 0 and dimC

(1)
d = dimC

(1)
n(p−1)−d, it suffices to check

that dimC
(1)
d is increasing for d ¬ 1

2n(p − 1). But by the previous lemma and the exact
sequence (2.4)

dimC
(1)
d = dimB

(1)
d =

∑

i0

(−1)i dimA
(1)
d−pi.

Now the formula (2.2) yields the result. The proof for C̃(1) is analogous.
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Proposition 5.6.

1. M
(1)
d 6= 0 if and only if

1
2n(p− 1) < d < 12n(p− 1) + p,

2. M̃
(1)
d 6= 0 if and only if

1
2n(p− 1) < d ¬ 12n(p− 1) + p.

Proof. The exact sequences (2.4) and (2.5) together with Proposition 5.4 yield

dimM
(1)
d =

∑

i∈Z

(−1)i dimA
(1)
d+pi

for d ∈ (12n(p − 1),
1
2n(p − 1) + p] and M

(1)
d = 0 otherwise. The same is true for M̃

(1) and

Ã(1) in place of M (1) and A(1).
Let D(d,N) =

∑N
j=0(−1)

j
(N
j

)(n+d−pj
n

)
and E(d,N) =

∑
i∈Z
(−1)iD(d + ip,N). Then by

formulas (2.2) and (2.3)

dimA
(1)
d = D(d,N) +D(d− 1, N) and dim Ã

(1)
d = 2

⌊n/2⌋+1D(d− 1, N).

So, in the view of the above formulas for dimM
(1)
d and dim M̃

(1)
d , we want to prove that for

p odd, E(d − 1, N) is always non-zero and that E(d,N) + E(d − 1, N) = 0 if and only if p
divides d− 12n(p− 1).
We proceed by induction on N , proving also that E(d,N) is increasing with respect to

d for d ∈ (12n(p − 1),
1
2N(p − 1)]. For N = 1 we have D(d, 1) = 1 for d = 0, . . . , p− 1 and 0

otherwise, so E(d, 1) 6= 0 for all d and E(d, 1) = −E(d− 1, 1) if and only if p divides d.
For the induction step, we use the formula E(d,N) =

∑p−1
j=0 E(d− j,N − 1), the fact that

E(d,N − 1) > 0 for d ∈ (12 (n− 1)(p− 1),
1
2(n− 1)(p− 1) + p] and E(d,N) +E(d− 1, N) > 0

for d ∈ (12 (n− 1)(p− 1),
1
2(n− 1)(p− 1) + p) (being the dimension of a vector space) and the

symmetry for M (1) and M̃ (1).

Theorem 2. Let p > 2, s  1 and n > 2. Then

1. Fs∗(O(a)) contains O(t) if and only if 0 ¬ a− tq ¬ n(q − 1),

2. Fs∗(O(a)) contains S(t) if and only if

(
1

2
n(p− 1)− p+ 1

)
q/p ¬ a− tq ¬

(
1

2
n(p− 1)− 1

)
q/p+ n(q/p− 1),

3. Fs∗(S(a)) contains O(t) if and only if 1 ¬ a− tq ¬ n(q − 1),

4. Fs∗(S(a)) contains S(t) if and only if

(
1

2
n(p− 1)− p+ 1

)
q/p+1− δs,1 ¬ a− tq ¬

(
1

2
n(p− 1)− 1

)
q/p+n(q/p− 1)+ δs,1.

Proof. Denote the upper and lower bounds in 1 – 4 by βs0, β
s
1, . . . , ε

s
0 and ε

s
1. By Propositions

5.5 and 5.6 together with Theorem 1 we obtain the required assertion for s = 1. Observe that

βs0 ¬ δ
s
0 ¬ γ

s
0 ¬ ε

s
0 ¬ γ

s
1 ¬ ε

s
1 ¬ β

s
1 = δ

s
1.

1. Fs∗O(a) contains O(t) if and only if either there exists an i such that F
s−1
∗ (O(a)) contains

O(i) and F∗(O(i)) contains O(t), or there exists an i such that Fs−1∗ (O(a)) contains S(i) and
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F∗(S(i)) contains O(t). By the induction assumption, this holds if and only if there exists an
integer i such that either

βs−10 ¬ a− iq/p ¬ βs−11 and β10 ¬ i− tp ¬ β
1
1 (∗)

or

γs−10 ¬ a− iq/p ¬ γs−11 and δ10 ¬ i− tp ¬ δ
1
1 . (∗∗)

We have the following simple observation: if A, B, C, D, a, t, p, q′ are integers satisfying
B −A  q′ > 0, D − C > 0, then there exists an integer i such that

A ¬ a− iq′ ¬ B and C ¬ i− tp ¬ D

if and only if Cq′ +A ¬ a− tpq′ ¬ Dq′ +B (and the „only if” part remains true if we omit
the assumption that B −A  q′).

Using this observation with (A,B,C,D) = (βs−10 , βs−11 , β10 , β
1
1) and q

′ = q/p, we see that
(∗) is equivalent to βs0 ¬ a − tq ¬ βs1. Again with (A,B,C,D) = (γ

s−1
0 , γs−11 , δ10 , δ

1
1) this

shows that (∗∗) implies q/pδ10 + γ
s−1
0 ¬ a− tq ¬ q/pδ11 + γ

s−1
1 . Now because the first interval

contains the second one, we see that Fs∗O(a) contains O(t) if and only if βs0 ¬ a− tq ¬ β
s
1.

2. Analogously, Fs∗O(a) contains S(t) if and only if there exists an i such that either γ
s−1
0 ¬

a− iq/p ¬ γs−11 and ε10 ¬ i− tp ¬ ε
1
1 or β

s−1
0 ¬ a− iq/p ¬ βs−11 and γ10 ¬ i− tp ¬ γ

1
1 .

Using the observation from (1), we see that this happens if and only if q′ε10+β
s−1
0 ¬ a− tq ¬

q′γ11 + β
s−1
1 and these bounds are equal to γs0 and γ

s
1.

The proofs of (3) and (4) are similar.

5.3. Which summands appear (p = 2)

In this section we investigate the case when p = 2. As before, we first deal with the case
s = 1. Let us first establish the following version of Langer’s lemma used in the preceding
section.

Lemma 5.7. Let char(k) = 2, N  0. Let MN be the set of all monomials in k[x0, . . . , xN ]
not in I := (x20, . . . , x

2
N ) which contain at least one variable each monomial of Q (except

for possibly x20), but are not divisible by any monomial of Q. Then MN forms a basis of
(I : (Q))/(I + (Q)).

Proof. The proof is by induction on N , starting with N ¬ 0, for which Q ∈ I. Then the
statement is obvious.

Induction step: Renaming the last two variables, we have Q = xy+Q′. Take f ∈ (I : (Q))
and write f ≡ f00 + xf10 + yf01 + xyf11, fαβ ∈ k[x0, . . . , xN−2], so that

0 ≡ (xy +Q′)(
∑

α,β

xαyβfαβ);

comparing coefficients in x and y yields the equations f00 + f11Q
′ ≡ 0 and fαβQ

′ ≡ 0 for
(α, β) 6= (1, 1) (modulo (x20, . . . , x

2
N−2)). By the induction assumption, f10 = g10Q

′ + r10
and f01 = g01Q

′ + r01, where rαβ is a unique linear combination of elements of MN−2 of
appropriate degree. We then have

f = f00 + x(g10Q
′ + r10) + y(g01Q

′ + r01) + xyf11

= Q(f11 + xg10 + yg01) + xr10 + yr01.

18



But MN = xMN−2 ∪ yMN−2, so we see that MN spans the quotient in question.
For linear independence, let us write Q · g ≡

∑
m∈MN

amm with am ∈ k and g ∈
k[x0, . . . , xN ]. Then for any monomial xixi+1 of Q, monomials divisible by xixi+1 do not
occur on the left-hand side, so g is in the ideal spanned by the variables xi and xi+1. In other
words, every term of g has at least one variable from each term of Q (except possibly x20). But
that means that Q ·g = 0, forcing the combination to be trivial in k[x0, . . . , xN ]/(x

2
0, . . . , x

2
N ).

But MN is clearly linearly independent in this ring, which finishes the proof.

Corollary 5.8. γ1(t, a) = 1 if a− 2(t − 1) = ⌊n2 ⌋ + 1 or if a− 2(t − 1) = ⌊
n
2 ⌋+ 2 and n is

odd, and γ1(t, a) = 0 otherwise.

Proof. Let us set M ′ = (I : (Q))/(I + (Q)). By the exact sequence

0→ D(1)[−2]/(0 : Q)
Q
−→ D(1) → B(1) → 0

we have dimBd = dimDd + dimM
′
d−2 − dimBd−2. So

dimBd =
∑

j0

(−1)j dimDd−2j +
∑

j0

(−1)j dimM ′d−2(j+1). (5.1)

Proceeding exactly as in Section 4, but replacing the use of 2.6 by 5.1 gives

γ1(t, a) =
1

2⌊n/2⌋+1
dimM ′a−2(t−1),

which, together with Lemma 5.7, yields the result.

Now we shall prove an analogue of Lemma 5.3:

Lemma 5.9. Let char k = 2, n > 0 and let ϕn and ψn be the matrices defined in Section
1.3. Let h be a vector with polynomial entries of length 2⌊(n+1)/2⌋. Suppose that all entries of
h are homogeneous polynomials of degree d.

1. If Qn · h ∈ (x
2
0, . . . , x

2
n+1) and d ¬ ⌊n/2⌋, then there exists a vector g with polynomial

entries for which h ≡ Qn · g modulo (x
2
0, . . . , x

2
n+1).

2. If Qn · ϕn(h) ∈ (x
2
0, . . . , x

2
n+1) and d ¬ ⌈n/2⌉ − 1, then there exists a vector g with

polynomial entries for which h ≡ ψn(g) modulo (x
2
0, . . . , x

2
n+1) (the same is true with

ϕn and ψn exchanged).

3. If ϕn(h) ∈ (x
2
0, . . . , x

2
n+1) and d ¬ ⌈n/2⌉, then there exists a vector g with polynomial

entries for which h ≡ Qn · ψn(g) modulo (x
2
0, . . . , x

2
n+1) (the same is true with ϕn and

ψn exchanged).

Proof. We work in the ring Dn = k[x0, . . . , xn+1]/(x
2
0, . . . , x

2
n+1) and proceed by induction

on n. For brevity let ϕ = ϕn, ψ = ψn, ϕ
′ = ϕn−2, ψ

′ = ϕn−2, x = xn, y = xn+1, Q = Qn and
Q′ = Qn−2.
1. This follows from Lemma 5.7 above.
2. Let us divide h in two pieces: h = (h0, h1). We can write hi, i = 0, 1 as hi = h00i +

xh01i + yh
10
i + xyh

11
i where h

jk
i are polynomials in x0, . . . , xn−1.

Using the recurrence relations

ϕ =

(
ϕ′ x · id
y · id ψ′

)
, ψ =

(
ψ′ x · id
y · id ϕ′

)
, Q = xy +Q′,
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our assumption on h takes the form

(xy +Q′)(ϕ′(h0) + xh1) = 0, (xy +Q
′)(ψ′(h1) + yh0) = 0.

By comparing coefficients in x and y we see that

Q′ϕ′(h000 ) = 0, Q′ψ′(h001 ) = 0, (5.2)

Q′(ϕ′(h010 ) + h
00
1 ) = 0 Q′(ψ′(h101 ) + h

00
0 ) = 0, (5.3)

Q′ϕ′(h100 ) = 0, Q′ψ′(h011 ) = 0, (5.4)

ϕ′(h000 ) +Q
′ϕ′(h110 ) +Q

′h101 = 0, ψ′(h001 ) +Q
′ψ′(h111 ) +Q

′h010 = 0. (5.5)

By (5.4) and the induction assumption, there exist g100 and g
01
1 such that h

10
0 = ψ′(g100 )

and h011 = ϕ′(g011 ). Observe also that by (5.3) and (1), there exist g
01
0 and g

10
1 such that

ϕ′(h010 ) + h
00
1 = Q′g010 and ψ

′(h101 ) + h000 = Q′g101 . Putting this into (5.5) and using the
induction assumption once again gives us g110 and g

11
1 such that g

10
1 + h

11
0 = ψ′(g110 ) and

g010 + h
11
1 = ϕ′(g111 ). Finally define g

00
0 = ϕ′(g101 ) + h

10
1 and g

00
1 = ψ′(g010 ) + h

01
0 and observe

that g = (g0, g1) defined by gi = g
00
i + xg

01
i + yg

10
i + xyg

11
i satisfies ϕ(g) = h.

3. Let us first prove that there exists an f such that h = ψ(f). Decomposing h as before,
we have

ϕ′(h000 ) = 0, ψ′(h001 ) = 0, (5.6)

ϕ′(h010 ) + h
00
1 = 0, ψ′(h101 ) + h

00
0 = 0, (5.7)

ϕ′(h100 ) = 0, ψ′(h011 ) = 0, (5.8)

ϕ′(h110 ) + h
10
1 = 0, ψ′(h111 ) + h

01
0 = 0. (5.9)

By (5.8) and the induction assumption, there exist f100 and f
01
1 such that h

10
0 = ψ

′(f100 ) and
h011 = ϕ

′(f011 ). Observe also that

Q′ · ϕ′(h110 ) = Q
′ · h101 = ϕ

′(ψ′(h101 )) = ϕ
′(h000 ) = 0,

and similarly Q′ ·ψ′(h111 ) = 0, therefore by (1) there exist f
11
0 and f

11
1 such that h

11
0 = ψ

′(f110 )
and h111 = ϕ′(f111 ). Finally set f

00
0 = h101 , f

00
1 = h010 , f

01
0 = 0 and f

10
1 = 0 and observe that

f = (f0, f1), fi = f
00
i + xf

01
i + yf

10
i + xyf

11
i satisfies h = ψ(f).

Now since Q · f = ϕ(ψ(f)) = ϕ(h) = 0, by (2) there exists a g such that f = Q · g.
Therefore h = ψ(f) = Q · ψ(g).

Proceeding exactly as in Propositions 5.5 and 5.6 and Theorem 2, one obtains

Theorem 3.

1. F s∗ (O(a)) contains O(t) if and only if 0 ¬ a− tq ¬ n(q − 1),

2. F s∗ (O(a)) contains S(t) if and only if
(
⌊
n

2
⌋ − 1

)
q

2
¬ a− tq ¬ n(q − 1)− q −

(
⌊
n

2
⌋ − 1

)
q

2
,

3. F s∗ (S(a)) contains O(t) if and only if 1 ¬ a− tq ¬ n(q − 1),

4. F s∗ (S(a)) contains S(t) if and only if
(
⌊
n

2
⌋ − 1

)
q

2
+ 1 + δs,1 · δn,odd ¬ a− tq ¬ n(q − 1)− q −

(
⌊
n

2
⌋ − 1

)
q

2
− δs,1 · δn,odd,

where δn,odd = 1 if n is odd and 0 otherwise. �

20



6. Corollaries

The following simple fact follows from Theorems 2 and 3.

Corollary 6.1. For any ACM bundle E on Qn, there are only finitely many t ∈ Z for which
there exists an s such that O(t) or S(t) appears in Fs∗E.

Now we proceed to extend the main results from [12].

Definition 6.2. A coherent sheafF on a varietyX is called quasi-exceptional if Exti(F ,F ) =
0 for i > 0. F is tilting if it is quasi-exceptional, Karoubian generates the bounded derived
category Db(X) and the algebra HomX(F ,F ) has finite global dimension.

Lemma 6.3. We have Ext1(S(a),S(a + 1)) 6= 0 and S(a) is quasi-exceptional.

Proof. For the first statement, tensor the sequence (1.4) by S(a) and write the long cohomo-
logy exact sequence. The second statement follows even simpler from (1.4).

The following theorem extends slightly the main Theorem 1.1 from [12].

Theorem 4. Let n > 2. Then Fs∗OQn is tilting if and only if one of the following holds:

1. s = 1 and p > n,

2. s = 2, n = 4 and p = 2, 3,

3. s  2, n is odd and p  n.

Proof. If p > 2, this is Theorem 1.1 from [12] (and can also be easily deduced from Theorem
2). Thus the only new part here is to show that in the case p = 2, Fs∗O is not tilting, except
for the case s = 2 and n = 4.
By Theorem 2, we see that Fs∗O contains as direct summands only the line bundles

O,O(−1), . . . ,O(−⌊n −
n

q
⌋).

So if n > q then Fs∗O does not generate the derived category.
We also see that the Fs∗O contains S(t) for γ

s
0 ¬ −tq ¬ γs1 with γ

s
1 − γ

s
0 =

nq
2 − n  2q

for q  n  6, so in this case Fs∗O contains two consecutive twists of S. Therefore it is not
quasi-exceptional by the above lemma.
Finally, we work out the cases n = 3, 4, 5 by hand: for n = 3, F2∗O contains S and S(−1).

For n = 4, F3∗O contains S(−1) and S(−2). For n = 5, F
2
∗O contains S(−1) and S(−2). So

in all these cases the bundles (and their Frobenius push-forwards) are not quasi-exceptional.
For n = 3, 4, 5 and s = 1, we have n > q. It remains to check the case n = 4, s = 2. In this
case, F2∗O contains S(−1) and O(−i) for i = 0, 1, 2, 3, so it is tilting.

A note on singular quadrics

It would be interesting to extend the above results to singular quadrics. It should be noted
first that the ring S/(Q) with Q a quadratic form not of full rank is no longer of finite Cohen-
Macaulay type. Recently, N. Addington in [1] constructed the so-called spinor sheaves, which
are analogues of spinor bundles. Among them, there are always one or two (depending on
the parity of the rank of Q) maximal spinor sheaves (i.e., coming from a maximal linear
subspace on the quadric) and they have nearly the same cohomological properties as the
spinor bundles. In particular, if we denote by S the maximal spinor sheaf of the sum of the
two and assume that F∗(O(a)) and F∗(S(a)) decompose into direct sums of twists of O and
S, it is easy to see that the results from Section 4 hold true almost without change (one has
to replace the factors 2⌊n/2⌋+1 by 2⌊r/2⌋, r being the rank of Q).
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