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Abstrakt

We generalize, explain and simplify Langer’s results concerning Frobenius direct images of
line bundles on quadrics, describing explicitly the decompositions of higher Frobenius push-
forwards of arithmetically Cohen-Macaulay bundles into indecomposables, with an additional
emphasis on the case of characteristic two. These results are applied to check which Frobenius
push-forwards of the structure sheaf are tilting.
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Introduction

In [12], A. Langer computed the Frobenius push-forwards of line bundles on quadrics. Ho-
wever, the computations worked only for odd characteristic and explicit formulas for the
push-forward were given only for the first Frobenius direct image. In this paper, we deter-
mine the push-forwards of line and spinor bundles on smooth quadrics in arbitrary positive
characteristic. But mostly, we explain and simplify the aforementioned paper, reproving ne-
arly all of the statements.

To illustrate our method, we briefly show how it can be used to determine Frobenius
push-forwards of line bundles on a projective space P (this method is used in [17], Lemma
2.1). If the absolute Frobenius morphism on PV is denoted by F, its s-th composition by F?,
the push-forward in question can be written as

Fi(0(a) = @ o

teZ

for some integers a®(t,a) (the existence of such a decomposition follows directly from Hor-
rocks’ splitting criterion and the projection formula).
To compute o®(t,a), let us write the projection formula using the bundle QH%,N(—I)):

F(F** Qpn (a — bg)) = F(0(a)) @ Qpw (D).
Comparing dimensions of the first cohomology groups we get

W (F™Qpn (a — bg)) = > a’(t,a) - K1 (Qpn (t = b)).
teZ

But 7! (Qpn (t — b)) = 0, so the right hand side is just (b, a).
On the other hand, the dimension of H!(PY,F**Ql (¢)) can be computed as

N+1 i
dim | k[zo,...,zn]/(zd,....2%) | = Z(_l)j <N+1> <N +]i7 JQ>
t

— J
D(s) 3=0

(see Lemma 3.1). Hence we obtain

N+1 .

o (s) (N+1\(N+a—tg—jgq

a’(t,a) = dim D,”; = Z (—1)7< ; N .
7=0

On quadrics, the situation is quite similar. It is well known that any ACM (arithmetically

Cohen-Macaulay, i.e., with vanishing h(£(t)) for 0 < i < n and all ) bundle on a smooth n-

dimensional quadric decomposes into a direct sum of line bundles and twisted spinor bundles.
We use the above method to compute the coefficients in this decomposition. The result (see

Theorem 1) is that
Fi(0(a) =D o) & DS,
teZ tez

where S is the spinor bundle or the sum of the two half-spin bundles on @,, (see Section 1.3)
and the coefficients 8 and « are given by the formulas

B%(t,a) = dim cl¥

a—tq

s 1 : (s)
Yy (t, a) = W dim Maf(tfl)q s



where C®) and M) are certain graded modules defined in Section 2. The decomposition
of F$(S(a)) is also given. This description allows us to give explicit vanishing criteria for
these coefficients (Theorems 2 and 3), from which we easily derive corollaries concerning the
push-forwards being tilting (Theorem 4). The last section of the paper contains a comment
on possible extension of these results to singular quadrics.

In particular, for p = 2 the formulas become easier and we can be a little bit more explicit.
We extend the main theorems of [12] to this case.

The paper [12] was inspired by Samokhin’s paper [18]. Frobenius direct images of the
structure sheaf are of particular interest because they can produce tilting bundles and allow
us to study Z-affinity in positive characteristic ([18], [12], [19]).

Acknowledgements. I would like to thank Prof. Adrian Langer for giving me the idea
for writing this paper and for many helpful clues.
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1. Preliminaries

1.1. The Frobenius morphism and some projection formulas

Let X be a projective variety over an algebraically closed field k of characteristic p > 0. The
absolute Frobenius morphism F : X — X is the mapping of schemes acting as identity on
the underlying topological space and as the p-th power map on the structure sheaf. It is not
a map of k-schemes. Denote by F* the s-th composition of the Frobenius morphism and set
q = p°® once and for all.

Let % be a locally free sheaf of rank r on X. If X is smooth then F is flat and the sheaf
F$.7 is also locally free, of rank rq@™ X The sheaf F**.% is locally free of rank r, and it is glued
as a bundle using the cocycle obtained by raising the coefficients of the transition matrices
defining .# to the g-th power. If # is a line bundle, we infer from the above description of
its pull-back that F¥*.% ~ .Z©4,

Let ¢ be a locally free sheaf. Since the Frobenius is an affine morphism, so that H (X, .#) =
HY (X, F..Z), we immediately deduce from the projection formula F$(.# @ F**¥¢) ~ F$(F) Q¥
the following formulas concerning cohomology:

Hi(X, 7 ® F*9) ~ H{(X, (FA.7) ® 9), (1.1)
H'(X,.7 (tq)) ~ H'(X, (F3.7)(1)), (1.2)
HY(X, (F**%)(a + tq)) ~ H(X,F.(O(a)) ® 9(t)). (1.3)

Remark. These isomorphisms are not k-linear, but the dimensions over k on both sides agree.

Definition 1.1. A coherent sheaf .# on a projective variety X with a very ample line bundle
Z is called arithmetically Cohen-Macaulay (ACM) if

PH X, Fo2%) =0 for 0<i<dimX.
teZ
Formula (1.2) shows that the Frobenius push-forward of any coherent ACM sheaf is ACM.

1.2. Quadrics

Let n be a positive integer. The smooth n-dimensional quadric @, (or simply Q) is the
hypersurface in PV, N = n + 1 defined by the equation Q,, = 0 where

2
Qn =25 +x122 + ... + TpTpy1

if n is odd and
Qn =201+ ...+ TpTpt1
if n is even. If char k # 2 then we can take a linear change of coordinates on PV such that
the quadric Q,, is given by the simpler equation z3 + ... + 2% = 0.
For completeness, let us also state here that by the adjunction formula @, is a Fano
variety with the canonical bundle wx = 0g(—n) and Hilbert polynomial ¢; := x(0g(t))

equal to
[N+t N+t—-2
q = N N .

Remark. To simplify the calculations, we will assume that n > 2. This is not a real restriction
since @1 ~ P! (Q; being the image of the Veronese embedding of P! in P?) and Q5 ~ P! x P!
(Q2 being the image of the Segre embedding of P! x P! in P?) and everything we would want
to say in these cases could be easily derived from what has been said in the example in the
Introduction.



1.3. Spinor bundles

Now we shall recall the basic facts about the so-called spinor bundles on smooth quadrics. On
Qn, we have a single spinor bundle ¥ if n is odd and two spinor bundles ¥, ¥_ (sometimes
called half-spin) if n is even. There are many equivalent ways of introducing them present in
the literature:

e Spin representations. a smooth quadric is a homogeneous space for the group SO(n+
2), thus also for Spin(n + 2). If the corresponding parabolic subgroup is denoted by P,
we thus have a principal P-bundle & over P. The the Lie algebra of the Levi quotient L
of P is o(n). Then the spinor bundles can be defined as associated bundles: ¥ = ZxpV,
Y1 = xp Vi where V is the spin and Vi are the half-spin representations of o(n).

References: [20], [12], Section 2.2.

e Pull-backs of the tautological bundle by explicit maps from @,, to the Grassmannian
G(QUL/2J+17 9. 2Ln/2j+1).

References: [16].

e Matrix factorizations. A matriz factorization of a polynomial f with f(0,...,0) =0
is a pair (p,%) of square matrices of the same size such that ¢ -1 = f-id =19 - . It
was first observed by Eisenbud in [5] that given an appropriate notion of a morphism,
the matrix factorizations of f form a category that is equivalent to the stable category
of maximal Cohen-Macaulay modules over the local ring Oyn o/(f) of the hypersurface
defined by f = 0. The module corresponding to (¢, ) is Coker ¢ where ¢ is regarded
as a map 0™ — O™, m being the size of both matrices; it is an ¢'/(f)-module.

Using this technique, Eisenbud, Buchweitz and Herzog in [4] then classified all inde-
composable graded maximal Cohen-Macaulay modules over k[zo,...,zn]/(@y). Their
description remains valid over any field k. It turns out that apart from the free MCMs,
there is (up to shift) only one indecomposable module M if n is odd and there are
two of them, My and M_ if n is even. The corresponding matrix factorizations can be
defined inductively as follows (see [12], Section 2.2):

1= (w0) =v%-1, o= (20), o= (21),

On = Pn—2 Tp - ud 1/} _ wn—Q Tp - ud
" Tpg1-id =g )7 7" Tpy1-id —pp2 |’
To define the spinor bundles using these matrix factorizations, we consider ¢,, and
Y, as maps between locally free sheaves on PV, ie., ¢n, ¢y, : ﬁPN(—Q)QL(nHWJ —
ﬁpw(—l)QL(nJrl)/QJ . Then for odd n we can define ¥ to be the cokernel of ¢,, = 1),,, which

is supported on @,. For even n we define 3, to be the cokernel of ¢, and ¥%_ to be
the cokernel of 1,,.

References: [21], [11] and [1].

As mentioned above, we have the following exact sequences of sheaves on PV:

2l(n+1)/2]

0 — Opn (—2)2 "V 0= (1) — Y 0



if n is odd and

ol(n+1)/2]

0 — Opn (=22 20 G (—1) — 0,0, — 0,

gl(n+1)/2]

0 — ﬁPN(_Q)ZL(nH)mJ w—n) ﬁpN(—l) N SN

if n is even. It follows that the spinor bundles are arithmetically Cohen-Macaulay. In fact, as
implied by the Eisenbud-Buchweitz-Herzog theorem, they provide a full description of ACM
bundles on Q:

Theorem. Any coherent ACM sheaf % on a smooth quadric Q, is a direct sum of line
bundles and twisted spinor bundles.

In what follows, we shall use the bundle S defined by S = ¥ for n odd and S=%, & ¥_
for n even. We thus have the exact sequence of sheaves on PV:

oln/2]+1 i gln/2]+1

0 — Opn(—2) Opn (—1) — .S — 0, (1.4)
where (®,,,¥,,) is the matrix factorization defined by ®, = ¢,, ¥, = 1, if n is odd and
D, = o, DYy, Uy, = 1y, @y, if n is even. The exact sequence (1.4) allows us to compute the

Hilbert polynomial s; := x(S(¢)) of S:

sp = 2ln/2l+1 (n+t— 1).

n

1.4. Structure of the derived category

The structure of the derived category of a smooth quadric was first studied by Kapranov ([10],
[9]) in the case of characteristic zero, but it can also be easily seen in arbitrary characteristic
from the aforementioned theorem of Buchweitz-Eisenbud-Herzog [4] together with Orlov’s
theorem on Gorenstein varieties.

Indeed, for a smooth quadric @,, Theorem 2.12 from [15] provides a semi-orthogonal
decomposition

Db(Qn) =(0q,(-n),...,0q,, DZ‘;(R»

where R = k[xg,...,zn]/(Qn) and Dg;(R) is the ,graded category of singularities”, which
coincides with the category MCM,,(R) (the stable category of graded maximal Cohen-
Macaulay modules) by [3]. The description of MCM . (R) follows from the Buchweitz-
Eisenbud-Herzog theorem [4] — this category is generated by the direct summands of T',(S).



2. Some graded algebras and modules

As we shall see in Section 3, the Euler sequence allows us to translate dimensions of sheaf
cohomology groups into dimensions of gradings of certain O-dimensional graded modules. In
this section we develop technical results which let us compute the decompositions in Section
4.

2.1. Definitions

Let @ be the equation of the n-dimensional quadric as in Section 1.2. Recall that ¢ = p® and
N =n+1. We set

S = k[zo,...,xN],
R =5/(Q),
A® = R/(af + a1, 28, ... 2},
BY) = A/(«f) = R/(af,af,... .a}),

Remark. The strange generator z{ + 2 in the definition of A®) is used to make A®) zero-
dimensional (or to ensure that (zd + z{,2%,...,2%) is an R-regular sequence). It is easy to
check that the ring S/(Q,z7,...,2%) is one-dimensional when n is even, i.e., Q = zox1 +
w2x3+ ... and p = 2. This is due to the fact that 22 does not appear in Q. In any other case,
we can assume that A = S/(Q,z{,...,z%) as in [12].

By Section 1.3, we can write the module I',(S) as the cokernel of a map ® : S[—2]2W2J+1 —

S[—l]QLn/QH1 (® is a 207/241 x 2l/2141 matrix of linear forms). The following definitions
pertain to spinor bundles and will be needed in Section 4:

Recall that Z is a maximal Cohen-Macaulay R-module and that x1,...,xy is a Z-regular
sequence when Z is considered as an S-module. Moreover, dim Zg = 217/2/+1 ("+g_1) = s4.

2.2. Dividing MCMs by ¢-th powers
Recall that in the example in the Introduction, dimDC(ls) is the number of monomials in
xg,...,xn of degree d with all exponents < ¢, so by the inclusion-exclusion principle we

obtain the combinatorial formula (which we already used there):

dim DY) = NZH(—l)J' <N+ 1) (N +JC\Z7_ jq). (2.1)

i=0 J

9



In our study of spinor bundles, we shall need a more general statement. The following lemma
explains this combinatorial formula in more algebraic terms.

Lemma 2.1. Let M be a graded module over o graded algebra R generated by Ry over a field
k= Ry. Let (z1,...,x,) € Ry be a reqular sequence on M and I = (x1,...,xy). Then

k
dimy, (M/IM), Z ( )dlmkMd jq-

Proof. We construct the Koszul complex C, = M ® K(z1,...,x). By [14], Theorem 43 (or
[6], Corollary 17.5) we have H;(C,) = 0 for ¢ > 0 and Hy(C\) = M/IM. Hence

dimy (M/IM)g = (—1)’ dimp(C;))a—jq;
=0

. k
since the maps in the Koszul complex have degree ¢q. But C; = AN RN @ M ~ M (J),

which finishes the proof. O
Note also that by [6], Corollary 17.8, if (zg,...,xn) is an M-regular sequence then so is
(z3,...,2%). We deduce (2.1) once again, together with

N

dim A} = Z(—l)j <N> Qd—jq- (2.2)
N

dim A} = > (1) (ZJV ) Sdjq- (2.3)

2.3. Dimensions of B and B

We have the following two short exact sequences of graded modules:

q

0 — C(s)[—Q] Lo, AG) gl 0, (2.4)
~ $q ~ ~
0 — C(s)[—Q] o, Als) ., glo) 0, (2.5)

Seeing that dim MS” = dim B — dim C”, we obtain dim B = dim A} + dim M, —
dim Bc(l“i) , (and the same with the tildes). This gives the formulas

dim Bc(ls) = Z( 1)J dim AEIS ja Z 1)J dim M(S)(]Jrl) (2.6)
>0 >0

dim EC(IS) = Z( 1)J dim AEIS ja Z 1)J dim M(S)(]Jrl) (2.7)
>0 >0

10



3. The Frobenius morphism
and the sheaf of differentials

Now let us relate the commutative algebra from Section 2 to some cohomology groups which
will be used in Section 4. The following standard result can be found, e.g., in [2] (see Theorem
3).

Lemma 3.1. Let H C PN (N > 2) be the hypersurface given by f = 0. Then there is an
isomorphism of graded S/(f)-modules:

P H(H, (F*(Qin]m))(t) ~ D /(f)

teZ

For s = 0 we obtain
hH(Qpx|m (1) = 0ro (3.1)

When @ is our quadric and S the spinor bundle (or the sum of the two half-spin bundles)
as defined in Section 1.3, we obtain the following lemma:

Lemma 3.2. We have the following isomorphism of R = S/(Q)-modules:

P H (S ® F*Qpulo(t) ~ B,
teZ

Proof. Let us recall the exact sequence (1.4):

oln/2]+1

0— Opn (=22 2 Gon(—1) —~S—0.

Tensoring it by FS*Q]%DN (t) we get the following long cohomology exact sequence:
T _>H1(PN= FS*QﬂlmN(t — 2))2Ln/2j+1 3) Hl(]P)N7 FS*Q]%DN (t _ 1))2Ln/2j+1
—H!(Q.S © F"Qhwlo(t) — HABY, Fopy (- 2))7 ",

Applying F¥*(—) ® Opn (d) to the Euler sequence and writing the cohomology exact sequence,
we see that the last group in the above sequence vanishes for N > 2. Hence HY(Q,S ®
F¥*Qin (t)) is the cokernel of the map

Hl(PN, FS*Qlle (t — 2))2Ln/2j+1 3) Hl(PN, FS*Qlle (t _ 1))2Ln/2j+1.

Using our description of these groups from the previous lemma we see that it is just the ¢-th
graded piece of the graded module B(). O

Clearly, this lemma works (with the definitions slightly adjusted) for an arbitrary ACM
sheaf over a hypersurface (since ACM sheaves are in this case given by matrix factorizations).
As a corollary, for s = 0 we obtain the following formula (see [12], Proposition 4.1):

WS @ Qly|o(t)) = 22+ 6, ). (3.2)

)

11



4. Decompositions of Fi(0(a)) and Fi(S(a))
Let 8%(t,a), v*(t,a), 6°(t,a) and €°(t,a) be defined by the decompositions
Fi(0(a)) =@ o)) & @ s()r ),

teZ teZ
F:(S(a) =P o)™ o @Pst)” ),
teZ teZ

where S is the spinor bundle or the sum of the two half-spin bundles as defined in 1.3.

@ By the projection formula ((1.2) for .# = €(a) or S(a) and t = b) we obtain the following
equalities of Hilbert polynomials:

Qatbg = Y B°(t,a) - qran + Y7 (t,a) - sppp, (4.1)
teZ teL

Sa+bg = Z 6° (t’ (Z) “Qeyp t Z 6s(t’ (Z) " St+b- (42)
teZ teEL

@ Let 1) = Qpn|@- By the projection formula ((1.3) for ¢ =4, i =1 and t = —b) we get
HY(Qu, (F*9)(a — bg)) = H'(Qn, F2(O(a)) ® ¢(~b)).
By Lemma 3.1 we then have
dim B, = dim (k[zo, ..., an]/(Q.2, ..., 2%))_p, = P (F3(O(a)) ®1(~D))

which can be rewritten as

dim B, =3 8°(t,a) - h ((t — 1)) + Y _*(t,a) - K1 (¥ @ S(t — b)).

teZ teZ

But Al (1(t — b)) = 65 by (3.1) and Rl (p @S(t —b)) = 2l7/21+1.5, 14 by (3.2), so this reduces
to dim BC(LS_)bq = 3%(b,a) 4+ 21"+ . 45(b + 1, a). Equivalently, we have

3 (t,a) = dim B{Y,, — 2241 43(¢ 41, a). (4.3)
Similarly, using Lemma 3.2 and (3.1) one obtains
§°(t,a) = dim B{Y,, — 22415t 1 1,a). (4.4)

@ We put (4.3) into (4.1), thus obtaining

qa+bg = Z(dlm Bas—)tq - 2Ln/2j+1 : 78(t +1, a))Qt-i—b + Zrys(ta CL) " St+b

tez teZ
=Y dim(BY ) arn + D7 (8 a)(seep — 272 gy )
tez teZ
. s n s n+t—2+0
=Y dim(BYY, )ars — 2N (e, a)( )
tez tez n
We rewrite this as
s t+b
Z dim(Btg—)tq)Qb-i-t — Ga+bg — 2[”/2J+1 Z 78(t +2, CL) (n T ) : (4'5)
tez tez, n

12



Similarly, we get

S dim(BY, ) abit — Sateg = 207 Y5 (t +2,0) (n i+ b)l (16)
n
teZ teEZ

We treat both sides as polynomials in b. Our goal is to rewrite the left hand side as a
combination of ("+f;+b) for some t; (i = 0,...,n) and conclude that this determines the
numbers (¢t 4+ 2,a). This will follow from the fact that for any pairwise distinct numbers
to, ..., t, the polynomials (t':”C) are linearly independent, and v*(¢, a), £°(t,a) do not vanish
only when ¢ = t; for some i € {0,...,n}.

@ Now we use the formulas (2.6) and (2.7) for dim Bc(ls) and dim Bc(ls) to expand the left
hand sides of (4.5) and (4.6), first calculating the sums

Zdlm a— tq )b+t = ZZ 1)7 dim(A a tq jq Qb—l-t"‘zz 1) dim(M, a,S)q tq— ]q)Qb—l—ta

teZ teZ j=0 teZ j=0
St Sa
] ] (8)
Zdlm a— tq )b+t = ZZ d1m a tq jq Qb+t+zz dim (M~ q—tq— Jq)%“
teZ teZ 520 teZ j 20
S Sy

Lemma 4.1. Let a(t) = 3 50(—1) ("jl)f(t —3q). Then

f<a+bq>:za<a—tq><””+b).

tez. n

n

Proof. Expanding the right hand side gives Y-, o7 f(a + uq) (ZH] oul ( ;r )(n+z)) and
the nested sum is equal to the coefficient of 2=% in (1 — 2)"*!. (1 — 2) ™! = 1. So it is just

Obu- O
Lemma 4.2. The following identities hold
. s [(n+b+t . sy [nHb+t
Qatbg = Z dim Aéth < ) » Satbg = Z dim Aéth < ) .
tez " tez "

Proof. This follows immediately from Lemma 4.1 for f(t) = ¢ and f(t) = s; and from the
formulas (2.2), (2.3) for the dimensions of A4 and Ag. O

Lemma 4.3. Let a(t) = Zj>0(—1)jf(t —37q). Then

Za(a—tquﬂ Zfa—t <n+£+b>-

teZ teZ

Proof. We expand the left hand side

LHS =Y Y (-1 f(a—tq—jq)gpre = Y _ f(a+ qu) (Z (—1)b+”iqi).

teZ j =0 u€Z 1<b+u

and observe that Zigx(—l)x_iqi = ("+$) which yields the result. O

13



Now by Lemma 4.2, S; and S cancel out with g,1p, and s,4pq on the left hand sides of
(4.5) and (4.6), respectively. Hence Lemma 4.3 shows that

ZdlmMc(z (t+1)g < >’ ZdlmMc(L (t+1)g ( )

teZ n teZ n

Putting these into (4.5) and (4.6) (and replacing ¢ by ¢ — 2) yields

1 (s) s n+t—2+0b
2 <2Ln/2J_+1 dim M2, _1)g =7 (t’“)) ( n ) =0, (4.7)
teZ
1 ~(s) n+t—2+5b
> (2|_n/2j+1 dim M "y, (t,a)) ( n ) =0 (4.8)
teZ
@ We want to conclude from (4.7) and (4.8) that
(ta) = - dim M) d (t,a) = = dim 7
Y ( ,(Z) = W 11m a—(t—1)q al 3 ( ,(Z) = W 1m a—(t—1)g’

which with the formulas (4.3) and (4.4) immediately gives

B5(t,a) = dim C'*)

a—tq

and ¢°(¢,a) = dim éé‘i)tq.

Observe that by the formula (4.3), (t +1,a) # 0 implies B ) “tg # 0. Note that B(S #0
only for 0 < d < (¢ —1)(n+ 1) and K 75 Oonly for 1 <d< (¢—1)(n+1)+ 1 (since

(s) # 0 if and only if 0 < d < (¢ — 1)(n + 1)). Therefore if 2Ln/2J+1 dim MCE )(t 1) —v5(t,a)
is non-zero, then 0 < a — (t —1)g < (n+1)(¢ — 1). This can happen for at most n + 1 values
of t, so (4.7) is an equation of hnear dependence of the polynomials (tlzm) for n + 1 distinct
values t; (similarly with (4.8)). As they are clearly linearly independent (by the Vandermonde

determinant), we conclude that all the coefficients are zero. This yields

Theorem 1. The coefficients (3°(t,a) and v*(t,a) (resp. §°(t,a) and £°(t,a)) of O(t) and
S(t) in Fi(O(a)) (resp. Fi(S(a))) are given by the formulas

B%(t,a) = dim Ca(ts)tq, Vit a) = Sln/2+1 dim M(S)(t 1)q"
S S 1
& (t,a) = dlmCU(L )tq, e(t,a) = 9ln/2]+1 dim M( )(t Dy’

Remark. Since h'(S(t)) = 0 and (S ® S(t)) = 810 for n odd and 2 - §; for n even ([12],
Lemma 2.3), by the projection formula ((1.1) with .% = €(d), ¢ =S and i = 1) we obtain

dim MY = 2"/2I L (F*S(d — q)) and  dim MY = 2["/21 (S @ F**S(d — q)).
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5. Vanishing and non-vanishing

5.1. Symmetry

For smooth complete varieties X, Y and a proper morphism f : X — Y, the relative Serre
duality ([7]) can be expressed in the following form (e.g. [8], 3.4, formula 3.20):

Rf.D(€) = D(R.E),

where D(€) = €Y ® w. Now since the Frobenius morphism is an affine morphism, the higher
direct images vanish, and we get

Proposition. Let X be a smooth projective variety over an algebraically closed field k of
characteristic p > 0 and let F : X — X be the absolute Frobenius morphism. Then for any
vector bundle £ on X we have

Fo (€Y @wy) = (FL)Y ® wx.

On a smooth n-dimensional quadric @, we have wg, = 0g, (—n) and S¥ = S(1). This
shows that, in the notation of Section 4,

B5(t,a) = B°(—t —n,—a —n), 0%(tya) = 6°(—t —n,—a+1—n),
v (t,a) =y (-t+1—n,—a—n), e¥(tya) =e®(=t+1—n,—a+1—n).

Setting t = 0 and using Theorem 1 we deduce

Proposition 5.1.

(s) _ (9 ~(s) _ As)

Cd - Cvn(qfl)fd’ Cvd - Cn(q71)+1fd’
(s) _ as() s _ (s

M =M M =M e

We also need the symmetry of A®) and Al

Proposition 5.2.

() _ (9 i) _ 7
Ay = An(qfl)Jrqfd’ Ay = An(qfl)Jqurlfd'
Proof. Use formulas (2.2) and (2.3). O

5.2. Which summands appear (p > 2)

In this section we assume that p > 2. We will be able to show precisely which summands do
appear in higher Frobenius push-forwards of ACM bundles. In the view of Theorem 1, this is
equivalent to determining which graded parts of the zero-dimensional graded modules C®),
M), C®) and C®) treated in Section 2 are non-zero.

For brevity, let D = DU = k[xg, ..., zn]/(2h, ..., 2k).

Langer’s Lemma (Proposition 3.1 in [12], see also [13]). Let 0 < e < p and let x € Dy with
d<$(N+1)(p—1)—e. Assume that Q°-x = 0. Then there exists a y € Dy_o such that

x=0QP ¢ y.

Lemma 5.3. Let (®,¥), &, ¥ € Myyx(D;) be an arbitrary matriz factorization of Q over
the ring D. Let 0 < e < p and let h € DY with d < (N +1)(p — 1) —e.

p—e)
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1. If Q¢ - h =0 then there exists g such that h = QP ¢ . g.

2. If Q=1 - ®(h) = 0 then there exists g such that h = QP~¢ - ¥(g).

Proof.

1. This is Langer’s Lemma above.

2. Let us first show that there exists f such that h = ¥(f). If e < p then since Q° - h =
U(Qe 1. ®(h)) =0, by (1) there exists f’ such that h = QP~¢- f/ = ¥(QP~¢1- ®(f")). So
we take f = QP~¢~!. ®(f’). Assume that e = p. Applying (1) to ®(h) and e = p — 1 gives
us u such that ®(h) = @ - u. Therefore ®(h — ¥(u)) = 0. Now, because of what we have just
proven for e = 1, there exists v such that h — ¥(u) = ¥(v). So we can put f = u+ v.

To finish the proof, we observe that since h = U(f), we have 0 = Q*~'W¥(h) = Q¢ f. So
again by (1) there exists g such that f = QP~¢- g and hence h = QP~¢ - ¥(g). O

Proposition 5.4.
1. Mc(ll) =0 ford<3n(p—1) ord>in(p—1)+p.

2. Mél):oford<%n(p—1) ord>gn(p—1)+p.

Proof. By Proposition 5.1 it is sufficient to show the vanishings for d < %n(p —1).

1. See the proof of Proposition 3.4 from [12].

2. We mimic the proof of the aforementioned Proposition. We need to prove that if gq is
a vector of homogeneous polynomials of degree < %n(p — 1) — 1 such that

N
ah-go=®(h)+ Y al g (*)
=1
then there exist h', h;, i = 0,..., N such that go = a8 - hg + SN, a? - hy + U(I).

By (*) and the previous lemma, there exist b/, ho, b}, ..., h! such that h = QP~1®(Rr') +
abh - ho + SN | 2P - hl. Putting this back into (x) yields

N
go-xh = QF b +af - W(ho) + D af - (W(hi) + g5)
i=1
N
=ag? W+ (Q—a)" b +af - W(ho) + > ab - (U(h) + gi).
i=1
Hence x5 - (go — b - i/ — W(hg)) = SN, 2P - b for some h?. But 8 is not a zero divisor
in k[zo,...,on]/(2,...,2%), which shows that gy — x5 - h' — W(hg) = SN, 2? - h; for some
h;. O
Proposition 5.5.
1. C((ll) # 0 if and only if 0 < d < n(p—1).
2. C~'C(ll) # 0 if and only if 1 <d < n(p-—1).
Y — 0 and dim Cc(ll) = dim C’S&)il)id, it suffices to check

Proof. Since dim Co(l) =1,dimC;
d

that dim C’U(ll) is increasing for d < %n(p — 1). But by the previous lemma and the exact
sequence (2.4)
dimC§" = dim B = 3" (~1)' dim A}

d—pi®
120

Now the formula (2.2) yields the result. The proof for CO is analogous. U
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Proposition 5.6.
1. Mc(ll) # 0 if and only if %n(p— 1)<d< %n(p —1)+p,
2. ]\76([1) # 0 if and only if %n(p —1)<d< %n(p —1)+p.

Proof. The exact sequences (2.4) and (2.5) together with Proposition 5.4 yield

dim Mc(ll) = Z(—l)i dim Aglljzpi
€7

for d € (3n(p — 1), 3n(p — 1) + p| and Mc(ll) = 0 otherwise. The same is true for M® and
A in place of M) and A,

Let D(d,N) = Y- Lo(=1)7 (5) ("*97%) and E(d, N) = Y;ez(~1)'D(d + ip, N). Then by
formulas (2.2) and (2.3)

dim A% = D(d, N) + D(d —1,N) and dim A} = 2l*/2+1p(d — 1, N).

So, in the view of the above formulas for dim Mc(ll) and dim ]\76([1), we want to prove that for
p odd, E(d — 1, N) is always non-zero and that E(d, N) + E(d —1,N) = 0 if and only if p
divides d — n(p — 1).

We proceed by induction on N, proving also that E(d, N) is increasing with respect to
d for d € (3n(p — 1), 4N (p — 1)]. For N = 1 we have D(d,1) =1ford=0,...,p—1 and 0
otherwise, so E(d,1) # 0 for all d and E(d,1) = —E(d — 1,1) if and only if p divides d.

For the induction step, we use the formula E(d, N) = Z?;é E(d—j, N —1), the fact that
E(d,N—-1)>0forde (3(n—1)(p—1),3(n—1)(p—1)+p] and E(d,N) + E(d—1,N) >0
ford € (3(n—1)(p—1),5(n—1)(p—1) +p) (being the dimension of a vector space) and the

symmetry for M) and MO, O
Theorem 2. Letp > 2, s> 1 and n > 2. Then
1. Fi(O(a)) contains O(t) if and only if 0 < a —tqg < n(q — 1),

2. Fi(O(a)) contains S(t) if and only if

(

3. F¥(S(a)) contains O(t) if and only if 1 <a —tqg < n(q—1),

n(p—l)—p+1) q/p<a-—tq< (%n(p—l)—l) a/p+n(q/p—1),

DO | —

4. F2(S(a)) contains S(t) if and only if

1 1
(30— D =p+1) a/p+1-61 <a—tg< (3ulp— 1) = 1) afp+nla/p— 1) + ...

Proof. Denote the upper and lower bounds in 1 —4 by 3§, 8, ..., € and €]. By Propositions
5.5 and 5.6 together with Theorem 1 we obtain the required assertion for s = 1. Observe that

BE< <A <ep <A <el < B =05

1. F$0(a) contains @(t) if and only if either there exists an i such that F$~1(&(a)) contains
0(i) and F,(0(i)) contains &(t), or there exists an 7 such that F$~1(&(a)) contains S(i) and
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F.(S(7)) contains &(t). By the induction assumption, this holds if and only if there exists an
integer ¢ such that either

5 <a—ig/p <P and fy <i—tp<f ()
or
vl <a—ig/p <yt and 8 <i—tp <. (%)

We have the following simple observation: if A, B, C, D, a, t, p, ¢’ are integers satisfying
B—-—A>q¢ >0, D—C >0, then there exists an integer i such that

A<a—-id <B and C<i—tp<D

if and only if Cq¢' + A < a—tpq < D¢ + B (and the ,only if” part remains true if we omit
the assumption that B— A > ¢').

Using this observation with (A, B,C, D) = ( 8_1, ‘f_l,ﬁé,ﬁll) and ¢’ = q/p, we see that
(*) is equivalent to 3§ < a —tq < B§. Again with (A4, B,C,D) = (vs 1,1, 84,01) this
shows that (xx) implies q/pd} —i—’yg_l <a—tq<q/pdt —i—'y‘f_l. Now because the first interval
contains the second one, we see that F&'(a) contains O(t) if and only if G < a —tqg < 5.

2. Analogously, F$@(a) contains S(t) if and only if there exists an 4 such that either v§ 1 <
a—igq/p<~i! and ey <i—tp<elor 6871 <a—ig/p< B!t and W <i—tp < Af.
Using the observation from (1), we see that this happens if and only if ¢’e} + Bg_l <a—tg<
¢'~v1 + 5;7! and these bounds are equal to 5 and ~i.

The proofs of (3) and (4) are similar. O

5.3. Which summands appear (p = 2)

In this section we investigate the case when p = 2. As before, we first deal with the case
s = 1. Let us first establish the following version of Langer’s lemma used in the preceding
section.

Lemma 5.7. Let char(k) =2, N > 0. Let My be the set of all monomials in k[x,...,zN]
not in I := (z2,...,2%) which contain at least one variable each monomial of Q (except

for possibly x3), but are not divisible by any monomial of Q. Then My forms a basis of

(L (@)/( +(Q))-

Proof. The proof is by induction on N, starting with N < 0, for which @ € I. Then the
statement is obvious.

Induction step: Renaming the last two variables, we have Q = zy+ Q'. Take f € (I : (Q))
and write f = foo + xfi0 + yfo1 + 2y fi1, fap € klxo, ..., zN_2], so that

0= (zy+ QN 2™y’ fap);
o

comparing coefficients in « and y yields the equations foo + f11Q" = 0 and f,3Q" = 0 for
(o, ) # (1,1) (modulo (23,...,2%_,)). By the induction assumption, fip = g10Q’ + 710
and fo1 = go1Q’ + ro1, where 7,3 is a unique linear combination of elements of My_o of
appropriate degree. We then have

= foo+2(g10Q" + r10) + y(g01 Q" + ro1) + zy .11
= Q(f11 + xg10 + yg01) + 2710 + Y701
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But My =xMy_o UyMpy_o, so we see that My spans the quotient in question.

For linear independence, let us write Q - g = >_,,cpr, @mm with a,, € k and g €
klxo,...,zn]. Then for any monomial z;z;11 of @, monomials divisible by x;x;11 do not
occur on the left-hand side, so g is in the ideal spanned by the variables z; and z;41. In other
words, every term of g has at least one variable from each term of @ (except possibly x3). But
that means that Q-g = 0, forcing the combination to be trivial in k[zo, ..., zn]/(23,...,2%).
But My is clearly linearly independent in this ring, which finishes the proof. U

Corollary 5.8. v!(t,a) =1 ifa—2(t—1) = |2]+1orifa—2(t—1)= 2| +2 and n is
odd, and v!(t,a) = 0 otherwise.

Proof. Let us set M' = (I:(Q))/(I + (Q)). By the exact sequence
0— DW[=2/(0:Q) <% DM - O ¢

we have dim By = dim Dy + dim M/, , — dim B4_». So
dim By =Y (=1)/ dim Dg_9; + > _(—1)? dim My_y; 1) (5.1)
j=0 j=0

Proceeding exactly as in Section 4, but replacing the use of 2.6 by 5.1 gives

1
1 .
v (t,a) = P My o1y
which, together with Lemma 5.7, yields the result. U
Now we shall prove an analogue of Lemma 5.3:

Lemma 5.9. Let char k = 2, n > 0 and let ¢, and 1, be the matrices defined in Section
1.3. Let h be a vector with polynomial entries of length 2L"+V/21 - Suppose that all entries of
h are homogeneous polynomials of degree d.

1 IfQn-he(xd,....22, ) and d < [n/2], then there exists a vector g with polynomial
entries for which h = Q,, - g modulo (23, ... ,x%_H).

2. If Qn - on(h) € (23,...,22,1) and d < [n/2] — 1, then there exists a vector g with
polynomial entries for which h = v, (g) modulo (23, ... ,x%Jrl) (the same is true with
©n and 1y, exchanged).

3. If on(h) € (23,...,22 1) and d < [n/2], then there exists a vector g with polynomial
entries for which h = Qn, - ¥n(g) modulo (z3,...,22, ) (the same is true with ¢, and
Yy, exchanged).

Proof. We work in the ring D,, = k[xo, ..., zns1]/(23,. .. ,x%Jrl) and proceed by induction
on n. For brevity let ¥ = Pn, ,l/} = ,l/}na SO/ = Pn—2; W = Pn-2, T =Tn, Y = Tn4l, Q = Qn and
Q, = Qn—2-

1. This follows from Lemma 5.7 above.

2. Let us divide h in two pieces: h = (hg,h1). We can write h;, i = 0,1 as h; = h¥ +
zhdt + yhlY + zyhll where hgk are polynomials in xg,...,Z,—1.

Using the recurrence relations

B ¢ x-id B ' x-id B ,
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our assumption on h takes the form

(zy + Q") (¢ (ho) + zh1) =0, (zy+ Q") (¢ (h1) + yho) = 0.

By comparing coefficients in z and y we see that

Q¢ (hg') = 0, QY (h") =0, (52)

Q(¢'(hg") + ") =0 QW' (°) +hy') =0, (53)

Qe (h") =0, Q¥ (h') =0, (54)

' (hg') + Q¢ (he') + Q'hy” =0, V(%) + QY (') + Q'hg' = (5:5)

By (5.4) and the induction assumption, there exist gi° and g{! such that A’ = ¢/(g{%)

and h{! = ¢'(g?'). Observe also that by (5.3) and (1), there exist gJ' and gi° such that
(hm) R = Q'gdt and ¢'(h{%) + A’ = Q'g%o. Putting this into (5.5) and using the
induction assumptlon once again gives us g4t and g} such that g% + it = ¢'(gd!) and
gt + hit = ' (gi'). Finally define g 90 '(g 10) + hi0 and g% = ' (gd') + hY! and observe
that 9= (90,91) deﬁned by g; = g9° + zg?t + yg}° + zyg}! satisfies ¢(g) = h.
3. Let us first prove that there exists an f such that h = ¢(f). Decomposing h as before,
we have

¢'(hg’) =0, W' (hY%) =0, (5.6)
¢ (hg') + hY° =0, W' (h1”) + hg’ = 0, (5.7)
¢ (hg") =0, W' (BY) =0, (5.8)
¢ (hg') + hi° =0, ' (hi') + hg' = 0. (5.9)

By (5.8) and the induction assumption, there exist fa® and f{! such that h{® = ¢/(fi°) and
Rt = ' (f21). Observe also that

Q- ¢'(hg') = Q" hi’ = ¢ (W' (h")) = ¢ (hg") = 0,

and similarly Q’ zp (hit) = 0, therefore by (1 ) there exist f&l and f! such that h{! = ¢/(f3!)
and hit = ¢/(f{!). Finally set fJ° = hi° = hYt =0 and f{° = 0 and observe that

f=(fos 1), fi= f0+afPt +yfl0+ xyfzn SatlSﬁeS h U(f)
Now since @ - f = o((f)) = ¢(h) = 0, by (2) there exists a g such that f = @ - g.
Therefore h = ¥(f) = Q - ¥(g). O

Proceeding exactly as in Propositions 5.5 and 5.6 and Theorem 2, one obtains
Theorem 3.

1. F?(O(a)) contains O(t) if and only if 0 < a —tqg < n(qg—1),

2. F$(O(a)) contains S(t) if and only if

3. F$(S(a)) contains O(t) if and only if 1 < a —tq<n(q—1),
4. F2(S(a)) contains S(t) if and only if

n n
(I_EJ _1) g+1+58,1 '5n,odd<a_tq<n(q_1) —q— (I_EJ _1) 5 _551 5n0dd7
where 0y, 0qq = 1 if n is odd and 0 otherwise. ]
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6. Corollaries

The following simple fact follows from Theorems 2 and 3.

Corollary 6.1. For any ACM bundle £ on Q, there are only finitely many t € Z for which
there exists an s such that O(t) or S(t) appears in F5E.

Now we proceed to extend the main results from [12].

Definition 6.2. A coherent sheaf .Z on a variety X is called quasi-exceptional if Ext'(.F, ) =
0 for i > 0. & is tilting if it is quasi-exceptional, Karoubian generates the bounded derived
category D’(X) and the algebra Homx (.%#,.%) has finite global dimension.

Lemma 6.3. We have Ext!(S(a),S(a + 1)) # 0 and S(a) is quasi-exceptional.

Proof. For the first statement, tensor the sequence (1.4) by S(a) and write the long cohomo-
logy exact sequence. The second statement follows even simpler from (1.4). O

The following theorem extends slightly the main Theorem 1.1 from [12].
Theorem 4. Let n > 2. Then F;0g,, s tilting if and only if one of the following holds:
1. s=1andp>n,

2.s=2,n=4andp=2,3,

3. 822, nis odd and p > n.

Proof. 1If p > 2, this is Theorem 1.1 from [12] (and can also be easily deduced from Theorem
2). Thus the only new part here is to show that in the case p = 2, F{& is not tilting, except
for the case s = 2 and n = 4.

By Theorem 2, we see that F{& contains as direct summands only the line bundles

6,6(-1),...,0(—|n— gj).

So if n > ¢ then F{& does not generate the derived category.

We also see that the F{& contains S(t) for 7§ < —tq < 4§ with 4§ —1§ = 5 —n > 2¢
for ¢ > n > 6, so in this case F& contains two consecutive twists of S. Therefore it is not
quasi-exceptional by the above lemma.

Finally, we work out the cases n = 3,4,5 by hand: for n = 3, F20 contains S and S(—1).
For n = 4, F20 contains S(—1) and S(—2). For n = 5, F20 contains S(—1) and S(—2). So
in all these cases the bundles (and their Frobenius push-forwards) are not quasi-exceptional.
For n = 3,4,5 and s = 1, we have n > ¢. It remains to check the case n = 4, s = 2. In this
case, F20 contains S(—1) and &(—i) for i = 0,1,2,3, so it is tilting. O

A note on singular quadrics

It would be interesting to extend the above results to singular quadrics. It should be noted
first that the ring S/(Q) with @ a quadratic form not of full rank is no longer of finite Cohen-
Macaulay type. Recently, N. Addington in [1] constructed the so-called spinor sheaves, which
are analogues of spinor bundles. Among them, there are always one or two (depending on
the parity of the rank of Q) mazimal spinor sheaves (i.e., coming from a maximal linear
subspace on the quadric) and they have nearly the same cohomological properties as the
spinor bundles. In particular, if we denote by S the maximal spinor sheaf of the sum of the
two and assume that F.(&(a)) and F.(S(a)) decompose into direct sums of twists of & and
S, it is easy to see that the results from Section 4 hold true almost without change (one has
to replace the factors 21"/2/+1 by 217/2] 1 being the rank of Q).
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