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Abstract

We exhibit basic algebro-geometric results on the formal model of semi-infinite flag varieties and its Schubert
varieties over an algebraically closed field K of characteristic ≠ 2 from scratch. We show that the formal model of a
semi-infinite flag variety admits a unique nice (ind-)scheme structure, its projective coordinate ring has a Z-model
and it admits a Frobenius splitting compatible with the boundaries and opposite cells in positive characteristic.
This establishes the normality of the Schubert varieties of the quasi-map space with a fixed degree (instead of their
limits proved in [K, Math. Ann. 371 no.2 (2018)]) when charK = 0 or ≫ 0, and the higher-cohomology vanishing
of their nef line bundles in arbitrary characteristic ≠ 2. Some particular cases of these results play crucial roles in
our proof [47] of a conjecture by Lam, Li, Mihalcea and Shimozono [60] that describes an isomorphism between
affine and quantum K-groups of a flag manifold.

1. Introduction

The semi-infinite flag varieties are variants of affine flag varieties that encode the modular representation
theory of a semi-simple Lie algebra, representation theory of a quantum group at roots of unity and
representation theory of an affine Lie algebra at the critical level. They originate from the ideas of
Lusztig [64] and Drinfeld, put forward by Feigin and Frenkel [24] and subsequently polished by the
work of Braverman, Finkelberg, and their collaborators [29, 23, 2, 7, 8, 9, 10, 11]. They (mainly) used the
ind-model of semi-infinite flag varieties, and achieved spectacular success on the geometric Langlands
correspondence [2, 12], the quantum K-groups of flag manifolds [9] and their (conjectural) relation to
the finite W-algebras [8].

In [51], we initiated the study of the formal model of a semi-infinite flag variety (over C) that follows
the classical description of flag varieties [57, 69, 63, 58] more closely than the works already cited. We
refer to this formal model of a semi-infinite flag variety as a ‘semi-infinite flag manifold’, since we hope
to justify that it is ‘smooth’ in a sense. However, the analysis in [51] has two defects: the relation with
the ind-models of semi-infinite flag varieties is unclear, and the treatment there is rather ad hoc (it is
just an ind-scheme whose set of C-valued points have the desired property, and lacks a characterisation
as a functor; compare [3, 22]). The first defect produces difficulty in discussing deep properties on
the identification between the equivariant K-group of a semi-infinite flag manifold and the equivariant
quantum K-group of a flag manifold [47], which is in turn inspired by the works of Givental and Lee
[32, 33]. The goal of this paper is to study semi-infinite flag manifolds in characteristic ≠ 2 from scratch,
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and resolve these defects. In particular, we verify that the scheme in [51] is universal one among all the
ind-schemes with similar set-theoretic properties, and provide new proofs of the normality of Zastava
spaces [9] and the semi-infinite flag manifolds [51].

It is possible to regard our work ([46, 49, 51, 47, 48]) as part of catch-up of Peterson’s original
construction [74] of his isomorphism [61] between the quantum cohomology of a flag manifold and
the cohomology of an affine Grassmannian in the K-theoretic setting. From this viewpoint, this paper
provides some varieties considered in [74, Lecture 11] with their appropriate compactifications. Hence,
though there are still some missing pieces to complete the original program along the lines in [74], this
paper provides a step to fully examine Peterson’s ideas.

To explain our results more precisely, we introduce more notation: Let g denote a simple Lie algebra
(given in terms of root data and the Chevalley generators) over an algebraically closed field K of
characteristic ≠ 2. Let G denote the connected simply connected algebraic group over K such that
g = Lie�. Let � ⊂ � be a Cartan subgroup and N be an unipotent radical of G that is normalised
by H. We set � := �# and ℬ := �/� (the flag manifold of G). Let I+ ⊂ � (K[[I]]) denote the
Iwahori subgroup that contains B, and let I− ⊂ �

(
K
[
I−1

] )
be its opposite Iwahori subgroup. Let g̃

denote the untwisted affine Kac–Moody algebra associated to g, and let W and ,af be the finite Weyl
group and the affine Weyl group of g, respectively. The coroot lattice &∨ of g yields a natural subgroup{
CV
}
V∈&∨ ⊂ ,af . Let F0 ∈ , be the longest element.

Our first main result is as follows:

Theorem A (� Theorem 4.18 and Proposition 4.26). There is an ind-scheme Qrat
�

with the following
properties:

1. It is expressed as the union of infinite-type integral schemes flat over Z.
2. If we set

(
Qrat
�

)
K

:= Qrat
�

⊗Z K, we have

(
Qrat
�

)
K
(K) � � (K((I)))/(� (K)# (K((I)))),

which intertwines the natural� (K((I)))⋉G< (K)-actions on both sides, whereG< is the loop rotation.
3. The functor

�55
>?
K

∋ ' ↦→ � ('((I)))/(� (')# ('((I)))) ∈ Sets

is coarsely ind-representable by
(
Qrat
�

)
K

(see Section 4.3 for the convention).

One can equip
(
Qrat
�

)
K
(K) with an ind-scheme structure using the arc scheme of the basic affine space

�/# . Such an ind-scheme cannot coincide with ours (in general), by the appearance of the nontrivial
nilradicals [71, 27, 26]. In fact, such an ind-scheme defines a radicial thickening of

(
Qrat
�

)
K

.
The set of � × G<-fixed points of

(
Qrat
�

)
K

is in bijection with ,af . Let ?F ∈
(
Qrat
�

)
K

be the point
corresponding to F ∈ ,af . We set O(F) := I+?F and O− (F) := I−?F for each F ∈ ,af .

Theorem A has some applications to the theory of quasi-map spaces from P1 to ℬ presented in
[29, 23, 9, 10, 11] as follows:

Theorem B. In the foregoing settings, the following hold:

1. (Corollary 3.38 and Theorem 4.30) If charK > 0, then the scheme
(
Qrat
�

)
K

admits an I±-canonical

Frobenius splitting that is compatible with O(F)s and O−(E)s (F, E ∈ ,af).
2. (Corollary 4.10 and Remark 4.13) For each F, E ∈ ,af , the intersection �(E, F) := O(F) ∩ O−(E)

is reduced. It is irreducible when E = F0CV for some V ∈ &∨.
3. (Lemma 4.7 and Corollary 5.24) For each F, E ∈ ,af , the scheme �(E, F) is weakly normal. It is

normal (and irreducible) when charK = 0 or charK ≫ 0.
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4. (Lemma 4.28) For each V ∈ &∨
+ , the set of K-valued points of the scheme �

(
F0CV , 4

)
is in bijection

with the set of (K-valued) Drinfeld–Plücker data. In particular, �
(
F0CV , 4

)
is isomorphic to the

quasi-map space in [29] when K = C.

Theorem B is a key result at the deepest part (correspondence between natural bases) in our proof
([47]) of a conjecture of Lam, Li, Mihalcea and Shimozono [60] about the comparison between the
equivariant K-group of the affine Grassmannian of G and the equivariant small quantum K-group of
ℬ. In [47], we also prove that �

(
F0CV , F

)
admits only rational singularities (and hence it is Cohen–

Macaulay) when K = C on the basis of Theorem B. We remark that Theorem B(3) is proved in [9, 10]
when E = F0CV , F = 4 and K = C.

Our proof of Theorem B(1) is not at all standard, and in fact it forms the core of the technical
contributions in this paper. To appreciate its contents, let us recall that there are two standard ways to
construct a Frobenius splitting of ℬ ([14]): One is to consider the Bott–Samelson–Demazure–Hansen
resolution of ℬ, which reduces the assertion to the case of a point, which is a Schubert variety with
trivial Frobenius splitting. The other is to analyse the space of global sections of (some power of) the
canonical bundle of ℬ.

However, neither of these proof strategies works for Qrat
�

. The first one fails because any Schubert
variety of Qrat

�
is infinite-dimensional, and carries rich internal structure by itself. The second one fails

because the canonical bundle of Qrat
�

simply does not make sense, at least naively. These require some
new ideas to prove Theorem B(1). Our idea here is as follows: An interpretation of the filtrations in
[50] reduces the existence of a Frobenius splitting of Qrat

�
to a property of the Frobenius splitting of the

corresponding thick affine flag manifold [49, Corollary B]. This property can be seen as a special case
of some homological property in the representation theory of affine Lie algebras ([18, 20]), but it is
proved only for characteristic 0. Thus, we use Kashiwara’s theory of global basis ([43, 44]) to transfer
such a homological property into the positive-characteristic setting (Proposition 3.19).

In the rest of this introduction, we assumeK = C for the sake of simplicity. Let P be the weight lattice
of H, and let %+ ⊂ % denote its subset corresponding to dominant weights. For each _ ∈ %, we have
an equivariant line bundle OQrat

�
(_) on Qrat

�
, whose restriction to �(E, F) is denoted by O� (E,F) (_).

Associated to _ ∈ %+, we have a level 0 extremal weight moduleX(_) of*
(̃
g
)

in the sense of Kashiwara
[44]. We know that X(_) is equipped with two kinds of Demazure modules and a distinguished basis
(the global basis).

Corollary C (� Theorem 4.33). Set F, E ∈ ,af . For each _ ∈ %+, we have

�>0 (
�(E, F),O� (E,F) (_)

)
= {0}.

The space �0
(
�(E, F),O� (E,F) (_)

)∨
is the intersection of two Demazure modules of X(_) spanned

by a subset of the global basis of X(_) if _ is strictly dominant. If we have F′, E′ ∈ ,af such that
�(E′, F′) ⊂ �(E, F), then the restriction map

�0 (
�(E, F),O� (E,F) (_)

)
։ �0 (

�(E′, F′),O� (E′,F′) (_)
)

is surjective.

Note that Corollary C adds new vanishing region to [10, Theorem 3.1 1)]. We also provide parabolic
versions of Theorems A and B and Corollary C. We have a description of �0

(
�(E, F),O� (E,F) (_)

)
for

general _ ∈ %+ that is more complicated (Theorem B.6).
Let ℬ2,V be the space of genus 0 stable maps with two marked points to ℬ with the class of its image

V ∈ &∨
+ ⊂ &∨

� �2(ℬ,Z). We have evaluation maps e 9 : ℬ2,V → ℬ for 9 = 1, 2. The following
purely geometric result is a by-product of our proof that may be of independent interest:

Corollary D (� Corollary 5.19). Set V ∈ &∨
+ and G, H ∈ ℬ. The space

(
e
−1
1 (G) ∩ e−1

2

(
�H

))
is connected

if it is nonempty.
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Note that Corollary D is contained in [16] whenever {G}, �H ⊂ ℬ are in general position.
The plan of this paper is as follows: In Section 2, we collect basic material needed in what fol-

lows. In Section 3, after recalling generalities on Frobenius splitting and representation theory of
quantum loop algebras, we construct the ind-scheme Qrat

�
and equip it with a Frobenius splitting (Corol-

lary 3.38). In Section 4, we first interpret Qrat
�

as an ind-scheme (coarsely) representing the coset
� (K((I)))/(� (K)# (K((I)))) (Theorem A). Using this, we identify some Richardson varieties of Qrat

�
with quasi-map spaces (Theorem 4.30) and present their cohomological properties (Theorem 4.33),
and hence prove (large parts of) Theorem B and Corollary C. Since our construction equips quasi-map
spaces with Frobenius splittings (Lemma 4.7), they are automatically weakly normal. Moreover, we ex-
plain how to connect characteristic 0 and positive characteristic (Section 4.5). In Section 5, we analyse
the fibres of the graph-space resolutions of quasi-map spaces and deduce that Richardson varieties of
semi-infinite flag manifolds (over C) are normal based on the weak normality proved in the previous
section. This proves the remaining part of Theorem B. Our analysis here contains an inductive proof
that the fibres of the evaluation maps of the space of genus 0 stable maps to flag varieties are connected
(Corollary D). In Appendix A, we give a proof of the normality of (the ind-pieces of) Qrat

�
(which works

also in the positive characteristic setting) and present an analogue of the Kempf vanishing theorem [52]
for Qrat

�
. Appendix B exhibits the structure of global sections of nef line bundles of Richardson varieties

of Qrat
�

.
Note that Theorem B equips a quasi-map space from P1 to ℬ with a Frobenius splitting compatible

with the boundaries. However, the notion of a boundary in quasi-map spaces depends on a configuration
of points in P1 (we implicitly set them to {0,∞} ⊂ P1 throughout this paper). This makes our analogues
of open Richardson varieties not necessarily smooth, contrary to the original case [76] (see also [29,
§8.4.1]). We hope to give a further account of this, as well as the factorisation structure ([29, §6.3])
from the viewpoint presented in this paper, in future work.

2. Preliminaries

We work over an algebraically closed fieldK unless stated otherwise. A vector space is aK-vector space,
and a graded vector space refers to a Z-graded vector space whose graded pieces are finite-dimensional
and whose grading is bounded from above or from below. Tensor products are taken over K unless
specified otherwise.

Let A be a principal ideal domain. For a graded free A-module " =
⊕

<∈Z "<, we set "∨ :=⊕
<∈ZHom�("<, �), where Hom�("<, �) is understood to have degree −<.
As a rule, we suppress ∅ and associated parentheses from notation. This particularly applies to

∅ = J ⊂ I, frequently used to specify parabolic subgroups.

2.1. Groups, root systems and Weyl groups

We refer to [21, 57] for precise expositions of general material presented in this subsection.
Let G be a connected, simply connected simple algebraic group of rank r over an algebraically closed

field K, and let B and H be a Borel subgroup and a maximal torus of G such that � ⊂ �. We set
# (= [�, �]) to be the unipotent radical of B and let #− be the opposite unipotent subgroup of N with
respect to H. We denote the Lie algebra of an algebraic group by the corresponding German (Fraktur)
small letter. We have a (finite) Weyl group , := #� (�)/�. For an algebraic group E, we denote its
set of K[I]-valued points by � [I], its set of K[[I]]-valued points by � [[I]], and its set of K((I))-valued
points by � ((I)), and so on. Let I ⊂ � [[I]] be the preimage of � ⊂ � via the evaluation at I = 0 (the
Iwahori subgroup of � [[I]]). We set I− ⊂ �

[
I−1

]
as the opposite Iwahori subgroup of I in � ((I)) with

respect to H. By abuse of notation, we might consider I and� [[I]] as proalgebraic groups overKwhose
K-valued points are given as these.

Let % := Hom6A (�,G<) be the weight lattice of H, Δ ⊂ % be the set of roots, Δ+ ⊂ Δ be the set
of roots that yield root subspaces in b and Π ⊂ Δ+ be the set of simple roots. We set Δ− := −Δ+. Let

https://doi.org/10.1017/fmp.2021.5 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.5


Forum of Mathematics, Pi 5

&∨ be the dual lattice of P with a natural pairing 〈•, •〉 : &∨ × % → Z. We define Π∨ ⊂ &∨ to be
the set of positive simple coroots and let &∨

+ ⊂ &∨ be the set of nonnegative integer spans of Π∨. For
V, W ∈ &∨, we define V ≥ W if and only if V − W ∈ &∨

+ . We set %+ := {_ ∈ % | 〈U∨, _〉 ≥ 0, ∀U∨ ∈ Π∨}

and %++ := {_ ∈ % | 〈U∨, _〉 > 0, ∀U∨ ∈ Π∨}. Define I := {1, 2, . . . , A}. We fix bijections I � Π � Π∨

such that 8 ∈ I corresponds to U8 ∈ Π, its coroot U∨8 ∈ Π∨ and a simple reflection B8 ∈ , corresponding
to U8 . Let {s8}8∈I ⊂ %+ be the set of fundamental weights

(
i.e.,

〈
U∨8 , s 9

〉
= X8 9

)
and d :=

∑
8∈Is8 =

1
2

∑
U∈Δ+ U ∈ %+.

For a subset J ⊂ I, we define %(J) as the standard parabolic subgroup of G corresponding to J – that
is, we have b ⊂ p(J) ⊂ g, andp(J) contains the root subspace corresponding to −U8 (8 ∈ I) if and only if
8 ∈ J. Let � ⊂ !(J) ⊂ %(J) be the standard Levi subgroup (which is isomorphic to the quotient of %(J)
by its unipotent radical). Then the set of characters of %(J) is identified with %J :=

∑
8∈I\J Zs8 . We also

set %J,+ :=
∑
8∈I\J Z≥0s8 = %+ ∩ %J and %J,++ :=

∑
8∈I\J Z≥1s8 = %++ ∩ %J. We define,J ⊂ , to be

the reflection subgroup generated by {B8}8∈J. It is the Weyl group of [!(J), !(J)] and !(J). We define
dJ to be the half-sum of positive roots whose root spaces are contained in the unipotent radical of p(J).

LetΔaf := Δ×ZX∪{<X}<≠0 be the untwisted affine root system ofΔ with its positive partΔ+ ⊂ Δaf,+.
We set U0 := −o + X, Πaf := Π ∪ {U0} and Iaf := I ∪ {0}, where o is the highest root of Δ+. We set
,af := , ⋉ &∨ and call it the affine Weyl group. It is a reflection group generated by {B8 | 8 ∈ Iaf},
where B0 is the reflection with respect to U0. We also have a reflection BU ∈ ,af corresponding to
U ∈ Δ × ZX ( Δaf . Let ℓ : ,af → Z≥0 be the length function and F0 ∈ , be the longest element
in , ⊂ ,af . Together with the normalisation C−o∨ := BoB0 (for the coroot o∨ of o), we introduce the
translation element CV ∈ ,af for each V ∈ &∨.

For each 8 ∈ Iaf , we have a connected algebraic group SL(2, 8) that is isomorphic to SL(2) equipped
with an inclusion SL(2, 8) (K) ⊂ � ((I)) as groups corresponding to±U8 ∈ Iaf . Let d±U8 : G< → SL(2, 8)
denote the unipotent one-parameter subgroup corresponding to ±U8 ∈ Δaf . We set �8 := SL(2, 8) ∩ I,
which is a Borel subgroup of SL(2, 8). For each 8 ∈ I, we set %8 := %({8}). For each 8 ∈ Iaf , we set
I(8) := SL(2, 8)I. Each I(8) can be regarded as a proalgebraic group.

As a variation of [57, Chapter VI], we say an ind-scheme X over K admits a� ((I))-action if it admits
an action of I and SL(2, 8) (8 ∈ Iaf) as (ind-)schemes over K that coincides on �8 = (I ∩ SL(2, 8)) and
they generate a � ((I))-action on the set of closed points of X (the latter is a group action on a set). We
consider the notion of � ((I))-equivariant morphisms accordingly.

We set

&∨
< :=

{
V ∈ &∨ | 〈V, U8〉 < 0, ∀8 ∈ I

}
.

Let ≤ be the Bruhat order of ,af . In other words, F ≤ E holds if and only if a subexpression of a
reduced decomposition of v yields a reduced decomposition of w. We define the generic (semi-infinite)
Bruhat order ≤∞

2
as

F ≤∞
2
E ⇔ FCV ≤ ECV for every V ∈ &∨ such that 〈V, U8〉 ≪ 0 for 8 ∈ I. (2.1)

By [64], this defines a preorder on,af . Here we remark that F ≤ E if and only if F ≥∞
2
E for F, E ∈ , .

We also have

F ≤∞
2
E ⇔ FF0 ≥∞

2
EF0, F, E ∈ ,af . (2.2)

For proofs and related results, we refer to [51, §2.2] and [74, Lecture 13].
For each D ∈ , and V ∈ &∨, we set

ℓ
∞
2
(
DCV

)
:= ℓ(D) +

∑
U∈Δ+

〈V, U〉 = ℓ(D) + 2 〈V, d〉 .

Theorem 2.1 ([64]; compare [61]). For each F, E ∈ ,af such that F ≤∞
2
E, there exists U ∈ Δaf

+ such

that F ≤∞
2
BUE ≤∞

2
E and ℓ

∞
2 (BUE) = ℓ

∞
2 (E) + 1.
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For each _ ∈ %+, we denote the corresponding Weyl module by + (_) (see, e.g. [1, Proposition 1.22]
and [41, Theorem 5]). By convention, + (_) is a finite-dimensional indecomposable G-module with
a cyclic B-eigenvector v0

_ (highest weight vector) with H-weight _ whose character obeys the Weyl
character formula. For a semisimple H-module V, we set

ch+ :=
∑
_∈%

4_ · dimK Hom� (K_, +).

If V is a Z-graded H-module in addition, then we set

gch+ :=
∑

_∈%, =∈Z

@=4_ · dimK Hom� (K_, +=). (2.3)

Define ℬ := �/� and call it the flag manifold of G. We have the Bruhat decomposition

ℬ =
⊔
F ∈,

Oℬ (F) (2.4)

into B-orbits such that dim Oℬ (F) = ℓ(F0) − ℓ(F) for each F ∈ , ⊂ ,af . We set ℬ(F) := Oℬ (F) ⊂

ℬ.
For each _ ∈ %, we have a line bundle Oℬ (_) such that

�0(ℬ,Oℬ (_)) � + (_)∗, Oℬ (_) ⊗Oℬ
Oℬ (−`) � Oℬ (_ − `), _, ` ∈ %+.

For each F ∈ , , let ?F ∈ Oℬ (F) be the unique H-fixed point. We normalise ?F (and henceOℬ (F))
so that the restriction of Oℬ (_) to ?F is isomorphic to K−FF0_ for every _ ∈ %+. (Here we warn that
the convention differs from [47].)

2.2. Representations of affine and current algebras

In the rest of this section, we work overK = C, the field of complex numbers. Material in this subsection
without a reference can be found in [40, 41]. Every result in this subsection is transferred to an arbitrary
field in Section 3.2.

Let g̃ denote the untwisted affine Kac–Moody algebra associated to g – that is, we have

g̃ = g ⊗ C
[
I, I−1

]
⊕ C ⊕ C3,

where K is central, [3, - ⊗ I<] = <- ⊗ I< for each - ∈ g and < ∈ Z and, for each -,. ∈ g and
5 , 6 ∈ C

[
I±1

]
, we have

[- ⊗ 5 , . ⊗ 6] = [-,. ] ⊗ 5 6 + (-,. )g ·  · ResI=0 5
m6

mI
,

where (•, •)g denotes the G-invariant bilinear form such that (U∨, U∨)g = 2 for a long simple root U. Let

�8 , �8 (8 ∈ Iaf) denote the Kac–Moody generators of g̃ corresponding to U8 . We set h̃ := h ⊕ C ⊕ C3.
Let ℑ be the Lie subalgebra of g̃ generated by �8 (8 ∈ Iaf) and h̃, and ℑ− be the Lie subalgebra of g̃
generated by �8 (8 ∈ Iaf) and h̃. For each 8 ∈ Iaf and = ≥ 0, we set � (=)

8 := 1
=!�

=
8 and � (=)

8 := 1
=!�

=
8 .

We define

&af,∨ := Z3 ⊕
⊕
8∈Iaf

ZU∨8 ⊂ h̃, %af := ZX ⊕
⊕
8∈Iaf

ZΛ8 ⊂ h̃∗,
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and a pairing &af,∨ × %af → Z such that〈
U∨8 ,Λ 9

〉
= X8 9 (8, 9 ∈ Iaf),

〈
U∨8 , X

〉
≡ 0, 〈3,Λ8〉 = X80 (8 ∈ Iaf), 〈3, X〉 = 1.

We have a projection map

%af ∋ Λ = :X +
∑
8∈Iaf

08Λ8 ↦→ Λ =
∑
8∈I

08s8 ∈ %,

which has a unique splitting % ⊂ %af whose image is orthogonal to 3,  ∈ h̃. We set %af
+ :=

∑
8∈Iaf
Z≥0Λ8 .

Each Λ ∈ %af
+ defines an irreducible integrable highest weight module !(Λ) of g̃ with its highest weight

vector vΛ. In addition, each _ ∈ %+ defines a level 0 extremal weight module X(_) of g̃ by means of
the specialisation of the quantum parameter q = 1 in [43, Proposition 8.2.2] and [44, §5.1], which is
integrable, and K acts by 0. The module X(_) carries a cyclic h̃-weight vector v_ such that

�v_ = _(�)v_ (� ∈ h),  v_ = 0 = 3v_, �8v_ = 0 (8 ∈ I), and �0v_ = 0.

(We can deduce that X(_) is the maximal integrable g̃-module that possesses a cyclic vector with these
properties [43, §8.1].) Moreover, each F = DCV ∈ ,af (D ∈ ,, V ∈ &∨) defines an element vF_ ∈ X(_)

such that

�vF_ = (F_) (�)vF_ (� ∈ h),  vF_ = 0, 3vF_ = − 〈V, _〉 vF_

up to sign [43, §8.1]. We call a vector in {vF_}F ∈,af an extremal weight vector of X(_).
We set g[I] := g ⊗C C[I] and regard it as a Lie subalgebra of g̃. We have ℑ ⊂ g[I] + C + C3. The

Lie algebra g[I] is graded, and its grading is the internal grading of g̃ given by d.
For each _ ∈ %+, we set

WF (_) := * (ℑ)vF_ ⊂ X(_).

These are the q = 1 cases of the Demazure modules of X(_), as well as the generalised global Weyl
modules in the sense of [28]. We set W(_) := WF0 (_). By construction, both X(_) and WF (_) are
semisimple as (� × G<)-modules, where G< acts on z by 0 : I< ↦→ 0<I< (< ∈ Z).

Theorem 2.2 ([62]; compare [46]). For each _ ∈ %+, the ℑ-action on W(_) prolongs to g[I] and is
isomorphic to the global Weyl module of g[I] in the sense of Chari and Pressley [19]. Moreover,W(_)

is a projective module in the category of g[I]-modules whose restriction to g is a direct sum of modules
in {+ (`)}`≤_.

Theorem 2.3 ([46]). Set _, ` ∈ %+ and F ∈ , . We have a unique (up to scalar) injective degree
0 ℑ-module map

WF (_ + `) ↩→WF (_) ⊗WF (`).

Sketch of proof. For each _, ` ∈ %+, the projectivity ofW(_ + `) in the sense of Theorem 2.2 yields a
unique graded g[I]-module map

W(_ + `) −→W(_) ⊗W(`)

of degree 0. This map is injective by examining the specialisations to local Weyl modules (for their
definitions, see [46, Theorem 1.4] or Lemma 3.20 and Remark 3.21). Examining the ℑ-cyclic vectors,
it uniquely restricts to a map

WF (_ + `) −→WF (_) ⊗WF (`)

up to scalar. Because the ambient map is injective, this map must be also. �
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2.3. Semi-infinite flag manifolds

We work over C as in the previous subsection. Material in this section is re-proved in the setting
of characteristic ≠ 2 in Sections 3.4 and 4.2 (compare Section 4.3). We define the semi-infinite flag
manifold as the reduced ind-scheme such that both of the following are true:

◦ We have a closed embedding

Qrat
� ⊂

∏
8∈I

P(+ (s8) ⊗ C((I))).

◦ We have an equality Qrat
�
(C) = � ((I))/(� (C) · # ((I))).

This is a pure ind-scheme of ind-infinite type [51]. Note that the group &∨ ⊂ � ((I))/� (C) acts on Qrat
�

from the right. The ind-scheme Qrat
�

is equipped with a � ((I))-equivariant line bundle OQrat
�
(_) for each

_ ∈ %. Here we normalised so that Γ
(
Qrat
�
,OQrat

�
(_)

)
is �−((I))-cocyclic to an H-weight vector with its

H-weight −_. We warn that this convention is twisted by −F0 from that of [47], and complies with [51].

Theorem 2.4 ([29, 23, 51, 64]). We have an I-orbit decomposition

Qrat
� =

⊔
F ∈,af

O(F)

with the following properties:

1. Each O(F) is isomorphic to A∞ and has a unique (� × G<)-fixed point.
2. The right action of W ∈ &∨ on Qrat

�
yields the translation O(F) ↦→ O(FCW).

3. We have O(F) ⊂ O(E) if and only if F ≤∞
2
E.

4. The relative dimension of O
(
DCV

)
(D ∈ ,, V ∈ &∨) and O(4), counted as the difference of the

cardinality of the maximal chain of intermediate I-orbits to a common smaller I-orbit, is ℓ
∞
2
(
DCV

)
.

For each F ∈ ,af , let Q� (F) denote the closure of O(F). We refer to Q� (F) as a Schubert variety
of Qrat

�
(corresponding to F ∈ ,af).

Let ( =
⊕

_∈%J,+
((_) be a %J,+-graded commutative ring such that ((0) = � is a principal ideal

domain and S is torsion-free over A and generated by
⊕

8∈I\J ((s8). We define

Proj ( = (Spec ( \ �)/� ⊂
∏
8∈I\J

P�
(
((s8)

∨
)

(2.5)

as the %J,+-graded proj over Spec �, where E is the locus where all of ((s8) vanishes for some 8 ∈ I \ J
(the irrelevant locus).

Theorem 2.5 ([51]). For each F ∈ ,af , we have

Q� (F) � Proj
⊕
_∈%+

WFF0 (_)
∨,

where the multiplication of the ring
⊕

_WFF0 (_)
∨ is given by Theorem 2.3.

2.4. Quasi-map spaces and Zastava spaces

We work over C as in the previous subsection. Here we recall basics of quasi-map spaces from [29, 23].
We have W-equivariant isomorphisms �2(ℬ,Z) � % and �2 (ℬ,Z) � &∨. This identifies the

(integral points of the) nef cone of ℬ with %+ ⊂ % and the effective cone of ℬ with &∨
+ . A quasi-map
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( 5 , �) is a map 5 : P1 → ℬ together with a Π∨-coloured effective divisor

� =
∑

U∈Π∨ ,G∈P1 (C)

<G
(
U∨

)
U∨ ⊗ [G] ∈ &∨ ⊗Z DivP1, <G

(
U∨

)
∈ Z≥0.

For 8 ∈ I, we set �8 := 〈�,s8〉 ∈ DivP1. We call D the defect of the quasi-map ( 5 , �). Here we define
the (total) degree of the defect by

|� | :=
∑

U∈Π∨ , G∈P1 (C)

<G
(
U∨

)
U∨ ∈ &∨

+ .

For each V ∈ &∨
+ , we set

�(ℬ, V) :=
{
5 : P1 → - | quasi-map such that 5∗

[
P1
]
+ |� | = V

}
,

where 5∗
[
P1
]

is the class of the image of P1 multiplied by the degree of P1 → Im 5 . We denote�(ℬ, V)

by �(V) when there is no danger of confusion.

Definition 2.6. (Drinfeld–Plücker data). Consider a collection L =
{(
k_,L

_
)}
_∈%+

of inclusions k_ :

L_ ↩→ + (_) ⊗C OP1 of line bundles L_ over P1. The data L are called Drinfeld–Plücker data (DP-data)
if the canonical inclusion of G-modules

[_,` : + (_ + `) ↩→ + (_) ⊗ + (`)

induces an isomorphism

[_,` ⊗ id : k_+`
(
L_+`

)
�

−→ k_

(
L_

)
⊗O

P1
k` (L

`)

for every _, ` ∈ %+.

Theorem 2.7 (Drinfeld; see [29]). The variety�(V) is isomorphic to the variety formed by isomorphism
classes of the DP-data L =

{(
k_,L

_
)}
_∈%+

such that degL_ = 〈F0V, _〉. In addition, �(V) is an
irreducible variety of dimension 2 〈d, V〉 + ℓ(F0).

For each F ∈ , , let �(V, F) ⊂ �(V) be the locally closed subset consisting of quasi-maps that are
defined at I = 0, and their values at I = 0 are contained in ℬ(F) ⊂ ℬ. We set �(V, F) := �(V, F).
(Hence, we have �(V) = �(V, 4).)

Theorem 2.8 ([29]). Let K be an algebraically closed field (not necessarily of characteristic 0), and let
�(V)K and �(V, F0)K be the spaces obtained by replacing the base field C withK in Definition 2.6. For
each V ∈ &∨

+ , the space �(V, F0)K is an irreducible affine scheme equipped with an action of (�×G<)
over K. In addition, this action has a unique fixed point.

Remarks on the proof. Theorem 2.8 is proved in [29] for K = C using [70], and in the current setting
in [12] using [13]. One can also replace the usage of [70] with [81, Corollary 5.3.8] along the lines of
[29]. �

For each _ ∈ % and F ∈ , , we have a G-equivariant line bundle O� (V,F) (_) (and its pro-object
O� (_)) obtained by the (tensor products of the) pullbacksO� (V,F) (s8) of the ithO(1) via the embedding

�(V, F) ↩→
∏
8∈I

P
(
+ (s8) ⊗C C[I]≤−〈F0V,s8 〉

)
(2.6)

for each V ∈ &∨
+ .
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We have embeddings ℬ ⊂ �(V) ⊂ Q� (4) such that the line bundles O(_) (_ ∈ %) correspond to
each other by restrictions ([10, 46, 51]).

3. Semi-infinite flag manifolds over Z
[

1
2

]
We keep the settings of the previous section. In this section, we sometimes work over a (commutative)
ring or a non-algebraically closed field. For a ring S or a scheme X, we may write (� or X� if it is
defined over A. In addition, we may consider their scalar extensions (� := (� ⊗� � and X� for a ring
map �→ �.

3.1. Frobenius splittings

Let k be a field and p be a prime. We assume char k = ?, k ⊂ K and that the pth power map is invertible
on k (e.g., k = F? or F?) throughout this subsection.

We follow the generality on Frobenius splittings in [14], which considers separated schemes of finite
type. We sometimes use the assertions from [14] without the finite-type assumption when the assertion is
independent of that; typical disguises are properness, finite generation and the Serre vanishing theorem.

Definition 3.1. (Frobenius splitting of a ring). Let R be a commutative ring over k, and let ' (1) denote
the set R equipped with the map

' × ' (1) ∋ (A, <) ↦→ A ?< ∈ ' (1) .

This equips ' (1) with an R-module structure over k (the k-vector space structure on ' (1) is also twisted
by the pth power operation), together with a map y : '.1 → ' (1) . An R-module map q : ' (1) → ' is
said to be a Frobenius splitting if q ◦ y is an identity.

Note that y in Definition 3.1 must be an inclusion if we have a Frobenius splitting q. Since the pth
power map in k is invertible, we can twist the (scalar multiplication part of the) k-vector space structure
of R (� ' (1) as sets) to make y into a k-linear map without making it into an R-linear map (when ' ≠ k).

Definition 3.2. (Frobenius splitting of a scheme). Let X be a separated scheme defined over k. Let Fr

be the (relative) Frobenius endomorphism of X (which induces a k-linear endomorphism). We have a
natural inclusion y : OX → Fr∗OX . A Frobenius splitting ofX is aOX-linear morphism q : Fr∗OX → OX

such that the composition q ◦ y is the identity.

Definition 3.3. (Compatible splitting). Let Y ⊂ X be a closed immersion of separated schemes defined
over k. A Frobenius splitting q of X is said to be compatible with Y if q

(
Fr∗IY

)
⊂ IY, where

IY := ker
(
OX → OY

)
. Compatible Frobenius splitting of a pair of a commutative ring and its quotient

ring is defined through their spectra.

Remark 3.4. A Frobenius splitting of X compatible with Y induces a Frobenius splitting of Y (see,
e.g., [14, Remark 1.1.4 (ii)]).

Theorem 3.5 ([14]). Let X be a separated scheme of finite type over k with semiample line bundles
L1, . . . ,LA . If X admits a Frobenius splitting, then the multisection ring

⊕
=1 ,...,=A ≥0

Γ
(
X,L

⊗=1
1 ⊗ · · · ⊗ L⊗=A

A

)

admits a Frobenius splitting q. Moreover, a closed subscheme Y ⊂ X = Proj ' admits a compatible
Frobenius splitting if and only if the homogeneous ideal �Y ⊂ ' that defines Y satisfies q

(
�Y
)
⊂ �Y –

that is, the pair
(
', '/�Y

)
admits a compatible Frobenius splitting q. �
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Definition 3.6. (Canonical splitting). Let X be a separated scheme over k equipped with a B-action. A
Frobenius splitting q is said to be B-canonical if it is H-fixed and each 8 ∈ I yields

dU8 (I
?)q

(
dU8 (−I) 5

)
=

?−1∑
9=0

I 9

9!
q8, 9 ( 5 ), I ∈ k, (3.1)

where q8, 9 ∈ HomOX
(Fr∗OX ,OX). We similarly define the notion of �−-canonical splitting (resp.,

I-canonical splitting and I−-canonical splitting) by using
{
d−U8

}
8∈I

(resp.,
{
dU8

}
8∈Iaf

and
{
d−U8

}
8∈Iaf

)
instead. Canonical splitting of a commutative ring S over k is defined through its spectrum.

Proposition 3.7. (Compare [14]). Let ( =
⊕

<≥0 (< be a graded ring with (0 = k such that

◦ S is equipped with a degree-preserving I-action,
◦ each (< is a graded k-vector space compatible with the multiplication and
◦ we have an I-canonical Frobenius splitting q : ( (1) → (.

Then the induced map

q∨ : (∨< −→ (∨?<, < ∈ Z≥0,

satisfies

q∨
(
�

(=)
8 v

)
= �

(?=)
8 q∨(v) ∀8 ∈ Iaf , = ∈ Z≥0, v ∈ (∨<.

Similar results hold for the I−- and �±-actions.

Remark 3.8. In our opinion, one merit of Proposition 3.7 over [14, Proposition 4.1.8] is that it becomes
obvious that a projective variety X with a B-action has at most one B-canonical splitting whenever
the space of global sections of all ample line bundles is (or can be made) B-cocyclic compatible with
multiplications (compare [14, Theorem 4.1.15] and Corollary 3.35).

Proof of Proposition 3.7. The condition that (< is a graded vector space implies (<
�

−→
(
(∨<

)∨
for

each < ∈ Z≥0. By [14, Proposition 4.1.8], each w ∈ (?< ⊂ ( (1) satisfies q
(
�

(?=)
8 w

)
= �

(=)
8 q(w) for

8 ∈ Iaf and = ≥ 0. Using the natural nondegenerate invariant pairing 〈•, •〉 between (∨< and (<, we
compute the leftmost term of

〈
v, q

(
�

(?)
8 w

)〉
= 〈v, �8q(w)〉 = −

〈
q∨(�8v),w

〉
by using the invariance under the corresponding unipotent action, yielding

〈
v, q

(
�

(?)
8 w

)〉
= −

?∑
:1=1

〈
� (:1)q∨(v), �

(?−:1)
8 w

〉

=

?∑
<=1

∑
:•>0, :1+:2+···+:<=?

(−1)<
〈
�

(:1)
8 �

(:2)
8 · · · q∨(v),w

〉

= −
〈
� (?)q∨(v),w

〉
,

since we have � (:1)
8 �

(:2)
8 · · · �

(:<)
8 ∈ ?Z�

(?)
8 except for :1 = ?, 0 = :2 = · · · . This implies the case

when = = 1.
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Similarly, we have

〈
v, q

(
�

(?=)
8 w

)〉
=

=∑
<=1

∑
:•>0, :1+:2+···+:<==

(−1)<
〈
�

(?:1)
8 �

(?:2)
8 · · · q∨(v),w

〉
.

Compared with

〈
v, �

(=)
8 q(w)

〉
=

=∑
<=1

∑
:•>0, :1+:2+···+:<==

(−1)<
〈
q∨

(
�

(:1)
8 �

(:2)
8 · · · v

)
,w

〉

using induction on n, we conclude the result. �

3.2. Representations of affine Lie algebras over Z

In this section, we systematically use global basis theory [41, 43, 44, 45, 65, 35] by specialising the
quantum parameter q to 1. Therefore, we might refer to these references without an explicit declaration
that we specialise q.

We consider the Kostant–Lusztig Z-form*+
Z

(resp.,*−
Z

) of* ([ℑ,ℑ]) (resp.,* ([ℑ−,ℑ−])) obtained
as the specialisation q = 1 of the Z

[
q, q−1

]
-integral form of the quantised enveloping algebras [66,

§23.2].

Remark 3.9. We remark that*±
Z

are the same integral forms dealt with in [31], and also coincide with
the integral forms obtained through the Drinfeld presentation ([4, §2] and [73, Lemma 2.5]).

Note that*±
Z

are equipped with the Z-bases B(∓∞) obtained by the specialisation q = 1 of the lower
global basis [41] (see also [66, §25]). In view of [65, 43], we have an idempotent Z-integral form

¤*Z =
⊕
Λ∈%af

*−
Z*

+
Z0Λ

such that

0Λ0Γ = XΛ,Γ0Λ, Λ, Γ ∈ %af ,

and

�
(<)
8 0Λ = 0Λ+<U8�

(<)
8 , �

(<)
8 0Λ = 0Λ−<U8�

(<)
8 , 8 ∈ Iaf , < ∈ Z≥0.

We set ¤*≥0
Z

⊂ ¤*Z to be the subalgebra generated by
{
�

(<)
8

}
8∈I,<∈Z≥0

, {0Λ}Λ∈%af and*+
Z
.

If a ¤*Z-module M admits a decomposition

" =
⊕
Λ∈%af

0Λ",

then we call this the %af-weight decomposition. If Λ ∈ %af satisfies 0Λ" ≠ 0, then we call Λ a %af-
weight of M. When M is defined over a field k, we define the %af-character of M as

gch" :=
∑

Λ∈%af

4Λ dimk 0Λ"

whenever the right-hand side makes sense. For each = ∈ Z, we set

"= :=
∑

Λ∈%af , 〈3,Λ〉==

0Λ" ⊂ "
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and call it the d-degree n-part of M. Note that these are consistent with formula (2.3) through the
identification @ = 4X .

For each _ ∈ %, we set

00
_" :=

∑
Λ∈%af , _=Λ̄

0Λ". (3.2)

We call the decomposition

" =
⊕
_∈%

00
_"

the P-weight decomposition. We call a nonzero element of 0Λ" (resp., 00
_") a %af-weight vector of M

(resp., a P-weight vector of M). We also call _ ∈ % with 00
_" ≠ {0} a P-weight of M.

Similarly, we have the Kostant–Lusztig Z-form *
0,+
Z

(resp., *0,−
Z

) of * (n) (resp., * (n−)). We have

*
0,+
Z

⊂ *+
Z

and *
0,−
Z

⊂ *−
Z

. In view of the characterisation of global bases ([41]), we find that

B0 (∓∞) := B(∓∞) ∩*0,±
Z

define Z-bases of*0,±.

We set ¤*0
Z
⊂ ¤*Z to be the subalgebra of ¤*Z generated by

{
�

(<)
8 , �

(<)
8

}
8∈I,<∈Z≥0

, {0Λ}Λ∈%af . For a field

k, a ¤*≥0
k

-module M with a %af-weight decomposition is said to be ¤*0
k
-integrable if its

{
�

(<)
8 , �

(<)
8

}
<≥0

-

action induces an SL(2, 8)k-action whose (SL(2, 8) ∩ �)k-eigenvalues are given by the P-weights for
each 8 ∈ I.

Note that if a*
(̃
gC

)
-module V over C carries a cyclic h̃C-weight vector whose weight belongs to %af

and each of its h̃C-weight spaces is finite-dimensional, then we have a ¤*Z-lattice +Z inside V. In such a
case, the module +Z ⊗Z k admits %af- or P-weight decompositions.

The Chevalley involution of ¤*Z is defined as

\
(
�

(<)
8

)
= �

(<)
8 , \

(
�

(<)
8

)
= �

(<)
8 and \ (0Λ) = 0−Λ, 8 ∈ Iaf , < ∈ Z≥0,Λ ∈ %af .

Definition 3.10 ([45]). A *
(̃
gC

)
-module V over C with a cyclic h̃C-weight vector v is said to be

compatible with the negative global basis if we have

*−
Zv =

⊕
1∈B(∞)

Z1v ⊂ +.

If (+, v) is compatible with the negative global basis, then we set

B−(+) = B−(+, v) := {1v | 1 ∈ B(∞) such that 1v ≠ 0} ⊂ +

and refer to them as the negative global basis of V.
Compatibility with the positive global basis and the positive global basis B+ (+) = B+(+, v) of V is

defined similarly.

Theorem 3.11 ([41]). We have the following:

1. For each Λ ∈ %af
+ , the g̃C-module !(Λ)C is compatible with the negative global basis.

2. For each _ ∈ %+, we have

+ (_)C =
⊕

1∈B0 (∞)

C1v0
_.

We set B(Λ) := B−(!(Λ)C, vΛ) for each Λ ∈ %af
+ .
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For each Λ ∈ %af
+ and _ ∈ %+, we set

!(Λ)Z := *−
ZvΛ ⊂ !(Λ)C and + (_)Z :=

(
*

0,−
Z

)
v0
_ ⊂ + (_)C.

Here + (_)Z acquires the action of ¤*0
Z

thanks to the splitting % ↩→ %af .

Corollary 3.12. We have the following:

1. For each Λ, Γ ∈ %af
+ , we have a natural inclusion !(Λ + Γ)Z ↩→ !(Λ)Z ⊗Z !(Γ)Z of ¤*Z-modules,

which is a direct summand as Z-modules.
2. For each _, ` ∈ %+, we have a natural inclusion + (_ + `)Z ↩→ + (_)Z ⊗Z + (`)Z of ¤*0

Z
-modules,

which is a direct summand as Z-modules.

Proof. Since the two cases are completely parallel, we prove only the first case. The g̃-module !(Λ)C⊗C
!(Γ)C decomposes into the direct sum of integrable highest weight modules ([40, Proposition 9.10]),
with a direct summand !(Λ + Γ)C. In view of [41, Theorem 3], it gives rise to the Z[q]-lattice of the
quantised version of !(Λ) ⊗ !(Γ) compatible with those of !(Λ + Γ) via the natural embedding. By
setting q = 1, we obtain a direct sum decomposition of !(Λ)Z ⊗Z !(Γ)Z as Z-modules with its direct
summand !(Λ + Γ)Z. �

Theorem 3.13 ([43]). For each _ ∈ %+, the g̃C-module X(_)C is compatible with the negative/positive
global basis (for every extremal weight vector).

For each _ ∈ %+, we set

X(_)Z := ¤*Zv_ ⊂ X(_)C.

Theorem 3.14 ([45]). Set _ ∈ %+. There exists a Z-basis B(X(_)) of X(_)Z that contains the nega-
tive/positive global basis of X(_)Z constructed from every extremal weight vector of X(_)C.

Proof. We set B(X(_)) to be the specialisation of the global basis of a quantum loop algebra module
[43, Proposition 8.2.2]. Then it is compatible with the global basis generated from extremal weight
vectors by [45, Theorem 3.3]. �

For each _ ∈ %+ and F ∈ ,af , we define

WF (_)Z := *+
ZvF_ ⊂ X(_)C and W−

F (_)Z := *−
ZvF_ ⊂ X(_)C.

We setW(_)Z :=WF0 (_)Z andW−(_)Z :=W−
4 (_)Z.

Lemma 3.15 (Naito and Sagaki). For each _ ∈ %+ and F, E ∈ ,af , we haveWFF0 (_)Z ⊂ WEF0 (_)Z if
F ≤∞

2
E. If we have _ ∈ %++ in addition, then we haveWFF0 (_)Z ⊂ WEF0 (_)Z if and only if F ≤∞

2
E.

Proof. Apply the inclusion relation of the (labels of the) global basis in [72, Corollary 5.2.5] (see also
[45, §2.8]). �

Corollary 3.16. For each _ ∈ %+,F ∈ ,af and 8 ∈ Iaf , we haveWB8FF0 (_)K ⊂ WFF0 (_)K if B8F ≤∞
2
F.

In this case,WFF0 (_)K inherits an action of SL(2, 8)K from X(_)K.

Proof. The first part of the assertion is the special case of Lemma 3.15. Given this, it remains to notice
that a lift of B8 ∈ ,af sends vFF0_ to ±vB8FF0_, and hence the Bruhat decomposition of I(8)K (into two
IK-double cosets) implies thatWFF0 (_)K is stable under I(8)K. �

Lemma 3.17. For each _ ∈ %+ and F ∈ ,af , we have the following:

1. Each V ∈ &∨ defines a ¤*Z-module automorphism gV on X(_)Z determined by gV (v_) := vCV_.
Moreover, gVB(X(_)) = B(X(_)).

2. \∗(X(_)Z) � X(−F0_)Z as ¤*Z-modules. Moreover, \∗B(X(_)) = B(X(−F0_)).
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3. WF (_)Z =WF (_)C ∩ X(_)Z.
4. There is a*−

Z
-cyclic vector of \∗ (WF (_)Z) with weight −F_ = FF0 (−F0_). In particular,

\∗(WF (_)Z) � W
−
FF0

(−F0_)Z and \∗
(
W−
F (_)Z

)
� WFF0 (−F0_)Z.

Proof. We borrow the setting of [43, §8.1 and §8.2].
We prove the first assertion. Since v_ and vCV_ obey the same relation, gV defines an automorphism

as g̃C-modules. The latter assertion follows from Theorem 3.14.
We prove the second assertion. The defining equation of \∗ (v_) is the same as the cyclic vector v−F0_ ∈

X(−F0_)C as g̃C-modules. This yields a g̃C-module isomorphism [ : \∗(X(_)C) −→ X(−F0_)C. Since
\ exchanges *±

Z
and v_ is cyclic, we deduce that [(\∗ (X(_)Z)) = ¤*Zv−_ ⊂ X(−F0_)C. By Theorem

3.14, we conclude \∗B(X(_)) = B(X(−F0_)), as required.
We prove the third assertion. By Theorem 3.14, the Z-basis of W(_)Z is formed by the nonzero

elements of B(−∞)vF0_ and forms a direct summand of X(_)Z as Z-modules. Hence, the case where
F = F0 follows. For F ∈ , , we apply [43, Lemma 8.2.1] repeatedly to deduce the assertion from
the F = F0 case by using B(−∞)vF_ ⊂ B(−∞)vF0_. For F = DCV ∈ ,af with D ∈ ,, V ∈ &∨, we
additionally apply gF0V to conclude the assertion.

We prove the fourth assertion. The vector \∗ (vF_) is a *−
Z

-cyclic vector of \∗(WF (_)Z), and its
weight is

−F_ = FF0 (−F0_).

Hence, we conclude the assertion (using the fact that \ is an involution). �

Theorem 3.18 ([44] and [5]). Set _ ∈ %+. The unique (d-degree 0) ¤*≥0
Z

-module map

Ψ_ :W(_)Z ↩→
⊗
8∈I

W(s8)
⊗〈U∨

8 ,_〉
Z

, (3.3)

which sends v_ to the tensor product of
{
vs8

}
8∈I

s, is injective and defines a direct summand as Z-
modules.

Proof. We set X⊗ :=
⊗

8∈IX(s8)
⊗〈U∨

8 ,_〉
Z

. The map Ψ_ exists, as
⊗

8∈I v
⊗〈U∨

8 ,_〉
s8

obeys the same
defining condition as the extremal weight vector v_ ∈ X(_)Z, and the comultiplication of g̃ induces an
algebra map △: ¤*Z ⊂ ¤*Z ⊗ ¤*Z ([66, §23.1.5]).

The map Ψ_ is injective by [5, Corollary 4.15 and Remark 4.17]. By [44, Theorem 8.5], the q = 1
specialisations of the global bases yield the ¤*Z-spans of the extremal weight vectors inX(_)Z andX⊗ up
to the action of some rings of (partially symmetric) polynomials with integer coefficients, respectively.
This yields a splitting of Ψ_ as Z-modules, where the Z-module structure of the right-hand side comes
from the crystal lattice of (the q-version of) X⊗ (as in [44, (8.8)]). We call this crystal lattice L1.

We have another Z[q]-lattice inside (the q-version of) X⊗ obtained by the tensor product of the
crystal lattices of (the q-versions of) X(s8)s. We call this Z[q]-lattice L2.

By [44, Proposition 8.6], the global basis of L1 is written in terms of the (tensor product) global bases
of L2 by an upper-unitriangular matrix C (valued in Q[q], with finitely many nonzero entries in each
row). Hence, the corresponding bases in X⊗ are related by an upper-unitriangular matrix C obtained as
the q = 1 specialisation of C (valued in Q). In view of the fact that △ is an algebra morphism (and [44,
Theorem 8.5]), we deduce L1 ⊂ L2. Hence, we have Z ⊗Z[q] L1 ⊂ Z ⊗Z[q] L2 ⊂ X⊗. In particular, the
matrix C must be valued in Z. This implies Z ⊗Z[q] L1 = Z ⊗Z[q] L2.

Hence, the Z-module splitting in the second paragraph is indeed what we wanted. �
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3.3. Projectivity of the moduleW(_)k

Let k be a field. We equip *̊+
k

:=
⊕

_∈%*
+
k
00
_ with the structure of an algebra by setting 00

_0
0
` =

X_,`0
0
_ (_, ` ∈ %),

�
(<)

0 00
_ = 0

0
_−<o�

(<)

0 , �
(<)
8 00

_ = 0
0
_+<U8

�
(<)
8 (8 ∈ I, < ∈ Z≥0, _ ∈ %),

and require (
b00
_

) (
b ′00

`

)
= (bb ′) 00

` when 00
_b

′00
` = b ′00

`

(
_, ` ∈ %, b, b ′ ∈ *+

k

)
.

Similarly, we define

*̊≥0
k

:=
⊕
_∈%

*
0,−
k
*+
k 0

0
_ and *̊0

k
:=

⊕
_∈%

*
0,−
k
*

0,+
k
00
_

and regard them as subalgebras of the completions of ¤*≥0
k

and ¤*0
k

with respect to the idempotents by
setting ∑

_=Λ

0Λ = 00
_

(
_ ∈ % ⊂ %af

)
.

The eigendecomposition with respect to 3 ∈ h̃ now becomes an external grading of algebras *̊+
k

and

*̊≥0
k

. We have algebra inclusions

*̊+
k ⊂ *̊≥0

k
⊃ *̊0

k
.

Note that we have a surjective algebra map ¤*≥0
Z

→ ¤*0
Z
, since 0Λ ¤*≥0

Z
0Γ ≠ 0 implies 〈3,Λ〉 ≥ 〈3, Γ〉 and

0Λ ¤*0
Z
0Γ ≠ 0 implies 〈3,Λ〉 = 〈3, Γ〉 for Λ, Γ ∈ %af . This induces a surjective algebra map *̊≥0

Z
→ *̊0

Z
,

which specialises to *̊≥0
k

→ *̊0
k
.

We sometimes regard W(_)k (_ ∈ %+) as a Z-graded *̊+
k
-module or a Z-graded *̊≥0

k
-module by

means of (3.2), whose gradings are given by the d-degrees.

Proposition 3.19. Let k be a field and set _ ∈ %+. The module W(_)k is the projective cover of
+ (_)k in the category of ¤*≥0

k
-modules that are ¤*0

k
-integrable and whose P-weights are contained in

Conv,_ ⊂ % ⊗Z R, where Conv denotes the R-convex hull.

Lemma 3.20. For each _ ∈ %+, the moduleW(_)k is free over a polynomial ring and we have a finite-
dimensional quotient, (_)k with dimk 00

_, (_)k = 1.

Remark 3.21. The modulesW(_)k and, (_)k (_ ∈ %+) are analogues of global and local Weyl modules
in [19, 62, 18] (compare Theorem 2.2). By construction, their characters are the same as those defined
over C (see [46, §1] for more discussion).

Proof of Lemma 3.20. Note that the endomorphism gV in Lemma 3.17 induces an endomorphism of
B(X(s8)) for each V ∈ & and 8 ∈ I, and hence we know the existence of the injective endomorphisms
ofW(_)k that form a polynomial algebra whose graded dimension is equal to

gdim Endg [I ]CW(_)C =
∏
8∈I

〈U∨
8 ,_〉∏
9=1

1

1 − @ 9
,

which can be read off from [5, Proposition 4.13] (or [46, Theorem 1.4]), through Theorem 3.18.
By [5, 18, 46], it exhausts the P-weight _-part of W(_)k, which generates W(_)k as a *̊≥0

k
-module.

Therefore, we conclude the result. �
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The rest of this subsection is devoted to the proof of Proposition 3.19.
We consider the Demazure functor �F for F ∈ ,af with respect to *̊+

k
(compare [39, 46, 20]). In

view of [45, §2.8], the character part of the calculation in [46, Theorem 4.13] carries over to our setting,
and hence we have

L•�CV (W(_)k) = �CV (W(_)k) � W(_)k ⊗k k−〈V,F0_〉X , V ∈ &∨
< .

From this, we also derive

L•�CV (, (_)k) = �CV (, (_)k) � , (_)k ⊗k k−〈V,F0_〉X , V ∈ &∨
<,

using the Koszul resolution as in [20, §5.1.4] by Lemma 3.20.
The d-gradings of *̊+

k
,W(_) and, (`)k are concentrated in nonnegative degrees. It follows that the

d-grading of Ext•
*̊+
k

(
W(_),, (`)∗

k

)
is bounded from above. Moreover, we have

Ext•
*̊+
k

(
�CVF0 (W(_)k),, (`)∗k

)
� Ext•

*̊+
k

(
W(_)k,�C−F0VF0 (, (`)k)

∗
)

for every _, ` ∈ %+ and V ∈ &∨
< by repeated application of [25, Proposition 5.7] (the argument of which

carries over to our setting). By varying V, we conclude that

Ext•
*̊+
k

(
W(_)k,, (`)∗k

)
≡ {0}, _ ≠ −F0`, (3.4)

since − 〈V, F0_〉 ≠ − 〈−F0V, F0`〉 = 〈V, `〉 for some choice of V.
Consider the simple integrable *̊0

k
-module quotient !(_)k of + (_)k for each _ ∈ %+.

Lemma 3.22. The set {!(_)k}_∈%+ is the complete collection of the isomorphism classes of the irre-

ducible d-graded *̊0
k
-integrable *̊≥0

k
-modules (up to d-grading shifts).

Proof. Since + (_)k surjects onto every irreducible *̊0
k
-module with highest weight _ ([1, §1.20]), it

follows that it surjects onto every irreducible d-graded *̊≥0
k

-module with highest weight _. Since the
P-weight _-part of + (_)k is one-dimensional, we conclude the result. �

We return to the proof of Proposition 3.19. We have

gch, (_)k ≡ gch+ (_)k ≡ gch !(_)k mod
∑

_>`∈%+

Z[@]gch !(`)k

by [62] (compare [18]). Therefore, , (_)k admits a (d-graded) Jordan–Hölder series as a *̊≥0
k

-module
whose irreducible constituents are of the form {!(`)k}`≤_ (up to d-grading shifts). It follows that

Ext•
*̊+
k

(W(_)k, + (`)k) = Ext•
*̊+
k

(W(_)k, !(`)k) ≡ {0}, _ > ` ∈ %+,

by a repeated application of the short exact sequences to formula (3.4). Since bothW(_)k and !(_)k are
¤*0
k
-integrable, we find

Ext1
*̊≥0
k

(W(_)k, !(`)k) ≡ {0}, _ > ` ∈ %+.

From these, it suffices to prove

Ext1
*̊≥0
k

(W(_)k, !(_)k) ≡ {0}, _ ∈ %+, (3.5)

to deduce the assertion.
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In view of the fact that _ + U8 (8 ∈ I) is not a P-weight ofW(_)k, the Drinfeld presentation of *̊≥0
k

([5, §3]) forces the space of *̊≥0
k

-module endomorphisms ofW(_)k to be generated by the images of the
imaginary weight vectors %̃8,<X for 8 ∈ I and < > 0 (defined in [5, (3.7)]). In view of its descriptions
([5, Proposition 3.17] or [17, Lemma 4.5]), we find that %̃8,< acts on v_ ∈ W(_)k by zero if

〈
U∨8 , _

〉
> <.

From this, we derive that the P-weight _-part of W(_)k is maximal possible as a cyclic module with
a cyclic vector of P-weight _ in the category of *̊≥0

k
-modules that are *̊0

k
-integrable and whose P-

weights are contained in Conv,_ ⊂ % ⊗Z R. Therefore, formula (3.5) vanishes and we conclude
Proposition 3.19.

3.4. Frobenius splitting of Q�,J

Theorem 3.23. For each Λ ∈ %af
+ , we have a surjective map !(Λ)C → W−(Λ̄)C of g

[
I−1

]
C
-modules.

In addition, this map yields a surjection !(Λ)Z →W−(Λ̄)Z of*−
Z

-modules.

Proof. By [50, Theorem A], the graded g[I]C-module \∗(!(Λ)C) admits a filtration by the grading
shifts of {W(`)C}`∈%+ . Since the (d-)degrees of !(Λ)C are concentrated in Z≤0 and the degree 0 part
of !(Λ)C is + (Λ̄)C, the first quotient of \∗ (!(Λ)C) in our filtration must be \∗

(
W− (Λ̄)C

)
. Hence we

obtain the surjection [ : !(Λ)C →W−(Λ̄)C of g
[
I−1

]
C
-modules.

Since both modules share the *−
C

-cyclic vector and are compatible with the negative global basis,
we conclude that the Z-basis ofW−(Λ̄)Z is obtained as a Z-basis of !(Λ)Z that is not annihilated by [.
Hence we conclude that [ induces a surjection !(Λ)Z →W− (Λ̄)Z of*−

Z
-modules. �

Corollary 3.24. Let k be a field. For Λ ∈ %af
+ , we have a *−

k
-module generator set {u<}<∈Z≥0 of

ker
(
!(Λ)k →W

−(Λ̄)k
)

that satisfies the following:

◦ Each element u< satisfies 0Λ<
u< = u< for some Λ< ∈ %af .

◦ For each < ∈ Z≥0, we have Λ< ∉ Conv,Λ ⊂ % ⊗Z R.

Proof. Note that !(Λ)k has at most countable rank over k, which implies that the generator set is at most
countable. As both !(Λ)k andW−(Λ̄)k admit %af-weight decompositions, we deduce the first assertion.
Since both modules are ¤*0

k
-integrable and *−

k
-cyclic, the second assertion follows by Proposition

3.19. �

Proposition 3.25. For each Λ, Γ ∈ %af
+ , we have the following commutative diagram of*−

Z
-modules:

!(Λ + Γ)Z
� � //

����

!(Λ)Z ⊗Z !(Γ)Z

����
W−(Λ + Γ)Z

� � m // W−(Λ)Z ⊗ZW
− (Γ)Z.

Moreover, all the maps define direct summands as Z-modules.

Proof. The injectivity of the top horizontal arrow and the fact that it defines a direct summand as
Z-modules are Corollary 3.12.

The surjectivity of the vertical arrows is Theorem 3.23. Since they are obtained by annihilating parts
of Z-bases, these maps define direct summands as Z-modules.

Since all the modules are generated by the cyclic vectors vΛ+Γ or vΛ ⊗ vΓ as g
[
I−1

]
C
-modules or

g
[
I−1

] ⊕2
C

-modules, Theorem 2.3 (twisted by \) implies the injectivity of m after extending the scalar to
C. Hence we deduce

m

(
W−(Λ + Γ)Z

)
⊂ W−(Λ)Z ⊗ZW

−(Γ)Z. (3.6)
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Therefore, to complete the proof it suffices to prove that formula (3.6) has torsion-free cokernel (as
a Z-module). By a repeated use of formula (3.6), we arrive the setting of Theorem 3.18 in view of
Theorem 2.3. Thus, the map m defines a direct summand ofW(Λ)Z ⊗ZW(Γ)Z as Z-modules. �

Corollary 3.26. For each _, ` ∈ %+ and F ∈ , , we have the following commutative diagram of *+
Z
-

modules:

X(_ + `)Z
� � // X(_)Z ⊗Z X(`)Z

WF (_ + `)Z
� � //?�

OO

WF (_)Z ⊗ZWF (`)Z.
?�

OO

The vertical inclusions are compatible with positive global basis, and the horizontal inclusions de-
fine direct summands as Z-modules. In addition, all the inclusions commute with the automorphism
gV (V ∈ &∨) of X(_)Z,X(`)Z and X(_ + `)Z.

Proof. In view of Proposition 3.25, the F = F0 case follows from Lemma 3.17(1). Thanks to Theorem
2.3 and Lemma 3.17(3), we deduce the general case from the F = F0 case. �

Set F ∈ ,af and J ⊂ I. We define %+- and %J,+- graded Z-modules

'af :=
⊕
Λ∈%af

+

!(Λ)∨Z and 'F (J) :=
⊕
_∈%J,+

WFF0 (_)
∨
Z .

Lemma 3.27. The Z-duals of the horizontal maps in Proposition 3.25 equip 'af and 'F (J) structures
of (%+- and %J,+-)graded commutative rings.

Proof. The maps in Proposition 3.25 are characterised as the d-degree 0 maps of cyclic *−
Z

-modules,
which are unique up to a scalar. Therefore, the composition

W(_ + ` + W)Z ↩→W(_ + `)Z ⊗ZW(W)Z ↩→W(_)Z ⊗ZW(`)Z ⊗ZW(W)Z

is the same map as

W(_ + ` + W)Z ↩→W(_)Z ⊗ZW(` + W)Z ↩→W(_)Z ⊗ZW(`)Z ⊗ZW(W)Z

for every _, `, W ∈ %+, as the images of the cyclic vectors are the same. Taking their restricted duals
implies the associativity of the multiplication of '4 (J). In view of Lemma 3.17(1) and Corollary 3.26,
we deduce the associativity of the multiplication of 'F (J) for each F ∈ ,af . The associativity of 'af

is proved similarly (compare [49]). The commutativity of 'af and 'F (J) follow, as the q = 1 coproduct
of ¤*Z is symmetric ([66, Lemma 3.1.4, §23.1.5]). �

Corollary 3.28 (Corollary of the proof of Lemma 3.27). For each F ∈ ,af and V ∈ &∨, we have

an isomorphism of ('F )Z and
(
'FCV

)
Z

as graded commutative rings equipped with *+
Z
-actions up to

grading twists (given by Lemma 3.17).

We set ' := '4. Note that 'F (J) ⊂ 'F is a subring. We also define

'+(J) :=
⊕
_∈%J,+

SpanZ
∏
8∈I

(
X(s8)

∨
Z

) 〈U∨
8 ,_〉 ⊂

⊕
_∈%+

X(_)∨Z =: '̃,

where the multiplication is defined through the projective limit formed by the duals of Corollary 3.26.
Here we warn that the (Z-)rank of some %af-weight space of X(_)Z can be infinity, and hence the
inclusion '+ ( '̃ has a huge cokernel. Note that the rank of the %af-weight spaces of X(s8)Z is
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bounded for each 8 ∈ I ([44, Proposition 5.16]), and hence '+(J) has only countably many generators
of %J,+-degrees {s8}8∈I\J.

By construction, the rings 'af , 'F (J) and '+(J) are free over Z.
For each _ ∈ %+ and F ∈ ,af , we have a unique %af-weight vector

v∨F_ ∈ WF (_)
∨
Z (3.7)

with paring 1 with vF_ ∈ WF (_)Z. This vector v∨F_ yields a *+
k
-cocyclic vector ofWF (_)

∨
k

for a field
k. By the construction of the ring structure on 'F , we have v∨FF0_

· v∨FF0`
= v∨

FF0 (_+`)
in 'F for every

_, ` ∈ %+.

Lemma 3.29. For each F, E ∈ ,af and J ⊂ I, the ring 'F (J) is a quotient of 'E (J) if F ≤∞
2
E. In

addition, the ring 'F is a quotient of 'E if and only if F ≤∞
2
E.

Proof. We haveWFF0 (_)Z ⊂ WEF0 (_)Z if and only if vFF0_ ∈ WEF0 (_)Z. Now we apply Lemma 3.15
to deduce the result. �

Lemma 3.30. We have morphisms of rings with*+
Z
-actions

'+ −→→ ' ↩→ 'af ,

that admit Z-module splittings, where the ¤*Z-action on 'af is twisted by \.

Proof. Apply Proposition 3.25 and Corollary 3.26. �

For each F ∈ , and J ⊂ I, we set

(
Q�,J (F)

)
Z

:= Proj 'F (J) and
(
Qrat
�,J

)
Z

:=
⋃
F ∈,

(
Q�,J (F)

)
Z
.

These schemes and ind-schemes are flat over Z.

Remark 3.31. In view of equation (2.5), we have embeddings

Proj '+
K

// ∏
8∈I PK

(
X(s8)

∧
K

)
,

(
Qrat
�

)
K

//
?�

OO

∏
8∈I PK

(
X(s8)

♭
K

)?�

OO
(3.8)

where we set

X(s8)
∧
K :=

∏
=∈Z

X(s8)=,K and X(s8)
♭
K :=

⋃
<∈Z

∏
=><

X(s8)=,K

for each 8 ∈ I. Here all the spaces in diagram (3.8) admit actions of SL(2, 8)K (8 ∈ I), while only the
bottom two spaces admit actions of � [[I]]K. Nevertheless, the top two spaces have some advantages,

since they are \-stable (unlike the bottom two) and consequently also contain \
( (

Qrat
�

)
K

)
.

Theorem 3.32 ([49]). Let p be a prime. Then the ring 'af
F?

admits a Frobenius splitting that is I- and

I−-canonically split.

Theorem 3.33. Let p be a prime. The ring 'F? admits a Frobenius splitting that is I-canonically split.
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Proof. The I-canonical Frobenius splitting q of 'af gives rise to the following maps, whose composition
is the identity:

!(Λ)F?
q∨

−→ !(?Λ)F? −→ !(Λ)F? , Λ ∈ %af
+ .

In view of Proposition 3.25, this prolongs to

!(Λ)F?
q∨

//

cΛ
����

!(?Λ)F?
//

c?Λ
����

!(Λ)F? ,

����
W−

(
Λ̄
)
F?

q∨
W //❴❴❴ W−

(
?Λ̄

)
F?

// W−
(
Λ̄
)
F?

Λ ∈ %af
+ .

The right square is automatic (and is canonically defined) from the adjunction of the Frobenius push-
forward (by taking the restricted dual). In order to show that q descends to a Frobenius splitting of 'F? ,
it suffices to show that the dotted map q∨

W
is a well-defined linear map (induced from q∨ and such that

the left square is commutative).
By Corollary 3.24, ker cΛ is generated by the P-weight

(
% \ Conv,Λ̄

)
-part of !(Λ)F? . By the

cyclicity of !(Λ)F? as*−
Z

-modules and Proposition 3.7, we deduce that q∨(ker cΛ) is contained in the
*−
F?

-submodule of !(?Λ)F? generated by the P-weight ?
(
% \ Conv,Λ̄

)
-part of !(?Λ)F? . The latter is

contained in ker c?Λ by

?
(
% \ Conv,Λ̄

)
⊂ % \ ?Conv,Λ̄.

Therefore, we conclude that q∨
W

is a well-defined linear map, and hence \∗
(
'F?

)
admits a Frobenius

splitting induced from q. The unipotent part of the I−-canonical splitting condition is in common with
subrings. It remains to twist the grading given by U∨0 with that given by −o∨ and twist the I−-action into
the I-action by \ to conclude that our Frobenius splitting on 'F? is I-canonical. �

Corollary 3.34. Let p be a prime and set F ∈ , . The I-canonical splitting of 'F? obtained in Theorem
3.33 induces an I-canonical splitting of ('F )F? .

Proof. We set !FF0 (Λ)Z := *−
Z

vFF0Λ, where ZvFF0Λ is the %af-weight FF0Λ-part of !(Λ)Z, which
has rank 1 over Z.

The subspaceW−
FF0

(_)Z ⊂ W
− (_)Z is the image of !FF0 (Λ)Z ⊂ !(Λ)Z (with _ = Λ̄) under Theorem

3.23, since !FF0 (Λ)Z is spanned by a subset of B(Λ) ([43, (0.3)]). Our Frobenius splitting q is obtained
from that of 'af

F?
, which is compatible with

⊕
_∈%+

!FF0 (Λ)∨
F?

by [49, Corollary B]. Applying \, we

conclude that q must descend to a Frobenius splitting of ('F )F? . �

Corollary 3.35. An I-canonical splitting of 'F? is unique.

Proof. The behaviour of the vectors in formula (3.7) (with F = 4) under an I-canonical Frobenius
splitting is uniquely determined, as they form a polynomial ring isomorphic to F?%+ such that each of
its (%+-)graded components is a multiplicity-free %af-weight space inW(_)∨

F?
s. By Proposition 3.7, this

completely determines the behaviour of our splitting (through its dual map). �

Corollary 3.36. An I-canonical splitting of 'F? is compatible with ('F )F? for every F ∈ ,af such that
F ≤∞

2
4.

Proof. By [14, Proposition 4.1.17 and Remark 4.1.18 (i)] and [46, Theorem 4.12] (the algebraic portion
of the latter stemming from [45, Lemma 2.6], which carries over to this setting; compare [46, Lemma
4.4 and Theorem 4.7]), we derive that an I-canonical Frobenius splitting of ('F )F? (F ∈ ,) gives rise
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to an I-canonical splitting of 'F? that is compatible with ('F )F? (arguing by restricting to the SL(2, 8)-
actions for each 8 ∈ I). In particular, the I-canonical splitting of ('F )F? (F ∈ ,) also uniquely exists
and is compatible with that of 'F? by Corollaries 3.34 and 3.35. By Corollary 3.28, we further deduce
that the I-canonical splitting of ('F )F? (F ∈ ,af) uniquely exists.

Set F ∈ , such that B0F = BoFC−F−1o∨ ≤∞
2
F. Then 'B0F is a quotient of 'F . Again by [14,

Proposition 4.1.17 and Remark 4.1.18 (i)], the set of I-canonical splittings of
(
'B0F

)
F?

is in bijection

with that of ('F )F? that are compatible with
(
'B0F

)
F?

. By Corollary 3.28 and the previous paragraph,

we find that the (unique) I-canonical splitting of
(
'B0F

)
F?

is compatible with ('F )F? , and hence also

compatible with 'F? and
(
'C

−F−1o∨

)
F?

. This forces the I-canonical splitting of 'F? to be compatible

with that of
(
'DC

−F−1o∨

)
F?

for every D, F ∈ , such that −F−1o∨ ∈ Δ∨
+ .

The set
({
−F−1o∨

}
F ∈,

∩&∨
+

)
is precisely the set of short positive coroots in Δ∨

+ . This spans&∨
+ as

monoids, by inspection. Since F ∈ ,af with F ≤∞
2
4 is written as F = DCV for some D ∈ , and V ∈ &∨

+

([74, Lecture 13, Proposition 1]), we conclude the assertion. �

Theorem 3.37. Let p be a prime and set J ⊂ I. The ring '+(J)F? admits a Frobenius splitting that is
I- and I−-canonically split. This splitting is compatible with 'F (J)F? and the image of '+(J)F? ⊂ '+

F?

under the quotient map '+
F?

→→ \∗
( (
'FF0

)
F?

)
for each F ∈ ,af .

Proof. Since the case of J ≠ ∅ follows by the restriction to a part of the %+-grading, we concentrate on
the case where J = ∅.

The ring structure of '+
F?

is determined by 'F? through the application of *−
Z

before taking duals.

By Corollary 3.36 (and its proof), it defines an I-canonical splitting q of '+
F?

compatible with ('F )F?

for each F ∈ ,af . The ring '+
F?

admits an SL(2, 8)F? -action that integrates the actions of � (=)
8 and � (=)

8

(= ∈ Z>0) for each 8 ∈ Iaf . By [14, Proposition 2.10], this splitting q is also I−-canonical.
The I-cocyclic %af-weight vector v∨FF0_

∈ WFF0 (_)
∨
F?

is uniquely characterised by its %af-weight.

Hence we obtain a map

X(_)∨F? ⊃ SpanZ
∏
8∈I

(
X(s8)

∨
F?

) 〈U8 ,_〉
−→→WFF0 (_)

∨
F?

−→→ F?v∨FF0_
.

It gives rise to the ring surjections

'+
F?

−→→ ('F )F? −→→
⊕
_∈%+

F?v∨FF0_
,

which are compatible with q by construction in the first surjection and by examining the %af-weights in
the second (we denote this composition surjective ring map by b). Consider the ideal

� (F) := '+
F?

∩
⋂

6∈I−(F?)

6
(
F? ⊗F? ker b

)
⊂ '+

F?
.

(Here the action of I−
(
F?

)
is obtained by the unipotent one-parameter subgroups

{
d−U8

}
8∈Iaf

defined
through the exponentials, which are well defined, as we have all the divided powers. The passage from
F? to F? is necessary to ensure scheme-theoretic invariance, since we want an intersection that is
equivalent to the geometric G0-actions through d−U8 for all 8 ∈ Iaf by finding the Zariski dense subsets
of G0. For this purpose, we want the image of each d−U8 to be infinite, which cannot be achieved by
sending G0

(
F?

)
� F? .) This ideal is the maximal*−

F?
-invariant ideal of '+

F?
that is contained in ker b.
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Let us denote the quotient ring by

& =
⊕
_∈%+

&(_) := '+
F?
/� (F).

By the construction of � (F), we deduce that

*−
F?

vFF0_ ⊂ &(_)∨ ⊂ X(_)F?

for each _ ∈ %+ (otherwise we can differentiate a vector in � (F) to obtain a nonzero element

of
⊕

_∈%+
F?v∨FF0_

). Since \∗
(
WFF0 (−F0_)F?

)
is a cyclic *−

F?
-submodule of X(_)F? , we have

*−
F?

vFF0_ = \
∗
(
WFF0 (−F0_)F?

)
. In particular, we deduce a vector space surjection

'+
F?
/� (F) −→→ \∗

( (
'FF0

)
F?

)

(compare Corollary 3.26). Since the right-hand side is naturally a ring, we conclude

'+
F?
/� (F) � \∗

( (
'FF0

)
F?

)

by the maximality of � (F).
The ideal � (F) ⊂ '+

F?
also splits compatibly by q (since q is I−-canonical and ker b splits compatibly).

In particular, each \∗
( (
'FF0

)
F?

)
compatibly splits under q, as required. �

Corollary 3.38. For each J ⊂ I, the ind-scheme
(
Qrat
�,J

)
F?

admits an I- and I−-canonical Frobenius

splitting that is compatible with Q�,J (F)F? for each F ∈ ,af .

Proof. The condition of the canonical splitting can be checked by line bundle twists, and hence we only
need to show whether the Frobenius splitting of 'F (J)F? descends to Q�,J (F)F? for each F ∈ ,af .
Since Q�,J (F)F? is the quotient of an open subset of - := Spec 'F (J)F? by H (corresponding to the
%J,+-grading), and our Frobenius splitting is H-fixed, it suffices to see whether the localisation to the
nonirrelevant locus preserves the Frobenius splitting. This follows if the localisation of Fr∗O- = O- (1)

as a Fr∗O- -module and as an O- -module are the same. This holds, as localisation by a multiplicative
set S is the same as localisation by (? . �

Recall that a scheme X defined over a field k is called weakly normal if every finite bijective birational
(k-)morphism 5 : . → - from a (reduced) scheme over k is in fact an isomorphism ([68] and [14,
§1.2.3]).

Corollary 3.39. For each J ⊂ I, the ind-scheme
(
Qrat
�,J

)
F?

and the schemes Q�,J (F)F? (F ∈ ,af) are

reduced. In addition, Q�,J (F)F? is weakly normal.

Proof. For the first assertion, apply [14, Proposition 1.2.1] to Corollary 3.38. For the second assertion,
apply [14, Proposition 1.2.5] to Corollary 3.34. �

4. Frobenius splitting of quasi-map spaces

We retain the settings of the previous section. In particular, we sometimes work over a ring or a
nonalgebraically closed field. Moreover, the notational conventions explained in the beginning of Section
3 continue to apply.
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4.1. The scheme �′
J
(E, F) and its Frobenius splitting

Set E, F ∈ ,af and J ⊂ I. We set

'EF (J) := '+(J)/
(
ker

(
'+(J) → 'F (J)

)
+ ker

(
'+(J) → \∗

(
'EF0 (J

′)
) ) )
,

where we have ker
(
'+(J) → \∗

(
'EF0 (J

′)
) )

= ker
(
'+(J) → \∗

(
'EF0

) )
for

J
′ :=

{
8 ∈ I | −F0U8 = U 9 , ∃ 9 ∈ J

}
⊂ I.

By construction, 'EF (J) is a %J,+-graded ring. We set

'EF (J) :=
⊕
_∈%J,+

'EF (J, _).

Lemma 4.1. For each F, E ∈ ,af and J ⊂ I, the multiplication map

'EF (J, _) ⊗Z '
E
F (J, `) → 'EF (J, _ + `), _, ` ∈ %J,+,

is surjective.

Proof. We have a quotient

'F (J) =
⊕
_∈%J,+

WFF0 (_)
∨
Z −→→

⊕
_∈%J,+

'EF (J, _) = '
E
F (J)

of homogeneous rings. Corollary 3.26 implies that the multiplication map of 'F (J) is surjective. Hence
so is the quotient ring. �

We set

�
′
J
(E, F) := Proj 'EF (J),

where our definition of Proj is equation (2.5). In case where E = F0CV for V ∈ &∨, we may write 'EF (J)

and �
′
J
(E, F) as 'VF (J) and �

′
J
(V, F), respectively.

Lemma 4.2. For each F, E ∈ , , the Chevalley involution induces an isomorphism

�
′(E, F)

�

−→ �
′(FF0, EF0).

Proof. Apply Lemma 3.17 to the construction of 'EF to deduce an isomorphism

\∗ : 'EF
�

−→ '
FF0
EF0

of graded rings, which yields the assertion. �

Lemma 4.3. For each F, E ∈ ,af and J ⊂ I, the scheme �′
J
(E, F) is flat over Z.

Proof. The ring '+(J) has a Z-basis that is dual to
⊔
_∈%J,+ B(X(_)). The rings 'F (J) and

Im
(
'+(J) → \∗

(
'EF0

) )
are quotients by subsets of such basis elements, by Lemma 3.17. Hence we

have a free Z-basis of 'EF (J), as required. �

Lemma 4.4. For each F, E ∈ ,af and J ⊂ I, the scheme �′
J
(E, F) is projective (of finite type) over Z.

Proof. By [44, Proposition 5.16], we have rankZ'EF (s8) < ∞ for each 8 ∈ I. By Lemma 4.1, this forces
�

′
J
(E, F) to be a projective scheme (which usually implies finite type by definition; here we explicitly

include it, since our Proj does not yield a finite-type scheme in general), as required. �
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Lemma 4.5. Set J ⊂ I. We have �′
J
(E, F) ≠ ∅ if E ≤∞

2
F.

Proof. We have 'EF (J, _) ≠ {0} if vEF0_ ∈ WFF0 (_)Z by Lemma 3.17(4). Here vEF0_ ∈ WFF0 (_)Z is
equivalent toWEF0 (_)Z ⊂ WFF0 (_)Z. Now apply Lemma 3.15 to obtain the assertion. �

Lemma 4.6. Set E, F ∈ ,af , V ∈ &∨ and J ⊂ I. We have �′
J
(E, F) � �

′
J

(
ECV , FCV

)
.

Proof. We borrow notation from Lemma 3.17. By the definition of our ring 'EF (J), the assertion follows
if

WFCVF0 (_)Z = gF0VWFF0 (_)Z and gF0V\
∗(WE (−F0_)Z) = \

∗
(
WECV (−F0_)Z

)

hold for each F, E ∈ ,af , V ∈ &∨ and _ ∈ %+. These assertions themselves follow by chasing the weights
of the cyclic vectors. �

Lemma 4.7. Let p be a prime and set J ⊂ I. For each F, E ∈ ,af , the ring 'EF (J)F? admits a Frobenius

splitting that is compatible with the quotient 'E
′

F′ (J)F? for E′, F′ ∈ ,af such that E ≤∞
2
E′ ≤∞

2
F′ ≤∞

2
F.

In particular, the scheme �′
J
(E, F)F? is reduced and weakly normal.

Proof. By construction, ker
(
'+(J)F? → ('F )F?

)
and ker

(
'+(J)F? → \∗

( (
'EF0

)
F?

))
are ideals of a

ring '+(J)F? that are compatible with the canonical Frobenius splitting of '+(J)F? by Theorem 3.37.

Hence so is their sum. It must be compatible with every quotient of the form 'E
′

F′ (J)F? with the given
condition, Corollary 3.34 and Lemmas 3.17(4), 3.29 and 4.5. This proves the first assertion. We apply
[14, Proposition 1.2.1 and 1.2.5] to deduce the second assertion. �

Corollary 4.8. Let p be a prime. For each F, E ∈ , , the scheme�′
J
(E, F)F? admits a Frobenius splitting

compatible with �
′
J
(E′, F′)F? for every F′, E′ ∈ ,af such that E ≤∞

2
E′ ≤∞

2
F′ ≤∞

2
F.

Proof. Apply Theorem 3.5 to Lemma 4.7. �

Remark 4.9. Unlike the case of Corollary 3.38, the space Spec 'EF (J)F? is not irreducible in general.
In fact, we discard some of its irreducible components from Lemma 4.7 to Corollary 4.8.

Corollary 4.10. The ring 'EF (J) is reduced. In particular, the scheme �′
J
(E, F) is reduced.

Proof. By Lemma 4.3, every nonzero element of 'EF (J) is annihilated by reduction mod p for only
finitely many primes. Now it remains to apply Lemma 4.7. �

4.2. Modular interpretation of Qrat
�,J

We have an identification

,af � #� ((I)) (� (K))/� (K)

regardless of the (algebraically closed) base fieldK. We denote a lift ofF ∈ ,af in #� ((I)) (� (K))/� (K)

by ¤F.

Lemma 4.11. For each F ∈ , and J ⊂ I, the scheme Q�,J (F)K contains an affine Zariski open
IK-orbit O(J, F)K that is isomorphic to

IK/(�K · (Ad( ¤F ¤F0) ([%(J), %(J)] ((I))) ∩ IK))

as a scheme over K. (By abuse of notation, here we identify the set of K-valued points
(Ad( ¤F ¤F0) ([%(J), %(J)] ((I))) ∩ IK) with its Zariski closure in IK.) It is an open neighbourhood of
the unique (� × G<)K-fixed point of O(J, F)K.
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Proof. Recall that v∨FF0_
· v∨FF0`

= v∨
FF0 (_+`)

for each _, ` ∈ %+. SinceWFF0 (_) is compatible with
the positive global basis, the ring

Z[F] :=
∑
_∈%J,+

(
v∨FF0_

)−1
WFF0 (_)

∨
Z ⊂ (*+

Z)
∨ (4.1)

admits its dual basis. By construction, Z[F] is the coordinate ring of an affine Zariski open set of
Q� (F)Z. In addition, it inherits a natural %af-grading from 'F (J). Therefore, Z[F] defines an open
neighbourhood of an (� ×G<)-fixed point of Q�,J (F) obtained by the linear forms

{
vFF0_

}
_
. We set

C[F] := C ⊗Z Z[F] and K[F] := K ⊗Z Z[F].
The defining relation of (C[4])∨ in terms of the*+

C
-action is

*+
C (Ad( ¤F0) ([p(J),p(J)]) ⊗ C[I] ∩ ℑ).

by (the limit of) Chari, Fourier and Khandai [17, Proposition 3.3]. SinceWDF0 (_)Z ⊂ WF0 (_)Z for each
D ∈ , , the defining relation of (C[D])∨ in terms of the*+

C
-action is

*+
C(Ad( ¤D ¤F0) ([p(J),p(J)]) ⊗ C[I] ∩ ℑ)

by applying the action of ¤D ∈ #� (�)C that lifts D ∈ , . In particular, we have

SpecC[F] � IC/(�C · Ad( ¤F ¤F0) ([%(J)C, %(J)C] [[I]]) ∩ IC) (4.2)

as schemes over C. We put I1
Z

:= [IZ, IZ]. Let LC and RC be prounipotent subgroups of I1
C

whose closed
points are

SpecmC[F] and Ad( ¤F ¤F0) ([%(J)C, %(J)C] [[I]]) ∩ I1
C,

respectively, and they are stable by the natural (� × G<)C-action on IC. The isomorphism (4.2) gives
rise to an isomorphism

<C : LC × RC
�

−→ I1
C (4.3)

of schemes over C, where <C is the multiplication map, as all the groups are prounipotent and the iso-
morphism between the sets of closed points is compatible with truncations by %af-weight considerations.
The Hopf algebra Z

[
I1
Z

]
:=

(
*+
Z

)∨
is the coordinate ring of I1

Z
(compare [49, Theorem 1.3]). Sending

Z
[
I1
]

by the restriction morphisms C
[
I1
C

]
→ C[LC] and C

[
I1
C

]
→ C[RC], we have the corresponding

group schemes LZ and RZ over Z (we denote their coordinate rings as Z[L] and Z[R], respectively).
For each real root U ∈ Δaf,+, one of the restricted dual rings C[LC]∨ or C[RC]∨ contains the image
of a primitive element of *+

Z
with h̃-weight U (obtained by conjugations of {�8}8∈Iaf s; compare [66,

Proposition 40.1.3] or [31, Lemma 6.6]), and hence the corresponding one-parameter subgroup lands
in either LZ or RZ. In view of [5, Theorem 3.13] (or [31, Theorem 5.8]), they generate a closed normal
subgroup scheme N−

Z
of LZ that is a projective limit of extensions of G0 over Z. (The same is true and

exhausts the whole of RZ if J = ∅.)
We examine the action of the imaginary Poincaré–Birkhoff–Witt generators

{
%̃8,<X

}
8∈I\J,<>0 (the

weight of %̃8,<X is <X) in [5, (3.7)]. By applying them on the direct sum of P-weight _-parts of X(_)C
for all _ ∈ %J,+, we obtain a quotient group scheme LZ → TZ whose kernel is N−

Z
. By [5, Proposition

3.22], the group scheme SpecZ
[
%̃8,<X | < > 1

]∨
for each 8 ∈ I is isomorphic to a projective limit of

extensions of G0 (given by truncations with respect to the duals of
{
%̃8,<X

}
<>#

for # ∈ Z>0), which
is flat over Z. Thus so is TZ.

From these, we deduce that LZ ⊂ I1
Z

defines a group subscheme overZ such thatZ
[
I1
Z

]
→ Z[L] splits

as Z-modules. The P-weight decomposition of the coordinate ring defines a splitting TZ ⊂ LZ ⊂ I1
Z
.
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Since [!(J), !(J)] defines a product of connected and simply connected simple algebraic groups, its
(prounipotent part of the) Iwahori subgroup (we take the product over simple factors) defines a subgroup
scheme R0

Z
⊂ RZ such that

R0
Z ∩ TZ = SpecZ (4.4)

(scheme-theoretically). Since [!(J), !(J)] ⊂ � defines a closed group subscheme over Z (thanks to the
fact that the corresponding modified enveloping algebras share the same Z-basis, by [41, 43, 67]), we
deduce that the map Z

[
I1
Z

]
→ Z

[
R0
Z

]
must be surjective. The one-parameter subgroups corresponding

to the unipotent radical of %(J) generate a subgroup R+
Z
⊂ RZ ⊂ I1

Z
such that Z

[
I1
Z

]
→ Z

[
R+
Z

]
is

surjective. In view of the P-weight decomposition, we deduce that R0
Z
×R+

Z
� RZ. From equation (4.4),

we derive Z[L] ∩ Z[R] = Z. Therefore, we have a surjection

<∗
Z : Z

[
I1
]
−→→ Z[L] ⊗Z Z[R] .

The ideal ker<∗
Z

must be flat over Z, and hence ker<∗
C
≠ 0 if ker<∗

Z
≠ 0. We know that <∗

C
must be an

isomorphism by formula (4.3). This is a contradiction, and hence <∗
Z

must be an isomorphism (compare
[31, Theorem 5.8]).

In view of the flatness of the group schemes over Z afforded by the foregoing, we conclude that

RK ⊂ Ad( ¤F ¤F0) ([%(J), %(J)] [[I]]) ∩ I1
K

is in fact an isomorphism as schemes. By construction, Z[F] is precisely the subring of Z
[
I1
K

]
that is

invariant under the RZ-action. It follows that the image of the composition map

Z[F] ↩→ Z
[
I1
] �

−→ Z[L] ⊗ Z[R]

is equal to Z[L] ⊗Z Z. Hence we have

SpecK[F] = LK � IK/(�K · Ad( ¤F ¤F0) ([%(J), %(J)] [[I]]) ∩ IK) .

Therefore, each Q� (F)K contains SpecK[F] as a Zariski open I-orbit, and it admits a unique
(� × G<)K-fixed point, as required. �

Corollary 4.12. The ring '(J)K is integral for each J ⊂ I.

Remark 4.13. We refer to Proposition A.1 for the general case of Corollary 4.12.

Proof of Corollary 4.12. It suffices to prove the case where J = ∅, since a subring of an integral ring is
integral. We borrow notation from the proof of Lemma 4.11. We have an inclusion

'4 =
⊕
_∈%+

W(_)∨Z ↩→ Z[4] ⊗
⊕
_∈%+

Zv∨F0_

as the Rees construction of formula (4.1). Taking the tensor product K ⊗Z • preserves the inclusion in
view of the definition of Z[4]. Hence, ('4)K is integral as a subring of an integral ring. �

Proposition 4.14. Set J ⊂ I. The ind-scheme
(
Qrat
�,J

)
K

admits a � ((I))-action. We have a subset Q′
K

of

the set of K-valued points of
(
Qrat
�,J

)
K

that is in bijection with

� ((I))/(� (K) · [%(J), %(J)] ((I))) .

Proof. In view of Lemma 4.11, the proof for general J is completely parallel to the case of J = ∅. Hence
we concentrate in this proof on the case where J = ∅.

https://doi.org/10.1017/fmp.2021.5 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.5


28 Syu Kato

Set F ∈ ,af and V ∈ &∨. We have an isomorphism 'F � 'FCV as rings with*+
Z
-action, by Corollary

3.28.
In particular, we have an isomorphism Q� (F)K � Q�

(
FCV

)
K

of schemes with I-actions for each
V ∈ &∨. This implies that Q�

(
FCV

)
K

has a Zariski open subset of the shape

I/
(
� ·

(
Ad

(
¤F ¤CV ¤F0

)
(# ((I))) ∩ I

) )
� I/(� · (Ad( ¤F ¤F0) (# ((I))) ∩ I)) , (4.5)

where we used the fact that Ad( ¤F0) (# ((I))) is invariant under the Ad
(
¤CV
)
-action.

The ring ('F )K admits an action of SL(2, 8) whenever B8F ≤∞
2
F (8 ∈ Iaf), since each WFF0 (_)K

(_ ∈ %+) admits an action of SL(2, 8) by Corollary 3.16. Hence, Proj('F )K admits an action of SL(2, 8)
if B8F ≤∞

2
F. In particular, the proalgebraic group I(8) acts on Proj('F )K if B8F ≤∞

2
F. Hence the

ind-limit

(
Qrat
�

)
K
=

⋃
F ∈,af

Q� (F)K = lim
−−→
F

Proj('F )K

admits an action of I(8) for each 8 ∈ Iaf (which coincide on I). By rank 2 calculations, they
induce an action of #� ((I)) (� (K)) on

(
Qrat
�

)
K

. The intersections of #� ((I)) (� (K)) and I(K)

or I(8) (K) (8 ∈ Iaf) inside � ((I)) define common actions on
(
Qrat
�

)
K

. The system of groups(
I(K), #� ((I)) (� (K)), I(8) (K); 8 ∈ Iaf

)
(in the sense of [57, Definition 5.1.6]) admits a map from the

system of groups in [57, §6.1.16] for g̃ (with exponential maps replaced by one-parameter subgroups).
Hence, [57, Theorem 6.1.17] asserts that � ((I)) acts on

(
Qrat
�

)
K

.
The Bruhat decomposition of SL(2, 8) asserts that O(F)K ⊔O(B8F)K admits an SL(2, 8)-action. This

induces an action of SL(2, 8) (K) (8 ∈ Iaf) on the union

Q′
K :=

⊔
F ∈,af

O(F)K (K) ⊂ Qrat
� (K).

Taking into account the fact that each O(F)K admits an I-action (Lemma 4.11), we conclude that Q′
K

admits an action of � ((I)) thanks to the Iwasawa decomposition (compare [38, Theorem 2.5])

� ((I)) =
⊔
F ∈,af

I(K) ¤F ¤F0� (K) · # ((I)),

as required. �

For _, ` ∈ %+, we have a unique injective ¤*0
Z
-module map

+ (_ + `)Z −→ + (_)Z ⊗Z + (`)Z

obtained by sending v0
_+` to v0

_⊗v0
`, which is in fact a Z-direct summand (Corollary 3.12). By extending

the scalar, we obtain a unique injective
(
¤*0
K
,K[[I]]

)
-bimodule map

[_,` : + (_ + `)K ⊗ K[[I]] −→ (+ (_)K ⊗ K[[I]]) ⊗K[[I ]] (+ (`)K ⊗ K[[I]]) .

Lemma 4.15. For each _, `, W ∈ %+, we have

[_+`,W ◦
(
id ⊠ [_,`

)
= [_,`+W ◦

(
id ⊠ [`,W

)
.

Proof. This is straightforward from the construction (compare Lemma 3.27). �
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Proposition 4.16. Assume that charK ≠ 2. For each F ∈ ,af and J ⊂ I, we have an I-equivariant
rational map

kF : Q�,J (F)K d
⋃
<∈Z

∏
8∈I\J

PK (+ (s8)K ⊗ I<K[[I]]) =
∏
8∈I\J

PK (+ (s8)K ⊗ K((I))),

which gives rise to a � ((I))-equivariant rational map

k :
(
Qrat
�,J

)
K
d

∏
8∈I\J

PK (+ (s8)K ⊗ K((I))).

In addition, the set (Imk) (K) defines a closed (ind-)subscheme of
∏
8∈I\J PK (+ (s8)K ⊗ K((I))).

Proof. We have a surjective map

W(s8)K → + (s8)K ⊗ K[I]

as ¤*≥0
K

-modules, since we have the corresponding map over ¤*≥0
Z

such that the P-weight s8-part is the
same (and + (s8)K is cyclic as a ¤*0

K
-module). The identification of the P-weight s8-part also implies

that this map commutes with the action of gV (V ∈ &∨) and extends to a surjective map

X(s8)K → + (s8)K ⊗ K
[
I, I−1

]
of ¤*K-modules.

This gives a rational map

P(W(s8)K) d P(+ (s8)K ⊗ K[I])

and its graded completion

P
(
W(s8)

∧
K

)
d P(+ (s8)K ⊗ K[[I]]).

Taking Corollary 3.26 into account, we have an embedding

Q�,J (4)K ↩→
∏
8∈I\J

P
(
W(s8)

∧
K

)
. (4.6)

This yields a rational map

k4 : Q�,J (4)K d
∏
8∈I\J

P(+ (s8)K ⊗ K[[I]])

as a composition. This map is � [[I]]-equivariant by construction.
For each F ∈ , , we can choose V ∈ &∨

+ such that Q�,J (F)K � Q�,J

(
FCV

)
K

⊂ Q�,J (4)K, by
Corollary 3.28 and Lemma 3.29. Hence we obtain the map kF for every F ∈ ,af as the composition
of the foregoing maps (up to grading shifts). We fix the effect of grading shifts from kF to kFCV by
applying gF0V onW(s8)

∧
K

for each 8 ∈ I \ J in formula (4.6). Then the gF0V-action (on the completions
of {X(s8)K}8∈I\J) transfers kF to kFCV for each V ∈ &∨, and is compatible with the restrictions to
Q� (•)s by Lemma 3.17(1). Hence, we obtain the map k of ind-schemes. This map is� ((I))-equivariant
in our sense. This proves the first assertion.

From now on, we concentrate on the second assertion.
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Each (� × G<)-fixed point of O(F)K (F ∈ ,af) is contained in the domain of k, and their images
are distinct by inspection. It follows that Q′

K
is contained in the domain of k, and the restriction of k to

Q′
K

is injective by examining the stabiliser of the I(K)-actions at each (� × G<)-fixed point.
In view of Theorem 3.18, the maps

{
[_,`

}
_,`

(_, ` ∈ %J,+) induce a commutative diagram of ¤*≥0
K

-
modules:

W(_)K
� � //

^_

��

⊗
8∈I\J

W(s8)
⊗〈U∨

8 ,_〉
K

(( ((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

+ (_)K ⊗ K[I]
� � // ©«

⊗
8∈I\J

+ (s8)
⊗〈U∨

8 ,_〉
K

ª®¬
⊗ K[I]

⊗
8∈I\J

(
+ (s8)

⊗〈U∨
8 ,_〉

K
⊗ K[I]

)
.oooo

(4.7)

Here the map ^_ is well defined by examination of the degree 0 part and the action of �0 = �o ⊗ I

(where �o is a nonzero vector in the −o-weight space of n−). This commutative diagram also commutes
with the translation by gV (V ∈ &∨) by construction. Moreover, we have ^_ (vF_) ≠ 0 for each F ∈ ,af .
Therefore, the map ^_ must be surjective whenever its d-degree belongs to

∑
8∈I\J Z

〈
U∨8 , _

〉
.

For each 8 ∈ I \ J, the Z
[

1
2

]
-integral structure of + (2s8) ⊗C C

[
I, I−1

]
at the odd degree and even

degree must be the same as ¤*Z-modules (as we can connect the extremal weight vectors of the even-
degree and odd-degree parts using the sl(2)-strings of length 3). Therefore, for _ = s8 , s8 + s 9 , 2s8
(8, 9 ∈ I \ J), the map ^_ is surjective.

Consider a (representative of the) image

k(G) = (G8) ∈
∏
8∈I\J

+ (s8)K ⊗ K((I))

of a K-valued point G ∈ Q�,J (4)K under k. We consider its lifts G̃8 ∈ W(s8)
∧
K

and G̃ 9 ∈ W(s 9 )
∧
K

. They
must belong to

Im
(
W

(
s8 +s 9

)∧
K
−→

(
W(s8)K ⊗W

(
s 9

)
K

)∧)

in order to satisfy the defining relations of 'K. In view of the commutative diagram (4.7) for _ = s8+s 9 ,
we deduce an equation

G8 ⊗K[[I ]] G 9 ∈ Im [s8 ,s 9
, 8, 9 ∈ I \ J. (4.8)

Since the relation of the ring
⊕

_∈%J,+
+ (_)∗

K
is generated by P-degrees 2s8 and s8 +s 9 for 8, 9 ∈ I

([14, Theorem 3.5.3]), this defines an element of

� ((I))/[%(J), %(J)] ((I)) ⊂ �/[%(J), %(J)] (K((I))) (4.9)

through quadratic relations [29, §4], where

�/[%(J), %(J)] = SpecK[�/[%(J), %(J)]]

is the basic affine space. Therefore, applying some gV (V ∈ &∨) if necessary, we conclude that if a K-
valued point x of Qrat

�,J
belongs to the domain of k, then k(G) belongs to the set of K-valued points of

the image given by formula (4.9). Taking Proposition 4.14 (and its � ((I))-action) and formula (4.8) into
account, we conclude the second assertion. �
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Corollary 4.17. Keep the setting of Proposition 4.16. The map k induces a bijection of K-valued points
between the domain and the range.

Proof. By abuse of convention, we regard Q′
K

as subsets of both Qrat
�
(K) and (Imk) (K). Let G ′ ∈

Qrat
�
(K) be a preimage of an (� × G<) (K)-fixed point G ∈ Q′

K
through k. Consider the embedding

(
Qrat
�,J

)
K
↩→

∏
8∈I\J

P
(
X(s8)

∧
K

)

that prolongs formula (4.6). Let G ′ =
(
G ′8
)
8∈I\J

(resp., G = (G8)8∈I\J) be the coordinate of G ′ (resp., x)

through this embedding. We can regard G ′8 ∈ X(s8)
∧
K

, which admits a decomposition

G ′8 =
∏
`

G ′8 [`],

where ` ∈ % runs over the P-weights of X(s8)∧K (or W(s8)
∧
K

). Let 3 ′8 [`] be the degree of the lowest
d-degree nonzero contribution of G ′8 [`] (or ∞ if G ′8 [`] = 0) for each 8 ∈ I \ J and ` ∈ %. Let 38
be the d-degree of G8 for each 8 ∈ I \ J (remember that x is (� × G<) (K)-fixed). Note that we have
G8 [Ds8] = G

′
8 [Ds8] for every 8 ∈ I and D ∈ , , since

W(s8)K and + (s8)K ⊗ K[I] share the same %-weight Ds8-parts. (4.10)

For each W ∈ &∨, we have a collection of the automorphisms of the vector spaces {X(_)K}_∈%+ by
shifting the (d-)gradings of the weight ` parts by 〈W, `〉 (` ∈ %). This defines an automorphism of '+

K
,

and hence defines an automorphism of Qrat
�
(K). By using this twist for an appropriate W ∈ &∨, we can

assume that

3 ′8 [`] ≫ 3 ′8 [Ds8] = 38 , ` ≠ Ds8 , (4.11)

for each 8 ∈ I \ J and fixed D ∈ , , from the fact that every P-weight of , (s8)K is ≤ s8 . We have
G8 ∈ WFF0 (s8)K for some F ∈ ,af and all 8 ∈ I \ J. Formula (4.11) implies G ′8 ∈ WFF0 (s8)

∧
K

for all
8 ∈ I \ J ([44, Theorem 5.17]). Hence, we have G ′ ∈ Q�,J (F)K for F ∈ ,af such that x is the unique
(� × G<)-fixed point of O(J, F)K.

From fact (4.10), the (�×G<)-action shrinks G ′ to x. In view of its proof, the Zariski open setO(J, F)K
in Lemma 4.11 is obtained by localising along the vectors

{
v∨FF0_

}
_∈%J,+

, which pairs nontrivially with

G ′. Therefore, we necessarily have G ′ ∈ O(J, F)K (K). As O(J, F)K (K) ⊂ Q′
K

by Proposition 4.14 and
its proof, we deduce G = G ′. Since Q′

K
is stable under the action of &∨, as well as � ((I)), we conclude

that G = G ′ holds for a preimage of G ′ of every G ∈ Q′
K

, as required. �

Theorem 4.18. Assume that charK ≠ 2. For each J ⊂ I, we have a closed immersion of ind-schemes

(
Qrat
�,J

)
K
−→

∏
8∈I\J

P(+ (s8)K ⊗ K((I))).

In particular, the set of K-valued points of the ind-scheme
(
Qrat
�,J

)
K

is in bijection with

� ((I))/(� (K) · [%(J), %(J)] ((I))) .

Proof. By construction, the locus � ⊂ Qrat
�,J

on which k (borrowed from Proposition 4.16) is not
defined is an ind-subscheme. The map k is � ((I))-equivariant. It follows that E admits a � ((I))-action
as ind-schemes. The map

Q�,J(4)K −→ P
(
W(s8)

∧
K

)
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(borrowed from the proof of Proposition 4.16) sends an irreducible component of
(
� ∩ Q�,J (4)K

)
onto a closed subscheme of P

(
ker

(
W(s8)

∧
K
→ + (s8)K ⊗ K[[I]]

) )
for some 8 ∈ I \ J. In particular,(

� ∩ Q�,J (4)K
)
⊂ Q�,J (4)K is a closed subscheme. Taking into account the

{
gV
}
V
-actions (Lemma

3.17), we have � ≠ ∅ if and only if
(
� ∩ Q�,J (4)K

)
≠ ∅, and k is a closed immersion if and only if k4

is a closed immersion (compare Lemma 3.29).
The one-parameter subgroup 0 = (b, 1) : G< → (� × G<) for b ∈ &∨

< attracts every point of
P(W(s8)K) into its (� × G<)-fixed points (by setting C → 0). In particular, E has an (� × G<)-fixed
point that is not realised by Q′

K
. Since the (� × G<)-fixed point of bounded d-degree is captured by

the corresponding degree terms of 'K, it follows that the ind-scheme E intersects with �
′
J
(E, 4) for

some E ∈ ,af . The intersection of �′
J
(E, 4)K and Q′

K
(as the set of K-valued points) defines a closed

subset Y of (a product of) a finite-dimensional projective space, by Proposition 4.16 and Corollary
4.17. In particular, Y acquires the structure of a proper scheme through k. From this viewpoint,
Corollary 4.17 provides a k-section of Y that defines a bijection of K-valued points with a Zariski
open subset �′

J
(E, 4)K \ � of �′

J
(E, 4)K. Since Q′

K
admits a homogeneous � ((I))-action, we can think

of k as an everywhere-defined section of a vector bundle over the image (whose fibre is a product of
ker

(
W(s8)

∧
K
→ + (s8)K ⊗ K[[I]]

)
s). This implies that �′

J
(E, 4)K \ � can be seen as an everywhere-

defined section of a vector bundle over the image (whose fibre is a product of finite-dimensional
subspaces of ker (W(s8)K → + (s8)K ⊗ K[I])s). Since �′

J
(E, 4)K is a finite-type scheme defined over

an algebraically closed field K, it has a dense subset formed by its K-valued points ([36, Corollarie
10.4.8]). Thus, the sectionk can be seen as that of schemes. Therefore,�′

J
(E, 4)K\� is proper by itself. In

conclusion,�′
J
(E, 4)K\� can be seen as a connected component of�′

J
(E, 4)K (as being an open and closed

subset) which does not intersect with E. It follows that if � ≠ ∅ as a scheme, then the scheme �′
J
(E, 4)

must have at least two connected components. Therefore, the projective coordinate ring 'E4 (J)K of
�

′
J
(E, 4) must be nonintegral. The same is true if we replace v with a smaller element with respect to < ∞

2
.

Hence, we can find 5 , 6 ∈ 'E4 (J)K \{0} such that 5 6 = 0 for E ≪∞
2
4. Since E and its complement are

G<-stable, we can assume that f and g areG<-eigenfunctions. Since E defines a connected component of
�

′
J
(E, 4) for every E ≪∞

2
4, we can fix the degrees of f and g for every E ≪∞

2
4. For a fixed degree, the d-

graded component of 'E4 (J)K and '4 (J)K are in common for E ≪∞
2
4. Since 'E4 (J)K is a quotient ring of

'4 (J)K, we can find G<-eigenfunctions 5 , 6 ∈ '4 (J)K \ {0} such that 5 6 = 0. This implies that the ring
'K is also nonintegral. This contradicts Corollary 4.12, and hence we deduce � = ∅ as an ind-scheme.
Therefore, we conclude that k is in fact a genuine morphism (instead of a rational map) of ind-schemes.

Next we prove that k (or rather k4) defines a closed immersion. By Lemma 4.11 and the fact that k
is a morphism, we deduce that k induces an isomorphism between the function fields of Q�,J(4)K and
its image under k. An irreducible component Z of a reduced scheme �′

J
(E, 4)K shares a Zariski dense

subset with a unique orbit O(J, F)K (F ∈ ,af). Hence the variety (/ ∩O(J, F)K) and its image under k
are presented by the quotients of a common polynomial ring K[O(J, F)K] of infinite variables. In view
of the d-degree bounds from above and below offered byW−

EF0
(s8)K andWF0 (s8)K for each 8 ∈ I \ J,

these two quotients of K[O(J, F)K] factor through a common polynomial ring of finite variables. Thus,
we deduce that k also induces an isomorphism between the function fields of Z and k(/). Once we fix
an integer 30, two rings 'E4 (J)K and '4 (J)K share the same (d-)grading 30-part for E ≪∞

2
4. Hence, it

suffices to prove that k restricts to a closed immersion of �′
J
(E, 4)K for E ≪∞

2
4. Here 'E4 (J)K is weakly

normal by Lemma 4.7. Let '′ be the multihomogeneous coordinate ring of the (reduced induced structure
of the) closed subscheme of

∏
8∈I\J P(+ (s8)K ⊗ K((I))) defined by k

(
�

′
J
(E, 4)K

)
. Then if we consider

each maximal integral quotient, we deduce that the weak normalisation of '′ is precisely 'E4 (J)K (up to
irrelevant locus). This implies thatk

(
�

′
J
(E, 4)K

)
defines a closed subscheme for each E ∈ ,af as required.

Since k is a closed immersion, the rest of the assertion follows from Proposition 4.16. This completes
the proof. �

Corollary 4.19 (Corollary of the proof of Theorem 4.18). Set F ∈ ,af and J ⊂ I. Every two rational
functions on Q�,J (F)K are distinguished by a pair of K-valued points of �′

J
(E, F)K for some E ∈ ,af .

In particular, the union
⋃
E ∈,af

�
′
J
(E, F)K is Zariski dense in Q�,J (F)K.
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Corollary 4.20. The conclusions of Theorems 2.4 and 2.5 hold when we replaceCwith an algebraically
closed field K of characteristic ≠ 2.

Proof. In view of Theorem 4.18, all the results in Theorems 2.4 and 2.5 are consequences of the
corresponding set-theoretic considerations. �

Corollary 4.21. We have �′(E, F)K ≠ ∅ if and only if E ≤∞
2
F.

Proof. By Lemma 4.5, it remains to prove that �′(E, F)K = ∅ if E 6≤∞
2
F. By Theorem 4.18 and the

definition of �′(E, F)K, the (� ×G<)-fixed point of O(D)K is contained in �
′(E, F)K (E, F ∈ ,af) only

if E ≤∞
2
D ≤∞

2
F. Since ≤∞

2
is a partial order, the condition E 6≤∞

2
F implies that �′(E, F)K has no

(� × G<)-fixed point. Since �′(E, F)K is projective by Lemma 4.4, it carries an (� × G<)-fixed point
if it is nonempty. Thus, we conclude �′(E, F)K = ∅ as required. �

4.3. Coarse representability of the scheme Qrat
�

Material in this subsection is rather special in this paper, and is irrelevant to the arguments in the later
part such as the normality of quasi-map spaces.

In this subsection, we assume that charK ≠ 2, and we drop subscripts K from
(
Qrat
�

)
K

and its
subschemes to simplify notation.

Let �55K be the category of affine schemes over K. We identify �55 >?
K

with the category of commu-
tative rings over K. Let /0AK denote a big Zariski site over K [77, Section 020N]. For - ∈ /0AK, the
assignment

/0A
>?
K

∋ * ↦→ Hom/0AK (*, -) ∈ Sets

defines a sheaf ℎ- on /0AK [77, Definition 00WR].
For the definition on the coarse moduli functors, we refer to [78, Definition 1.10]. However, we use

some modified definitions:

Definition 4.22 (Strict ind-scheme). Let X =
⋃
=≥0 -= be an increasing union of schemes in /0AK.

We call (X, {-=}=) (or simply X) a strict ind-scheme if each inclusion -: ⊂ -:+1 (: ≥ 0) is a closed
immersion.

Definition 4.23 (Filtered sheaf on /0AK). A filtered (pre)sheaf (F, {F=}=≥0) on /0AK is a family of
(pre)sheaves such thatF: ⊂ F:+1 for each : ∈ Z≥0 andF =

⋃
= F=. Let (F, {F=}=≥0) and (G, {G=}=≥0)

be filtered (pre)sheaves on /0AK. A morphism 5 : F → G of (pre)sheaves is said to be continuous if for
each = ∈ Z≥0, there is some < ∈ Z≥0 such that

5 (F=) ⊂ G< and G= ∩ Im 5 ⊂ 5 (F<).

Let (F, {�=}=) be a strict ind-scheme. Then we call ℎF :=
(⋃

= ℎ�= ,
{
ℎ�=

}
=≥0

)
the filtered sheaf

associated to F.

Definition 4.24 (Coarse ind-representability). Let X be a filtered (pre)sheaf on /0AK. Let X be a strict
ind-scheme over K. We say that X is coarsely ind-representable by X if the following conditions hold:

◦ We have a continuous morphism D : X → ℎX of filtered (pre)sheaves.
◦ X(k) = ℎX (k) for an overfield k ⊃ K.
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◦ If Y is a strict ind-scheme and we have a continuous morphism 5 : X → ℎY, it factors as

X
D //

5   ❅
❅
❅
❅
❅
❅
❅
❅

ℎX

6

��
ℎY,

�

where g is a morphism of presheaves. It is automatic that g is continuous, and hence is induced by a
morphism of ind-schemes.

We consider the assignment Q on �55 >?
K

defined as

�55
>?
K

∋ ' ↦→ Q(') := � ('((I)))/(� (')# ('((I)))) ∈ Sets.

For each = ∈ Z≥0, we consider an assignment

�55
>?
K

∋ ' ↦→ Q= (') := {6 mod � (')# ('((I))) ∈ Q(') | (★)} ∈ Sets,

where

(★) 6vs8
has at worst pole of order = on + (s8)Z ⊗Z '((I)) for each 8 ∈ I.

The assignments (Q, {Q=}=) define a filtered presheaf on /0AK that we denote by Q.

Lemma 4.25. The ind-scheme Qrat
�

defines a filtered sheaf on /0AK given by a strict ind-scheme structure.

Proof. A scheme overK defines a sheaf over /0AK, and so is its increasing union. In view of Proposition
4.16, the pole order n condition amounts to choosing the I-orbits O

(
DCV

)
(D ∈ ,, V ∈ &∨) such that

〈V, s8〉 ≥ −= (for every 8 ∈ I), which makes the smaller one a closed subscheme of the larger one
(compare Lemma 3.29). �

Proposition 4.26. The scheme Qrat
�

coarsely ind-represents the presheaf Q.

Proof. We first construct an injective continuous morphism Q → ℎQrat
�

as filtered presheaves on /0AK
such that Q(k) = ℎQrat

�
(k) for an overfield k ⊃ K.

For ' ∈ �55
>?
K

, the set Q(') is represented by a class of 6 ∈ � ('((I))) modulo the right action of
� (')# ('((I))). It defines a point of Qrat

�
(') by applying g on

{[
vs8

]}
8∈I

∈
∏
8∈I P' (+ (s8)Z⊗Z'((I))).

Since the � ('((I)))-stabiliser of vs8
is precisely � (')# ('((I))), we conclude an inclusion Q(') ⊂

ℎQrat
�
('). By examining the construction, we deduce that this defines an injective continuous morphism

of filtered presheaves.
By the Bruhat decomposition, we have

� (k((I)))/# (k((I))) = (�/#) (k((I)))

for an overfield k ⊃ K (and hence k((I)) is a field). In view of Theorem 4.18, we conclude that Q ⊂ ℎQrat
�

is an inclusion of filtered presheaves with Q(k) = ℎQrat
�
(k) when k ⊃ K is an overfield.

We verify the versality property. Suppose that we have a strict ind-scheme (X, {-=}=) and a contin-
uous morphism Q → ℎX . By Lemma 4.11, we deduce that each I-orbit of Qrat

�
defines a subfunctor of

Q= for some = ≥ 0. The zeroth ind-piece
(
Qrat
�

)
0 in Lemma 4.25 is Q� (4).

For each CV ≤∞
2
4
(
V ∈ &∨

+

)
, we find a reduced expression C−1

V = B81 · · · B8ℓ (which we record as
i := (81, . . . , 8ℓ)) and form a scheme

/ (i)◦ := I(81) ×
I I(82) ×

I · · · ×I O(CV)
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and the map

/ (i)◦ = I(81) ×
I I(82) ×

I · · · ×I O(CV) → Q� (4)

(see, e.g., [57, Chapter VIII]; compare [46, §6]). In view of Lemma 4.11, the image of this map contains
an open neighbourhood ofO

(
CV
)
. In view of the� ((I))-action (or the various SL(2, 8)-actions for 8 ∈ Iaf)

on Qrat
�

and Q, we have a morphism

5i : ℎ/ (i)◦ −→ Q0.

By varying i (and consequently varying CV ≤∞
2
4), we deduce that the union of the image of the

morphisms { 5i}i exhausts Q0 (k) for an overfield k ⊃ K. From the Yoneda embedding, we derive a map

/ (i)◦ −→ -=

of schemes for some fixed = ∈ Z. This map factors through a scheme Z that glues (among is) all the
closed points that map to the same points in Q0. Such a scheme is integral, as / (i)◦s are integral, and
the gluing identifies the Zariski open dense subset O(4) for distinct is. In addition, we have a birational
map c : / → Q� (4), and hence we have

/ (k) = Q� (4) (k) = Q0(k) for an overfield k ⊃ K.

We prove that / = Q� (4) by induction. For each < ∈ Z≥0, let Q� (4)<< (resp., Q� (4)≤<) be the
union of I-orbits in Q� (4) of the shape O(E) for ℓ

∞
2 (E) < < (resp., ≤ <).

Assume that the map c is an isomorphism when restricted to Q� (4)<<; we prove the same is true
when restricted to Q� (4)≤<. The < = 1 case is afforded by O(4) ⊂ / , already used in the foregoing
construction.

We have a partial compactification / (i) of / (i)◦ with a map 5 +
i

:

/ (i) := I(81) ×
I I(82) ×

I · · · ×I Q�

(
CV
) 5 +

i
−→ Q� (4).

Note that we have a surjective morphism induced by O(CV) → SpecK:

[i : / (i) −→ I(81) ×
I I(82) ×

I · · · ×I SpecK,

where we denote the image (the right-hand side) by / ′(i). Since / ′(i) is a finite successive P1-fibration,
it is proper. The map 5 +

i
is proper, as the product map(

[i × 5 +i
)

: / (i) ↩→ / ′(i) × I(81) · · · I(8ℓ)Q�

(
CV
)
= / ′(i) × Q� (4)

is a closed immersion. In view of the isomorphism Q�

(
CV
)
� Q� (4), we transplant Q� (4)<< to

Q�

(
CV
)
<<.

Claim A. For each closed point G ∈ Q� (4)≤<, the scheme

(
5 +i
)−1

(G) \
( (
5 +i
)−1

(G) ∩
(
I(81) ×

I I(82) ×
I · · · ×I Q�

(
CV
)
<<

))
⊂

(
5 +i
)−1

(G)

is a closed subscheme that is zero-dimensional. In other words, it is a finite union of points (potentially
an empty set).

Proof. For each sequence ( 91, . . . , 9B) ∈ I
B
af (B ∈ Z>0) and E ≤∞

2
4 such that ℓ

∞
2 (E) = ℓ, the image of

the map

5 : I( 91) ×
I I( 92) ×

I · · · ×I I( 9B) ×
I Q� (E) −→ Qrat

�
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induced by the multiplication is a union of I-orbits O(E′) with ℓ
∞
2 (E′) ≥ ℓ − B (as we have ℓ

∞
2 (B8F) ∈{

ℓ
∞
2 (F) ± 1

}
for each 8 ∈ Iaf and F ∈ ,af by [74, Lecture 13, Proposition ℓB]). In addition, if the image

of the map f containsO(E′) for ℓ
∞
2 (E′) = ℓ−B, then f is an isomorphism alongO(E′) (as the isomorphism

between open subsets). By collecting these for I-orbits in the closed subset Q�

(
CV
)
\ Q�

(
CV
)
<< of

Q�

(
CV
)

in the construction of the (proper) map 5 +
i

, we conclude the result. �

We return to the proof of Proposition 4.26. By Claim A, we deduce that

(
5 +
i

)−1
(G) ∩ I(81) ×I I(82) ×I · · · ×I Q�

(
CV
)
<< ⊂

(
5 +i
)−1

(G)

is a union of connected components of
(
5 +
i

)−1
(G) for each closed point G ∈ Q� (4)≤<.

Requiring regular functions on
(
5 +
i

)−1
(Q� (4)≤<) to be constant along all the fibres yields sections

in
(
5 +
i

)
∗
O/ (i) . From this (for arbitrary CV ≤∞

2
4 and i) and the induction hypothesis, we conclude that

c−1 (Q� (4)≤<) ⊂ / is a union of proper schemes over Q� (4)≤< that contains a Zariski open subset
Q� (4)<<. In view of Corollary 3.39 (when charK > 0) or Proposition A.1 (when charK = 0; compare
[51, Theorem A]), we deduce that

(/ ⊃) c−1 (Q� (4)≤<) → Q� (4)≤<

defines an isomorphism as schemes (as c−1 (Q� (4)≤<) → Q� (4)≤< is finite bijective and birational;
compare [77, Section 02LQ]). Therefore, induction on m proceeds and we conclude / � Q� (4) as
schemes. Thus we obtain a morphism Q� (4) → -= of schemes.

Rearranging Q� (4) by the right &∨-translations, we deduce a morphism Qrat
�

→ X as ind-schemes.
This yields a continuous morphism ℎQrat

�
→ ℎX . Therefore, ℎQrat

�
is an initial object in the category of

sheaves on /0AK ind-representable by strict ind-schemes that admits a continuous morphism from Q,
as required. �

Corollary 4.27. For each J ⊂ I, the scheme Qrat
�,J

coarsely ind-represents the filtered presheaf QJ
defined by

�55
>?
K

∋ ' ↦→ QJ(') := � ('((I)))/(� (') · [%J, %J] ('((I)))) ∈ Sets.

Proof. By construction, we have a continuous morphism of presheaves Q → QJ (by transplanting
subsheaves Q= to QJ via this map). Thus, the coarse ind-representability of Qrat

�
implies that the

maximal ind-scheme X obtained by gluing points of Qrat
�

admits a continuous morphism QJ → ℎ- that
coarsely ind-represents the filtered presheaf QJ. Every two rational functions on Q� (F) (F ∈ ,af) are
distinguished by some pair of K-valued points (Corollary 4.19). Since we have QJ (K) = Qrat

�,J
(K), we

conclude that - = Qrat
�,J

. �

4.4. The properties of the schemes �′
J
(E, F)

In the rest of this section, we assume charK ≠ 2.

Lemma 4.28. Set J ⊂ I. For each V ∈ &∨
+ , the set of K-valued points of �′

J
(V, 4)K is in bijection with

the collection {D_(I)}_∈%J,+ such that

◦ D_ (I) ∈ + (_)K ⊗
⊕−〈F0V,_〉

9=0 KI 9 and

◦ for each _, ` ∈ %+, we have [_,`
(
D_ (I) ⊗ D` (I)

)
= D_+` (I).

Proof. We have

Q�,J (4)K =
(
Qrat
�,J

)
K
∩

∏
8∈I\J

P(+ (s8)K ⊗ K[[I]]) ⊂
∏
8∈I\J

P(+ (s8)K ⊗ K((I)))
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by Theorem 4.18. By the symmetry of the construction of �′
J
(V, 4) in terms of \ (compare Remark

3.31), we conclude that

�
′
J
(V, 4)K =

(
Qrat
�,J

)
K
∩

∏
8∈I\J

P(+ (s8)K ⊗ K[[I]]) ∩
∏
8∈I\J

P

(
+ (s8)K ⊗ K

[[
I−1

]]
I−〈V,F0s8 〉

)

inside
∏
8∈I\J P

(
+ (s8)K ⊗ K

[[
I, I−1

]] )
, which is our degree bound. In view of this, it suffices to

remember that the second condition is the same as the Plücker relation that defines � ((I))/� (K) ·

[%(J), %(J)] ((I)) in the last two paragraphs of the proof of Proposition 4.16. �

Set F, E ∈ ,af and J ⊂ I. For each _ ∈ %J,+, we have a line bundle O�′
J
(E,F) (_) on �′

J
(E, F) such

that we have a map

'EF (J, _) → Γ
(
�

′
J
(E, F),O�′

J
(E,F) (_)

)
that commutes with the multiplications. This yields O�′

J
(E,F) (_) for each _ ∈ %J by tensor products.

Lemma 4.29. For each F, E ∈ ,af , the line bundle O�′
J
(E,F) (_) is very ample if

〈
U∨8 , _

〉
> 0 for every

8 ∈ I \ J.

Proof. We can assume that �′
J
(E, F) ≠ ∅ without the loss of generality.

By Lemma 4.1, we have

�
′
J
(E, F) ↩→

∏
8∈I\J

PZ
(
'EF (s8)

∨
)
.

From this and again by Lemma 4.1, we deduce that the following diagram is commutative:

∏
8∈I\J PZ

(
'EF (J, s8)

∨
) � � b // PZ

(⊗
8∈I\J '

E
F (J, s8)

∨
)

PZ
(
'EF (J, dJ)

∨
)^oo

�′
J
(E, F),

7 W

jj❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

where b is the Veronese embedding and ^ is induced from the multiplication map. The ring 'EF (J)
is reduced by Corollary 4.10. Since

〈
U∨8 , dJ

〉
> 0 for every 8 ∈ I \ J and the multiplication maps

are surjective, a nonzero element of 'EF (J, dJ) is not supported in the irrelevant locus. It follows

that 'EF (J, dJ) ⊂ �0
(
�′
J
(E, F),O�′

J
(E,F) (dJ)

)
and it is spanned by a product of linear functions that

separates closed points of�′
J
(E, F). In particular,O�′

J
(E,F) (dJ) is very ample. Since we have embeddings

'EF (J, dJ) ⊂ 'EF (J, _) ⊂ �0
(
�

′
J
(E, F),O�′

J
(E,F) (_)

)
obtained through multiplications corresponding to the duals of extremal weight vectors (so that the
image is base-point free along an (� ×G<)-stable Zariski open neighbourhood of each (� ×G<)-fixed
point of a projective variety), we conclude that O�′

J
(E,F) (_) is also very ample, as required. �

Theorem 4.30. For each F = DCV′ ∈ ,af (D ∈ ,, V′ ∈ &∨) and V ∈ &∨
+ , we have an isomorphism

�
′(V, F)C � �(V− V′, D) as varieties. Moreover,�′(V, F)K is irreducible, and its dimension is given as

dim�
′(V, F)K = 2 〈V − V′, d〉 + dim ℬ(D).

Proof. By Lemma 4.7, we know that
(
'
V
E

)
K

is a quotient of
(
'
V
F

)
K

for E ∈ ,af such that E ≤∞
2
F.

Hence, we have �
′(V, F)K ∩ Q� (E)K = �

′(V, E)K. By Lemma 4.6, the scheme �
′(V, F)K ∩ O(E)K is
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isomorphic to�′(V−W, D′)K∩O(D
′)K, where E = D′CW

(
D′ ∈ ,, W ∈ &∨

+

)
. By Lemma 4.28 and Theorem

2.8, we have the following:

◦ (�′(V, F)K ∩ O(E)K) = (�′(V, E)K ∩ O(E)K) for each E ∈ ,af such that E ≤∞
2
F.

◦ The variety (�′(V, F)K ∩ O(E)K) is irreducible for every E ∈ ,af .

We have

dim (�′(V, F)C ∩ O(E)C) = dim �(V − W, D′) = 2 〈V − W, d〉 + dim ℬ(D′)

for E = D′CW
(
D′ ∈ ,, W ∈ &∨

+

)
by Lemma 4.28 and Theorem 2.7 (whenever �′(V, F)C ∩O(E)C ≠ ∅). In

addition, Lemma 4.3 implies

◦ dim �
′(V, F)C = dim �

′(V, F)K.

In particular, we have the desired dimension formula if�′(V, F)K is irreducible with its Zariski open
dense subset (�′(V, F)K ∩ O(F)K).

Since �(V, F) and �
′(V, F)C share an open subset and the former is irreducible, we have �(V, F) =

�
′(V, F)C as closed subvarieties of

(
Qrat
�

)
C

if �′(V, F)C is irreducible.
Therefore, it suffices to prove that �′(V, F)K is irreducible (with its Zariski open dense subset

(�′(V, F)K ∩ O(F)K)). By Theorem 2.1 and Corollary 4.21, it suffices to prove that

(�′(V, F)K ∩ O(BF)K) ⊂ (�′(V, F)K ∩ O(F)K) (4.12)

for every F ∈ ,af and every reflection B ∈ ,af such that ℓ
∞
2 (BF) = ℓ

∞
2 (F) + 1 and F0CV ≤∞

2
BF ≤∞

2
F.

Here Q� (BE)K ⊂ Q� (E)K is an irreducible component of the boundary by Theorem 2.4(3) (compare
Corollary 4.20). This boundary component is these cut out as (a part of) the zero of v∨EF0_

∈ WEF0 (_)
∨

(_ ∈ %+). Thus, we deduce that (�′(V, F)K ∩ O(BF)K) contains an irreducible component of

(�′(V, F)K ∩ O(F)K) ∩ { 5 = 0}

for some single equation f (an instance of v∨EF0_
s) if it is nonempty. By comparison of dimensions, this

forces

(�′(V, F)K ∩ O(F)K) ∩ { 5 = 0} ∩ O(BF)K ⊂ (�′(V, F)K ∩ O(BF)K) (4.13)

to be an irreducible component if the left-hand side is nonempty. Consider the (�×G<)-invariant curve
C that connects the (unique) (� × G<)-fixed points ?BF in O(BF)K and ?F in O(F)K. The curve C is
the closure of the orbit of a one-parameter unipotent subgroup action corresponding to a root in Δaf,+

applied to ?F . In particular, we have � ⊂ O(BF)K ⊔O(F)K. By the degree bound (from above) offered
by Lemma 4.28, we conclude that � ⊂ (�′(V, F)K ∩ O(F)K). Therefore, the left-hand side of formula
(4.13) is nonempty. Hence, the irreducibility of (�′(V, F)K ∩ O(BF)K) forces

(�′(V, F)K ∩ O(F)K) ∩ { 5 = 0} ∩ O(BF)K = (�′(V, F)K ∩ O(BF)K).

Therefore, we conclude formula (4.12). This implies �(V − V′, D) = �′(V, F)C as an irreducible
(reduced) closed subvariety of

(
Qrat
�

)
C
, and�′(V, F)K is irreducible in general. Its dimension dim�(V−

V′, D) comes from the dimension of (�′(V, F)K ∩ O(F)K), which is a Zariski open dense subset of
�

′(V, F)K. �

Corollary 4.31. For each F, E ∈ ,af , the dimension of an irreducible component of �′(E, F)K is
ℓ

∞
2 (E) − ℓ

∞
2 (F) if �′(E, F)K ≠ ∅ (which is equivalent to E ≤∞

2
F by Corollary 4.21). In particular,

�′(E, F)K is equidimensional.
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Proof. The case where E = F0CV with V ∈ &∨ follows from Theorem 4.30. We have�′(F, F)K = SpecK
(F ∈ ,af), since dimWFF0 (_)K ∩W

−
FF0

(_)K = 1 for every _ ∈ %+ by %af-weight comparison.
Let E = DCV (D ∈ ,). In view of the proof of Theorem 4.30, the variety �′(E, F)K is obtained from

�
′
(
F0CV , F

)
K

by (ℓ(F0)−ℓ(D))-successive hyperplane cuts by the \-twists of the I-stable boundaries of
Q� (•)K (compare Remark 3.31). Each of these hyperplane cuts lowers the dimension of an irreducible
component by at most 1 if the intersection is nonempty. Since ℓ(F0) − ℓ(D) = ℓ

∞
2
(
F0CV

)
− ℓ

∞
2 (E), the

dimension inequality ≥ always holds.
Every irreducible component of �′(E, F)K is (� × G<)-stable by construction. Since we have only

one (� × G<)-fixed point in each I-orbit of
(
Qrat
�

)
K

, all but one (� × G<)-fixed point of Q� (F)K
(F ∈ ,af) lie in the boundary. Thus, if an irreducible component of �′(E, F)K does not meet any I-
stable boundary divisors of Q� (F)K or the \-twists of any I-stable boundary divisors of Q� (EF0)K,
then such an irreducible component does not contain an (� × G<)-fixed point unless E = F. This is a
contradiction (of the properness of�′(E, F)K). Hence, every irreducible component of�′(E, F)K meets
its boundary cut out by an I-stable boundary divisor of Q� (F)K or the \-twist of an I-stable boundary
divisor of Q� (EF0)K.

Assume the contrary to deduce a contradiction. Then we have �′(E, F)K, whose irreducible compo-

nents have dimension
(
ℓ

∞
2 (E) − ℓ

∞
2 (F)

)
, but one of its irreducible components is in fact contained in

�
′(E′, F′)K with�′(E′, F′)K ( �

′(E, F)K for E′, F′ ∈ ,af , and hence it gives an irreducible component

of�′(E′, F′)K with dimension >
(
ℓ

∞
2 (E′) − ℓ

∞
2 (F′)

)
. From this, we can lower the dimension of an irre-

ducible component of �′(E′, F′)K by intersecting with a divisor to raise E′ or lower F′ successively to
reach the case E′ = F′ (as in the second paragraph). Since the dimension drops at most 1 in each step,
we find that dim�

′(F, F)K > 0 for some F ∈ ,af . This is a contradiction, and hence this case does not
happen.

These imply that the dimension equality always holds, as required. �

Remark 4.32. The analogous assertions from Theorem 4.30 and Corollary 4.31 hold for the case where
J ( I (compare Corollaries 5.21 and 5.22).

Theorem 4.33. For each F, E ∈ ,af , J ⊂ I and _ ∈ %J,+, we have

�8
(
�

′
J
(E, F)K,O�′

J
(E,F)K (_)

)
�

{
'EF (_)K, 8 = 0, _ ∈ %J,++,

{0}, 8 ≠ 0.

Moreover, if F′, E′ ∈ ,af satisfies�′
J
(E′, F′) ⊂ �

′
J
(E, F) and _ ∈ %J,+, then the restriction map induces

a surjection

�0
(
�

′
J
(E, F)K,O�′

J
(E,F)K (_)

)
−→→ �0

(
�

′
J
(E′, F′)K,O�′

J
(E′,F′)K (_)

)
.

Remark 4.34. The strict dominance condition in Theorem 4.33 cannot be removed naively. For � =

SL(3), K = C and F = 4, we have

dim�
′
{1}

(
2U∨1 , 4

)
C
= 8 > 7 = dim�

′
(
2U∨1 , 4

)
C
.

This results in the noninjectivity of the pullback map

�0
(
�

′
{1}

(
2U∨1 , 4

)
C
,O

�′
{1} (2U

∨
1 ,4)C

(3s1)
)
−→→ �0

(
�

′
(
2U∨1 , 4

)
C
,O

�′(2U∨
1 ,4)C

(3s1)
)
,

where the left-hand side is '
2U∨

1
4 (3s1)C = '

2U∨
1

4 ({1}, 3s1)C � (
3
(
C3 ⊕ C3I ⊕ C3I2

)∨
and the right-

hand side is its quotient by the G-invariants of
(
C3 ⊗ C3I ⊗ C3I2

)∨
⊂ (3

(
C3 ⊕ C3I ⊕ C3I2

)∨
. In fact,
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the ring
(
'

2U∨
1

4

)
C

is reduced but not integral, and the extra irreducible component is contained in the

irrelevant locus.

Proof of Theorem 4.33. We first observe that it is enough to show the surjectivity part of the assertion
only for the F = F′ case, since the E = E′ case follows by applying \ (and the rest of the cases follow
by repeated applications of the two cases).

Since O(J, F)F? ⊂ Q�,J (F)F? is affine, the union Z of codimension one I-orbits contains the
support of an ample divisor. The reduced union of the irreducible components of Z affords a Weil
divisor D (by Corollary A.2). Since our Frobenius splitting of Q�,J (F)F? is I-canonical and compatible
with the I-orbit closures (Corollary 3.38), we deduce that Q�,J (F)F? is D-split in the sense of [15,
Definition 3] (compare [75, Definition 1.2]). Each irreducible component of Z intersects properly
with �

′
J
(E′, F)F? ⊂ �

′
J
(E, F)F? (E′ ∈ ,af) whenever the intersection is nonempty, by Corollary 4.31

(and Remark 4.32). Thus, we deduce that �′
J
(E, F)F? admits a Frobenius D-splitting compatible with

�′
J
(E′, F)F? (E′ ∈ ,af). Therefore, the cohomology vanishing part of the assertion and the surjectivity

part (for F′ = F) follow from [75, Proposition 1.13 (ii)]. The cohomology vanishing part lifts to
charK = 0 by [14, Proposition 1.6.2]. The surjectivity part lifts to charK = 0 by [14, Corollary 1.6.3]
and Lemma 4.3.

It remains to calculate �0
(
�

′
J
(E, F)K,O�′

J
(E,F)K (_)

)
for each _ ∈ %J,++. Here

�0
(
�

′
J
(E, F)K,O�′

J
(E,F)K (_)

)
is obtained as the degree _ part of the (graded) normalisation of the ring(

'EF (J)
)
K

. For each prime p, our ring
(
'EF (J)

)
F?

is weakly normal by Lemma 4.7. Let us consider the

%J,+-graded quotient '′ =
⊕

_∈%J,+
'′(_) of 'EF (J, _)F? that annihilates all the irrelevant irreducible

components. Since 'EF (J)F? is a reduced ring, we have 'EF (J, _)F? = '′(_) for _ ∈ %J,++. The ring '′

is generated by
⊕

8∈I\J '
′(s8), because 'EF (J)F? is. We have

�0
(
�

′
J
(E, F)F? ,O�′

J
(E,F)F?

(_)
)
� 'EF (J, _)F? (4.14)

for sufficiently large _ ∈ %J,+ (see, e.g., [37, II Excecise 5.9]). In other words, formula (4.14) holds for
<_, where _ ∈ %J,++ is arbitrary and < ≫ 0.

Define '♯ (_) := �0
(
�′
J
(E, F)F? ,O�′

J
(E,F)F?

(_)
)

for _ ∈ %J,++. We set '♯ [_] := F?1 ⊕⊕
<≥1 '

♯ (<_) and '′[_] :=
⊕

<≥0 '
′(<_) ⊂ '′ for _ ∈ %J,++. Both are naturally rings. Then we

have a ring extension '′[_] ⊂ '♯ [_] such that their degree < ≫ 0 parts are the same.
We prove '′(_) = '♯ (_). The ring '′[_] is weakly normal, as we have an inclusion '′[_] ↩→

'EF (J)F? (and the reasoning that 'EF (J)F? is weakly normal equally applies to '′[_]). Since it is

generated by '′(_), we deduce that the rings '′[_] and '♯ [_] share the same spectrum (the irrelevant
locus of '′[_] is one point, as it is a Z≥0-graded ring, and other points are just the same). This forces
'′(_) = '♯ (_) by the weak normality of '′[_].

This yields the �0-part of the assertion for charK > 0 through the extension of scalars. The �0-part
of the assertion for charK = 0 is obtained by taking the generic specialisation of the base scheme SpecZ
of �′

J
(E, F). �

Corollary 4.35. Set F, E ∈ ,af and J ⊂ I. Assume that the map ΠJ : �′(E, F)K → �
′
J
(E, F)K defined

through the projective coordinate ring is surjective. We have

R>0 (ΠJ)∗O�′ (E,F)K � {0} and (ΠJ)∗O�′ (E,F)K � O�′
J
(E,F)K .

Remark 4.36. Since the map Qrat
�

→ Qrat
�,J

is surjective, we can replace v with ECV for some V ∈∑
9∈J Z≥0U

∨
9 to obtain a surjection

ΠJ : �′
(
ECV , F

)
K
→ �

′
J

(
ECV , F

)
K
= �

′
J
(E, F)K.
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For E = F0 and F = 4, there is an optimal choice of V, which is sometimes referred to as the Peterson–
Woodward threshold ([79]).

Proof of Corollary 4.35. Thanks to Lemma 4.29 and [57, Lemma A.31], it suffices to prove

�>0 (
�

′(E, F)K,O�′ (E,F)K (_)
)
� {0}

and

�0 (
�

′(E, F)K,O�′ (E,F)K (_)
)
� �0

(
�

′
J
(E, F)K,O�′

J
(E,F)K (_)

)

for each_ ∈ %J,++. The�>0-part of the assertion follow from Theorem 4.33. The�0-part of the assertion
follows as in the latter part of the proof of Theorem 4.33, since the surjectivity of ΠJ guarantees that
every nonzero element of 'EF (_)F? is supported outside of the irrelevant locus by pullback, and that the
(graded) normalisation of the ring 'EF (J)F? is the degree %J,+ part of the (graded) normalisation of the
ring

(
'EF

)
F?

by the degree reasons. �

Corollary 4.37. Set _ ∈ %+ and F, E ∈ ,af . We set J :=
{
8 ∈ I |

〈
U∨8 , _

〉
= 0

}
. Assume that

ΠJ (�
′(E, F)K) = �

′
J
(E, F)K. Then we have

�0 (
�

′(E, F)K,O�′ (E,F)K (_)
)∨

=WFF0 (_)K ∩ \ (WE (−F0_)K).

Proof. Combine Theorem 4.33 for �′
J
(E, F)K and Corollary 4.35. �

Lemma 4.38. Set F, E ∈ ,af and J ⊂ I. For each 8 ∈ Iaf such that B8F > ∞
2
F and B8E > ∞

2
E, the variety

�
′
J
(E, F)K is �8-stable. In addition, we have a morphism

c8 : SL(2, 8) ×�8 �
′
J
(E, F)K → �

′
J
(E, B8F)K.

The map c8 is a P1-fibration if �′
J
(E, F)K is SL(2, 8)-stable (this never happens under our assumption

when J = ∅). In general, the fibre of c8 is either a point or P1 if it is nonempty.

Proof. For each _ ∈ %J,++, the moduleWE (−F0_)K is I(8)-stable by Corollary 3.16 and formula (2.2),
and the moduleWFF0 (_)K is I-stable. In particular,

WFF0 (_)K ∩ \ (WE (−F0_)K) ≡WFF0 (_)K ∩W
−
EF0

(_)K

is �8-stable. It follows that the ring 'EF (J)K is �8-stable. Hence the scheme �′
J
(E, F)K is also �8-stable.

The map c8 is a P1-fibration if �′
J
(E, F)K is SL(2, 8)-stable, since in this case we have �

′
J
(V, F)K =

�′
J
(V, B8F)K (which in turn holds if and only ifWB8FF0 (_)K =WFF0 (_)K for _ ∈ %J,++, sinceW−

EF0
(_)K

is SL(2, 8)-stable; hence it never happens when J = ∅, by Lemma 3.15). The fibre of the map c8 is
either a point or P1 if �′

J
(E, F)K is not SL(2, 8)-stable, as the corresponding statement holds true for

Q�,J (F)K ⊂ Q�,J (B8F)K by a set-theoretic consideration (and it carries over to any �8-stable locus).
Therefore, we conclude the result. �

Proposition 4.39. Set F, E ∈ ,af and J ⊂ I. For each 8 ∈ Iaf such that B8F > ∞
2
F and B8E > ∞

2
E, we

have a surjective map

c8 : SL(2, 8) ×�8 �
′
J
(E, F)K → �

′
J
(E, B8F)K

such that (c8)∗OSL(2,8)×�8�′
J
(E,F)K

� O�′
J
(E,B8F)K and

R>0 (c8)∗OSL(2,8)×�8�′
J
(E,F)K

� {0}.
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Proof. For each _ ∈ %J,++, the _-graded component

'EF (J, _)
∨ =WFF0 (_)Z ∩ \

∗(WE (−F0_)Z) ⊂ X(_)Z

of the coordinate ring of �′
J
(E, F) is obtained as the Z-span of a subset of positive global basis of

WFF0 (_)Z.
We set �+

J
(E, F)K := SL(2, 8) ×�8 �

′
J
(E, F)K for simplicity in what follows.

In view of [72, Theorem 4.2.1] (compare Corollary 3.16), the basis elements of \∗(WE (−F0_)Z)

afforded by the negative global basis, regarded as a subset of the g̃-crystal B(X(_)), decompose into
the disjoint union of connected sl(2, 8)-crystals (which is the set of labels of a basis of an irreducible
sl(2)-module equipped with combinatorial operations 4̃8 and 5̃8 corresponding to � (•)

8 and � (•)
8 – see,

e.g., [41, Definition 2.3.1]; it is the i-string in [42, 45]). Moreover, the basis elements of WB8FF0 (_)Z
afforded by the positive global basis, regarded as a subset of the g̃-crystal B(X(_)), also decompose
into the disjoint union of sl(2, 8)-crystals ([45, 46]), and the set S of basis elements corresponding to
each connected sl(2, 8)-crystal satisfies

( ∩WFF0 (_)Z = ( or {v}, (4.15)

where v ∈ ( is the highest weight vector as a sl(2, 8)-crystal, which has dominant weight as a weight of
sl(2, 8) ([45, Lemma 2.6]). In particular, we have

( ∩ 'EF (J, _)
∨ = ( or {v} or ∅.

Therefore, a reinterpretation of [42, (0.5)] using Theorem 4.33 (compare [39, 46]) reads as

ch�0
(
O�′

J
(E,B8F)K (_)

)
= ch�0

(
O�+

J
(E,F)K

(_)
)

0 = ch�1
(
O�+

J
(E,F)K

(_)
)

for each _ ∈ %J,++. Since the zeroth part of the Demazure functor is the same as taking the maxi-
mal integrable SL(2, 8)-inflation of a (weight-semisimple) �8-module, we conclude that the inclusion
'EF (J, _)

∨
K
⊂ 'EB8F (J, _)

∨
K

induces a natural inclusion

�0
(
�

′
J
(E, B8F)K,O�′

J
(V,B8F)K

(_)
)
↩→ �0

(
�
+
J
(E, F)K,O�+

J
(E,F)K

(_)
)
, (4.16)

which is an isomorphism by the character comparison. Thus, Lemma 4.29 implies

(c8)∗O�+
J
(E,F)K

� O�′
J
(E,B8F)K and R1 (c8)∗O�+

J
(V,F)K

� {0}.

Since we have R≥2(c8)∗O�+
J
(E,F)K

� {0} by dimension reasons, we conclude the result. �

A particular case of Proposition 4.39 is worth noting:

Corollary 4.40. Set V ∈ &∨, F ∈ , and J ⊂ I. For each 8 ∈ I such that B8F < F, we have a surjective
map

c8 : %8 ×
�
�

′
J
(V, F)K → �

′
J
(V, B8F)K

such that R•(c8)∗O%8×��′
J
(V,F)K

� O�′
J
(V,B8F)K

.

4.5. Lifting to and from characteristic 0

Theorem 4.41. Let X be a Noetherian scheme flat over Z. If XF? is weakly normal for ? ≫ 0, then XC
is also weakly normal.

https://doi.org/10.1017/fmp.2021.5 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.5


Forum of Mathematics, Pi 43

Proof. Since the weak normalisation commutes with localisation [68, Theorem IV.3], we can argue
locally. Let ((,m) be a local ring of X

Q
and let (− be the weak normalisation of S ([80, Remark 1]). By

the Noetherian hypothesis, we can invert finitely many primes and take a finite algebraic extension of Z
to obtain a ring A such that we have a commutative ring (� over A and its ideal m� with the following
properties:

◦

(
(� ⊗� Q,m� ⊗� Q

)
� ((,m).

◦ The A-modules (�,m� and (�/m� are torsion free.
◦ The specialisation of A to the algebraic closure of a finite field yields a weakly normal (local) ring

([68, Theorem V.2]).

As A is a Dedekind domain, we find that (�,m� and (�/m� are flat over A.
We have (− = ([ 51, . . . , 5=], where 51, . . . , 5= are integral elements. Multiplying with elements in

Q, we can assume that 51, . . . , 5= are integral over (�. By inverting additional primes in Z if necessary
(to assume that the denominator of 58 in Frac(() does not vanish along specialisations and achieve
the conditions in the following), we can further assume that (−� := (�[ 51, . . . , 5=] is flat over A and is
integral for every specialisation of A to a field.

The ring
(
(−�/m�(

−
�

)
⊗� C is a finite-dimensional local commutative C-algebra by the weak nor-

mality assumption on (− [80, Remark 1]. In particular, the multiplication action of each element of(
(−�/m�(

−
�

)
⊗� C has a unique eigenvalue. Hence, if we present

(
(−�/m�(

−
�

)
= �[-1, . . . , -<]/∼

(where ∼ contains the minimal polynomials of the A-valued matrix -8), then the minimal polynomial of
-8 is of the form () − 08)

<8 (08 ∈ �). Therefore, we can assume that each -8 is nilpotent by changing
-8 to -8 + 08 if necessary. Hence, we conclude that (-1, . . . , -<) ⊂

(
(−�/m�(

−
�

)
have eigenvalues 0

after specialising to F? .
By assumption, ((�) ⊗� F? is weakly normal for every possible prime p and every ring homo-

morphism � → F? . Hence, the specialisation
(
(−�/m�(

−
�

)
⊗� F? must contain F? as its ring direct

summand (if it is nonzero). This forces rank
(
(−�/m�(

−
�

)
= 1, since we cannot have two linearly inde-

pendent idempotents that have distinct eigenspaces, by the previous paragraph.
Therefore, we deduce that (−� = (�, which implies that ((,m) is itself weakly normal. In view of

[68, Theorem V.2 and Corollary V.3], we conclude the assertion. �

Corollary 4.42. For each J ⊂ I, F, E ∈ ,af , the scheme �′
J
(E, F)C is weakly normal.

Proof. Apply Theorem 4.41 to Lemma 4.7. �

Proposition 4.43. For each J ⊂ I, E, F ∈ , , the variety �
′
J
(E, F)

F?
is normal for ? ≫ 0, provided

�
′
J
(E, F)C is normal. The same is true for irreducibility.

Proof. Since �
′
J
(E, F) is defined over Z, the scheme �

′
J
(E, F)C is a scalar extension of �′

J
(E, F)

Q
. By

[77, Lemma 038P], we deduce that �′
J
(E, F)

Q
is normal. We apply [77, Lemma 0364] to derive the

irreducibility of �′
J
(E, F)

Q
. Now apply [36, Proposition 9.9.4 and Théorème 9.7.7] to �′

J
(E, F)Z →

SpecZ. �

5. Normality of quasi-map spaces

In this section, we continue to work in the setting of the previous section, with the exception that K = C.
Also, a point of a scheme (over C) means a closed point unless stated otherwise.

5.1. Graph-space resolution of �(V)

We refer to [56, 30, 6, 23, 33] for precise explanations of the material in this subsection. For each
nonnegative integer n and V ∈ &∨

+ , we set �ℬ=,V to be the space of stable maps of genus 0 curves
with n-parked points to

(
P1 ×ℬ

)
of bidegree (1, V), which is also called the graph space of ℬ. A point
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of �ℬ=,V represents a genus 0 curve C with n-marked points, together with a map to P1 of degree 1
(obtained by composing the map from C to P1 ×ℬ with the first projection of the target). Hence, we
have a unique P1-component of C that maps isomorphically onto P1. We call this component the main
component of C and denote it by�0. The space�ℬ=,V is a normal projective variety by [30, Theorem 2],
which has at worst quotient singularities arising from the automorphism of curves (and hence is smooth
as an orbifold). The natural (�×G<)-action on

(
P1 ×ℬ

)
induces a natural (�×G<)-action on�ℬ=,V .

We have a morphism c=,V : �ℬ=,V → �(V) that factors through �ℬ0,V (Givental’s main lemma
[34]; see [23, §8.3]). Let e 9 : ℬ=,V → ℬ (1 ≤ 9 ≤ =) be the evaluation at the jth marked point, and let
ev 9 : �ℬ=,V → ℬ be the jth evaluation map to P1 ×ℬ composed with the second projection.

Since �(V) is irreducible (Theorem 2.7), [23, §8.3] asserts that �ℬ=,V is irreducible (as a special
feature of flag varieties; see [30, §1.2] and [53]).

5.2. The variety �(V, E, F)

Let�ℬ
♭
2,V denote the subvariety of�ℬ2,V consisting of points such that the first marked point projects

to 0 ∈ P1 and the second projects to ∞ ∈ P1 through the projection of quasi-stable curves C to their
main component �0 � P

1. Let us denote the restrictions of ev8 (8 = 1, 2) and c2,V to�ℬ
♭
2,V by the same

letter. By [9, 10], �ℬ
♭
2,V gives a resolution of singularities of �(V) (in an orbifold sense).

Recall that each Schubert cell Oℬ (F) contains a unique H-fixed point ?F . For each F ∈ , , we set

O
op
ℬ
(F) := #−?F ⊂ ℬ, ℬ

op(F) := Oop
ℬ
(F) = #−?F ⊂ ℬ.

For F, E ∈ , , we define

�ℬ
♭
2,V (F, E) := ev−1

1 (ℬ(F)) ∩ ev−1
2 (ℬop(E)) ⊂ �ℬ

♭
2,V

and

ℬ2,V (F, E) := e−1
1 (ℬ(F)) ∩ e−1

2 (ℬop(E)) ⊂ ℬ2,V .

Theorem 5.1 ([16]). For each E, F ∈ , and V ∈ &∨
+ , the variety �ℬ

♭
2,V (F, E) is either empty or a

unirational (and hence connected and irreducible) variety that has rational singularities. The same is
true for ℬ2,V (F, E). In particular, they are normal.

Proof. Since both cases are parallel, we concentrate on the case of �ℬ
♭
2,V (F, E).

As P1 × ℬ is a homogeneous variety under the group action of (SL(2) × �), [53, Theorem 2 and
Theorem 3] apply and hence �ℬ2,V is a rational variety. Then a pair of Schubert subvarieties (with
respect to a pair of opposite Borel subgroups of SL(2) × �) of P1 ×ℬ presented as {0} ×ℬ(F) and
{∞} ×ℬ

op(E) is used to define�ℬ
♭
2,V (F, E). Hence, [16, Proposition 3.2 c)] implies that�ℬ

♭
2,V (F, E)

is either empty or unirational (and hence connected). Since a pair of Schubert varieties with respect to
the opposite Borel subgroups forms the dense subset of the pair of translations of Schubert varieties by
applying the G-action, it must contain a pair of Schubert varieties in general position. Therefore, [16,
Corollary 3.1] implies that �ℬ

♭
2,V (F, E) has rational singularity. The last assertion is a well-known

property of rational singularities [55, Definition 5.8]. �

Corollary 5.2. In the setting of Theorem 5.1, we additionally assume that �ℬ
♭
2,V (F, E) is nonempty.

Then we have

dim�ℬ
♭
2,V (F, E) = dim�(V) − ℓ(F) − ℓ(EF0).

Proof. By [16, Proposition 3.2 b)], the dimension count of (a Zariski open subset of) �ℬ
♭
2,V (F, E) can

be borrowed from [54, Theorem 2] applied to the (SL(2) × �)-action on P1 ×ℬ. In addition, the map
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c2,V is birational. Therefore, we have

dim�ℬ
♭
2,V (F, E) = dim�(V) − codimℬℬ(F) − codimℬℬ

op(E)

= dim�(V) − ℓ(F) − ℓ(EF0),

as required. �

Proposition 5.3. For each E, F ∈ , and V ∈ &∨
+ , the variety �′

(
ECV , F

)
C

is irreducible.

Proof. We define

�̊
′
(
ECV , F

)
C

:= �
′
(
ECV , F

)
C
\
©«
©«

⋃
F′<∞

2
F

�
′
(
ECV , F

′
)
C

ª®®¬
∪

⋃
E′>∞

2
E

�
′
(
E′CV , F

)
C

ª®®¬
.

In view of Corollary 4.31, every irreducible component of�′
(
ECV , F

)
C

has dimension ℓ
∞
2
(
ECV

)
−ℓ

∞
2 (F)

if it is nonempty. We have�′
(
ECV , F

)
C
≠ ∅ if and only if ECV ≤∞

2
F, by Corollary 4.21. In particular, we

find that �̊′
(
ECV , F

)
C
≠ ∅ if ECV ≤∞

2
F, and in that case all of its irreducible components have dimension

ℓ
∞
2
(
ECV

)
− ℓ

∞
2 (F) = ℓ(E) − ℓ(F) + 2 〈V, d〉 . (5.1)

A point of �̊′
(
ECV , F

)
C

can be seen as a quasi-map of degree V with no defects at 0 and ∞ (Theorem

4.30). In particular, �ℬ
♭
2,V (F, E) ≠ ∅ if �̊′

(
ECV , F

)
C
≠ ∅. When �̊

′
(
ECV , F

)
C
≠ ∅, we have

dim�ℬ
♭
2,V (F, E) = dim�(V) − ℓ(F) − ℓ(EF0)

= 2 〈V, d〉 + dim ℬ − ℓ(F0) + ℓ(E) − ℓ(F) = (5.1), (5.2)

where the first equality follows from Corollary 5.2 and the second follows from Theorem 2.7. By the
surjectivity of c2,V and equation (5.2), we find that the rational map �ℬ

♭
2,V (F, E) d �̊

′
(
ECV , F

)
C

is
surjective and generically finite (it is in fact birational, by Theorem 5.7 and Proposition 5.11). In view
of Theorem 5.1, the variety �ℬ

♭
2,V (F, E) is irreducible if it is nonempty. Therefore, �̊′

(
ECV , F

)
C
≠ ∅

implies that �̊′
(
ECV , F

)
C

is irreducible. Again by Corollary 4.31, we conclude that �′
(
ECV , F

)
C

has a
unique irreducible component, as required. �

In view of Proposition 5.3, we set �J (V, E, F) := �
′
J

(
ECV , F

)
C

for each J ⊂ I, V ∈ &∨
+ and E, F ∈ ,

in what follows (see also Corollary 5.21). We have �(V, F0, F) = �(V, F) by Theorem 4.30.

Corollary 5.4 (Corollary of the proof of Proposition 5.3). For each V ∈ &∨
+ and E, F ∈ , , the

scheme �(V, E, F) is nonempty if and only if ECV ≤∞
2
F. If it is nonempty, then it has dimension

ℓ(E) − ℓ(F) + 2 〈V, d〉. Moreover, the space �(V, E, F) (viewed as a subspace of �(V)) contains a
quasi-map with no defects at 0 and ∞. �

Remark 5.5. Corollary 5.4 removes the condition W ≫ 0 from [29, Lemma 8.5.2].

Thanks to Proposition 5.3 and its proof, we deduce that the map c2,V restricts to an (� × G<)-
equivariant birational proper map

cV,F,E : �ℬ
♭
2,V (F, E) → �(V, E, F),

by inspection.
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5.3. From Givental’s main lemma

For each F, E ∈ , , we define subvarieties of ℬ2,V as

ℬ2,V [F] := e−1
1 (?F ), ℬ2,V [F, E] := e−1

1 (?F ) ∩ e
−1
2 (?E ).

Similarly, we set

�ℬ
♭
2,V [F, E] := ev−1

1 (?F ) ∩ ev
−1
2 (?E ) ⊂ �ℬ

♭
2,V , ℬ1,V [F] := e−1

1 (?F ) ⊂ ℬ1,V [F] .

Lemma 5.6. For each G, H ∈ ℬ and V ∈ &∨
+ , there exists F ∈ , such that

e
−1
1 (G) ∩ e−1

2 (H) � ℬ2,V [F, F0] .

The same is true for ev and �ℬ.

Proof. We consider only the case of e and ℬ, as the other case is completely parallel. Since (G, H) ∈

ℬ ×ℬ and the G-action on ℬ is transitive, we can assume H = ?F0 . Since we have Stab�H = �, we
can further rearrange G = ?F for some F ∈ , by equation (2.4). �

Theorem 5.7 (Givental’s main lemma [34]; see [23]). Set V ∈ &∨
+ . Let ( 5 , �) ∈ �(V) be a quasi-map

with defect � =
∑
G∈P1 (C) VG ⊗ [G]. Then we have

c−1
2,V ( 5 , �) � ℬ2,V0 [F] ×ℬ2,V∞ [F] ×

∏
G∈P1 (C)\{0,∞}

ℬ1,VG [F] ⊂ �ℬ
♭
2,V .

In particular, the map c2,V is an isomorphism along the locus with � = 0. �

Remark 5.8. In Theorem 5.7, the first marked points of (the stable maps in) �ℬ
♭
2,V (the marked points

at 0 ∈ P1; i.e., the image of ev1) are identified with the second marked points of (the stable maps in)
ℬ2,V0 [F] (i.e., the image of e2), and the second marked points of�ℬ

♭
2,V (the marked points at ∞ ∈ P1)

are identified with the second marked points of ℬ2,V∞ [F]. (Other marked points are used to glue pieces
of stable maps together.)

Lemma 5.9 ([29]). For each V ∈ &∨
+ such that 〈V, U8〉 ≥ 1 for all 8 ∈ I, the evaluation map

ev := (ev1 × ev2) : �ℬ
♭
2,V −→ ℬ ×ℬ

is surjective.

Proof. Taking into account the fact that �ℬ
♭
2,V is projective, it suffices to prove that the tangent map

associated to ev is surjective on a dense open subset of �ℬ
♭
2,V .

Since the map c2,V is birational by Theorem 5.7, we replace the problem with the case of a genuine

map 5 : P1 → ℬ. Thanks to [29, Proposition 3.5], �(V) and hence �ℬ
♭
2,V are smooth at f. Moreover,

its tangent space is described as

�0
(
P1, 5 ∗)ℬ

)
, �1

(
P1, 5 ∗)ℬ

)
= {0},

and the filtration of )ℬ as G-equivariant line bundles yields the associated graded⊕
U∈Δ+

�0
(
P1,OP1 (〈V, U〉)

)
.

(Here we used 〈V, U8〉 ≥ −1 for each 8 ∈ I.) In particular, we have

dim�0
(
P1, 5 ∗)ℬ

)
= ΣU∈Δ+

dim�0
(
P1,OP1 (〈V, U〉)

)
.
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The effect of fixing the image of two points 0,∞ ∈ P1 corresponds to imposing a divisor twist by
OP1 (−[0] − [∞]). We have

dim�0
(
P1, 5 ∗)ℬ ⊗O

P1
OP1 (−[0] − [∞])

)
≤ dim

⊕
U∈Δ+

�0
(
P1,OP1 (〈V, U〉 − 2)

)

= dim
⊕
U∈Δ+

�0
(
P1,OP1 (〈V, U〉)

)
− 2 |Δ+ |

= dim�(V) − 2 dimℬ

= dim�ℬ
♭
2,V − 2 dimℬ.

Here the first inequality comes from the short exact sequences, the equality that follows is 〈V, U8〉 ≥ 1
for each 8 ∈ I, the next equality is the smoothness of �(V) at f and |Δ+ | = dimℬ and the final equality
is the birationality of c2,V (restricted to �ℬ

♭
2,V ⊂ �ℬ2,V).

From this, we deduce that 3c2,V is generically surjective, as required. �

Proposition 5.10. For each V ∈ &∨
+ such that 〈V, U8〉 ≥ 1 for all 8 ∈ I and F, E ∈ , , the scheme

�ℬ
♭
2,V [F, E] is connected and nonempty.

Proof. The map ev borrowed from Lemma 5.9 is G-equivariant, and (ℬ ×ℬ) admits an open dense
G-orbit O by the Bruhat decomposition. Since�ℬ

♭
2,V is an irreducible variety, so is its Zariski open set

ev
−1(O). If we consider G ∈ O, then the irreducible components of ev−1 (G) (which must be finite, as

we consider varieties that are finite types) must be permuted by Stab�G � �. Since H is connected, we
cannot have a nontrivial action. Therefore, the irreducible component of ev−1 (G) must be unique. Thanks
to the Stein factorisation theorem [77, Theorem 03H0], the map ev factors through the normalisation
Y of (ℬ × ℬ) inside (the function field of) �ℬ

♭
2,V , and the map �ℬ

♭
2,V → . has connected fibre.

Since the general fibre of ev is connected, so is the map . → (ℬ ×ℬ). It follows that . → (ℬ ×ℬ)

is a birational map (which is also finite, by the Stein factorisation theorem). This implies that Y and
(ℬ × ℬ) share the same function field. Thus, we conclude that . � (ℬ × ℬ) by the normality of
(ℬ ×ℬ). This particularly means that every fibre of ev is connected. Therefore, the assertion follows
by choosing (� × �)-fixed points in (ℬ ×ℬ) as particular cases. �

Proposition 5.11. For each V ∈ &∨
+ such that 〈V, U8〉 ≥ 1 for all 8 ∈ I and F, E ∈ , , the scheme

ℬ2,V [F, E] is connected and nonempty. For each V ∈ &∨
+ and F ∈ , , the schemes ℬ1,V [F] and

ℬ2,V [F] are connected and nonempty.

Proof. We prove the first assertion. We have a rational map �ℬ
♭
2,V [F, E] → ℬ2,V [F, E] obtained by

forgetting the map to P1. Moreover, the locus of this map is not defined consists of stable maps whose
main components have degree 0 and have only two marked points. By modifying the universal family
by adjoining two such marked points in such a degree 0 component, we conclude that �ℬ

♭
2,V [F, E] →

ℬ2,V [F, E] extends to a map of topological spaces. By examining the condition to be a stable map
[30, §1.1], we deduce that this map is surjective onto the image. Therefore, the connectedness and
nonemptiness of �ℬ

♭
2,V [F, E] imply that ℬ2,V [F, E] is likewise connected and nonempty – which is

the first assertion.
The second assertion is straightforward from the irreducibility of ℬ=,V , together with the fact that e1

is a G-equivariant fibre bundle over ℬ (see the proof of Proposition 5.10). �

Lemma 5.12. Set V ∈ &∨
+ . Let ( 5 , �) ∈ �(V) be a quasi-map with defect D with the following properties:

◦ � =
∑
G∈P1 (C) VG ⊗ [G].

◦ 〈V0, U8〉 ≥ 1 and 〈V∞, U8〉 ≥ 1 for each 8 ∈ I.

Then c−1
V,F,E ( 5 , �) is connected for every F, E ∈ , if it is nonempty.
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Proof. By Proposition 5.11 and Theorem 5.7, we can forget about the contribution of ℬ1,VG [F] when
G ≠ 0,∞. By our assumption and Proposition 5.11, we know that

ℬ2,V0 [D, F
′] ≠ ∅, ℬ2,V∞ [D, E

′] ≠ ∅,

which are nonempty and connected for each D, F′, E′ ∈ , . Since ℬ2,V0 and ℬ2,V∞ are proper, we
always find a limit point with respect to the H-action. It follows that ℬ2,V0 [D] ∩ e

−1
2 (ℬ(D′)) (resp.,

ℬ2,V∞ [D] ∩ e
−1
2 (ℬop(D′))) is connected for each D, D′ ∈ , , as we can connect every two points by

appropriately sending to or from H-limit points that are contained in a connected component of the
form ℬ2,V0 [D, F

′] (F′ ∈ ,). Thanks to Theorem 5.7, we conclude the assertion. �

5.4. Normality of �(V, E, F)

Let �+(V, E, F) be the normalisation of �(V, E, F) for each V ∈ &∨
+ and E, F ∈ , . We denote the

normalisation map by [V,E,F : �+(V, E, F) → �(V, E, F).

Proposition 5.13. For each V ∈ &∨
+ and F, E ∈ , , the variety �(V, E, F) is normal if and only if every

fibre of cV,E,F is connected.

Proof. As �ℬ
♭
2,V (E, F) is normal and cV,E,F is proper, we know that(

cV,E,F
)
∗
O

�ℬ
♭
2,V (E,F) � O�+ (V,E,F) .

The properness of cV,E,F also implies that O�+ (V,E,F) is a coherent sheaf on�(V, E, F). For each closed
point x of �(V, E, F), we set

Θ(G) := dimCO�+ (V,E,F) ⊗O� (V,E,F )
CG . (5.3)

By the Stein factorisation theorem, the map [V,E,F is finite. By Corollary 4.42 and Section 5.2,
we know that the variety �(V, E, F) is weakly normal. From this, we deduce that Θ(G) = #[−1

V,E,F (G)

(compare [80, Remark 1]). Moreover, it counts the number of irreducible components of the fibre of
[V,E,F .

The coherence of O�+ (V,E,F) implies that the right-hand side of formula (5.3) is an upper-
semicontinuous function on �(V, E, F), and hence so is Θ.

If we have Θ ≡ 1 on �(V, E, F), then we have �+(V, E, F) = �(V, E, F) by the weak normality of the
latter (compare [80, Remark 1]). Therefore, the ‘if’ part of the assertion follows.

If we have Θ . 1 on �(V, E, F), then we have �+(V, E, F) ≠ �(V, E, F). Hence, the ‘only if’ part of
the assertion follows.

These complete the proof of the proposition. �

Corollary 5.14. (Braverman and Finkelberg). For each V ∈ &∨
+ , the variety �(V) is normal.

Remark 5.15. Our proof of Corollary 5.14 is independent of [9] (although based on common earlier
papers [29, 23]). Hence, we obtain a new proof of the normality of �(V) and �(V, F0). Together with
Theorem 4.33, Corollary 5.14 also makes the contents of [51] logically independent of [9] (compare
Appendix A).

Proof of Corollary 5.14. Recall that�(V) = �(V, F0, 4). We borrow the upper-semicontinuous function
Θ that counts the number of connected components of the fibre of [V,F0 ,4 from formula (5.3) in the
proof of Proposition 5.13.

By Proposition 5.13, it suffices to prove that Θ ≡ 1 on �(V). In other words, it suffices to prove that
the fibre [−1

V,F0 ,4
(G) is connected for each G ∈ �(V).

By Theorem 5.7, we deduce that the set of connected components of [−1
V,F0 ,4

(G) is in bijection with the
set of connected components of

∏
H∈P1 (C) ℬVH [F]. By Proposition 5.11, this latter space is connected.

Therefore, we conclude the result. �
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Theorem 5.16. For each V ∈ &∨
+ and F ∈ , , the varieties �(V, F0, F0) and �(V, 4, F0) are normal.

Proof. We set (E, F) = (F0, F0) or (4, F0). We borrow the upper-semicontinuous function Θ that
counts the number of connected components of the fibre of [V,E,F from formula (5.3) in the proof of
Proposition 5.13.

By Proposition 5.13, it suffices to prove that Θ ≡ 1 on�(V, E, F) by assuming the contrary to deduce
a contradiction. For each G ∈ �(V, E, F) such that Θ(G) ≥ 2, the fibre [−1

V,F0 ,4
(G) is disconnected.

By our choice of (E, F) and Theorem 5.7 (compare Proposition 5.11 and Corollary 5.14), we deduce
that the set of connected components of [−1

V,E,F (G) is in bijection with the set of connected components
of ℬ2,V0 [D, F0] or ℬ2,V0 [D, F0] ×ℬ2,V∞ [D

′, F0] for some D, D′ ∈ , .
To see whether this is the case, we specialise to the case of (E, F) = (F0, F0) (to guarantee that the

contribution at ∞ ∈ P1 in Theorem 5.7 is the same as the points in C× ⊂ P1, which are connected by
Proposition 5.11). We can choose V0 < V

′
0 ∈ &∨

+ such that
〈
U∨8 , V

′
0

〉
≥ 1 for every 8 ∈ I. By Proposition

5.11, we deduce that the fibre of the locus � of �(V, F0) whose points have defect V′0 along 0 is
connected (if it is nonempty) for every V ∈ &∨. Hence we have Θ(H) = 1 for each H ∈ �.

For each G̃ ∈ �ℬ
♭
2,V such that G = c2,V (G̃) ∈ �(V, F0) has defect V0 at 0, we can replace V with

V + V′0 − V0 and add additional irreducible components � ′ to the main component P1 of G̃ (as quasi-
stable curves) outside of 0 ∈ P1 (whose images to ℬ have their degrees sum up to (V′0 − V0)). (This
does not change the defect of x at 0, and also does not change Θ(G).) Then we shrink all the inserting
points of � ′ on P1 to 0 to obtain G̃ ′ ∈ �ℬ

♭
2,V in the limit, which exists by the valuative criterion of

properness, as �ℬ
♭
2,V is projective. By examining the images of this family on �(V, F0) via c2,V , we

deduce H = c2,V (G̃
′) ∈ �. Therefore, the semicontinuity of Θ implies that Θ(G) ≤ Θ(H) = 1 – that is,

Θ(G) = 1. Hence, ℬ2,V0 [F, F0] must be connected. This is a contradiction, and we conclude that Θ ≡ 1
(for general (E, F) ∈ {(4, F0), (F0, F0)} by the previous two paragraphs).

Therefore, Proposition 5.13 implies the result. �

Corollary 5.17. Set V ∈ &∨
+ and F ∈ , . For each 8 ∈ I such that B8F < F, we have a surjective map

c8 : %8 ×
�
�(V, F) → �(V, B8F)

such that (c8)∗O%8×�� (V,F) � O� (V,B8F) and R>0 (c8)∗O%8×�� (V,F) � {0}.

Proof. Combine Corollary 4.40 with Theorem 4.30 (and take the generic localisations over Z). �

Corollary 5.18. For each V ∈ &∨
+ and F ∈ , , the variety �(V, F) is normal.

Proof. The case F = F0 is in Theorem 5.16. Assume that the assertion holds for w. Set 8 ∈ I such
that B8F < F. Then Corollary 5.17 implies that O� (V,B8F) is isomorphic to the normal sheaf of rings
(c8)∗O%8×�� (V,F) . Hence the assertion holds for B8F < F. This proceeds to the induction, and we
conclude the result. �

Corollary 5.19. For each V ∈ &∨
+ and F, E ∈ , , the subspace

e
−1
1 (?E ) ∩ e

−1
2 (ℬ(F)) ⊂ ℬ2,V

is connected.

Proof. This space appears in the fibre of cV,F0 ,F along the constant quasi-map P1 → {?E } ⊂ ℬ with
its defect concentrated in 0 ∈ P1. Hence, the assertion follows from Corollary 5.18 and Proposition
5.13. �

Theorem 5.20. For each V ∈ &∨
+ and F, E ∈ , , the scheme �(V, E, F) is normal.

Proof. The combination of Theorem 5.7 and Corollary 5.19 implies that every fibre of cV,E,F is
connected. Thus, Proposition 5.13 implies the result. �
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Corollary 5.21. For each J ⊂ I, V ∈ &∨
+ and F, E ∈ , , the variety �J (V, E, F) is irreducible and

normal.

Proof. By Corollary 4.35 and Remark 4.36, we can rearrange the mapΠJ to be surjective with connected
fibres. Hence, Proposition 5.3 implies the irreducibility of�J (V, E, F). By the Stein factorisation theorem
applied to the composition map ΠJ ◦cV,E,F , we deduce that the normalisation of�J (V, E, F) is bijective
to �J (V, E, F). Therefore, the weak normality of �J (V, E, F) (Corollary 4.42) implies the result. �

We set ,J := ,/F0,JF0 and identify it with the set of their minimal length representatives in W.
Recall that 2dJ is the sum of the positive roots that belong to the unipotent radical of p(J).

Corollary 5.22. For each J ⊂ I, V ∈ &∨
+ such that −F0V ∈ &∨

J,+, F ∈ ,J and E ∈ , such that
F0E ∈ ,

J, the variety �J (V, E, F) has dimension

dim�/%(J) − 2 〈F0V, dJ〉 + ℓ(E) − ℓ(F0) − ℓ(F) (5.4)

if it is nonempty. When E = F0, the variety �J (V, E, F) is always nonempty. In addition, �J (V, F0, 4)

is the collection of DP-data as in Definition 2.6, with the data and compatibility conditions only for
_ ∈ %J,+.

Remark 5.23. If we replace the labels of �J (V, E, F) = �
′
J

(
ECV , F

)
C

with the labels of parabolic semi-
infinite Bruhat order as in [61, §10.3], then we can write the condition of �J (V, E, F) to be nonempty
by the order relation, just as in Corollary 4.21.

Proof of Corollary 5.22. By [12], the collection of DP-data in Definition 2.6 with the compatibility
condition imposed only for _ ∈ %J,+ (without nondefining points) represents the (closure of the) space
of maps P1 → �/%(J) such that the image of

[
P1
]

in ℬ is −F0V ∈ �2(ℬ,Z). Thus, we conclude the
last assertion.

The dimension of �J (V, F0, 4) is given by dim�/%(J) − 2 〈F0V, dJ〉, since the first Chern class of
the tangent bundle of �/%(J) is 2dJ (compare [29, Proposition 3.5]). In particular, the dimension of
�J (V, F0, 4) is formula (5.4) in this case.

Since imposing a hyperplane section in the image of �/%(J) through the (generically defined)
evaluation map at 0 ∈ P1 (which is surjective as being G-equivariant)

�J (V, F0, 4) d �/%(J)

lowers the dimension by exactly 1, we deduce that �J(V, F0, F) has an irreducible component of
expected dimension. From this and Corollary 5.21, we conclude that �J (V, F0, F) is nonempty and its
dimension is given by formula (5.4).

We consider the dimension estimate in the general case.
Since �J (V, B8E, F) ( �J (V, E, F) (8 ∈ I) implies B8E > ∞

2
E (⇔ B8E < E) when F0B8E ∈ ,

J, we find
that they are the images of �(V′, B8E, F) ( �(V′, E, F) for some V′ ∈ V +

∑
9∈J Z≥0U

∨
9 (see Remark

4.36). In particular, �J (V, E, F) has dimension of at least formula (5.4) in general, by induction from
the case when E = F0.

Let Z denote the space of genus 0 stable maps to P1 × �/%(J) of bidegree (1, V) with two marked
points such that the first and second marked points correspond to 0,∞ ∈ P1, respectively (parabolic
analogue of �ℬ

♭
2,V). Then we have a resolution c : / → �J (V, F0, 4) (which shares genuine maps

P1 → �/%(J) in their common open dense subset). Let [ : ℬ = �/� → �/%(J) be the projection.
By our choices of E, F, we find

codimℬℬ(F) = codim�/% (J)[(ℬ(F)) and codimℬℬ
op(E) = codim�/% (J)[(ℬ

op(E)),
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respectively. We have the evaluation map of two points z : / → (�/%(J))2. We set /E,F :=
z
−1 ([(ℬ(F))×[(ℬop(E))). By [16, Propostion 3.2 b)] (see also the proof of Corollary 5.2), we find that

dim /E,F = dim / − codim�/% (J)[(ℬ(F)) − codim�/% (J)[(ℬ
op(E))

= dim / − codimℬℬ(F) − codimℬℬ
op(E) = (5.4),

and /E,F is irreducible (if it is nonempty). Since�/%(J) is homogeneous, we find that� ·c
(
/F0 ,F

)
⊂ /

is Zariski dense. Hence, /F0 ,F contains an open dense subset whose points are genuine maps P1 →

�/%(J). In conjunction with the irreducibility of /F0 ,F and�J (V, F0, F), we find c−1 (�J (V, F0, F)) =

/F0 ,F . Similarly, we have c−1(�J (V, E, 4)) = /E,4. Therefore, we conclude that /E,F surjects onto
�J (V, E, F) by the restriction of c. In particular, �J (V, E, F) has dimension of at most formula (5.4) in
general.

Therefore, our dimension estimate must be strict in general. �

Corollary 5.24. For each J ⊂ I and F, E ∈ ,af , the scheme �′
J
(E, F)

F?
is irreducible and normal for

? ≫ 0.

Proof. Apply Proposition 4.43 to Corollary 5.21 (compare Lemma 4.6). �

Corollary 5.25. Let K be an algebraically closed field of characteristic 0 or ? ≫ 0. For each J ⊂ I

and F, E ∈ ,af , the scheme�′
J
(E, F)K is projectively normal with respect to a line bundle O�′

J
(E,F)K (_)

(_ ∈ %J,++).

Proof. In view of Lemmas 4.1 and 4.3 and Theorem 4.33, the multiplication of the section ring afforded

by
{
O�′

J
(E,F)K (<_)

}
<≥0

is surjective. Therefore, Corollaries 5.21 and 5.24 imply the result. �

A. Some properties of Q� (F) in positive characteristic

We work in the setting of Section 4.2. Let K be an algebraically closed field of characteristic ≠ 2. The
aim of this appendix is twofold: to show that our scheme Q�,J (F)K is (projectively) normal and to
present an analogue of the Kempf vanishing theorem for Q� (F)K. Both results are proved in [51] for
the case when K = C. Our proof of the former is new and does not depend on [51] (when F = 4), while
our proof of the latter depends on the results and arguments in [51] in an essential way.

Proposition A.1. For each F ∈ ,af and J ⊂ I, the ring 'F (J)K is normal.

Proof. We first prove the case where F = 4 and J = ∅. Let Q̊� denote the open � [[I]]-orbit of Q� (4)K
obtained by the G-translation of Lemma 4.11.

We have an inclusion

W(_)∨K ⊂ Γ
(
Q̊� ,OQ� (4)K (_)

)
, (A.1)

since 'K is integral (Corollary 4.12). We also have an inclusion

Γ
(
Q̊� ,OQ� (4)K (_)

)
↩→ Γ

(
O(4)K,OQ� (4)K (_)

)
, _ ∈ %+.

Thanks to Lemma 4.11 and its proof, we deduce

Γ
(
O(4)K,OQ� (4)K (_)

)
� K[I/(I ∩ �# ((I)))] ⊗K K−F0_,

which is cocyclic as a *+
K

-module. Since the G-action on Γ
(
Q̊� ,OQ� (4)K (_)

)
is algebraic, we deduce

that

(
K[I/(I ∩ �# ((I)))] ⊗K K−F0_

)∨
−→→ Γ

(
Q̊� ,OQ� (4)K (_)

)∨
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is a ¤*0
K

-integrable quotient. By Proposition 3.19, we conclude a surjection

W(_)K −→→ Γ
(
Q̊� ,OQ� (4)K (_)

)∨
.

Compared with formula (A.1), we conclude the isomorphism

Γ
(
Q̊� ,OQ� (4)K (_)

)
�

−→ Γ
(
Q� (4)K,OQ� (4)K (_)

)
, _ ∈ %+,

since the space of sections supported on a dense open Zarsiki subset must be larger than (or equal to)
the space of sections supported on the whole space for an integral scheme. In other words, 'K is the
maximal ¤*0

K
-integrable*+

K
-stable subring of

(K :=
⊕
_∈%+

Γ
(
O(4)K,OQ� (4)K (_)

)
=
⊕
_∈%+

K[I/(I ∩ �# ((I)))] ⊗K K−F0_.

The ring (K is integrally closed, as it is a polynomial ring (of countably many variables). Hence, the
integral closure '+ of the ring 'K is also a subring of (K. In view of the ¤*0

K
-integrability, the ring 'K

admits an algebraic G-action. By the canonical nature of the normalisation, we deduce that '+ admits
an algebraic G-action (note that we can approximate 'K as a union of Noetherian rings with algebraic
G-actions). However, 'K is already the maximal ¤*0

K
-integrable *+

K
-stable subring of (K. Hence, we

necessarily have '+ = 'K. Thus, the case of F = 4 and J = ∅ follows.
The case of arbitrary F ∈ ,af follows from the case of F = 4 as in [46, §4]. As the fraction field of

'F (J)K is a subfield of the fraction field of ('F )K and %J,+ ⊂ %+ forms (the set of integral points of) a
face, we conclude the general case by restriction. �

Corollary A.2. The scheme Q�,J (F)K is normal.

Corollary A.3. For each _ ∈ %J,+, we have

�0 (Q�,J (F)K,OQ�,J (F)K (_)
)
=WFF0 (_)

∨
K .

Proof. Because finding �0 from 'F (J)K can be seen as finding graded pieces of the normalisation, the
assertion follows from Proposition A.1. �

Proposition A.4 ([51]). Assume that charK ≠ 2. Set F ∈ , and J ⊂ I. Then an I-equivariant line
bundle on Q�,J (F)K is a character twist of

{
OQ�,J (F)K (_)

}
_∈%J

.

Proof. Taking Corollaries 4.20 and A.2 into account, the proof in [51, Proposition 5.1] works in this
setting. �

Theorem A.5. Set F ∈ , and J ⊂ I. For each _ ∈ %J, we have

�>0 (Q�,J (F)K,OQ�,J (F)K (_)
)
= {0}.

Proof. Assume that F = 4. We consider the subring defined by

)J :=
⊕
_∈%J,+

)J (_) ⊂
⊕
_∈%J,+

W(_)∨K =
⊕
_∈%J,+

WF0 (_)
∨
K = 'J,

where )J (_) ⊂ W(_)∨
K

is the P-weight (−_)-part of W(_)∨
K

. They are generated by the duals of

%̃8,<Xvs8
∈ W(s8)K (8 ∈ I \ J, < ∈ Z>0; see [5, (3.18)] for the definition of %̃8,<X). In view of [5,

Proposition 3.18], the ring )J is a polynomial ring. The actions of
{
%̃8,<X

}
8∈(I\J) ,<>0

define endomor-

phisms of the moduleW(_)K (_ ∈ %J,+), each of which is either an injection or zero (compare the proof
of Proposition 3.19). It follows that the action of )J on 'J is torsion free.

https://doi.org/10.1017/fmp.2021.5 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.5


Forum of Mathematics, Pi 53

Thanks to [51, Corollary 4.29], the character comparison forces the torsion-free action of )J on 'J
to be free. Therefore, the proof of [51, Theorem 4.30] works in a verbatim way. This proves the case
when F = 4. The general case can be easily deduced from the F = 4 case as in [51, Corollary 4.31]. �

B. An application of the Pieri–Chevalley formula

We work in the setting of Section 4.4. The aim of this appendix is to present a method (Theorem B.6) to
describe the global sections of nef line bundles on �

′(E, F)K for E, F ∈ ,af and an algebraically closed
field K of characteristic ≠ 2.

For each ` ∈ %+, we have an extremal weight module X(`)K and its global base B(X(`)) borrowed
from Theorem 3.14.

Lemma B.1. Set J ⊂ I and ` ∈ %J,+. A subset of B(X(`)) spans

�0 (Q� (F)K,OQ� (F)K (`)
)∨

=�0 (Q�,J (F)K,OQ�,J (F)K (`)
)∨

⊂ X(`)K

and

\
(
�0 (Q� (EF0)K,OQ� (EF0)K (−F0`)

)∨)

= \

(
�0

(
Q�,\ (J) (EF0)K,OQ�,\ (J) (EF0)K (−F0`)

)∨)
⊂ X(`)K

for each F, E ∈ ,af .

Proof. Taking Corollary A.3 into account, the assertion follows from Theorem 3.14. �

Corollary A.3 combined with Theorem 4.33 yields

�0 (
�

′(E, F)K,O�′ (E,F)K (`)
)∨
↩→ �0 (Q� (F)K,OQ� (F)K (`)

)∨
⊂ X(`)K (B.1)

for each F, E ∈ ,af .

Lemma B.2. Set ` ∈ %++. For each 1 ∈ B(X(`)), there exist unique elements ^(1), y(1) ∈ ,af with
the following properties:

1. 1 ∈ �0
(
Q� (F)K,OQ� (F)K (`)

)∨
for F ∈ ,af if and only if ^(1) ≤∞

2
F.

2. 1 ∈ \
(
�0(Q� (EF0)K,OQ� (EF0)K (−F0`))

∨
)

for E ∈ ,af if and only if y(1) ≥∞
2
E.

Proof. In view of Corollary A.3, the first assertion is a rephrasing of Lemma 3.15. The second assertion
is obtained from the first in view of Lemma 3.17 and formula (2.2). �

Corollary B.3. The functions ^ and y play the same role as the same-named functions in [51, (2.17)]
(with the opposite convention on the order ≤∞

2
).

Proof. Compare Lemma B.2 with [51, Theorem 2.8]. �

Corollary B.4. Set ` ∈ %++ and E, F ∈ ,af . The space �0
(
�

′(E, F)K,O�′ (E,F)K (`)
)∨

is spanned by
the subset of 1 ∈ B(X(`)) that satisfies F ≥∞

2
^(1) ≥∞

2
y(1) ≥∞

2
E.

Proof. This is a rephrasing of Theorem 4.33 for J = ∅. �

Theorem B.5 ([51]). Set F ∈ ,af and _ ∈ %+. There exists a unique collection of elements 0DF (_) ∈

Z
[
@−1

]
[�] (D ∈ ,af) such that

0FF (_) = 4
−FF0_, 0DF (_) = 0 if D 6≤∞

2
F
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and

gch Γ
(
Q� (F)K,OQ� (F)K (_ + `)

)
=

∑
D∈,af

0DF (_)gch Γ
(
Q� (D)K,OQ� (D)K (`)

)

for every ` ∈ %++.

The goal of this appendix is to prove the following:

Theorem B.6. Set F, E ∈ ,af and _ ∈ %+. Let
{
0EF (_)

}
E ∈,af

be the collection of elements in Theorem
B.5. Then we have

gch Γ
(
�

′(E, F)K,O�′ (E,F)K (_)
)
=

∑
D≥∞

2
E

0DF (_).

Proof. The proof of the numerical part of Theorem B.5 is [51, Theorem 3.5] (proved in [51, §8.1]), and
it counts the elements of B(X(_ + `)) that contribute Γ

(
Q� (F)K,OQ� (F)K (_ + `)

)∨
=WFF0 (_ + `)K

in two ways. In particular, we can additionally impose the condition y(•) ≥∞
2
E for B(X(_ + `)) to

deduce that

gch Γ
(
�

′(E, F)K,O�′ (E,F)K (_ + `)
)
=

∑
D≤∞

2
E

0DF (_)gch Γ
(
�

′(D, F)K,O�′ (D,F)K (`)
)

for every ` ∈ %++ in view of Corollary B.4. The (� × G<)-equivariant Euler characteristic of
O�′ (E,F)K (`) (` ∈ %) is a rational function on the characters of H, and we can specialise to ` = 0. Now
we apply Theorem 4.33 to deduce

j
(
�

′(E, F)K,O�′ (E,F)K (`)
)
= gch Γ

(
�

′(E, F)K,O�′ (E,F)K (`)
)

for every ` ∈ %+. This implies the desired equality. �

Remark B.7.

1. In view of Corollary 4.35 and Remark 4.36, Theorem B.6 describes the space of global sections of
O�′

J
(E,F)K (_) for every F, E ∈ ,af , J ⊂ I and _ ∈ %J,+.

2. In conjunction with Theorem 4.33, Theorem B.6 can be seen as an analogue of [59, Theorem 34] for
semi-infinite flag manifolds.

3. Thanks to [51, §3], we have a combinatorial rule to express 0DF (_)s.
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