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Abstract. This article summarizes various aspects and results for some general formulations of the classical chemotaxis models also
known as Keller-Segel models. It is intended as a survey of results for the most common formulation of this classical model for positive
chemotactical movement and offers possible generalizations of these results to more universal models. Furthermore it collects open questions
and outlines mathematical progress in the study of the Keller-Segel model since the first presentation of the equations in 1970.
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1. Introduction. Mathematical analysis of biological phenomena has become more and more important in un-
derstanding these complex processes. Thus, the number of mathematicians studying biological and medical phenomena
and problems is continuously increasing in recent years. One such biological topic is the movement of population den-
sities or the movement of single particles. Changes in the environment of mobile species can influence its movement.
For example, humans sense their environment and given a particular situation or the state of the environment, they
make their decisions as to where to move. For example we might be attracted by a tantalizing smell and move towards
it, since we expect a delicious food, or we move away from a place if there is a repellent odor. Animals and humans
also use this effects (for example) to attract mating partners with special colorful feathers or with enticing perfumes
etc. In [85] one can find the silk moth Bombyx mori as an example of a species that uses a special odor to attract
a mating partner. During mating season the female moth secretes a scent caused by a pheromone bombykol which
attracts the male to move in direction of the increasing concentration of this scent. This helps the male moths to find
the female. Before presenting another example where changes in the environment affect the movement of a mobile
species let me cite the following anecdote from the German news magazine “DER SPIEGEL” 36/1998 [45] that is said
to have happened in the late 1950s at the University of Princeton:

“The genius was stunned. In the late 1950s Albert Einstein watched disbelievingly a film of the young
scientist John Tyler Bonner at Princeton University. The star of the movie was an unimpressive tiny
creature: an amoeba called Dictyostelium.(...) As soon as “Dicty”,(...), starts to become hungry it
undergoes a miraculous metamorphosis.(...) The Dictys become one.(...) Einstein’s question is still
unsolved: Why does Dicty undergo a deadly intermezzo as a complex multicellular organism to live
then alone and autistically?” (Quoted from [45] translated by the author.)

The cellular slime mold Dictyostelium discoideum was discovered by K. B. Raper in 1935 and in the subsequent
years aroused the interest of many scientists. Nowadays Dictyostelium discoideum is a model organism for biomedical
research of the National Institutes of Health (NIH). One reason for the growing interest in this cellular slime mold
was caused by the fact that “development in Dictyostelium discoideum results only in two terminal cell types, but
processes of morphogenesis and pattern formation occur as in many higher organisms” (see [103, page 354]). This
raised the hope of biologists that studying this cellular slime mold might aid in the understanding of the secret of cell
differentiation. But what initiates the change from a single cell organism to a complex multicellular organism? And
how does this process take place?

During its life cycle a myxamoebae population of the Dictyostelium grows by cell division as long as there is sufficient
nourishment. When the food resources are exhausted the myxamoebae spread over the entire domain available to
them. After a while one cell starts to exude cyclic Adenosine Monophosphate (cAMP) which attracts the other
myxamoebae. The myxamoebae begin to move towards the so-called founder cell and are also stimulated to emit
cAMP. The myxamoebae aggregate and start to differentiate. At the end of the aggregation the myxamoebae form a
pseudoplasmoid, in which every myxamoebae maintains its individual integrity. This pseudoplasmoid moves towards
light sources. After a time a fruiting body is formed and spores are spread. Thus the life cycle begins again. For more
details on the life cycle of the Dictyostelium we refer to [15], for example.
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A reaction to an external stimulus is generally called taxis and is then specified by describing the reason for
the reaction. Therefore, there are many different tactical responses such as chemotaxis, galvanotaxis and phototaxis.
In this article I will focus on chemotactical movement of mobile species which can lead to various different pattern
formations.

Chemotaxis is the influence of chemical substances in the environment on the movement of mobile species. This
can lead to strictly oriented movement or to partially oriented and partially tumbling movement. The movement
towards a higher concentration of the chemical substance is termed positive chemotaxis and the movement towards
regions of lower chemical concentration is called negative chemotactical movement. Thus, the Bombyx mori and
the Dictyostelium discoideum are two species that move in a chemotactically positive manner towards the higher
concentration of the bombykol resp. the cAMP. The substances that lead to positive chemotaxis are chemoattractants
and those leading to negative chemotaxis are so-called repellents.

Chemotaxis is an important means for cellular communication. Communication by chemical signals determines
how cells arrange and organize themselves, like for instance in development or in living tissues. A large number of
examples for mobile species behaving in a chemotactical manner are known. In addition to the above mentioned two
examples, I would also like to draw attention to a third species, the bacterial strain Rhizobia meliloti. As described in
[37], this bacterial strain responds chemotactically to root exudates isolated from the soil of leguminous plants. The
bacterial strain in the surrounding soil of the plants are guided to nodules in the roots of nitrogen-fixing plants by a
chemical gradient. Therefore, they play an important role in agricultural ecology.

One aspect during positive oriented chemotactical movement is the formation of cells (amoebae, bacteria, etc)
amounts during the responds of the species population to the change of the chemical concentrations in the environment.
Such aggregation patterns often require a certain threshold number of individuals. Therefore, depending on the case in
question, that is the species being observed, such threshold phenomena should be reflected in the model. For example
aggregation in Dictyostelium is only possible if the total number of myxamoebae in the population is larger than a
threshold number of myxamoebae. In [26] the threshold value of 5·104 myxamoebae per cm2 is given for Dictyostelium
discoideum. This chemotactical effect has been observed in experiments to demonstrate chemotaxis of bacteria (see
for example [116]). Positive and negative chemotaxis can be studied in petri dish cultures. If the bacteria are placed
in the center of the dish of agar that contains an attractant, the bacteria will exhaust the local supply and then
move outward following the attractant gradient they have created. This results in an expanding ring of bacteria. To
demonstrate negative chemotaxis one can place a disk of repellent in a petri dish of semisolid agar and bacteria. The
bacteria will then move away from the repellent. This movement away from the repellent will lead to the creation of
a clear zone around the disk.

Alternatively, one can demonstrate chemotaxis by observing bacteria in the chemical gradient produced when a thin
capillary tube is filled with an attractant and lowered into a bacterial suspension. While the attractant diffuses, the
bacteria collect and move up the tube. The observed positive chemotactical effect in this experiment is the formation
of bacteria (myxamoebae, cells, etc.) bands. Such and similar experiments have been carried out for example by Adler
[1]. Adler’s observations correspond to the formation of traveling waves and pulses that spread through the population
density. Thus an interesting question is whether or not the mathematical models describing chemotactical movement
have traveling wave solutions.

These phenomena have motivated a large number of scientists to study chemotaxis and to use the mathematical
language to describe the observed phenomena. The intention of the present survey is to collect the results for a classical
model describing chemotactical movement, to expose the lines of research.

The outline of the present article is as follows:

In the second section two different approaches for modeling chemotaxis will be inculded. This section will also introduce
the “classical” chemotaxis model by Keller and Segel, the center of our considerations for the remainder of the paper.
The third section is devoted to steady-state analysis for this classical model by Keller and Segel done so far. It will
be shown that all the effects demonstrated in the analysis depend on the functional forms of the three main processes
during chemotactical movement. They are:

a) The sensing of the chemoattactant which has an effect on the oriented movement of the species.
b) The production of the chemoattractant by a mobile species or an external source.
c) The degradation of the chemoattractant by a mobile species or an external effect.
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Within the context of steady-state analysis the focus will be on a linear chemotactic sensitivity function but will also
collect the results for different versions of the Keller-Segel model. When appropriate I will summarize results for
other sensitivity functions in a table at the end a section. Section 4 will deal with the possibility of an explosion of
the solution in finite time in the case of a linear sensitivity function. Here I point out the different lines of research
in chronological order. This can be accomplished without without losing clarity in the results. Section 5 addresses
questions asked in [67] on the possibility of explosion of the solution in finite time in the case of a linear sensitivity
function. This section is then followed by generalizations of these results for other more general versions of the
classical model in Section 6. In the seventh section of the present article I will present some comparison results for
some general versions of the Keller-Segel model proved by Wolfgang Alt in his Habilitation [3]. This section, however,
will be somewhat technical. I will then turn to self-similar solutions and to results on traveling wave solutions for
Keller-Segel type systems in Section 8. At some places in the text questions will be formulated that arise from the
results stated in the article. These questions are partially answered in subsequent sections, but some are still open
problems and might be worth further study. Finally I will close this summary of results for the Keller-Segel model in
Section 9 with some brief comments on other approaches and models for chemotaxis.

2. Different perspectives to model chemotactical movement and the formulation of the classical
chemotaxis equations. Modeling chemotactical movement of mobile species can be done from two different per-
spectives: either from the microscopic or from the macroscopic perspective. Both approaches have been used over
the years and the derivation of the macroscopic equations from the microscopic, or to be precise the validation of the
passage to the limiting equations is still a topic that is studied by a large number of scientists and depending on the
model is still an open problem.

2.1. The macroscopic perspective. The first approach that should be presented here is the macroscopic
perspective where one considers the whole population respectively the density of the population at one place and
one time directly. This approach leads to a continuous reaction-diffusion model where the diffusion of the population
density is modeled with Fourier’s and Fick’s laws and in which the reactions are viewed as functions of the population
density and possibly some external signal or control substance.

In the year 1970 Evelyn Fox Keller and Lee A. Segel used this perspective to present a system of four strongly
coupled parabolic partial differential equations, which describes the aggregation of cellular slime molds like the Dic-
tyostelium discoideum. Let u(t, x) denote the myxamoebae density of the cellular slime molds and v(t, x) denote a
chemoattractant concentration at time t in point x. To model the aggregation of a cellular slime population they
assume in [69] the following basic processes that take place during the aggregation phase:

(a) The chemoattractant is produced per amoeba at a rate f(v).
(b) There exist an extracellular enzyme that degrades the chemoattractant. The concentration of the is enzyme

at time t in point x is denoted by p(t, x). This enzyme is produced by the myxamoebae at a rate g(c, p) per
amoeba.

(c) The chemoattractant and the enzyme react to form a complex E of concentration η which dissociates into a
free enzyme plus the degraded product.

v + p
r1

→
←

r−1

E r2
→ p + degraded product

(d) The chemoattractant, the enzyme and the complex diffuse according to Fick’s law.

The balance of the myxamoebae density u(t, x) in any control volume D (which holds for example in the special case
of Dictyostelium discoideum aggregation) implies the equation

d

dt

∫

D

u(t, x) dx = −
∫

∂D

(J (u)(t, x) · n(x))dS. (2.1)

Here J (u)(t, x) denotes the flow of the myxamoebae density. This flow contains according to Fick’s law a part that is
proportional to the density gradient and according to Fourier’s law for the heat flow a part that is proportional to the
chemoattractant gradient. Thus we see that: J (u)(t, x) = k2∇v− k1∇u. As a chemical substance the chemoattractant
diffuses and we get

d

dt

∫

D

v(t, x) dx = Q(v)(t, D) −
∫

∂D

(J (v)(t, x) · n(x))dS, (2.2)
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where Q(v)(t, D) denotes the produced chemoattractant v(t, x) per domain and time volume. The flow J (v)(t, x) is
given by: J (v)(t, x) = −kc∇v. Assuming the analogous equations for the enzyme and the complex, and taking the
basic processes into account we derive at the following system:

ut = ∇(k1(u, v)∇u − k2(u, v)∇v), x ∈ Ω, t > 0
vt = kc∆v − r1vp + r−1η + uf(v), x ∈ Ω, t > 0
pt = kp∆p − r1vp + (r−1 + r2)η + ug(v, p), x ∈ Ω, t > 0
ηt = kη∆η + r1vp − (r−1 + r2)η, x ∈ Ω, t > 0

∂u/∂n = ∂v/∂n = ∂p/∂n = ∂η/∂n = 0, x ∈ ∂Ω, t > 0
u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω,
p(0, x) = p0(x), η(0, x) = η0(x), x ∈ Ω,

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(2.3)

where r−1, r1 and r2 are constants representing the reaction rates mentioned in assumption (c). Here Ω denotes a
bounded domain in R

N with boundary ∂Ω.

Simplifying the chemical processes in the life cycle via assuming that the complex is in a steady state with regard
to the chemical reaction and that the total concentration of the free and the bounded enzyme is a constant one gets
a simplified formulation of this original Keller-Segel model that has already been proposed by E. F. Keller and L. A.
Segel themselves to reduce their original system of four strongly coupled parabolic equations to a model that is as
simple as possible. Thus their motto that “it is useful for the sake of clarity to employ the simplest reasonable model ”
(see [69, page 403]) leads them to the following system of “only two” strongly coupled nonlinear parabolic equations:

ut = ∇(k1(u, v)∇u − k2(u, v)∇v), x ∈ Ω, t > 0
vt = kc∆v − k3(v)v + uf(v), x ∈ Ω, t > 0

∂u/∂n = ∂v/∂n = 0, x ∈ ∂Ω, t > 0
u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(2.4)

However, it might be necessary to remember the original system if one tries to describe certain pattern formations
during the aggregation of some particular species. It is possible that the reduction to two equations that was done in
[69] was too restrictive to cover all observable generated patterns during the aggregation of mobile species.

2.2. The microscopic approach. From the microscopic perspective one interprets the movement of species
populations as a consequence of microscopic irregular movement of single members of the considered population that
results in a macroscopic regular behaviour of the whole population. This then leads in a parabolic limit to reaction-
diffusion processes, however, in this case the passage to the continuum limit of the microscopic problem and thus
studying the resulting, continuous partial differential equations has to be valid and justified. Usually it is assumed
that in a particles population each single particle moves around in a random walk. Leaving the justification of the
limiting process open, this approach gives us at least a formal way to derive reaction-diffusion processes from the
microscopic point of view.

For example in [112] H. G. Othmer and A. Stevens used the microscopic perspective and started with a continuous-
time, discrete-space random walk for a single particle in one space dimension. Restricting themselves to one step jumps
and assuming that the conditional probability pi(t) that a walker is at i ∈ Z at time t – conditioned on the fact that
it begins at i = 0 at t = 0 – evolves according to the continuous time master equation

∂pi

∂t
= T +

i−1(W ) pi−1 + T −
i+1(W ) pi+1 − (T +

i (W ) + T −
i (W )) pi. (2.5)

Here T ±
i (·) are the transition probabilities per unit time for a one-step jump to i ± 1, and (T +

i (W ) + T −
i (W ))−1

is the mean waiting time at the ith site. It is assumed that these are nonnegative and suitably smooth functions of
their arguments. The vector W is given by W = (· · · , w−i−1/2, w−i, w−i+1/2, · · · , wo, w1/2, · · · ). For generality and
in context with a self-attracting reinforced random walk analyzed by Davis [28] the density of the control species w
is defined on the embedded lattice of half the step size. As (2.5) is written, the jump probabilities may depend on
the entire state and on the entire distribution of the control species. Since there is no explicit dependence on the
previous state the process may appear to be Markovian, but if the evolution of wi depends on pi then there is an
implicit history dependence, and thus the jump process by itself is not Markovian. However, the composite process
for the evolution (p, w) is a Markov process. There are three distinct types of models that are considered in [112],
which differ in the dependence of the transition rates on w,: (i) strictly local models in which for example T ±

i are
equal, (ii) barrier models in which for example T ±

i (W ) = Ti(wi±1/2), and (iii) gradient models for example with



Submitted for Journal publication: The Keller-Segel model in chemotaxis and its consequences 5

T +
i−1(W ) = α + β(τ(wi) − τ(wi−1)) and T −

i+1(W ) = α + β(τ(wi) − τ(wi+1)) for α ≥ 0 and a function τ of the control
substance.

Considering a grid of mesh size h and setting x = ih the formal expansion of the righthand side of equation (2.5)
as a function of x to second order in h leads

1. in case (i) to ∂p
∂t = h2 ∂2

∂x2 (T (w)p) + O(h4) and so with an assumed scaling lim
h→0,λ→0

λh2 = D, where λ has

dimension t−1, to the limiting problem ∂p
∂t = D ∂2

∂x2 (T (w)p) ,

2. in case (ii) with the same scaling to ∂p
∂t = D ∂

∂x

(

T (w) ∂p
∂x

)

,

3. and in case (iii) once again with the same scaling as before to ∂p
∂t = D ∂

∂x

[

p
(

α
p

∂p
∂x − 2βτ ′(w)∂w

∂x

)]

.

Assuming various possible evolution equations of the control substance w this leads formally from a random walk
of a single particle to a limiting diffusion equation for the probability of one particle to be located at x in time t.
Of course one can also study these equations as an ad hoc approach for particle densities, but their derivations are
then only formal approaches and by far not rigorous. The key problem to derive the limiting equations from the
multi particle random walk is the interaction of the particles via the control species. A rigorous derivation of limiting
equations in these cases is not done yet. Simulations of these are presented in [112] and [137].

The first rigorous derivation of chemotaxis equations from a microscopic model, namely an interacting stochastic
many-particle system, has been done in [135] and [139]. In [139] Stevens proved that for large enough particle
numbers the dynamics of the below given interacting particle systems are well described by the solution of chemotaxis
systems which for this case describe population densities. Explicit error estimates are also given. For the derivation
it was assumed that every particle interacts mainly with those of the other particles which are located in a certain
neighbourhood of itself. The neighbourhood is macroscopically small and microscopically large. As a consequence
the interaction range between the particles is shrinking as the number of particles goes to ∞, while the number of
particles in the shrinking neighbourhoods is also growing to ∞.

So let the subscript u mark the terms related to bacteria and the subscript v mark the terms related to the
chemical substance slime particles. Let S(M, t) = Su(M, t) + Sv(M, t) denote the set of all particles in a M -particle
system. the particles are numbered consecutively by taking a new number for each new-born particle. P k

M (t) ∈ R
d,

k ∈ S(M, t) describes the position of the kth particle at time t ≥ 0. Furthermore let δx denote the Dirac measure at
x ∈ R

d, d ∈ N. Stevens considered the following measure valued empirical processes:

t �→ SMu(t) =
1

M

∑

k∈Su(M,t)

δP k
M (t), t �→ SMv (t) =

1

M

∑

k∈Sv(M,t)

δP k
M (t) and SM (t) = SMu(t) + SMv (t).

The dynamics of the particles depend on the following smoothed versions of SMu , SMv :

ŝMu =
(

SMu ∗ WM ∗ ŴM

)

(x), ŝMv =
(

SMv ∗ WM ∗ ŴM

)

(x)

where WM and ŴM are moderately scaled functions of a fixed symmetric function W1 (e.g. a Gaussian): WM =
MαW1(M

α/dx) and ŴM = M α̂W1(M
α̂/dx), where α and α̂ are constants that for technical reasons have to fulfill

certain smallness conditions (see [139, page 4]). Setting up the corresponding Fokker-Planck equations for each particle
and taking the particle interaction into account she ends up with the following equation

dP k
M (t) = χM

(

t, P k
M (t)
)

∇ŝMv

(

t, P k
M (t)
)

dt +
√

2µdW k(t), (2.6)

where W k(·) are independent R
d-valued standard Brownian motions, µ > 0 is a constant and χM (t, x) is given by the

equation χM (t, x) = χ(ŝMu(t, x), ŝMv (t, x)) with a smooth function χ : R
+ × R

+ → R
+.

Under some technical assumptions she ends up with the weak formulation of the classical chemotaxis system

ut = ∇(µ∇u − χ(u, v)u∇v)
vt = η∆v − γ(u, v)v + β(u, v)u

}

where SMu → u, SMv → v as M → ∞ in probability, η > 0 is a constant and γ(·, ·) and β(·, ·) are smooth, positive
functions on R

+ × R
+. The derivation of the limit dynamics is done by extensions of techniques used by Oelschläger

[108]. For further results on these aspects we refer the interested reader to [112, 138, 135, 136] and [139].
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Another paper that should be mentioned in the context of the derivation of the Keller-Segel equations as a model
for population densities from the kinetic equations is [4]. Denoting the density of individuals moving at (t, x) in
direction θ and having started their run at time τ by a smooth function σ(t, x, θ, τ) W. Alt started in [4] with the
differential-integral system

∂

∂t
σ(t, x, θ, τ) +

∂

∂τ
σ(t, x, θ, τ) + θ∇x(c(t, x)σ(t, x, θ, τ)) = −β(t, x, θ, τ)σ(t, x, θ, τ) (2.7)

for τ > 0, θ ∈ Sn−1(= the unit sphere in n-dimensional space), and speed c(t, x) of an individuum from the beginning
of the run that stops at time t and point x, with a given probability β(t, x, θ, τ) per unit time. Here we have that

σ(t, x, η, 0) =

∞
∫

0

∫

SN−1

β(t, x, θ, τ)σ(t, x, θ, τ)k(t, x, θ, η) dθ dτ

for each η ∈ SN−1, where k(t, x, θ, η) denotes the given probability of a new chosen direction η after an individuum
has stopped a run with direction θ at (t, x). W. Alt shows that under some additional boundedness assumptions and
hypotheses relating the size of some appearing parameters the density

u(t, x) :=

∫

SN−1

σ(t, x, θ) dθ =

∫

SN−1

⎛

⎝

∞
∫

0

σ(t, x, θ, τ) dτ

⎞

⎠ dθ

satisfies the first equation of the Keller-Segel model.

Last but not least I should mention the results from C. S. Patlak [114] in this section. In his paper from 1953
C. S. Patlak derives the partial differential equation of the random walk problem with persistence of direction and
external bias. Here persistence of direction or internal bias meants that the probability a particle travels in a given
direction is not necessarily the same for all directions, but depends only on the particle’s previous direction of motion.
External bias means that the probability a particle travels in a given direction is dependent upon an external force
on the particle. However, instead of speaking of the probability that a particle is at a point, Patlak speaks of a large
number of particles moving around and therefore of the density of the particles about a point as a measure of the
required probability. Thus in his picture of a random walk he speaks of a particle traveling in a straight line for a
certain length of time τ with an average speed c before turning, where the turning means a change in direction of the
particle’s motion. To make the idea of a random walk completely explicit - as opposed to diffusion - Patlak assumes
that the particles have negligible interactions with each other and thus collision between the particles can be ignored.
So let me list up the assumptions that Patlak uses throughout his paper:

1. The particles have negligible interaction with each other.
2. Each time the particle turns it start off afresh, with no “memory” of its previous c and τ .
3. The amount of time spent in turning is negligible compared to the time the particle spends traveling between

turns.
4. During a unit length of time the number of particles in each small reagion, as well as the distributions of c

and τ , remain approximately the same.

For the net displacement of a particle Patlak assumes that the probability of travel in any direction after turning
and the distance of travel in a given direction are not necessarily the same for all directions. Now using the assumptions
above he derives a modified Fokker-Planck equation. From this the partial differential equation for the random walk
with persistence and external bias is obtained, which is more or less the first equation of the Keller-Segel model. Even
though these results are older than the paper by Keller and Segel system (2.4) is known as “the classical chemotaxis
model” resp. as ”the Keller-Segel model in chemotaxis”.

Since it is not the goal of the present paper to go into the precise details of the derivations and approaches of
[4, 112, 114, 138] and [135] we now leave this topic of the different possibilities to model chemotaxis and move to the
main goal of the present paper, namely a review of the achieved results for system (2.4) which - as we have seen - can
be derived from the macroscopic and microscopic perspective on chemotactical movement.
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3. Linear stability analysis for the uniform distribution and nonconstant steady state solutions.
Studying the steady state problem of the model (2.4) is already a challenging mathematical problem, showing a large
variety of interesting aspects and uses a lot of astute mathematical techniques. Some tools used for the steady state
analysis for the Keller-Segel model performed until now were techniques from the calculus of variations to show the
existence of nonconstant stationary solutions and the existence of spike solutions. One tool used in this context is for
example the mountain pass theorem by Ambrosetti and Rabinowitz [142, Theorem 6.1., page 109]. But let us proceed
step by step to illustrate the way of progress on this topic.

In their paper from 1970 E. F. Keller and L. A. Segel studied in the case of two spatial dimensions the stability
of a uniform state (u0, v0) for the species and the chemical attractant. Studying the effect of small (time dependent)
perturbations of these uniform distributions they found by Taylor expansions in u and v of the right hand sides of the
equations in (2.4) around the uniform state the following instability condition. The uniform distribution is unstable if

k2(u0, v0)f(v0)

k1(u0, v0) (k3(v0) + v0k′
3(v0))

+
u0f

′(v0)

k3(v0) + v0k′
3(v0)

> 1, or equivalent if
k2(u0, v0)v0

k1(u0, v0)u0
+

u0f
′(v0)

k3(v0) + v0k′
3(v0)

> 1, (3.1)

since a uniform state (u0, v0) satisfies the equality u0f(v0) = v0k3(v0). Here Keller and Segel call the uniform solution
stable if the time dependent perturbations of the uniform distribution decrease with time. On the other hand they
call the uniform distribution unstable, if these perturbations lead to solutions of (2.4) that increase in time.

Even though Keller’s and Segel’s stability analysis of the uniform state in [69] and the presented instability criterion
is valid for a very general formulation of the system, the next “landmark” in the studies of the Keller-Segel model was
the paper by V. Nanjundiah [102]. In that paper Nanjundiah performs a non-linear stability analysis for some versions
of the Keller-Segel model in space dimension N = 2. In a linear stability analysis he first re-derives the instability
criterion of the uniform distribution of myxamoebae and cAMP. Then his non-linear stability analysis for the system
given by the equations

ut = ∇(∇u − u∇Φ(v)), x ∈ Ω, t > 0
vt = kc∆v − γv + α̃u, x ∈ Ω, t > 0

∂u/∂n = ∂v/∂n = 0, x ∈ ∂Ω, t > 0
u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

where kc, γ, α̃ are positive constants strictly larger than zero and Φ(v) denoting a chemotactical sensitivity function,
leads him to one key statement that is mentioned in [102, page 102] for the case of a linear or a logarithmic chemotactical
sensitivity function Φ(v) is the following:

“The end-point (in time) of the aggregation is such that the cells are distributed in the form of δ-
function concentrations.”

We want to sketch Nanjundiah’s arguments leading to the above expectation for the case of a linear sensitivity
function. So V. Nanjundiah considered in this case the following steady state system:

0 = ∇(∇u − u∇v), x ∈ Ω,
0 = ∆v − v + u, x ∈ Ω,
0 = ∂u/∂n = ∂v/∂n, x ∈ ∂Ω.

⎫

⎬

⎭

(3.2)

For a general solution (u, v) of this system we see that the mean values over Ω of u and v are equal to the same constant.
The first equation of (3.2) motivates us to define a new function ψ(x) by u(x) = ψ(x)ev(x). In general ψ is strictly
positive and only at those points equal to zero, where u is equal to zero. We now conclude from the first equation
that 0 = ∇ (∇ψev) and therefore ψ satisfies the equation ∆ψ + ∇ψ∇v = 0 in Ω ⊂ R

2 with Neumann boundary data
at ∂Ω. If we restrict ourselves to functions (u, v) that are both finite everywhere we see that ψ = ue−v. However
the equation for ψ implies that this function cannot attain a critical point in Ω, since at such a point the gradient
vanishes and ∆ψ would be either strictly positive or strictly negative. According to the boundary conditions Hopf’s
maximum principle [31, Hopf’s Lemma, page 330] implies that ψ is equal to a constant. Thus u(x) = const · ev(x).
This however implies that u and v attain their extrema at the same point in Ω, since u is a monotonic function of v
and as a consequence from the first equation of (3.2) we see that ∇u − u∇v = 0, i.e. the population current vanishes
everywhere in Ω. A result, independent from the reaction terms of the second equation.

However this result contains the assumption that the functions u and v are finite everywhere in Ω and therefore ψ
is finite in Ω. So if the time dependent equations describe aggregation, such an assumption then has to break down in
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the points where the aggregation takes place, i.e. in the aggregation centers. From the fact that for the time dependent
problem the L1-norm of the solutions is uniformly bounded by the L1-norm of the initial data we see that the set of
points where aggregation takes place has to be a set of measure zero.

In [102] V. Nanjundiah also elaborated the fact that the singularities can only be of δ-function type. Therefore he
remarked that the trivial solution satisfies the equations (3.2) pointwise. The mass condition on the solution can only
be satisfied if the solution has singularities. Since we have from the previous arguments that u = Kev we get for v the
problem ∆v + Kev − v = 0 with homogeneous Neumann boundary data on ∂Ω. From this equation one can derive all
possible steady state solutions. Furthermore a uniform solution v ≡ const =: L always exists, where L is defined by
the mean value of v over Ω. Figure 3.1 shows the connection between K and L. We see that possible non-constant

0

2

4

6

8

L

0.05 0.1 0.15 0.2 0.25 0.3 0.35

K

Fig. 3.1. The connection between the values of the constants K and L.

steady state solutions can have value of K in the range of the interval [0, Le−L]. For K = 0 there are two possible
values, namely L = 0 and L → ∞.

Furthermore V. Nanjundiah showed that all solutions between the one with K = 0 and the uniform solution are
unstable if the uniform one itself is unstable by imposing small time dependent fluctuations on an arbitrary solution
at time t = 0. In view of (3.1) the uniform solution is unstable if u = v = v0 with v0 > 1 is true.

Nanjundiah’s paper was followed by two papers which contain conjectures for the assymptotic behaviour of the
solution of the Keller-Segel model for the space dimensions N = 1, N = 2 and N ≥ 3. In [24] S. Childress and J. K.
Percus pointed out that the arguments used by V. Nanjundiah are independent of the dimension of space in which
aggregation occurs. However they showed that singular behaviour of the solution is in fact a phenomenon that is space
dependent. In their paper they restricted themselves to the (as they called it) minimal system given by the equations

ut = ∇(∇u − χu∇v), x ∈ Ω, t > 0
vt = kc∆v − γv + α̃u, x ∈ Ω, t > 0
0 = ∂u/∂n = ∂v/∂n, x ∈ ∂Ω, t > 0

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(3.3)

which (as mentioned before) is due to some simplifying assumptions done by V. Nanjundiah in [102] and is nowadays
the most common formulation of the chemotaxis equations. Their studies and their performed asymptotic expansion
analysis (see [24, page 236-237]) lead to the following possible time asymptotic behaviour for the solution of system
(3.3):

“In particular, for the special model we have investigated, collapse cannot occur in a one-dimensional
space; may or may not in two dimensions, depending upon the cell population; and must, we surmise,
in three or more dimensions under a pertubation of sufficiently high symmety.”

Here Childress and Percus refer that aggregation proceeds to the formation of δ-functions in the cell density as
chemotactic collapse. Their analysis and conjecture for N = 2 and Ω a disc was confirmed by the result in [25],
where S. Childress gives an asymptotic expansion describing the imminent collapse of a radially symmetric aggregate
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of chemotactic cells. However the studies of the stationary problem continued independently from this conjecture and
the report on the time independent problem should be closed first until the time asymptotic behaviour of the solution
of (3.3) becomes the main subject of the present considerations in the upcoming sections.

The papers by Childress and Percus were followed by the studies of stationary solutions done by R. Schaaf. In
[124] she analyzed solutions of the system

0 = ∇(k1(u, v)∇u − k2(u, v)∇v), x ∈ Ω, t > 0
0 = kc∆v + g(u, v), x ∈ Ω, t > 0

∂u/∂n = ∂v/∂n = 0, x ∈ ∂Ω, t > 0
u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(3.4)

with general nonlinearities satisfying the conditions
1. Ω ⊂ R

N is a bounded open region with smooth boundary.
2. k1, k2 : R

+ × R
+ → R

+ are twice continuously differentiable and the ODE

d

ds
r(s) = k2(r, s)/k1(r, s)

has a unique solution r : R
+ → R

+ for any initial condition r(s0) = r0, s0, r0 ∈ R
+.

3. g : R
+ × R

+ → R is twice continuously differentiable and g−1({0}) 
= ∅.
via bifurcation techniques. Furthermore a criterion for bifurcation of stable nonhomogeneous aggregation patterns is
given. In [124] R. Schaaf focused on the properties of stationary solutions of the Keller-Segel model with homogeneous
Neumann boundary data in a very general setting. She shows that the stationary problem of the Keller-Segel model in
a more general setting than the cases studied by V. Nanjundiah can also be reduced to a parameter-dependent single
scalar equation. More precisely she shows the following theorem:

Theorem 3.1 (Schaaf). (u, v) ∈ {w ∈ X | w(Ω) ⊂ R
+} × {w ∈ X | w(Ω) ⊂ R

+} is a solution of (3.4) iff, for
λ ∈ R

+,

u(x) = ϕ(v(x), λ) for all x ∈ Ω and kc∆v + g(ϕ(v(x), λ), v) = 0. (3.5)

Here the space X is defined as {w ∈ Z | ∂w/∂n = 0} where Z is the space C2,β(Ω, R) with 0 < β < 1 for n > 1
and C2(Ω, R) for N = 1. The function ϕ(s, λ) is given by r(s) with

d

ds
r(s) = k2(r, s)/k1(r, s), r(1) = λ.

Then bifurcation methods are used in [124] to find natural bifurcation points. Furthermore R. Schaaf gives a stability
analysis for the constant stationary solutions of the Keller-Segel model.

For k1(u, v) = 1, k2(u, v) = χu and g(u, v) = −γv + αu the stationary solutions of the Keller-Segel model solve
the equation

kc∆v − γv + αλ exp(χv) = 0 in Ω (3.6)

with homogeneous Neumann boundary data. Of course the question of positive, nontrivial solutions for this equation
arises. The existence of nontrivial radially symmetric solutions for this equation has been shown in [11, Proposition
1] under the assumption that γ > 0, but Biler did not consider the nonsymmetric case (The Neumann boundary data
implies that there are no solutions provided γ = 0.).

Using variational techniques introduced by M. Struwe and G. Tarantello in [143] J. Wei and G. Wang [149], T.
Senba and T. Suzuki [129, 130] and in [62] myself proved for Ω ⊂ R

2 independently the existence of nontrivial solutions
of (3.6) without symmetry assumptions for γ ≥ 1 and 4π < αχλ/kc. The existence of nontrivial solutions of (3.6) in
the case that αχλ/kc < 4π follows from arguments that will be mentioned later in the present paper.

The idea of the existence proof for γ ≥ 1 and 4π < αχλ/kc is based on the studies of the functional

Fαχλ/kc
(v) :=

1

2

∫

Ω

|∇v|2 + γv2dx − αχλ

kc
log

⎛

⎝

1

|Ω|

∫

Ω

ev dx

⎞

⎠ ,
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where v ∈ D := {v ∈ H1(Ω) |v has mean value equal to zero over Ω}. One easily notices that v ≡ 0 is a strict
local minimum for Fαχλ/kc

in the case that γ > αχλ
|Ω|kc

− µ1, where µ1 is the first eigenvalue of the Laplacian with

homogeneous Neumann boundary data. Then one recognizes that for a smooth domain Ω and αχλ > 4kcπ there is a
sequence {vε}ε≥0 ⊂ D with

vε(x) = log

(

ε2

(ε2 + π|x − x0|2)2
)

− 1

|Ω|

∫

Ω

log

(

ε2

(ε2 + π|x − x0|2)2
)

dx,

where x0 is an arbitrary point on ∂Ω, such that Fαχλ/kc
(vε) → −∞ and ||∇vε||L2(Ω) → ∞ as ε → 0. As a consequence

there exists a v0 ∈ D Such that Fαχλ/kc
(v0) < 0 and ||v0||H1(Ω) ≥ 1. One now defines

P ≡ {p : [0, 1] → D | p is continuous and p(0) = 0, p(1) = v0} and sets kαχλ/kc
≡ inf

p∈P
max

t∈[0,1]
Fαχλ/kc

(p(t))

for all αχλ/kc ≥ 4π. Using the fact that the mapping αχλ/kc �→ kckαχλ/kc

αχλ is monotone decreasing for all αχλ/kc ≥ 4π

we see that it is differentiable for almost every αχλ/kc ≥ 4π. The rest of the proof then consists of the construction
of a Palais-Smale sequence for Fαχλ/kc

that contains a subsequence that converges strongly in H1(Ω) to a critical
point of Fαχλ/kc

. The construction of the Palais-Smale sequence can be done exactly as in the paper by M. Struwe
and G. Tarantello [143]. The existence of the nontrivial critical point of the Functional Fαχλ/kc

over the set D allows
us to conclude the existence of a nontrivial solution of equation (3.6). This is easy to be seen. If one introduces the
new function w := χv − (χ

∫

Ω v dx)/|Ω| we get from (3.6) the Euler-Lagrange equation of the minimizing problem
inf Fαχλ/kc

(v) over the set D. Thus the existence of a nontrivial critical point of the functional gives us also the
existence of a nontrivial steady state solution of the Keller-Segel model with a linear sensitivity function.

With different methods than those just mentioned Y. Kabeya and W.-M. Ni proved in [68] also the existence of
positive nontrivial stationary solutions of (3.6). Furthermore they showed the following results:

Theorem 3.2 (Kabeya & Ni). Let Ω ⊂ R
2. Suppose that t = λeχt has two positive solutions. Then there exists

a non constant solution vε of (3.6) provided ε :=
√

kc/γ is sufficiently small. Moreover, there exist constants C1 > 0,
C2 > 0, δ > 0, K > 0 and ε > 0 such that:

sup
Ω

vε ≤ C1, inf
Ω

vε ≤ C2e
− δ

ε and

∫

Ω

(ε2|∇vε|2 + γv2
ε)dx ≥ Kε2

for any 0 < ε < ε0. Furthermore for sufficiently small ε > 0 the solution vε has exactly one local maximum point in
Ω, which must lie on the boundary ∂Ω.

This theorem is similar to results that have been established for the stationary Keller-Segel model with a logarith-
mic chemotactical sensitivity. In this case the transformation introduced by R.Schaaf in [124] leads to the problem

d∆w − w + wp = 0, in Ω with ∂w/∂n = 0, on ∂Ω. (3.7)

In [79, 104] and [105] the authors prove the existence of stationary solutions of this equation for Ω ⊂ R
N with N ≥ 2

and 1 < p < (N + 2)/(N − 2) if N ≥ 3 and 1 < p < ∞ if N = 2. Their results for this problem can be summarized as
follows:

Theorem 3.3 (Ni & Takagi). Let wd be a least energy solution of (3.7), i.e. a critical point of

Jd(v) :=

∫

Ω

1

2
(d|∇v|2 + v2) − 1

p + 1
vp+1
+ dx

such that Jd(wd) = cd where cd := inf
h∈Γ

max
0≤t≤1

Jd(h(t)), in which Γ := {h ∈ C([0, 1]; W 1,2(Ω)) | h(0) = 0, h(1) = e}

and e 
≡ 0 is a nonnegative function in W 1,2(Ω) with Jd(e) = 0. The wd has at most one local maximum in Ω and this
is attained in exactly one point which must lie on the boundary, provided that d is sufficiently small. If Pd ∈ ∂Ω is the
unique point at which max wd is achieved. Then lim

d→0
H(Pd) = max

P∈∂Ω
H(P ) where H(p) denotes the mean curvature of

∂Ω at P .
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Of course many generalizations of this result have been published in the recent years (see for example the papers
by [46] and [119]), but it is not the goal of the present paper to mention all these results. Therefore I leave this to the
interested reader and turn now to the time dependent problem. However it is recommended to recall the presented
results when looking at the time asymptotic behaviour of the solution in the upcoming section. Recalling the results
of the present section will help to understand the results for the time asymptotics of the solution and will help to
understand which behaviour one might expect for the solution. Before we now definitively turn to the time dependent
problem let us explain some terms used in the present section. We have seen that there are different effects that one
can expect. In some cases we spoke of aggregation and in other cases of a special form of aggregation namely the
formation of δ-singularities. This was sometimes called chemotactical collapse. Before we turn to the time dependent
model we therefore now introduce three important effects in the mathematical language.

Definition 3.4. Let (u(t, x), v(t, x)) be a solution of (2.4) for the corresponding initial data (u0(x), v0(x)). We
say that the model describes aggregation, if lim inf

t→∞
||u(t, x)||L∞(Ω) > ||u0(x)||L∞(Ω) and ||u(t, x)||L∞(Ω) < konst for

all t. The solution blows up resp. is a blow-up solution if ||u(t, x)||L∞(Ω) or ||v(t, x)||L∞(Ω) becomes unbounded in
either finite or infinite time, i.e. there exists a time Tmax with 0 < Tmax ≤ ∞ such that

lim sup
t→Tmax

||u(t, x)||L∞(Ω) = ∞ or lim sup
t→Tmax

||v(t, x)||L∞(Ω) = ∞.

We will speak of chemotactical collapse if lim sup
t→∞

||u(t, x)||L∞(Ω) < ||u0(x)||L∞(Ω).

Remark that this definition is almost identical to that given in [112] beside the difference in the allowed blow-up
time for a blow-up solution. Furthermore remark that the three cases do not exclude themselves, i.e. more than
one case can happen for the same solution. At the end of this section let us summarize the mentioned results in the
following table:

Table 3.1
Collection of results for the stationary Keller-Segel models.

Observation References

For model (2.4) the uniform distribution (u0, v0) becomes unstable if [69]
k2(u0,v0)v0)
k1(u0,v0)u0

+ u0f ′(v0)
k3(v0)+v0k′

3(v0) > 1.

All solutions between the one with K = 0 (as defined in this section) [102]
and the uniform solution are unstable if the uniform one itself is unstable.

The stationary problem of the Keller-Segel model can be reduced to the [102, 124]
parameter-dependent single scalar equation (3.5).

There exist non-constant stationary solutions of the Keller-Segel model; [11, 62, 68, 79, 104, 105, 129]
for example for a linear and for a logarithmic chemotactical sensitivity [130] and [149]
function.

4. The time dependent problem: The case of a linear chemotactical sensitivity. The conjectures and
observations by V. Nanjundiah, S. Childress and J. K. Percus have been the initiating motivations for a large number
of researchers to study the time asymptotic behaviour of the solution of the system (3.3). There is still an avalanche
of publications running and I am pretty sure that by the date of publication of the present paper the number will have
already increased once again. Parallel to the results of this section various papers were published in which versions of
the Keller-Segel model with a different chemotactic sensitivity function were studied. I will mention these results in
an upcoming section. Thus we will only focus on results for (3.3) in this section resp. the upcoming subsections.

4.1. Early results on the time asymptotics and conjectures. The first step in the analysis of the conjectures
of Childress and Percus was done by W. Jäger and S. Luckhaus in 1992. In [67] they introduced the transformation

U(t, x) :=
|Ω|u(t, x)
∫

Ω

u(t, x)dx
and V (t, x) := v(t, x) − 1

|Ω|

∫

Ω

v(t, x)dx
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which leads to the system:

Ut = ∇(∇U − χU∇V ), x ∈ Ω, t > 0
1
kc

(Vt + γV ) = ∆V + α̃
kc

(U − 1), x ∈ Ω, t > 0

∂U/∂n = ∂V /∂n = 0, x ∈ ∂Ω, t > 0
U(0, x) = U0(x), V (0, x) = V0(x). x ∈ Ω,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(4.1)

Jäger and Luckhaus then assume that α̃ = kcα, the constants χ, kc, α̃ are of the order 1
ε with ε and γ and α are of

order 1. Thus they get for small ε resp. for ε → 0 the system

Ut = ∇(∇U − χU∇V ), x ∈ Ω, t > 0
0 = ∆V + α̃

kc
(U − 1), x ∈ Ω, t > 0

∂U/∂n = ∂V /∂n = 0, x ∈ ∂Ω, t > 0
U(0, x) = U0(x) x ∈ Ω.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(4.2)

Their result in space dimension N = 2 for system (4.2) is summarized as follows:

Theorem 4.1 (Jäger & Luckhaus). Let Ω be a bounded open set in R
2, ∂Ω is a C1-boundary, U0(x) is C1 and

satisfies the boundary condition.
1. There exists a critical number c(Ω) such that αχU0(x) < c(Ω) implies that there exists a unique, smooth

positive solution to (4.2) for all time.
2. Let Ω be a disk. There exists a positive number c∗ with the following property: If αχU0(x) > c∗ then radially

symmetric positive initial values can be constructed such that explosion of U(t, x) happens in the center of the
disc in finite time.

Here the notation U0(x) is used for the mean value of U0(x) over the domain Ω. More precisely Jäger and Luckhaus
show the following Proposition which implies 1. of the previous Theorem 4.1.

Proposition 4.2 (Jäger & Luckhaus). Let Ω be a domain satisfying the smoothness assumptions from the
Theorem above. Let U(t, x) be a smooth positive solution to (4.2) and t∗ the maximal time of existence, 0 < t∗ ≤ ∞.
There exists a positive number c1(Ω) such that t∗ < ∞ implies

lim
k→∞

lim
t→t∗

χαU0(x)

∫

Ω

(U(t, x) − k)+dx ≥ c1(Ω).

Proposition 4.2 is shown by multiplying the first equation of (4.2) with ϕ = (U − k)m−1
+ where k ≥ 0 and m > 1.

Then the second equation of (4.2) allows to estimate the term

−
∫

Ω

U∇V ∇(U − k)m−1
+ dx = −

∫

Ω

∇V ∇
(

m − 1

m
(U − k)m

+ + k(U − k)m−1
+

)

dx from above by c(k, m)

∫

Ω

(U − k)m
+dx.

If the statement of Proposition 4.2 did not hold this estimate would allow us to find the following inequality

d

dt

∫

Ω

(U − k)m
+dx ≤ c2(Ω, k) + c3(k)

∫

Ω

(U − k)m
+ dx for all t ≥ t1

which would give us a bound for the Lm-norms of U(t, x) and the global existence would follow by standard regularity
arguments for solutions of elliptic and parabolic equations.

For the proof of the blow-up statement 2. of Theorem 4.1, W. Jäger and S. Luckhaus studied the function

M(t, ρ) :=

√
ρ
∫

0

(U(t, r) − 1)r dr for r = |x|, 0 ≤ ρ ≤ R.

Using the equations of (4.2) they found that M(t, ρ) has to solve the following initial boundary value problem:

∂

∂t
M = 4ρ

∂2

∂ρ2
M + αχU0(x)

∂

∂ρ
M + αχU0(x)M, with M(0, ρ) =

√
ρ
∫

0

(U0(r) − 1)r dr and M(t, 0) = M(t, R) = 0.
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Constructing a subsolution W (t, ρ) for this problem such that W (t, ρ) ≤ M(t, ρ) for all t, ρ and

lim
t→Tfinite

sup
ρ<ǫ

W (t, ρ) ≥ ω > 0

for each ǫ > 0 they proved that the solution has to blow up at time Tfinite in the center of the disk. Furthermore
Jäger and Luckhaus asked for more information about the blow-up behaviour of the solution of (4.2). In a remark [67,
page 820] they formulated the following questions:

“It would be interesting to know more about the set of explosion points at t∗. The solution may globally
exist as weak solutions. The development of singularities after a finite time t∗ is another important
topic to be studied.”

Even though it was not the next paper in the chronology I now mention the results from M. A. Herrero and J. J.
L. Velázquez [49] from 1996 and M. A. Herrero, E. Medina and J. J. L. Velázquez [52, 53] from 1997 and 1998 since
they studied system (4.2) in those papers. In [49, 54] they focused on the possible formation of δ-function singularities
in finite time in space dimension N = 2. Using asymptotic expansion methods in [49] their result was the following:

Theorem 4.3 (Herrero & Velázquez). Let R > 0, and let ΩR = {x ∈ R
2 : |x| < R}. Then there exist radial

solutions of (4.2) defined in an interval (0, T ) with T > 0, and such that:

u(t, r) → 8πkc

χα
δ(0) + ψ(r) as t → T, (4.3)

in the sense of measures, where δ(0) is the Dirac measure centered at r = 0, and:

ψ(r) =
C

r2
e−2| log(r)|1/2

(2| log(r)|)
1

2
√

2| log(r)|1/2 − 1
2 (1 + o(1)) (4.4)

as r → 0, where C is a positive constant depending on χ. At t = T , the profile near r = 0 is given by:

u(t, r) =
8πkc

χα
δ(0) + ψ(r); ψ(r) as in (4.4). (4.5)

Moreover, if we set S(t) = (T − t)(sup
Ω

u(t, r)) ≡ (T − t)u(0, t), one has that lim
t→T

S(t) = ∞. More precisely, there holds:

S(t) = C1(T − t)−1| log(T − t)|1−
1√

| log(T−t)| as t → T, for some C1 > 0.

So they found solutions that form in finite time a δ-singularity in the center of the disk in R
2. Furthermore

they investigated a result for the whole space in the three dimensional case in [52, 53] and [54]. There they studied
self-similar solutions and could formulate the following statements.

Theorem 4.4 (Herrero, Medina & Velázquez).
1. Consider (4.2) in space dimension N = 3 with Ω = R

3. Then, for any T > 0 and any constant C > 0, there
exists a radial solution (u(t, r), v(t, r)) of (4.2) that is smooth for all times 0 < t < T , blows up at r = 0 and
t = T , and is such that:

∫

|x|≤r

u(T, s) ds → C.

2. Consider (4.2) in space dimension N = 3 with Ω = R
3. For any T > 0 there exists a sequence {δn}n∈N with

limn→∞ δn = 0, and a sequence of radial solutions (un(t, r), vn(t, r)), that blows up at r = 0 and t = T , and
are such that un(t, r) is self-similar, and

un(t, r) ∼
(

8πkc

χα̃
+ δn

)

(4πr2)−1 as r → 0.

For this solution

N(t, r) :=

∫

|x|≤r

u(T, s) ds → 0 as r → 0
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3. No radial, self-similar solution of (4.2) exists such that N(t, r) < ∞ as r → 0 when N = 2, resp. when
Ω = R

2.

Thus one slowly got more and more insights for the Keller-Segel model but at this point several questions still
remained open. To name a few beside the questions raised in [67] we list the following.

1. What happens if one drops the assumption of radial symmetry of the solution and how does in the case of
blow-up the blow-up profile of the solutions look like?

2. Is it possible to prove blow up results also for the full system (3.3)?
3. Can one give the precise value for the threshold value which decides whether the solution might blow up or

not?
As in the section before I summarize the results of this section in a table, too.

Table 4.1
Possible time asymptotical behaviour of the solutions of the simplified model 4.2.

Dimension Observation References

N=2 There exists a critical value c(Ω) such that a unique, smooth positive solution [67]

to (4.2) exists globally in time if αχU0(x) < c(Ω).

Let Ω be a disk. Then there exists a positive number c∗ such that there exists

radially symmetric positive initial data with the following property: If αχU0(x) > c∗

then radially symmetric positive initial values can be constructed such that explosion
of U(t, x) happens in the center of the disc in finite time.

There exists radially initial data such that the solution of (4.2) forms in the center [49, 54]
of a disk Ω a δ-function singularity described in Theorem 4.3 in finite time.

When Ω = R
2, then no radial, self-similar solutions of (4.2) exist such that [52, 54]

∫

|x|≤r

u(T, s) ds < ∞ as r → 0.

N=3 Let Ω = R
3. Then there exists, for any T > 0 and any constant C > 0, a radial [52, 53, 54]

solution (u(t, r), v(t, r)) of (4.2) that is smooth for all times 0 < t < T ,
blows up at r = 0 and t = T , and is such that:

∫

|x|≤r

u(T, s) ds → C.

For any T > 0 there exists a sequence {δn}n∈N with limn→∞ δn = 0, and a
sequence of radial solutions (un(t, r), vn(t, r)), that blows up at r = 0 and t = T ,

and are such that un(t, r) is self-similar, and un(t, r) ∼
(

8πkc

χα̃ + δn

)

(4πr2)−1

as r → 0. For this solution
∫

|x|≤r

u(T, s) ds → 0 as r → 0.

4.2. Progress and further questions. After W. Jäger’s and S. Luckhaus’ paper in 1992 the next step was
performed by T. Nagai in [87]. In his 1995 article “Blow-up of radially symmetric solutions to a chemotaxis system”
[87] he proved the following result for the simplified system

ut = ∇(∇u − χu∇v), x ∈ Ω, t > 0
0 = kc∆v − γv + α̃u, x ∈ Ω, t > 0

∂u/∂n = ∂v/∂n = 0, x ∈ ∂Ω, t > 0
u(0, x) = u0(x), x ∈ Ω.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(4.6)

Theorem 4.5 (Nagai).
1. Suppose that N = 1, or N = 2 and α̃χ

∫

B(0,R)

u0(x)dx < 4ωN with radially symmetric u0(x). Then Tmax = ∞

and sup
t≥0

{

||u(t, ·)||L∞(B(0,R)) + ||v(t, ·)||L∞(B(0,R))

}

< ∞.
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2. Let N ≥ 2 and u0 be radially symmetric. If

0 > 2N(N − 1)

⎛

⎝

1

ωN

∫

Ω

u0(x)dx

⎞

⎠

2/N
⎛

⎜

⎝

1

ωN

∫

B(0,R)

u0(x)|x|N dx

⎞

⎟

⎠

(N−2)/N

− N

2
α̃χ

⎛

⎝

1

ωn

∫

Ω

u0(x)dx

⎞

⎠

2

+α̃χNR−N

⎛

⎝

1

ωn

∫

Ω

u0(x)dx

⎞

⎠

⎛

⎜

⎝

1

ωN

∫

B(0,R)

u0(x)|x|Ndx

⎞

⎟

⎠

+α̃χγ

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1
e

(

1
ωN

∫

Ω

u0(x)dx

)3/2
(

1
ωN

∫

B(0,R)

u0(x)|x|Ndx

)1/2

, if N = 2

N
2(N−2)

(

1
ωN

∫

Ω

u0(x)dx

)(2N−2)/N
(

1
ωN

∫

B(0,R)

u0(x)|x|N dx

)2/N

, if N ≥ 3

where ωN denotes the area of the unit sphere SN−1 in RN , then Tmax < ∞ and

lim sup
t→Tmax

||u(t, ·)||L∞(B(0,R)) = ∞.

Furthermore the radially symmetric solution (u(t, r), v(t, r)) of (4.6) satisfies u(t, r) + v(t, r) ≤ K(n) for
1
n ≤ r ≤ R and 0 ≤ t < Tmax where K(n) denotes a generic positive constant depending on n ∈ N such that
K(n) → ∞ as n → ∞. Thus the blow-up can only occur at the point r = 0.

While the first statement is easy to check the second is based on some subtle estimates of the expression

MN (t) :=
1

ωN

∫

B(0,R)

u(t, x)|x|Ndx.

The global existence proof of solutions of (4.6) in one space dimension performed in [87] illustrates in a nice way
how one tries to show the existence of the solution global in time in higher space dimensions. Therefore we first
demonstrate this proof here. If we integrate for N = 1 the second equation of (4.6) on (−R, x) we get

vx(t, x) = γ

x
∫

−R

v(t, y)dy − α

x
∫

−R

u(t, y)dy.

Thus we see that

|vx(t, x)| ≤ α

R
∫

−R

u0(x)dx on Ω × (0, Tmax).

For x ∈ Ω = (−R, R) we now obtain

2Rv(t, x) =

R
∫

−R

v(t, y)dy +

R
∫

−R

x
∫

y

vx(t, z)dz dy and therefore 0 ≤ v(t, x) ≤ α

2R

(

1

γ
+ 4R2

)∫

Ω

u0(x)dx.

Thus ||v(t, ·)||L∞(Ω) ≤ const and ||vx(t, ·)||L∞(Ω) ≤ const for all 0 < t < Tmax. Multiplying now the first equation of
(4.6) with up for p ≥ 1 and integrating the equation over Ω yields

1

p + 1

d

dt

∫

Ω

up+1dx =
−2p

p + 1

∫

Ω

|∇u(p+1)/2|2dx +
p(p + 1)

2
· const ·

∫

Ω

up+1dx.

Now the bound of the L∞-norm of the solution can be obtained by application of N. D. Alikakos’ version of the Moser
iteration introduced in [2]. One therefore sees that the question whether the solution exists globally in time or not
depends crucially on a uniform bound for the L∞-norm of the gradient of v. This simplified version of the Keller-Segel
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model has been extensively studied by Nagai and his coauthors. Once again we cannot follow the chronology since the
different versions of the Keller-Segel model have been studied parallel. Thus I concentrate on the results on system
(4.6) in this subsection and turn to the results for the full Keller-Segel model (3.3) resp. (4.1) later on. The simplified
versions allow to decouple the system. Therefore techniques are available in these cases which are not at hand for
the full parabolic version. For the simplified version (4.6) recent results from Nagai, Senba, Suzuki et al. give more
information about the blow-up profile of the solution and the non symmetric blow up. However their proofs are very
technical and desire fine estimates that are difficult to demonstrate in a simple way. Thus I restrict myself to present
their results in Table 4.2 and 4.3.

Table 4.2
Possible time asymptotical behaviour of the solutions of the simplified model 4.6 with γ > 0.

Dimension Observation References

N = 1 The solution of the Keller-Segel model exists [87]
globally in time and is uniformly bounded for all t ≥ 0.

N = 2 If α̃χ
∫

Ω

u0(x)dx < 4π then the classical solution of the Keller-Segel model [87, 89, 90, 91]

exists globally in time and is uniformly bounded for all t ≥ 0. [94, 97] and [126]
If Ω is a circle and u0 is radially symmetric or satisfies u(x) = u(−x) in Ω,
then this statement holds if α̃χ

∫

Ω

u0(x)dx < 8π.

Let x0 ∈ Ω. If α̃χ
∫

Ω

u0(x)dx > 8π and if
∫

Ω

u0(x)|x − x0|2dx is [98]

sufficiently small, then the corresponding solution of (4.6) and (4.2)
blows up in finite time.

Assume that ∂Ω has a line segment L0, and that Ω lies on one side [98]
of a line L containing L0. If furthermore α̃χ

∫

Ω

u0(x)dx > 4π and if
∫

Ω

u0(x)|x − x0|2dx is sufficiently small for a point x0 ∈ L0 that is not an

end-point of L0, then the corresponding solution of (4.6) and (4.2)
blows up in finite time.

If Ω is a circle, u0 is radially symmetric and if α̃χ
∫

Ω

u0(x)dx > 4ω2, [87]

then there exists a constant C1 depending on 1
ω2

∫

Ω

u0(x)dx such that

if 0 < 1
ω2

∫

Ω

u0(x)|x|2dx < C1 then u blows up in finite time.

If α̃χ
∫

Ω

u0(x)dx < 8π and Tmax < ∞ then there exists a point in x0 ∈ ∂Ω [92, 93]

such that lim sup
t→Tmax

∫

Ω∩B(x0,ǫ)

u(t, x)dx ≥ 2π/a∗α̃ for any ǫ > 0, where a∗ is

a root of a∗ − χ/2 − ||u0||L1(Ω)α̃a∗/16π = 0 such that a∗ < χ.

Suppose Tmax < ∞. Then there exist for any isolated blow-up point x0 [92, 93, 127]
two positive constants δ, m ≥ m∗ and a non-negative function and [132]

f ∈ L1(B(x0, δ) ∩ Ω) ∩ C(B(x0, δ) ∩ Ω \ {x0}) such that u(t, ·) converges

weakly in the Banach space of all Radon measures on B(x0, δ) ∩ Ω to
mδx0 + f as t → Tmax, where m∗ is equal to 4π/α̃χ if x0 ∈ ∂Ω and equal to
8π/α̃χ if x0 ∈ Ω.

Suppose Ω = R
2 and let x0 ∈ R

2. If α̃χ
∫

R2

u0(x)dx > 8π and [95]

if
∫

R2

u0(x)|x − x0|2dx is sufficiently small, then the corresponding

solution of (4.6) blows up in finite time.
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Table 4.3
Possible time asymptotical behaviour of the solutions of the simplified model 4.6 with γ > 0.

Dimension Observation References

N ≥ 3 If Ω is a sphere and u0 is radially symmetric, then there exists a constant C1 [87]
depending on 1

ωN

∫

Ω

u0(x)dx such that if 0 < 1
ωN

∫

Ω

u0(x)|x|Ndx < C1 then u

blows up in finite time.

Suppose Ω = R
N and let x0 ∈ R

N . If
∫

RN

u0(x)|x − x0|Ndx is sufficiently small, [95]

then the corresponding solution of (4.6) blows up in finite time.

Of course one can now draw conclusions on the possible number of blow-up points. However I will mention these
conclusions a little bit later. Thus at this point let us turn again to a different line of research.

4.3. Analysis of the system (4.1). Similar to their result for the simplified system (3.3) M. A. Herrero and
J. J. L. Velázquez achieved a very important contribution on the blow-up profile of the solution of the full parabolic
systems (3.3) and the system (4.1) with γ = 0 in their papers [50] and [51]. Using once again asymptotic expansion
theory they were able to describe the blow-up profile of the system (3.3) and proved therefore the possibility of a
δ-function formation in finite time for radially symmetric solutions as it was conjectured by Nanjundiah [102] and
Childress and Percus [24]. Their main result for system (3.3) is summarized as follows:

Theorem 4.6 (Herrero & Velázquez). Let R > 0, and let ΩR = {x ∈ R
2 : |x| < R}. Then there exist radial

solutions of (3.3) defined in an interval (0, T ) with T > 0, and such that:

u(t, r) → 8πkc

χ̃α̃
δ(0) + ψ(r) as t → T, (4.7)

in the sense of measures, where δ(0) is the Dirac measure centered at r = 0, and:

ψ(r) =
C

r2
e−2| log(r)|1/2

(1 + o(1)) (4.8)

as r → 0, where C is a positive constant depending on χ. At t = T , the profile near r = 0 is given by:

u(t, r) =
8πkc

χ̃α̃
δ(0) + ψ(r); ψ(r) as in (4.8). (4.9)

Moreover, if we set S(t) = (T − t)(sup
Ω

u(t, r)) ≡ (T − t)u(0, t), one has that lim
t→T

S(t) = ∞. More precisely, there holds:

S(t) = C1(T − t)−1e
√

2| log(T−t)| as t → T, for some C1 > 0. (4.10)

The studies of the asymptotic behaviour of the solution in the non-symmetric case began with the results of
[11, 43, 90] and [153]. In [11, 43, 90] the authors introduce independently from each other a Lyapunov functional for
the system (3.3) resp. (4.1) which became an important tool in the then following studies of the time asymptotic
behaviour of the solution of the systems (3.3) resp.(4.1). This Lyapunov function is given by

F (u(t), v(t)) :=
1

2α̃χ

∫

Ω

kc|∇v(t)|2 + γv2(t) + u(t) log(u(t)) − u(t)v(t)dx. (4.11)

Using a Moser-Trudinger type inequality originally formulated by Chang and Yang in [23] the analysis of this functional
shows the following:

1. The functional F (u, v) is bounded from below, if α̃χ
∫

Ω

u0(x)dx ≤ 4π.

2. The functional F (u, v) is no longer bounded from below, if α̃χ
∫

Ω

u0(x)dx > 4π.
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3. For radially symmetric functions the functional F (u, v) is bounded from below, if α̃χ
∫

Ω

u0(x)dx ≤ 8π. and is

no longer bounded from below, if α̃χ
∫

Ω

u0(x)dx > 8π.

Now two different lines of research became recognizable. One considered system (3.3) and used more PDE based
methods to prove global existence and finite time blow-up results for this system and the other was concerned with
system (4.1) and used methods more related to the calculus of variations. Once again one has to follow these two lines
separately to get a clear picture of the achieved results. Let us first have a closer look at the results for (3.3)

4.3.1. Results for system (3.3). Since the question of the well-posedness of a negative cross-diffusion system
is not trivial I first turn to the results on the local existence of a solution and possible regularity results. Here one
should basically mention A. Yagi [153] and T. Nagai, T. Senba and K. Yoshida [90] whose results can be summarized
as follows:

Theorem 4.7. Let Ω be a bounded, smooth domain in R
2. Assume u0, v0 ∈ H1+ǫ0(Ω) for some 0 < ǫ0 ≤ 1 and

u0(x) ≥<, v0(x) ≥ 0 on Ω. Let Tmax be the maximal existence time of (u(t), v(t)).
1. (Yagi) System (3.3) has a non-negative solution (u, v) satisfying

u, v ∈ C([0, Tmax) : H1+ǫ1(Ω)) ∩ C1((0, Tmax) : L2(Ω)) ∩ C((0, Tmax) : H2(Ω))

for any 0 < ǫ1 < min{ǫ0, 1/2}. Moreover (u, v) has further regularity properties:

u ∈ C1((0, Tmax) : H1(Ω)), v ∈ C
1
4 ((0, Tmax) : H3(Ω)) ∩ C

5
4 ((0, Tmax) : H1(Ω)).

2. (Yagi) If Tmax < ∞, then

lim
t→Tmax

(||u(t, ·)||H1+ǫ0 (Ω) + ||v(t, ·)||H1+ǫ0 (Ω)) = ∞,

lim sup
t→Tmax

||u(t, ·)||Lp(Ω) = ∞ for any 1 < p ≤ ∞,

lim sup
t→Tmax

||v(t, ·)||H1+ǫ(Ω) = ∞ for any 0 < ǫ ≤ ǫ0.

3. (Nagai, Senba & Yoshida) If

∫

Ω

u0(x)dx <
4Θkc

α̃χ̃
,

where Θ = 8π for Ω = {x ∈ R
2 : |x|2 < R} and (u0, v0) is radial in x and Θ = 4π otherwise, then the solution

(u, v) of (3.3) exists globally in time and sup
t≥0

{||u(t, ·)||L∞(Ω) + ||v(t, ·)||L∞(Ω)} < ∞.

The local existence and regularity results summarized in Theorem 4.7 above have been achieved by using semi-
group theory. A. Yagi also proved similar local existence results for more general forms of the system (2.4) in [153] and
I will turn to these results later. The bound of the L∞-norm of the solution can once more be achieved by application
of N. D. Alikakos’ version of the Moser iteration introduced in [2]. Once again the basic and most important step is
to find a uniform L∞-norm estimate of ∇v(t, x) for all t ≥ 0. Nagai, Senba and Yoshida succeeded in finding such a
bound in the case where the functional F (u, v) is bounded from below. A. Yagi studied in [153] which norms of the
solution have to blow-up if the solution exists only for a finite maximal time of existence Tfinite. However beside the
results of Herrero and Velázquez in [50, 51] there are no results, that show the existence of initial data such that the
corresponding solution of (3.3) has to blow up in finite time. However there are results under the assumption that
there is a solution which blows-up in finite time. Let us therefore now turn to those results, that studies the blow-up
profile and behaviour of such a solution.

Under the main assumption that there is a solution of the Keller-Segel model that blows up in finite time Tfinite

such that

inf
0≤t<Tfinite

F (u(t), v(t)) > 0 or (4.12)

lim
t→Tfinite

F (u(t), v(t)) = −∞
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Nagai, Senba and Suzuki proved in [96, 98] the following results.

Theorem 4.8 (Nagai, Senba & Suzuki). Let Ω ⊂ R
2 be a bounded domain with smooth boundary ∂Ω. Furthermore

let B denote the set of all those points x0 in Ω such that there is a sequence {xk}k∈N ⊂ Ω and a sequence {tk}k∈N ⊂
[0, Tfinite) with u(tk, xk) → ∞, tk → Tfinite and xk → x0 as k → ∞. BI ⊂ B denotes the set of all isolated blow-up
points, i.e x0 ∈ BI, iff there exists a R > 0 such that

sup
0≤t<Tfinite

||u(t, ·)||L∞((B(x0,R)\B(x0,r))∩Ω) < ∞

for any r ∈ (0, R) with B(x0, R) := {x ∈ R
2 | |x0 − x| < R}. Then the following statements hold:

1. Given x0 ∈ BI , we have 0 < R << 1, m ≥ m∗, and

f ∈ L1(B(x0, P ) ∩ Ω) ∩ C(B(x0, R) ∩ Ω \ {x0})

satisfying f ≥ 0 and u(t, ·)dx converges weakly to mδx0(dx)+f dx as t → Tfinite in the set of Radon measures

on B(x0, R) ∩ Ω, where

m∗ :=

{

8π, x0 ∈ Ω
4π, x0 ∈ ∂Ω.

2. If (4.12) occurs, then B = BI .
3. If (3.3) is radially symmetric and Tmax < ∞ then B = {0}.

These results imply that in the case of a finite time blow-up of the solution the set of isolated blow-up points has
finite cardinality and that

1 < 2 × ♯(BI ∩ Ω) + ♯(BI ∩ ∂Ω) ≤ ||u0||L1(Ω)

4π
.

However a better lower bound of the quantity is of interest in the non radially symmetric case with ||u0||L1(Ω) > 8π.
Where does the blow-up occur? Is there only one blow-up point in the interior of Ω or are there two blow-up points
at the boundary ∂Ω in this case?

Beside the previous results Senba and Suzuki established in [131] the following results using rearrangement and
symmetrization arguments. These results are similar to those achieved independently and by other methods in [62]
and [63] for the system (4.1).

Theorem 4.9 (Senba & Suzuki). Let Ω ⊂ R
2 be a bounded domain with smooth boundary ∂Ω.

1. If Ω is the unit disk, α̃χ||u0||L1(Ω) < 8πkc and u0(x) = u0(−x), v0(x) = v0(−x) hold, then the solution of
(3.3) exists globally in time and satisfies the equations in the classical sense, i.e. the solution is sufficiently
smooth.

2. If Tmax < ∞ then

lim
t→Tmax

||u(t) log u(t)||L1(Ω) = lim
t→Tmax

||u(t)v(t)||L1(Ω) = lim
t→Tmax

||∇v(t)||2L2(Ω) = lim
t→Tmax

∫

Ω

eav(t)dx = ∞,

where a > 1.
3. If Ω is simply connected , α̃χ||u0||L1(Ω) < 8πkc, and Tmax < ∞ then

lim
t→Tmax

∫

∂Ω

ev(t)/2dx = ∞.

The last statement in particular implies together with the previous statements on the number of isolated blow-up
points in Theorem 4.8 that if there is a solution that blows up in finite time for 4πkc < α̃χ||u0||L1(Ω) < 8πkc then
the blow-up has to happen at the boundary of the domain. However, at this stage it has to be pointed out that these
results do not give the existence of a solution that blows-up in either finite or infinite time. These results always use
the existence of a solution that blows up in finite time as an assumption, but do not prove that those solutions in fact
really exist.
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Beside the analysis of the Keller-Segel system (3.3) on a bounded domain T. Nagai also studied the problem on
the whole space R

2. In this situation he could prove that for α̃χ
∫

R2

u0(x)dx < 4πkc the solution exists globally in time,

once again via analyzing the functional F (u, v) for Ω = R
2 this time. Furthermore he found several decay properties

of the solution but for those results we refer the reader to [95].

Throughout this subsection we focused the two dimensional case and left out the other space dimensions. So what is
known for the cases N = 1 and N ≥ 3? For the case N = 1 the paper by K. Osaki and A. Yagi [109] fills the gap
of the missing global existence proof for (3.3). Furthermore they show there that in this case the solution converges
to a stationary solution as t → ∞. For the case of higher space dimensions N ≥ 3 and a bounded domain Ω ⊂ R

N

I am aware of any result on the time asymptotic behaviour of the solution. The local existence of a solution can be
established in such cases using the results of H. Amann [6, 7] for example. This has been mentioned for example in
[61] and [115].

4.3.2. Results for system (4.1). Independent from the previous research line and parallel to those results there
were the results for the system (4.1). Under different regularity assumptions on the domain and the solution than
those assumed in [90] and [153] H. Gajewski and K. Zacharias proved in [43] the local existence of a weak solution of
(4.1) where they defined a weak solution of (4.1) in the following way.

Definition 4.10 (Gajewski & Zacharias). A pair of functions (U(t, x), V (t, x)) with

U ∈ L∞(0, T ; L∞
+ (Ω)) ∩ L2(0, T ; H1(Ω)), Ut ∈ L2(0, T ; (H1(Ω))∗),

V ∈ L∞(0, T ; L∞(Ω)) ∩ C(0, T ; H1(Ω)), Vt ∈ L2(0, T ; L2(Ω))

is called a weak solution of (4.1) if for all h ∈ L2(0, T ; H1(Ω)) the following identities hold:

0 =

T
∫

0

〈Ut, h〉 dt +

T
∫

0

∫

Ω

(∇U − U∇V ) · ∇h dx dt,

0 =

T
∫

0

∫

Ω

Vth dx dt +

T
∫

0

∫

Ω

(kc∇V · ∇h + (γV − αχ(U − 1)) · h) dx dt.

Their existence result is:

Theorem 4.11 (Gajewski & Zacharias). Let Ω ⊂ R
2 be a bounded domain and its boundary is piecewise from the

class C2. For U0 ∈ L∞
+ (Ω) and V0 ∈ W 1,p(Ω), p > 2, and appropriate T > 0 there is a unique weak solution of (4.1)

with U(0) = U0, V (0) = V0. Moreover, for 0 ≤ t < T it holds t �→ U(t) ∈ L∞
+ and the function t �→ ||∇V (t)||2L2(Ω) is

absolutely continuous on [0, T ].

For (4.1) the Lyapunov function F takes the following form:

F (U(t), V (t)) :=
1

2αχ

∫

Ω

kc|∇V (t)|2 + γV 2(t) dx +

∫

Ω

U(t)(log(U(t)) − 1) − 1 − U(t)V (t)dx.

In fact Gajewski and Zacharias showed that one can bound F by a functional only depending on V , namely

F (U(t), V (t)) ≥ F(V (t)) =
1

2αχ

∫

Ω

kc|∇V (t)|2 + γV (t)2 dx − |Ω| log

⎛

⎝

1

|Ω|

∫

Ω

eV (t)dx

⎞

⎠ .

Using the Moser-Trudinger type inequality by Chang and Yang in [23] it is possible to show that F(V ) is lower
semicontinuous and coercive on the set D := {V ∈ H1(Ω) | V has mean value zero over the domain Ω} if αχ|Ω| < 4Θkc,
where Θ denotes the smallest interior angle of the piecewise smooth domain Ω. Therefore the calculus of variations
guarantees the existence of a minimizer of F over the set D. As a conclusion we get the boundedness of the functional
F from below in this case. The boundedness of the Lyapunov functional and the fact that for

U(x) =
|Ω|V (x)
(

∫

Ω

eV (t)dx

)
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the equality F (U, V ) = F(V ) holds lead Gajewski and Zacharias to:

Theorem 4.12 (Gajewski & Zacharias). Let αχ|Ω| < 4Θkc. Then there exist a sequence tk → ∞ and functions
U∗, V ∗ such that U(tk) → U∗ in L2(Ω), V (tk) ⇀ V ∗ in H1(Ω), F (U(tk), V (tk)) → F (U∗, V ∗). Moreover the identity

U∗ =
|Ω|eV ∗

(

∫

Ω

eV ∗dx

)

holds, and V ∗ is the solution of the boundary value problem

−kc∆V ∗ + γV ∗ = αχ(U∗ − 1) in Ω,
∂V ∗

∂n
= 0 on ∂Ω.

As one can see the previous result does not only hold for subsequences as it has been shown in [62, Theorem 3,
page 408]. Furthermore the steady state might also be nontrivial in the case where αχ|Ω| < 4Θkc. Gajewski and
Zacharias presented in [43, Proposition 5.3, page 109] an example in which Ω := {(x, y) : 0 < x < a, 0 < y < b}
denotes a rectangle where

ab <
2πkc

αχ
and a2 >

π2kc

αχ(log(4) − 1) − γ
> 0

and the initial data (U0(x), V0(x)) is given by U0(x) = 1+cos
(

πx
a

)

and V0(x) = cos
(

πx
a

)

. We then see that F (U0, V0) <
0 = F (1, 0) and thus there has to be a nontrivial stationary solution of system (4.1) also in this case and not only in
the cases mentioned in Section 3.

The boundedness of the Lyapunov functional F (U, V ) by the functional F(V ) has several consequences that
are demonstrated in [62]. However using the same sequence as in the proof of the existence of a nontrivial steady
state solution in section 3 one can show for αχ|Ω| > 4kcπ there is a sequence of functions {(Uε, Vε)}ε≥0 such that
F (Uε, Vε) → −∞ as ε → 0. Furthermore, if Ω ⊂ R

2 is simply connected and if αχ|Ω| < 8π, p ∈ (1, 8πkc/αχ|Ω|) is
arbitrary but fixed and q > 1 is such that 1 = 1/p+1/q then one can bound the functional F(V ) in the following way:

F(V ) ≥
∫

Ω

(

kc

2αχ
− p|Ω|

16π

)

|∇V |2 +
γ

2αχ
V 2 dx − 2|Ω|

q
log

⎛

⎝

∫

∂Ω

eqV/2 dS

⎞

⎠+ K(p, q, α, χ, kc, |Ω|),

where K(p, q, α, χ, kc, |Ω|) denotes a constant depending on p, q, α, χ, kc and |Ω|. However this has the consequence
that we have the following blow-up result which summarizes the results from [60, 62, 63, 64].

Theorem 4.13 (Horstmann & Wang). Let Ω ⊂ R
2 be a smooth, simply connected domain and γ > 0. Furthermore

assume that 4kcπ < αχ|Ω| and that αχ|Ω|/kc 
= 4πm for m ∈ N, then there exist a constant −∞ < K̂ ≤ 0 and initial
data (U0, V0), such that K̂ > F (U0, V0) and the corresponding solution of (4.1) blows up in finite or infinite time. For
these blow-up solutions the following statements hold:

1.

lim
t→Tmax

||U(t, x)||L2(Ω) = lim
t→Tmax

||U(t, x)||L∞(Ω) = ∞

2.

lim
t→Tmax

||U(t) log U(t)||L1(Ω) = lim
t→Tmax

∫

Ω

U(t, x)V (t, x) dx = ∞

3.

lim
t→Tmax

||∇V (t, x)||L2(Ω) = lim
t→Tmax

∫

Ω

eV (t,x) dx = lim
t→Tmax

||V (t, x)||L∞(Ω) = ∞
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4. If 4πkc < αχ|Ω| < 8πkc and Ω is a simply connected domain, then

lim
t→Tmax

∫

∂Ω

eqV (t,x)/2dS = ∞

for every q ∈ (8πkc/(8πkc − αχ|Ω|),∞).

There are technical reasons why one has to exclude the multiples of 4π in the theorem. From the biological point
of view this makes no sense and there is a hint in [68] that in the second theorem the statements are in fact true if
one only assumes 4kcπ < αχ|Ω|. For γ = 0 there is a similar result for radially symmetric initial data in [64]. Since
this proof is easy to illustrate I give this theorem and the sketch of the proof, too. So we can formulate our blow-up
result.

Theorem 4.14 (Horstmann). Let Ω = B(0, R) ⊂ R
2. Further assume that γ = 0, 8kcπ < αχ|Ω| and αχ|Ω|/kc 
=

8πq, q ∈ N, then there exist radially symmetric initial data (U0, V0) and let a constant K̂, such that K̂ > F (U0, V0)
and the corresponding solution of (4.1) blows up in finite or infinite time.

The proof of Theorem 4.14 is easily demonstrated. First one shows the existence of the constant K̂ via contra-
diction. Thus one assumes that there is no such constant. Therefore there exists for Ω = B(0, R) ⊂ R

2 a sequence
(vm)m∈N ∈ D of solutions of the equation

−kc∆vm = αχ

(

|Ω|ev
m

/

∫

Ω

ev
mdx − 1

)

, in Ω

∂vm/∂n = 0, on ∂Ω,

⎫

⎬

⎭

with

∫

Ω

|∇vm|2 dx < ∞ ∀m ∈ N, lim
m→∞

∫

Ω

|∇vm|2dx = ∞ and lim
m→∞

log

⎛

⎝

1

|Ω|

∫

Ω

evmdx

⎞

⎠ = ∞.

These sequences can therefore be identified as a sequence of stationary solutions of the system (4.1) in the radially
symmetric setting and with γ = 0. Using the transformation

wm = vm − log

⎛

⎝

1

|Ω|

∫

Ω

evm

⎞

⎠− αχ

4kc
|x|2

the function wm solves the problem

−∆wm = αχ
kc

ewm+(αχ/4kc)|x|2 , in Ω

∂wm/∂n = − αχ
2kc

(x · n(x)), on ∂Ω,

}

with

∫

Ω

|∇wm|2 dx < ∞ ∀m ∈ N, lim
m→∞

∫

Ω

|∇wm|2dx = ∞ and
1

|Ω|

∫

Ω

ewm+ αχ
4kc

|x|2dx = 1 ∀m ∈ N.

Using the results from [75] and the Sobolev imbedding theorems we see that vm is in fact C2,β(Ω) provided ∂Ω
is Lipschitz and thus wm also belongs to C2,β(Ω). According to a result from Brézis and Merle [20] there exists a
subsequence (wmi )mi∈N for these (wm)m∈N such that one of the following three alternatives holds:

1. The sequence (wmi)mi∈N is uniformly bounded in L∞
loc(Ω).

2. For each compact subset K ⊂ Ω we have:

sup
K

wmi → −∞ uniformly, as mi → ∞.

3. There exists a blow-up set BS = {p1, ..., pm} ⊂ Ω and sequences (xj
mi

)j∈{1,...,m} ⊂ Ω such that for mi → ∞,
xj

mi
→ pj , wmi(x

j
mi

) → ∞ for j = 1...m. Furthermore, on each compact subset K ⊂ Ω \ BS we have

sup
K

wmi → −∞, as mi → ∞
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and

αχ

kc
ewmi

+(αχ/4kc)|x|2 →
m
∑

j=1

8πqjδx=pj

in the sense of measure, where qj ∈ N.
(See [78] for the statement about the qj .)

However as it has been done in [64] one can show that none of these alternatives is possible for such a sequence of
stationary solutions. Therefore such a sequence cannot exist and one can conclude that there exists a constant K̂ ∈ R

(K̂ ≤ 0), such that for all radially symmetric stationary solutions (U, V ) of system (4.1) F (U, V ) ≥ K̂ > −∞ holds.
Now let us choose a ε0 arbitrary but fixed, such that K̂ > F(Vε0(x)) where

Vε0 (x) = log

(

ε2
0

(ε2
0 + π|x|2)2

)

− 1

|Ω|

∫

Ω

log

(

ε2
0

(ε2
0 + π|x|2)2

)

dx.

We see that Vε0 (x) ∈ W 1,∞(Ω). Now let us set

Uε0(x) =
|Ω|eVε0 (x)

∫

Ω

eVε0 (x)dx
.

We see that Uε0 ∈ L∞
+ (Ω) and that F (Uε0(x), Vε0 (x)) = F(Vε0(x)) < K̂. Choosing U0(x) = Uε0(x) and V0(x) = Vε0(x)

the corresponding solution of the Keller-Segel model (4.1) has to blow up in finite or infinite time.

Of course there are questions directly connected with the above results. The two most important are:

1. Is the blow-up time for the blow-up solution from Theorem 4.13 and Theorem 4.14 finite?
2. Suppose Tmax < ∞, does either inf

0≤t<Tmax

F (U(t), V (t)) > −∞ or lim
t→Tmax

F (U(t), V (t)) = −∞ hold?

H. Gajewski and K. Zacharias gave in [43, p. 94 & 95] an example for initial data for system (4.1) such that the
solution blows up in the corner of a rhombic domain. They considered the domain

Ω =

{

(x, y) | |x|
a

+
|y|
b

< 1, a =

√

tan(Θ/2)

2
, b =

1
√

2 tan(Θ/2)

}

with an acute opening angle Θ ≤ π/2. For α = χ = kc = 1 they used the initial data u0(x) = U0(x)/U0(x), where

U0(x) =
8(1 + σ)

σ
exp

(

−|x|
σ

)

with 0 < σ < 1 and as V0(x) the solution of the boundary value problem

∆V0 + U0 (u0 − 1) = 0 in Ω,
∂V0

∂n
= 0 on ∂Ω.

The corresponding solution (U(t), V (t)) of the equations (4.1) blows up in finite time in a corner of the domain.
Furthermore their numerical calculations showed that for this solution the Lyapunov functional F (U(t), V (t)) → −∞
in finite time. There is also another numerical example given in [42] where the initial data is such that the function
u(x, 0) already has its maximum in the corner with the smallest interior angle of the rhombic domain. The solution
then blows up in this corner in finite time.

In Table 4.4 some known results with their references are summarized once again.
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Table 4.4
Possible time asymptotical behaviour of the solutions of (3.3) and of (4.1).

Dimension Observation References

N = 1 The solution of the Keller-Segel model exists globally in time [109]
and converges to a stationary solution as t → ∞.

N = 2 If αχ
∫

Ω

u0(x)dx < 4πkc, then the solution exists globally in time [11, 43, 61] and [90]

and its L∞-norm is uniformly bounded for all times.
Furthermore it converges to a stationary solution as t → ∞.

If 4πkc < αχ
∫

Ω

u0(x)dx < 8πkc, then there exist initial data such that [61, 65, 131]

the corresponding solution of the Keller-Segel model blows up at the
boundary of Ω either in finite or in infinite time.

If 8πkc < αχ
∫

Ω

u0(x)dx, then there exist initial data such that [51, 60, 64] and [65]

the corresponding solution of the Keller-Segel model blows up either
in finite or in infinite time.

Furthermore there exist radially symmetric initial data such that u(t, x) [51]
forms a δ-singularity in finite time in the center of a disc Ω.

Given a blow-up solution and an isolated blow-up point x0,
we have 0 < R << 1, m ≥ m∗, and [96]

f ∈ L1(B(x0, P ) ∩ Ω) ∩ C(B(x0, R) ∩ Ω \ {x0})
satisfying f ≥ 0 and u(t, ·)dx converges weakly to mδx0(dx) + f dx

as t → Tfinite in the set of Radon measures on B(x0, R) ∩ Ω, where
m∗ is either 8π, for x0 ∈ Ω or 4π for x0 ∈ ∂Ω.

If the blow-up time is finite and (4.12) holds there exist only isolated
blow-up points.

If (3.3) is radially symmetric and Tmax < ∞ then the set
of blow-up point consists only of the origin{0}.

If Ω = R
2 and α̃χ

∫

R2

u0(x)dx < 4πkc then the solution of (3.3) exists [95]

globally in time.

N=3 Let Ω be a smoothly bounded domain in R
3. For sufficiently smooth [16]

initial data, satisfying the boundary data there exists a unique solution of
(3.3) locally in time. Furthermore for all T > 0 there exists a constant CT ,
such that if the initial data satisfies ||v0||H2(Ω) < CT , ||u0||L∞(Ω) < CT

and ||∇u0||L2(Ω) < CT , then the problem (3.3) has a unique solution on
[0, T ]× Ω.

4.4. Results for related systems. There are some related results that should be mentioned at this point of
this overview. P. Biler studied in [11] system (3.3) with different boundary conditions. For system (3.3) his local
existence result is pretty much the same as the local existence result of Gajewski and Zacharias [43]. However for the
system

ut = ∇(∇u − χ̃u∇v), x ∈ Ω, t > 0
0 = kc∆v − γv + α̃u, x ∈ Ω, t > 0
0 = ∂u/∂n− χ̃u∂v/∂n, x ∈ ∂Ω, t > 0, v(t, x) = Kγ ∗ (α̃u(t, x)),

u(0, x) = u0(x), x ∈ Ω,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(4.13)
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where Kγ denotes the Bessel potential, Biler proves the following finite time blow up result:

Theorem 4.15 (Biler). If Ω ⊂ R
N , N ≥ 2, is a bounded star-shaped domain ( with respect to the origin ), then

for U0(x) with sufficiently large ||u0(x)||L1(Ω) = M , there is no global in time solution of (4.13).

Results similar to those results in [63, 64] have been proven by G. Wolansky in [151] for the system

0 = ∇(∇u − χ̃u∇v), x ∈ Ω, t > 0
vt = kc∆v + α̃u, x ∈ Ω, t > 0
0 = ∂u/∂n− χ̃u∂v/∂n, v(t, x) = 0, x ∈ ∂Ω, t > 0

u(0, x) = u0(x), v(0, x) = v0(x) x ∈ Ω.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(4.14)

This system contains an elliptic equation for the myxamoebae density and a parabolic equation for the cAMP-
concentration similar to the second equation in (3.3). Even though he also has a Lyapunov function the techniques he
used to prove his blow up result can only be applied to a system with Dirichlet boundary conditions for the second
equation. They fail in the case of Neumann boundary conditions as treated in [63, 64]. In [151] G. Wolansky is led
to an equation for the stationary solutions of his model which is similar to problem (3.6). However in his case the
equation is equipped with Dirichlet boundary data, which allows him to use different arguments (more precisely the
moving plane method see [31, pp. 521-522]) to exclude the first alternative of the Brézis and Merle [20] result. In the
case that is mentioned in the previous section and [63, 64] one has to use different techniques to get rid of the possible
alternatives stated by Brézis and Merle in [20].

5. Comparison of the questions asked by Jäger and Luckhaus with the results so far. Let us now
take some time and let us see which questions of those asked in [67] have been answered up to now and which remain
open. W. Jäger and S. Luckhaus asked about more information on the set of blow-up points. We have seen in the
previous sections that there exists the possibility of blow-up point in the interior and at the boundary of a domain
Ω ⊂ R

2. Also the upper bound of the possible number of blow-up points is sharp and known, however a better lower
bound is still needed. Also the location of the boundary blow-up points should be studied more carefully. For smooth
domains the boundary blow-up point should be the point of the greatest curvature which would correspond with the
numerical calculations of H. Gajewski and K. Zacharias in [43] for piecewise smooth domains and with the results and
hints from the steady state analysis resp. the shape of the least energy solutions.

The question whether the solution exists globally in time as a weak solution can be negated. However it might
be possible to study the problem for a different formulation of a solution like L1-solutions. But as far as I know there
has not been any attempt to do so up to now. For the third question we turn to an own subsection.

5.1. What happens after blow-up?. In connection with the question “What happens after the blow up of
the solution? ” that was already asked in [67], we have seen the solution does not exist globally in time as a weak
H1−solution, but is there a notation of a measure valued solution or L1-solution for the Keller-Segel model? With
such a notation, which would be natural since the solution belongs to L1(Ω) for all times, it would make sense to
study the possible movement of the aggregation centers in the considered domain.

Using a different ansatz than that just mentioned, J.J.L. Velázquez made the first step to give an answer to the
question what will happen after blow-up in [147, 148] using a different approach than the idea of introducing a new
notation of a solution.

In [146] J. J. L. Velazquez studied the question wether aggregation at the interior of the boundary of the domain
Ω ⊂ R

2 takes place in a stable manner, or, if on the contrary, solutions exhibit a tendency to move towards the
boundary. His result is that after small pertubations of the solution found in [51], the new solution will blow up in a
manner entirely similar but in a slightly shifted point of Ω at a slightly different time. Thus his computations indicate
that the possibility of aggregates with high density of u moving quickly towards the boundary does not exist.

He then studies in [147, 148] the system

ut = ∇(∇u − Gǫ(u)∇v), x ∈ R
2, t > 0

0 = ∆v + u, x ∈ R
2, t > 0,

}

(5.1)

where Gǫ(u) = 1
ǫ Q(ǫu) for a small parameter ǫ > 0 and an increasing function Q(ξ) satisfying Q(s) = s + O(s2) as

s → 0 and Q(s) ∼ L as s → ∞, where L > 0 is a given number. For Q(s) = s
1+s and ǫ = 0 the system becomes

formally the system (4.2). Using this system Velázquez studies the motion of regions with high densities of u in [147]
and derives a system of equation that describes the dynamics of these regions of high densities of u. The well-posedness
of the derived system for the dynamics of the high density regions is established in [148]. According to the formal limit
as ǫ → 0 his results can therefore somehow be interpreted as a formal explanation of the behaviour of the solution of
(4.2) after blow up.
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6. More general formulations of the chemotaxis equations. The original formulation of the Keller-Segel
model allowed more general functional forms than we assumed in the last section. Even though the question whether
the given functional form represents the situation in Dictyostelium aggregation in an appropriate way should be
discussed, the system is adequate to describe chemotactical movement of mobile species. A number of possible
plausible functional forms has been proposed by E.F. Keller in [74]. There she proposed several functional forms that
will also be discussed in the upcoming subsections. Furthermore she discussed the possible existence of traveling wave
solutions, a topic which will be in the center of our observations later during this paper. Since there is a large number
of different examples for species that move positive chemotactically and also a large variety of different models for the
chemotactical sensing of the particular species (see for example [80] for a model of the cAMP production and sensing
mechanism in Dictyostelium discoideum) it is useful to try to find a more general theory that contains a larger class
of possible models. Let us see what results are available in this cases. So let us now turn to more general formulations
of the system without having a particular example in mind. So we focus on the following system of two nonlinear
parabolic partial differential equations, which is given by

ut = ∇(k(u, v)∇u − h(u, v)∇v), x ∈ Ω, t > 0
vt = kc∆v − f(v)v + g(u, v), x ∈ Ω, t > 0

}

(6.1)

for Ω ⊂ R
N completed with either

∂u

∂n
=

∂v

∂n
= 0 on ∂Ω × {t > 0}, (6.2)

or u = 0, v = 0 on ∂Ω × {t > 0}, (6.3)

or k(u, v)
∂u

∂n
− h(u, v)

∂v

∂n
= 0, v = 0 on ∂Ω × {t > 0} (6.4)

as boundary conditions and initial data u(0, x) = u0(x) and v(0, x) = v0(x) x ∈ Ω. Here kc once again is a positive
constant. For the functions appearing in the model the following conditions have been considered to be reasonable:
k(r, s) > 0 for all (r, s) ∈ R × R, the function f satisfies f(s) ≥ const for all s ∈ R and ∂

∂rg(r, s) 
= 0 holds for all
(r, s) ∈ R × R.

The question whether a solution to such problems exist locally in time has been studied in [61] using results by
H. Amann [6, 7] and in [153] using other techniques. As it was mentioned in the previous section a Lyapunov function
is a helpful tool for analyzing the time asymptotic behaviour of the solution. So one wonders under which conditions
the present system has a Lyapunov function. Therefore we turn to this question next.

6.1. Lyapunov functions. For the rest of the present paper we will use the following notations:

F (v) :=

v
∫

0

f(s)s ds and G(u, v) := −
v
∫

0

g(u, s) ds.

At some places of the present paper we will assume that
∫

Ω

F (v) dx ≥ k1

∫

Ω

v2 dx (6.5)

is true, where k1 is a nonnegative constant (If we have homogeneous Neumann boundary data we assume k1 > 0!).

Theorem 6.1 (Horstmann). If there exists a function R(u) such that

h(u, v)

k(u, v)

[

∂2

∂u2
G(u, v) +

d2

du2
R(u)

]

+
∂2

∂u∂v
G(u, v) = 0,

then there exists a Lyapunov function for system (6.1), provided ∂2

∂u2 G(u, v) + d2

du2 R(u) ≥ 0 holds true for the solution

of (6.1). In the case of boundary condition (6.3) we have to assume additionally that ∂
∂uG(0, 0) = 0 = dR

du (0). The
Lyapunov function for system (6.1) is then given by

H(u(t), v(t)) :=

∫

Ω

kc

2
|∇v(t)|2 + F (v(t)) + R(u(t)) + G(u(t), v(t))dx.

A large number of examples is given in [61]. Let us here only give two examples for which a Lyapunov function
H(u, v) exists.
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1. Let consider (6.1) with h(u, v) = u, g(u, v) = 1
2u2e−v, k(u, v) = 1, f(v) arbitrary. Then we have the

Lyapunov function

H(u(t), v(t)) :=

∫

Ω

kc

2
|∇v(t)|2 + F (v(t)) +

1

2
u2(t)e−v(t)dx, i.e. R(u) = u2/2.

2. One can also find a whole class of other examples where a Lyapunov function exists. Let us suppose that we

study system (6.1) together with (6.2). Let h(u, v) = h2(u)φ(v) and g(u, v) = φ(v)
u
∫

0

h1(s) ds,

k(u, v) = k̃(u) +
h2(u)

h1(u)

d

du
h1(u)

v
∫

0

φ(s)ds

and f(v) be arbitrary. We see that there is a function R(u) such that

d2

du2
R(u) =

k(u, v)h1(u)

h2(u)
+

d

du
h1(u)

v
∫

0

φ(s) ds.

Of course we see in this example that the right hand side has to be independent of v. If this is the case, then
there exists a Lyapunov function H(u, v) of the type given above, which is possibly unbounded from below.
This example includes the systems studied in [43] and [115]. In [115] we have h(u, v) = uφ(v) (with φ(v) > 0),
g(u, v) = uφ(v), k(u, v) = 1 and f(v) = const > 0. Finally we get in this case R(u) = u log(u). For further
results concerning some special cases of this type of systems see [115].

In fact this result allows to make statements for a larger class of nonlinearities in g(u, v) than those studied before for
system (6.1) (as far as the author knows). Under certain additional assumptions one can now formulate results for
the time asymptotic behaviour of the solution. Therefore we now make the following main assumption for the rest of
this section.

Main assumption:

∫

Ω

G(u, v) + R(u) ≥ k2

∫

Ω

|∇v|2 dx + const with
kc

2
+ k2 > 0. (6.6)

In some special cases of (6.1) one can show that the solution of (6.1) converges to a possibly nontrivial steady
state as t → ∞ (see [43, 61] and [115]). The results of W. Alt [3], R. Schaaf [124] and K. Post [115] concerning the
Keller-Segel model in chemotaxis seem to indicate that such behaviour can also be expected in a more general setting.
The following theorem summarizes our results on this aspect.

Theorem 6.2 (Horstmann). Suppose that (u(t), v(t)) is a weak solution of (6.1) and that (6.5) as well as our
main assumption (6.6) is satisfied. Furthermore let either

1.
[

∂2

∂u2 G(u, v) + d2

du2 R(u)
]

/k(u, v) ≤ k3 and ∂
∂uG(u, v) + d

duR(u) > k4 or

2. 0 <
[

∂2

∂u2 G(u, v) + d2

du2 R(u)
]

exp
(

∂
∂uG(u, v) + d

duR(u)
)

≤ k5k(u, v) and

√

k(u(t), v(t))
∂2

∂u2 G(u, v) + d2

du2 R(u(t))
∈ L2(Ω)

for all t ≥ 0
be true for the solution (u(t), v(t)) of (6.1). Let additionally f be Hölder continuous with Hölder exponent β ≤ 1 such
that 0 < β ≤ 1 if N ≤ 3 or β < 2/N if N > 3. Finally assume that |f(v)| ≤ Kf for all v ∈ R. Then there exist a
sequence (tk)k∈N and two functions v∗ and g∗ such that v(tk) ⇀ v∗ in H1(Ω) resp. in H1

0 (Ω)), f(v(tk))v(tk) → f(v∗)v∗

in L2(Ω) and g(u(tk), v(tk)) ⇀ g∗ in L2(Ω). Furthermore

∫

Ω

kc∇v∗∇ϕ + f(v∗)v∗ϕ dx =

∫

Ω

g∗ϕ dx
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for all ϕ ∈ H1(Ω) (resp. ϕ ∈ H1
0 (Ω)). Finally we see that

exp

(

−
[

∂
∂uG(u(tk), v(tk)) + d

duR(u(tk))
]

2

)

→ const

in L2(Ω) if 1. holds and, respectively,

exp

(

[

∂
∂uG(u(tk), v(tk)) + d

duR(u(tk))
]

2

)

→ const

in L2(Ω) if 2. holds.

The previous given first example satisfies assumption 1. of Theorem 6.2 while the systems studied in [43] and
[115] satisfy assumption 2. of Theorem 6.2. The proof of this theorem goes along the line of the proof of Theorem 5.2
in [43, page 107] and can be found in detail in [61].

Furthermore one can also formulate certain conditions under which some Lp−estimates for the solution are possible.
This has also been done in [61].

More general forms of the Keller-Segel model (2.4) have also been studied by A. Yagi in [153] for the case of two
space dimensions and in the case of one spatial dimension by K. Osaki and A. Yagi in [109]. In [109] the authors study
the Keller-Segel model (2.4) with k1(u, v) = const, g(u, v) = αu − γv and k2(u, v) = uχ(v) where χ(s) is a smooth
function of s ∈ (0,∞) satisfying

|χ(i)(s) < | ≤ const ·
(

s +
1

s

)r

,

for 0 < s < ∞, i = 0, 1, 2 with some positive constant and exponent r. In [109] they show that there exists a compact
set of finite fractal dimension which attracts the solutions exponentially.

A. Yagi studied in [153] the two dimensional case of the Keller-Segel model under the assumptions that k1(u, v) =
c0 + c1u + c2v with a positive constant c0 > 0 and non-negative constants c1, c2, and assuming that k2(u, v) = uχ(v)
with 0 ≤ χ(s) ≤ b0

(

1 + 1
s

)

, and that χ(s), k3(s), f(s) are smooth functions of s ∈ R
+ satisfying 0 ≤ f(s) ≤ b1,

b2 ≤ k3(s) ≤ b3 (sp0 + 1), where b0, b1, b2, b3 are positive constants strictly larger than zero and the exponent p0 > 0.
For the initial data he assumed that u0(x) > 0 on Ω, v0(x) ≥ µ0 > 0 on Ω belong to H1+ǫ0(Ω) with some exponent
0 < ǫ0 ≤ 1 and a positive constant µ0. Using semigroup theory Yagi established the local in time existence of an
unique, positive, classical solution in the same space as it has already been mentioned in the case of a linear sensitivity
function in a previous section. Furthermore he determines blow-up norms of the maximal solution.

6.1.1. Results on finite time blow-up. As it has been already mentioned in the section on the steady state
solutions of the Keller-Segel model Nanjundiah’s conjecture also contained a statement on the time asymptotical
behaviour of the solution of the Keller-Segel model with a logarithmic chemotactical sensitivity function. Therefore
we will first look at the results for this conjecture and related results. In this subsection we consider (2.4) with
k1(u, v) = 1, g(u, v) = 1

ε (u − v), kc = 1
ε and k2(u, v) either χu

v or χpuvp−1 for p > 0. For ε = 0 it is easy to show
in the same way as it has been done in the case of a linear chemotactical sensitivity function that the solution exists
globally in time and that the L∞-norm of the solution is uniformly bounded for all times. Thus the interesting cases
are once more the higher dimensional ones. So let us summarize these cases:

1. Let k2(u, v) = χpuvp−1 for p > 0.
(a) Let N = 2 and ε = 0. If 0 < p < 1, then the solution of the Keller-Segel model exists globally in time

and is uniformly bounded. If Ω is a disk, u0 is radially symmetric,
∫

Ω

u0(x)|x|2dx is sufficiently small and

p > 1, then the corresponding solution of (2.4) blows up in finite time.(See [88, 89, 126].)
(b) Let N ≥ 3 and ε = 0. If Ω is a disk, u0 is radially symmetric,

∫

Ω

u0(x)|x|(N−2)p+2dx is sufficiently

small and p > 0, then Tmax < ∞ and the corresponding solution of (2.4) blows up in finite time.(See
[88, 89, 126].)

2. Let k2(u, v) = χu
v .
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(a) Let N = 2 and ε = 0. If Ω is a disk, u0 is radially symmetric, then the solution is globally bounded in
time. (See [88, 89, 126].)

(b) Let N ≥ 3 and ε = 0. If Ω is a disk, u0 is radially symmetric and χ < 2/(N − 2), then the solution is
globally bounded in time. (See [88, 89, 126].)

(c) Let N = 2 and ε = 1. If χ < 1, then the solution of (2.4) exists globally in time and for T > 0 there
exists a constant CT < ∞ such that

sup
0≤t≤T

(

||u(t, ·)||L∞(Ω) + ||v(t, ·)||L∞(Ω)

)

< CT .

(See [91].)
(d) Let N = 2 and ε = 1. If Ω is a disk, the initial data (u0(x), v0(x)) is radially symmetric and χ < 5/2,

then the solution exists globally in time. (See [91].)
(e) Let N ≥ 3 and ε = 0. If Ω is a disk, u0 is radially symmetric,

∫

Ω

u0(x)|x|2dx is sufficiently small and

χ > 2N/(N − 2), then the solution of (2.4) blows up in finite time. (See [88, 89, 126].)

Similar results have been obtained by K. Post studying (2.4) with k1(u, v) = 1, k2(u, v) = uφ′(v) g(u, v) = uφ′(v) − v
and kc = 1. For the precise details I refer the reader to [115].

Rascle and Ziti analyzed in [118] the system

ut = ∇(µ∇u − χuv−β∇v), x ∈ Ω, t > 0
vt = −kuvm, x ∈ Ω,

}

where the constants χ,k > 0. They constructed self-similar solutions for this system assuming that m < β = 1. For
µ = 0 and one space dimension they observed that the bacterial density concentrated in finite time at the origin. For
two space dimensions and initial data for the bacterial density which is zero at the origin they derived chemotactic
rings concentrated around the origin after finite time. In higher space dimensions they achieved blow-up of the solution
by an initial singularity of the chemoattractant in the origin.

For µ > 0 Rascle and Ziti observed in one space dimension that there are smooth initial data leading to finite
time blow-up of the solution, while they were unable to construct self-similar solutions in space dimension larger or
equal to two for reasonable initial conditions.

6.1.2. Prevention of overcrowding. There are different points of view whether blow-up in chemotaxis is
relevant or not. In fact for the chemotaxis system introduced and derived in the Davis’ case by Othmer and Stevens
for a single particle in [112] blow-up in finite time seems to correspond with the fact that the particle is trapped
respectively localizes in finite time at one particular place (see also [135] for more comments on that aspect). Thus
blow-up really makes sense for their model. Furthermore, blowing up of the solution only describes the concentration
of the particle populations in some aggregation centers. Since the Keller-Segel model only wants to describe the
aggregation phase of chemotactical movement and not the formation of a fruiting body the blow-up question is surely
worth studying. As J. J. L. Velázquez wrote in [147, pp. 1-2]:

“Blow-up usually takes place in physical or biological models if they are approximations of more real-
istic models, usually containing small parameter (say ǫ > 0), that cannot exhibit singular behaviours
unless this parameter is set to zero. Suppose that for ǫ = 0 the limit problem can develop singularities
in finite time. The behaviour of the complete model for ǫ > 0 usually is similar to that of the limit
model away from the singularities. However, the features of the problem with ǫ > 0 but small are
usually very different from that of the limit problem near the singularities. The presence of blow-up
just indicates that the approximations that lead to the simpler model where blow-up takes place are
not valid anymore near the singularity and that the whole dynamics of the complete model needs to be
taken into account here. ”

However there are also other models of Keller-Segel type which exclude the possibility of blow-up solutions directly
by introducing some mechanisms, that provide to strong aggregations or where the chemical production and decay
directly is such that blow-up is impossible. For example in the case of the linear chemotactical sensitivity function
g(u(t, x), v(t, x)) ∈ L4(Ω) for all t ≥ 0 with an uniform bound for all t ≥ 0 guarantees the global existence of the
solution of system (6.1) ( see for example [61]). One model containing such prevention of an overcrowding of the
chemotactical species has been proposed by T. Hillen and K. J. Painter in [56]. They considered the system (6.1) on
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a C3-differentiable, compact Riemannian manifold M under the assumptions that k(u, v) = 1, h(u, v) = uβ(u)χ(v)
where β, χ are three times continuous differentiable functions satisfying χ > 0, β(0) > 0 and there exists a u > 0
such that β(u) = 0 and β(u) > 0 for 0 < u < u. They assumed that the function f(v) ≡ 0 and that g(u, v) =
g1(u, v)u− g2(u, v)v is twice continuously differentiable with a bounded death rate g2 ≥ δ > 0 and a birthrate g1 ≥ 0.
In their paper they prove the global existence of the solution in this case and present numerical simulations for the
time evolution of the system in one and two space dimensions. They also show the potential pattern variety of the
final steady state patterns for their version of model (6.1).

6.1.3. Chemotaxis equations with population growth. An extremely large number of models describing
chemotactical movement for species in a reproduction stage can be found in the literature. In general they are based
on some version of the Keller-Segel equations with an additional growth term in the first equation. For example A.
Bonami, D. Hilhorst, E. Logak and M. Mimura consider in [13, 14] the following versions of the classical model:

ut = ∇(k1(u)∇u − u∇χ(v)) + f(u), x ∈ Ω, t > 0
εvt = kc∆v − γv + α̃u, x ∈ Ω, t > 0

}

(6.7)

where k1(u) = 1 and f(u) = u(1−u)(u−a) with a constant 0 < a < 1 (see also [48] for results related to this system).
However also different functional forms for f(u) are thinkable. For example in [17] one finds the proposed functional
form f(u) = au for a positive constant a > 0 and in [29] system 6.7 is studied with k1(u) = um and f(u) = u(1 − up)
with m > 1 and p ≥ 1. Some effects of such growth terms on the various possible patterns that one can observe during
the evolution of the solution will be mentioned in Section 8.5 of the present paper.

For some results on a more general chemotaxis growth model we refer the interested reader to [150]. There X.
Wang studied in one space dimension the steady state solutions of the system

ut = ∇(λ∇u − χu∇φ(v)) + (kf(u) − θ − βv)v, x ∈ [0, 1], t > 0
vt = ∆v − f(u)v, x ∈ [0, 1], t > 0
ux = χu(φ(v))x at x = 0, 1, vx(0) = 0, vx(1) = h(1 − u(1)),

⎫

⎬

⎭

(6.8)

where λ, k, θ, h and β are positive constants and χ ≥ 0 for different possible growth terms f(u) ∈ C3([0,∞)) and
chemotactic sensitivity functions φ(v) ∈ C5([0,∞)) satisfying f(0) = 0, f ′(s) > 0 and φ′(s) > 0 for s ∈ [0,∞). He
also proves the global existence and boundedness of the solution for those different growth factors for the population
density.

7. The comparison principles by W. Alt for chemotaxis equations. In his (unfortunately almost un-
known) Habilitation [3] from 1980 Wolfgang Alt studies quasilinear parabolic and elliptic systems including the
chemotaxis equations by Keller and Segel with and without growth terms and for single and many species popu-
lations. I restrict myself to mention only some results from the very nice and interesting work from 1980 although
more general results might hold and are shown in [3]. However I present W. Alt’s results in an own separated section,
since it is a little bit difficult to get this reference.

The time-dependent Keller-Segel system is included in the class of quasilinear parabolic cross-diffusion systems and
the steady state problem belongs to the class of quasilinear elliptic systems. Important tools in the studies of elliptic
and parabolic equations of second order are comparison and maximum principles to prove qualitative properties of
the solution like boundedness or blow-up phenomena of the solution by constructing suitable super- and subsolutions
for the considered problems. Also for existence results for elliptic and parabolic problems comparison principles have
been used to apply Perron’s method. Wolfgang Alt presents such comparison principles in [3] which also hold for
coupled systems of the following general form:

B0(u(y))D0u(y) =

n
∑

i,j=1

∂

∂yi

(

ai,j(y)A(u(y))
∂

∂yj
u(y)

)

−
l
∑

k=1

Bk(u(y))

m
∑

µ=1

bk,µ(y)Dµu(y)+C(y,u(y), Du(y))+F (y,u(y))

(7.1)
on a domain Λ in R

d and for a function u ∈ C2(Λ, RM ) resp. a distribution u ∈ D′(Λ, RM ), where

1. The notations

Dµu(y) := Xµ(y) · ∇u(y) and Du(y) := (D1u(y), ..., Dmu(y)) ∈ R
m,M

are used for vectorfields Xµ = (βµ
1 , ...., βµ

n) ∈ C1,1
loc (Λ, RM ) (µ = 0, 1, ..., m) and y ∈ Λ.
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2. The ai,j are defined as ai,j(y) =
m
∑

ν,µ=1
aν,µ(y)βµ

i (y)βµ
j (y) with continuous functions aµ,ν = anu,µ and (aµ,ν) ≥ 0

on Λ, and satisfy for all y ∈ Λ and all ξ ∈ R
m the inequality

m
∑

ν,µ=1

ξνξµaν,µ(y) ≥ ζ(y)|ξ|2

with a on Λ lower semicontinuous positive function ζ.
3. The functions bi,µ are continuous on Λ.
4. The matrix-functions A, Bi : R

M → R
M×M are continuous and det(A) ≥ 0 and B0 ≥ 0 on R

M .
5. F : Λ × R

M → R
M and C : Λ × R

M × R
m,M → R

M are measurable in y ∈ Λ, continuous in z ∈ R
M and

w ∈ R
m,M , and uniformly bounded on Λ ×K, with a compact set K ⊂ R

M . For example the function C can
be given by R

M -valued bilinear forms Cµ,ν like:

C(y, z, w) =

m
∑

µ,ν=1

Cµ,ν [wµ, wν ]

with w = (w1, ..., wm) ∈ R
M,m.

Although W. Alt’s results hold for systems in this general setting I restrict myself to systems appropriate to model
chemotaxis and present his results if possible in versions for those problems. From the applicational point of view one
would like to know whether the considered model remains bounded for all times or not. Thus the existence of invariant
sets for the system is an interesting topic worth studying. Alt presents such results in his Habilitation. Therefore the
first result presented here is the following invariance theorem for parabolic systems (see [3, Satz 1.25, page 31 & 32]):

Theorem 7.1 (Alt). Let p ≥ 0 be in C1,1
loc (RM ) and let M be defined as the set M := {z ∈ R

M | p(z) = 0} 
= ∅.
Furthermore let us assume that u is a weak solution of the parabolic problem

ut =
N
∑

j=1

∂
∂xj

(

A(u) ∂
∂xi

u
)

+ F (u), in Ω × (0, τ) (Ω ⊂ R
N

A(u)∂u

∂n = ψ(u), on ∂ΩN × [0, τ ]
u(x, 0) = u0(x), on ∂ΩD × [0, τ ],

where ∂ΩN and ∂ΩD denote disjunct subsets of ∂Ω. For the boundary conditions we assume that there exists a
continuous family of symmetric M × M -matrices A∗(z) ≥ 0, z ∈ R

M and that there exist vector functions θj :
∂ΩN × R

M → R such that

ψj(x, z) = A∗(z)θj(x, z) and θT
j (x, z) · A∗(z) · θj(x, z) ≤ constK

for all z in a compact subset K of R
M and x ∈ ∂ΩN , where ψ0 = ψ and ψj = ∂

∂zj
ψ, for j = 1, ..., M . Furthermore we

suppose that there exists a neighbourhood U of M such that

∇p · ψ ≤ 0, ∇p · F ≤ 0 as well as ∇2p · A ≥ 0 holds on U \M, if ∇2p exists.

Then u(·, 0) ⊂ M implies u(·, t) ⊂ M for all t ∈ [0, τ ].

But not only the question whether the solution remains in a certain set for all times if the initial data belongs to
this set is an interesting question. One would like to know more about the behaviour of the solution as t → ∞. As
demonstrated in the previous section the existence of Lyapunov functionals is a helpful tool in the studies of the time
asymptotic as t → ∞. In [3] W. Alt presents results for the existence of Lyapunov functionals which is different from
the results of Theorem 6.1 of this paper. To be precise W. Alt proved the following Corollary:

Corollary 7.2 (Alt). Assume that the assumptions of Theorem 7.1 are fulfilled. The Dini-derivative of the
functional

E(t) :=

∫

Ω

p(u(t, x))dx, t ∈ [0, τ ]
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satisfies for all weak solution of problem (7.1) which have values in U the inequality

d

dt
E(t) ≤ −

∫

Ω

N
∑

j=1

(

∂

∂xj
u

)

∇2p(u)A(u)

(

∂

∂xj
u

)

dx +

∫

Ω

∇p(u) · F (u)dx +

∫

∂Ω

∇p(u) · ψ(u)dS

almost everywhere in [0, τ ]. If for all z ∈ U \M either ∇p ·ψ < 0 or ∇p ·F < 0 holds, then E is a Lyapunov functional
for M, i.e. d

dtE(t) < 0 as long as E(t) > 0. If for all z ∈ U \M either ∇p ·ψ < 0 or ∇p ·F < 0 or ∇2p ·A < 0 holds,
then E is a Lyapunov functional for M∪N0, where N0 contains all constants z0 ∈ R

M , that are zero of ∇p · ψ and
∇p · F .

Now, let me demonstrate this results by applying Theorem 7.1 to an example (see [3, Beispiel 1.41, page 38]):

Consider the weak solution of the taxis-system

ut = ∇(k1(u)(∇u − k2(u, v)∇v)) + f(u, v), in Ω × {t ≥ 0}
vt = kc∆v + g(u, v), in Ω × {t ≥ 0}
0 = k1(u) ∂u

∂n − h(u, v) on ∂Ω × {t ≥ 0}
0 = ∂v

∂n , on ∂Ω × {t ≥ 0},
(7.2)

where all coefficient functions are continuous and k1(u), kc ≥ 0, k1(u) = 0 for u ≥ u. Furthermore let
f(u, v), h(u, v) ≤ 0 for u ≥ u and all v ∈ R and on every compact subset of R

2 the inequalities

|h(u, ·)|2, | ∂

∂u
h(u, ·)|2, | ∂

∂v
h(u, ·)|2 ≤ k1(u)

hold and assume that the initial data (u0, v0) satisfy u0 ≤ u.

We see that this system satisfies the conditions of Theorem 7.1 with

M = {(u, v) ∈ R
2 | u ≤ u}, p(u, v) =

1

2
(max{0, u − u})2 and A(u, v) =

(

k1(u) −k1(u)k2(u, v)
0 kc

)

.

Now we have to check the conditions for the boundary data ψ = (h, 0)T . We set

A∗ =

(

k1 0
0 1

2 (kc + k1k
2
2)

)

.

Thus we have ψ = A∗θ with θ = (h/k1, 0)T . We see that θT A∗θ can be bounded uniformly and that the analoguous
staements also hold for the partial derivatives ∂

∂uψ and ∂
∂v ψ. Thus we conclude with Theorem 7.1 the following:

If the initial data (u0, v0) satisfy u0 ≤ u, then the solution of system (7.2) satisfies u(·, t) ≤ u for all
t ≥ 0.

In contrast to this result for weak solutions the next Theorem [3, Satz 2.40] is a strong (local) comparison prin-
ciple for classical solutions of system (7.1). Before citing this result we have to introduce “sets of comparison” and
“comparison surfaces”.

Definition 7.3. For i = 1, .., I and a domain V ⊂ R
M let the functions ̺i belong to the class C1,1

loc (V , RM ),

where ̺i is piecewise of class C2,1
loc (V , RM ) and the functions ςi belong to the class C1,1

loc (V , R). Then we define for
each y ∈ V the sets of comparison My := {z ∈ V | ̺i(z) ≤ ςi(z), i = 1, ..., I} and for i = 1, ..., I the ̺i-boundary
∂iMy := {z ∈ ∂My ⊂ V | ̺i(z) = ςi(z)}.

Definition 7.4. Let (Vy)y∈Λ denote a continuous family of sets Vy ⊂ V ⊂ R
M , with V as in the previous

definition. Furthermore let there be given functions ̺ ∈ C1,1
loc (V) and ς ∈ C1,1

loc (Λ) such that for each compact set
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K ⊂ R
M and for each relatively compact set Λ∗ ⊂ Λ there exist positive constants c and δ and a continuous family of

projections

πy : Mδ
y := Vy ∩ K ∩ {ς(y) − δ ≤ ̺ ≤ ς(y)} → Vy ∩ {̺ = ς(y)}

with

|πy(z) − z| ≤ c|̺(z) − ς(y)| and ∇̺(z) 
= 0

for all y ∈ Λ∗ and z ∈ Mδ
y. Furthermore let there be a finite number of sets Vκ with V =

k0
⋃

κ=1
Vκ such that ̺|Vκ ∈

C2,1
loc (Vκ) and

πy(Vκ ∩ Vy) ⊂ Vκ

for all κ = 1, .., k0 and y ∈ Λ∗ is satisfied. Then we will call the surfaces Vy ∩ {̺ = ς(y)} surfaces of comparison.

Now let us turn to the strong comparison result for the equation

B0(u(y))D0u(y) = A(u(y))
m
∑

ν,µ=1

aν,µ(y)DνDµu(y) −
l
∑

i=1

Bi(u(y))
m
∑

i,µ=1

bi,µ(y)Dµu(y)

+

m
∑

ν,µ=1

Cν,µ(y,u(y))(Dµu(y) · Dνu(y)) + F (y,u(y)) (7.3)

where we additionally assume that A, Bi, F and Cν,µ are locally Lipschitz continuous in u and uniformly continuous
in y ∈ Λ, and that the functions bi,µ are bounded on Λ:

Theorem 7.5 (Alt). Let us assume that (My)y∈Λ is a family of sets of comparison. Additionally we assume that

for each z ∈ V, for which y ∈ Λ and i ∈ {1, ..., I} exist such that z ∈ ∂iMy, the following properties are satisfied:

∇̺i(z) 
= 0, ∇̺i(z) 
∈
∑

s�=i,z∈∂sMy

R · ∇ϕs(z)

and the points of discontinuity of ∇2̺i lie on a finite system of smooth surfaces in V, which intersect the surface
{z ∈ V | ̺i(z) = ςi(z)} in each such z ∈ ∂iMy transversally. Let us suppose that for each pair (̺i, ςi) and the families
of sets (V i

y)y∈Λ with

V i
y := {z ∈ V | ̺l(z) ≤ ςl(z), l ∈ {1, ..., I} \ {i}}

there exist continuous functions ζi and ιi on Λ × V such that the following three properties are satisfied on ∂iMy,
y ∈ Λ:

1. There are continuous functions λi, λi
0, ..., λi

s on V such that for all z ∈ Vy with ̺i(z) = ςi(y) and y ∈ Λ such
that

∇̺i(z) · A(z) = λi(z)∇̺i(z), λi(z) > 0 (7.4)

∇̺i(z) · B0(z) = λi
0(z)∇̺i(z), λi

0(z) > 0 (7.5)

∇̺i(z) · Bl(z) = λi
l(z)∇̺i(z) + pl(z), λi

l(z) ∈ R (7.6)

(7.7)

and pl(z) ∈ [∇̺i(z)]⊥ ⊂ R
M , l = 1, ..., s.

2. Let C(y, z) ⊂ R
m,M , (z ∈ V) denote for every y ∈ Λ a (uniform in y ∈ Λ∗) locally Lipschitz continuous, given

family of sets. The matrix W (y) ∈ R
m,m denotes the positive definite root of the symmetric matrix (aν,µ(y))

and ℘i denotes for each i ∈ {1, .., I} a continuous vector field on V such that ℘i(z) · ∇̺i(z) = 1 for all z ∈ V.
Furthermore let us assume that for all y ∈ Λ, z ∈ Vy with ̺i(z) = ςi(y) and

w ∈ Pz(W (y) · C(x, z)) := ((W (y) · C(x, z)) − ((W (y) · C(x, z)) · ∇̺i(z))℘i(z))
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λi(z)
m
∑

k=1

min
κ=1,...,k0 ; z∈Vκ

{

wk · ∇2̺i(z) · wk

}

+

l
∑

j=1

m
∑

k=1

(

m
∑

µ=1

bj,µ(y)W−1
µ,k(y)

)

wj(z) · wk

−
m
∑

ν,µ,k,l=1

W−1
µ,k(y)W−1

ν,l (y)∇̺i(z) · Cµ,ν(y, z)|wk, wl] ≥ ζi(x, z)|w|2 − ιi(y, z) (7.8)

3. Let S(y0, Λ) denote the set of all points y ∈ Λ such that there exists a continuous, piecewise C1,1 curve γ with
γ(0) = y0 and γ(t) ∈ Λ for all t > 0, which is the integral-curve to one of the vector fields −X0,±X1, ...,±Xm.
The generalized Hessian matrix H+

µ,νςi(x) of the second derivatives (DµDνςi) of the function ςi is then defined
as follows:

Denote for all ξ ∈ R
m by γξ the solution curve of the vector field

m
∑

µ=1
ξµXµ with γξ(0) = y. Then

we set

m
∑

µ,ν=1

ξµξνH+
µ,νςi(y) := d+

t

d

dt
(ςi ◦ γξ) |t=0

with

d+
t g(0) := lim sup

t→0

g(t) − g(0)

t

for a Lipschitz continuous function g on R.
Then, for all y ∈ Λ and z ∈ Vi

y with ̺i(z) = ςi(y) the following comparison condition should hold:

∇̺i(z) · F (y, z) + ιi(y, z) ≤ λi
0(z)D0ςi(y) − λi(y)

m
∑

µ,ν=1

aµ,ν(y)H+
µ,νςi(y) +

l
∑

j=1

m
∑

k=1

λi
k(z)bk,µ(y)Dµςi(y)

+

m
∑

µ,ν=1

(

aµ,νλi(y) min
κ=1,...,ko ; z∈Vκ

(℘i · ∇2̺i · ℘i)(z) + ∇̺(z) · Cµ,ν(y, z)[℘i(z), ℘i(z)]

)

Dµςi(y)Dνςi(y)

−
m
∑

µ,ν=1

(

c2
i (y, z)

ζi(y, z)
δµ,ν

)

Dµςi(y)Dνςi(y)

Here ci(y, z) defines the function

ci(y, z) = sup
w∈Pz(W (y)·C(x,z))

⎧

⎨

⎩

1

|w|
m
∑

k,ν=1

max
k ; z∈Vk

(

Wk,µ(y)λi(y)℘i(y)∇2̺i(z)wk

)

−1

2

m
∑

µ=1

W−1
µ,k(y)∇̺(z) · (Cµ,ν(y, z)[wk, ℘i(y)] + Cµ,ν(y, z)[℘i(z), wk])

}1/2

.(7.9)

The case ζi = 0 and c > 0 is allowed, if Dςi can be chosen identically equal to zero.

Then for every solution u ∈ C2(Λ, RM ) of (7.3) with Du(y) ∈ C(y,u(y)) and u(y) ∈ My for all y ∈ Λ we have the
following statements:

1. If there is a i ∈ {1, ..., I} and a yi ∈ Λ with u(yi) ∈ ∂iMyi then u(t) ∈ ∂iMt for all t ∈ S(yi, Λ).
2. Let J ⊂ {1, ..., I}, such that for every i ∈ J there exists a yi ∈ Λ with u(yi) ∈ ∂iMyi, then u(t) ∈ ⋂

i∈J

∂iMt

for all t ∈ ⋂
i∈J

S(yi, Λ).

Theorem 7.5 is very general and technical. However it allows together with a re-formulation of Hopf’s maximum
principle for system (see [3, Lemma 3.2, page 63]) to find additional hypotheses under which the solution of certain
boundary value problems remain in the interior of the sets of comparison. Furthermore it is possible to prove a general
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invariance theorem for parabolic systems. Here we only mention an application of these theorems to autonomous
parabolic Neumann boundary value problems. Therefore let us once again consider the following problem:

ut =
N
∑

j=1

∂
∂xj

(

A(u) ∂
∂xi

u
)

+ F (u), in Ω × (0, τ) (Ω ⊂ R
N

A(u)∂u

∂n = ψ(u), on ∂ΩN × [0, τ ]

where we assume that F , ψ ∈ C0,1
loc (V , RM ) and A ∈ C1,1

loc (V , RM,M ) with det(A) ≥ 0.

Theorem 7.6 (Alt). Let ̺i ∈ C1,1
loc (V , R), V ⊂ R

M (i = 1, ..., I) denote given functions and let Q ⊂ R
I be also

given. For q ∈ Q the set Mq is defined as

Mq := {z ∈ V | ̺i(z) ≤ qi, i = 1, ..., I}.

Let q0 ∈ Q be given, such that the initial condition u(0, x) ∈ Mq0 is satisfied for all x ∈ Ω× {t = 0}. Furthermore we
assume that there exists a solution ω ∈ C1([0, τ0], R

I) of the system of differential inequalities

d

dt
ωi(t) ≥ sup

z∈∂iMq

{∇̺i(z) · F (z)} , i = 1, .., I, 0 ≤ t ≤ τ0

such that ωi(0) ≥ q0
i , i = 1, ..., I and a positive, continuous function ζ0 on [0, τ0], such that the following conditions

are satisfied for

Q := {q ∈ R
I | ∃t ∈ [0, τ0] with ωi(t) ≤ qi ≤ ωi(t) + ζ0(t) for all i = 1, ..., I} :

∇̺i(z) 
= 0 holds for all z ∈ R
M with a q ∈ Q and z ∈ ∂iMq. Furthermore ∇̺i(z) 
∈ ∑

s�=i,z∈∂sMq

R · ∇ϕs(z) holds on

the “edges” of ∂Mq and ̺ is piecewise C2,1. For all z ∈ ∂iMq with q ∈ Q and i ∈ {1, .., I} we have:
1. ∇̺i(z)A(z) = λi(z)∇̺i(z), λi(z) > 0
2. ∇2̺i(z)A(z) ≥ 0 on [∇̺(z)]⊥, for all κ = 1, ..., k0 with z ∈ Vκ.
3. ∇̺i(z) · ψ(z) ≤ 0.

Then u(t, x) ∈ Mω(t) for all (t, x) ∈ Ω × [0, τ0].

This Theorem allows us to make statements on the time asymptotic behaviour of some special cases of the solution of
Keller-Segel type models. For example (see also [3, Beispiel 5.18, pages 109 - 111]) let us consider the system

ut = ∇
(

k1

1+u (∇u − χu)∇v)
)

+ (β − αu), in Ω × {t ≥ 0}
vt = ∆v − δv + γu, in Ω × {t ≥ 0}

∂u
∂n = 0 = ∂v

∂n , on ∂Ω × {t ≥ 0},

⎫

⎪

⎬

⎪

⎭

(7.10)

where k1 > 1 and χ, β, α, δ, γ are positive constants. We define m0 = k1 − 1 > β
α and

̺(u, v) = v − m0

k1χ
log

(

u

m0

)

+
1

k1χ
(u − m0).

Then

∇̺(u, v) =

( 1
k1χ

(

1 − m0

u

)

1

)

and ∇̺(u, v) · F (u, v) =
1

k1χ
(β − αu)(1 − m0

u
) + γu − δv.

We now set

̺1(u, v) = −v, ̺2(u, v) = ̺(u, v), ̺3(u, v) = v +
1

k1χ

(

u − m0 − m0 log

(

u

m0

))

and

q ∈ R
3 with q1 = −a−, q2 = a+ − 1

k1χ

(

m0 log

(

β

αm0

)

− β

α
+ m0

)

and q3 = a+
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for some 0 ≤ a− < a+. The set of comparison Mq is then convex. Now let us additionally assume that

0 < γ <
α − δ

k1χ

(

1 − m0

β
α

)

holds. Let (u, v) denote the solution of the system (7.10) and let a+
0 ≥ γm0/δ be minimal and a−

0 > 0 be maximal
such that with q0 defined analogously as above u(0, x) ∈ Mq0 is satisfied for all x ∈ Ω. If we set

a+(t) = a+
0 e−δt +

γm0

δ

(

1 − e−δt
)

, t ≥ 0

and choose a− as the solution of the ODE

d

dt
a−(t) = γu(t) − δa−(t), a−(0) = a−

0

where u(t) < β/α is the uniquely defined by the equation

m0 log

(

αu(t)

β

)

+
β

α
− u(t) = −k1χa+(t)

then we see for the analogously defined q(t) that u(t, x) ∈ Mq(t) for all (t, x) ∈ Ω × [0,∞). The function a+(t)
converges as t → ∞ monotone decreasing to a+

∞ = γm0/δ, and the function a−(t) converges as t → ∞ monotone
increasing to a a−

∞ ≤ γβ
δα < a+

∞ which is the unique solution of the equation

m0 log

(

δαa−(t)

γβ

)

−
(

δ

α
− k1χ

)

a−(t) +
β

α
+

k1χm0γ

δ
= 0.

Thus we see that the set Mq∞ with the corresponding q∞ is a global attracting set for all positive solutions of (7.10).

Wolfgang Alt’s Habilitation from 1980 contains many results more. However a complete presentation of his nice
results would expand the present work too much. Thus this short presentation of some of his results should be enough.
I refer the interested reader to [3] for more results an more applications and examples of the invariance principles
derived by W. Alt.

8. Self-similar solutions and traveling waves. Not only the question whether the solution of (3.3) blows up
in finite time or exists globally in time, or the shape of the blow-up profile are mathematically interesting questions.
The mathematical fascination of the Keller-Segel model, may also be caused by the fact that one can apply several
mathematical tools resp. theories to show different aspects of the qualitative behaviour of the solution or to prove the
existence of different types of solutions of the various possible forms of the model.

8.1. Self-similar solutions. Beside the results on self-similar solutions for the Keller-Segel model by Herrero,
Medina and Velázquez [52, 53] that have been already mentioned in a previous section and the results on self-similar
blow-up in [18, 19] in which the case of spatial dimension N > 2 is studied, there is another paper on that particular
topic that should be summarized at this point. In 1999 Y. Mizutani, N. Muramoto and K. Yoshida studied in [82] the
question whether positive self-similar radial solutions

u(t, x) =
1

t
ϕ

( |x|√
t

)

, v(t, x) = ψ

( |x|√
t

)

of the problem

ut = ∇(∇u − χu∇v), x ∈ R
2, t > 0

εvt = ∆v + α̃u, x ∈ R
2, t > 0

}

exist or not. Substitution of the previous expressions gives the system

0 = (ϕ′ − χϕψ′)′ + 1
r (ϕ′ − ψϕψ′) + r

2ϕ′ + ϕ
0 = ψ′′ + 1

r ψ′ + εr
2 ψ′ + α̃ϕ

0 = ϕ′(0) = ψ′(0)

⎫

⎬

⎭

(8.1)
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for the functions (ϕ, ψ). For r > 0 the first equation thus results in
[

2r (ϕ′ − χϕψ′) + r2ϕ
]′

= 0 and therefore in

ϕ = λe−r2/4eχψ, where λ = ϕ(0)e−χψ(0) > 0. Now substituting this into the second equation we see that ψ solves

0 = ψ′′ +

(

1

r
+

εr

2

)

ψ′ + α̃λe−r2/4eχψ under the constraint

∞
∫

0

rψ(r) dr < ∞.

Mizutani’s, Muramoto’s and Yoshida’s and T. Nagai’s [81] results are the following:

Theorem 8.1. Let 0 < α̃χλ log
(

ε
ε−1

)

< 1/e.

1. (Mizutani & Nagai) Then there exists an 0 < a∗ < 1 such that (8.1) with ψ(0) = a∗ admits a positive solution
satisfying the mass constraint. Furthermore there exists a µ∗ such that if α̃χλ > µ∗, there are no positive
solutions of (8.1).

2. (Mizutani, Muramoto & Yoshida) Then there exists an 1 < a∗ such that (8.1) with ψ(0) = a∗ admits a

positive solution satisfying the mass constraint. Furthermore ψ(0) tends to infinity as α̃χλ log
(

ε
ε−1

)

→ 0.

Using variational techniques like the famous mountain pass theorem (see for instance [142]) Mizutani, Muramoto
und Yoshida showed both the statements in [82].

Without directly assuming that the self-similar solutions are radially symmetric Naito et al. showed in [99] that

the ansatz u(x, t) = 1
t ϕ
(

x√
t

)

and v(x, t) = ψ
(

x√
t

)

leads to the system:

0 = ∇(∇ϕ − ϕ∇ψ) + x
2∇ϕ + ϕ, x ∈ R

2

0 = ∆ψ + εx
2 ∇ψ + ϕ, x ∈ R

2

0 ≤ ϕ, ψ in R
2 and ϕ(x), ψ(x) → 0 as |x| → ∞.

⎫

⎬

⎭

(8.2)

The existence of a solution of this system has been proven in [83, Theorem 1.1 and Theorem 1.2, page 429]. In [99]
they showed that any classical solution of (8.2) is radially about the origin and satisfies ϕ, ψ ∈ L1(R2). Furthermore
they showed that the solution set of (8.2) can be expressed as a one-parameter family

S = {(ϕ(s), ψ(s)) : s ∈ R}.

If λ(s) := ||ϕ(s)||L1(R2), then the solution (ϕ(s), ψ(s)) and λ(s) satisfy the following properties:
1. s �→ (ϕ(s), ψ(s)) ∈ C2(R2) × C2(R2) and s �→ λ(s) ∈ R are continuous.
2. (ϕ(s), ψ(s)) → (0, 0) in C2(R2) × C2(R2) and λ(s) → 0 as s → −∞.
3. ||ψ(s)||L∞(R2) → ∞, λ(s) → 8π, and ϕ(s)dx ⇀ 8πδ0(dx) in the sense of measure as s → ∞, where δ0(dx)

denotes Dirac’s δ−function with support in the origin.
4. 0 < λ(s) < 8π for s ∈ R, if 0 < ε ≤ 1/2, and 0 < λ(s) ≤ max{4π3/3, 4π3ε2/3} for s ∈ R, if ε > 1/2.

These properties result in the consequence that there exists a critical value 8π ≤ λ∗ ≤ max{4π3/3, 4π3ε2/3} such
that for λ ∈ (0, λ∗) there exists a solution in S such that ||ϕ||L1(R) = λ and for λ > λ∗, there exists no solution in S
satisfying ||ϕ||L1(R) = λ.

Beside these and the previous results by Herrero, Medina and Velázquez and those by M. P. Brenner, P. Constantin,
L. P. Kadanoff, A. Schenkel and S. C. Venkataramani [18, 19] I am not aware of any other results on self-similar radial
solutions for Keller-Segel type models.

8.2. One dimensional traveling wave and pulse solutions. The existence of traveling wave solutions for
the Keller-Segel model has been started by Keller and Segel [71] and was followed by [30, 32, 65, 73, 86] and [106].

The initiation of these studies have been experimental observations by J. Adler and his group starting in 1966.
One of the typical experiments with Escherichia coli bacteria done by J. Adler in 1966 has been quoted in [125] and
I want to give a quotation of this part from [125], to give the reader an illustration of the experimental setting:

“About a million motile cells of E. coli are placed at one end of a capillary tube filled with a solution
containing 2.5 × 10−4 molar galactose as the energy source, and the ends of the tube are closed with
plugs of agar and clay.... The galactose is present in excess over the oxygen, since the concentration
of oxygen in water saturated with air at 37oC is about 2.0× 10−4 mole/l and it takes six molecules of
oxygen to fully oxidize a molecule of galactose.... Soon afterward, two sharp, easily visible bands of
bacteria have moved out from the origin, and some bacteria remain at the origin.”
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As a conclusion of these observations Adler stated that

“...the bacteria create a gradient of oxygen or of an energy source, and then they move preferentially
in the direction of the higher concentration of the chemical. As a consequence, bands of bacteria ...
form and move out.”

In [71] E. F. Keller and L. A. Segel used this observation by Adler and showed that a simplified version (proposed
in [70]) of their original model (2.4) can describe this phenomenon. They studied in [71] the following system:

ut = µuxx − (δuv−1vx)x

vt = −ku

}

(8.3)

with homogeneous Neumann boundary data. The traveling wave ansatz yields

u(z) = const · (v(z))δ/µe−cz/µ and v(z) =
(

const · kc−2(δ − µ)e−cz/µ + v1−(δ/µ)
∞

)−1/((δ/µ)−1)

,

where −∞ < v∞ := v(∞) < ∞. If one assumes v
1−(δ/µ)
∞ = const · kc−2(δ − µ) then

v(z)

v∞
=
(

1 + e−cz/µ
)−δ/(δ−µ)

and
u(z)

c2v∞(µk)−1
=

1

(δ/µ) − 1
e−cz/µ

(

1 + e−cz/µ
)−δ/(δ/µ−1)

. (8.4)

Since we are looking for bounded solutions we suppose δ > µ, which implies lim
cz/µ→−∞

v = 0, lim
cz/µ→−∞

u = 0.

However the condition δ > µ is not necessary to guarantee the existence of a traveling wave solution. In [73] E.
F. Keller and G. M. Odell generalized this result also for the range 0 < δ < µ. In this case the traveling wave ansatz
gives a solution for which u(z) and v(z) reach zero at a finite z0. Since it is possible to locate the coordinate origin
anywhere one pleases by choosing the arbitrary constant generated by integrating the first equation of the Keller-Segel
model in the traveling wave ansatz once, places the origin at that point. Full solutions of the system are then obtained
by joining the solution of the system with the trivial solution from the point z0. This idea leads to the definition of a
“generalized traveling wave solution” for the Keller-Segel model.

Definition 8.2 (see also Keller & Odell and Ebihara, Furusho & Nagai). We denote the set of all real valued
functions (u, v) ∈ C(R) × C1(R) such that u ∈ C1(P (v)), where P (v) := {z ∈ R | v(z) > 0}, as W(R). For
(u, v) ∈ W(R) we set

J (z) :=

{

k1(u, v)u′ − k2(u, v)v′ + cu, for z ∈ P (v)
0, for z 
∈ P (v)

The set of all generalized traveling wave solutions of the Keller-Segel equations is defined as the set of all (u, v) ∈ W(R)
such that there exists a z0 > −∞ with J ∈ C1(R) satisfying J ′ = 0 in R and v ∈ C2(R) solving kcv

′′+cv′+g(u, v) = 0
in R for some c ∈ R and with v(z) ≡ 0 for all z < z0 . If z0 = −∞ we call the solution traveling wave solution of the
Keller-Segel system.

Remark 1. Other authors talk of traveling wave, normalized traveling wave and singular traveling wave solutions
in this context.

In [86], T. Nagai and T. Ikeda studied the existence and stability of traveling wave solutions of the system

ut = µuxx − (δuv−1vx)x

vt = εvxx − ku

}

(8.5)

with homogeneous Neumann boundary data and δ > 1. They considered both cases, ε = 0 and ε > 0. It was proved
that traveling wave solutions (uε, vε) for (8.5) with ε ≥ 0 satisfy

||vε − v0||L∞(R) = O(ε) and ||uε − u0||L∞(R) = O(
√

ε) as ε → 0. (8.6)

Here uε(z) is given by e−czvδ
ε . Furthermore it was shown that traveling wave solutions are linearly unstable for

perturbations in the sets

X := {(u, v) | u, v ∈ L1(R),

∞
∫

−∞

u(z) dz = 0} and Xw := {(u, v) ∈ X | wu, wv ∈ L1(R)}
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where the weight function w(z) equals e−̺z for z < 1 and eωz for z > 1. Here ω ≥ c, which is the wave speed, and
̺ ≥ c/(δ − 1).

In [30] Ebihara et al. proved the existence of a traveling wave solution of (8.5) for δ ≤ 1. In the case of δ < 1 they
proved that the traveling wave solution is a generalized traveling wave solution with z0 > −∞ and v(z) ≡ 0 for all
z < z0. Other results on simplified versions of the Keller-Segel equations can also be found in [8, 9, 10, 74, 77, 107].

Let us now try to look a bit closer at the problem of the existence of traveling wave solutions for more general
versions of the Keller-Segel model. Thus let us consider system (6.1) in R × {t ≥ 0} with k(u, v) = k(u) and
h(u, v) = uφ(v). With the traveling wave ansatz u(t, x) = u(x − ct) = u(z), v(t, x) = v(x − ct) = v(z) and no-flux
boundary conditions for the first equation we obtain

−cu = k(u)uz − uΦ(v)z + const, where Φ(v) =

v
∫

0

φ(s) ds. (8.7)

Caused by the conservation of mass we can only expect traveling pulse solutions for u. This results in the condition
that u(z) → 0, z → ±∞. Together with Neumann boundary condition this implies that the constant in (8.7) equals
zero. Dividing by u we obtain

−c =
k(u)

u
uz − Φ(v)z .

If k(u)
u is integrable with respect to u and K(u) is invertible with K ′(u) = k(u)

u then u(z) = K−1 (Φ(v(z)) − cz). If
k(u) = 1, respectively k(u)/u = 1/u, then K(u) = log u + c1 and K−1(y) = ey−c1 . Without loss of generality we
can assume that the constant c1 is equal to zero. If the chemotactical sensitivity function Φ(v(z)) = log(v(z)) then
v(z) = u(z)ecz. Therefore the traveling wave ansatz allows us to solve the first equation of the Keller-Segel model
explicitly.

8.3. Some short comments on the chemotactic sensitivity function in connection with traveling
wave solutions and on necessary and sufficient conditions for chemotactic bands. One major mathematical
concern in connection with the existence of traveling wave solutions for the Keller-Segel model is the necessity of a
singularity in the chemotactic sensitivity function as v approaches small values resp. zero. This has already been
mentioned in [71]. This problem has also been discussed in [125] and some relaxations of the first statements of Keller
and Segel in [70] on the necessity of the singular term had been discussed in that paper. But one fact still remains
(see [125, page 198]):

“Although our results perhaps weaken the theoretical reasons for taking φ(v) = δ/v, experimental
results have shown, that φ(v) = δ/v is in fact the appropriate form (as we have already mentioned)
so it does not appear worthwhile to explore these results further.”

In [102] the specific chemotactic sensitivity φ(v) = δ/v is also discussed. There it is also mentioned, that this
choice seems to fit well to experiments, unless the concentrations are very large or very small, for obvious reasons.

Beside numerical simulations of traveling waves solution for some simplified versions of the Keller-Segel model one
can also find the discussion of plausible functional forms of the other terms in the model in [125]. Therefore I refer
the interested reader to that paper and for other proposed functional forms to [74] and [102].

E. F. Keller and G. M. Odell gave in [72] necessary and sufficient conditions for the existence of traveling wave
solutions for the system

ut = ∇(k1(v)∇u − u∇(Φ(v)))
vt = −g(v)u

}

. (8.8)

They summarized their results in the following theorem:

Theorem 8.3 (Keller & Odell). Let k1(v), Φ′(v) and g(v) be functions which are
1. positive and continuous for v > 0;
2. bounded and uniformly bounded away from zero for v ≥ ε, where ε is a positive number;
3. allowed to tend to zero, or become unbounded as v → 0+.
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Then, necessary and sufficient conditions for the system (8.8) to have traveling wave solutions are:

0 = lim
v→0+

1

g(v)Φ′(v)
, (8.9)

∞ >

v(∞)
∫

0

dv

g(v)
, (8.10)

0 = lim
v→0+

v(∞)
∫

v

exp

(

−
w
∫

v

Φ′(s)
k1(s)

ds

)

k1(w)g(w)
dw. (8.11)

Furthermore Keller and Odell gave in [72] examples for different classes of functions that satisfy the conditions
mentioned in the previous Theorem. I refer the interested reader to that paper for more details. In case of k1(v) =
const, g(v) = const · vm (m ≥ 0) and Φ(v) = δ log(v), with a constant δ > 0, G. Rosen studied in [122] the existence
of propagation of bands of chemotactic bacteria and in [123] together with S. Baloga the stability of these traveling
wave solutions for the case m < 1.

8.3.1. Reduction of the problem to one autonomous ODE. The fact that the traveling wave ansatz allows
to solve the first equation of the Keller-Segel (6.1) under the assumptions made in this subsection might lead to the
idea to study a single autonomous ordinary differential boundary value problem on the half line [0,∞) for the function
v. This approach has been considered for some special cases in [30, 86] and in a more general version in [65]. In this
subsection we only want to sketch certain ideas connected with this approach to traveling waves in chemotaxis. We
consider system (6.1) where k(u)/u is integrable with respect to u and its integral K(u) is assumed to be invertible,
on R, so K−1(φ(v) − cz) = u. Then we are left to analyze

−cv′ = kcv
′′ + g

(

K−1(φ(v) − cz), v
)

with the boundary conditions v(−∞) = 0 and v(∞) = const where the condition K−1(φ(v)−cz) → 0 for z → ±∞ has
to be fulfilled. Now we choose v(z) = w(e−cz) = w(y) where c is the traveling wave speed and w(∞) = 0, w(0) = const.
Then we obtain

0 = kcc
2y2w′′ + (kc − 1)c2yw′ + g

(

K−1(φ(w) + log y), w
)

.

Defining now g̃(y, w) := g
(

K−1(φ(w) + log y), w
)

, we have reduced the problem to a single autonomous ODE on the
half-line [0,∞). In general one now would try to find suitable sub- and supersolutions for this problem to prove the
existence of a solution via Perron’s method. This has been done in [30] and [86] in the special case of system (8.5). In
this case it was sufficient to find a supersolution, since a subsolution was immediately given by the constant solution
wsub ≡ 0. As a supersolution one can find in [86] the function wsuper which solves the problem

w′′ = pyqw
δ
µ in (0,∞), with w(y) ≥ 0 and w′(y) ≤ 0 (0 < y < ∞)

with initial value w(0) = const. Here p = k
ε

(

c
ε

)ε−2
and q = ε − 2. Of course this allows also to construct more

examples of systems which have traveling wave solutions by assuming that

g̃(y, w) =

m
∑

k=1

(−1)hkyqkwlk

for some exponents hk, qk and lk. However assuming more general functional forms the following cases can be treated,
too.

(a) kc 
= 1: In this case we look for a solution w which satisfies: (1 − kc)c
2w′ = a1(w), kcc

2w′′ = −a2(w) and
a3(w, y) = 0. So −a2(w) = kc

1−kc

d
dya1(w) = kc

(1−kc)2c2 a1(w)a′
1(w). Therefore

∫ y

0

ds =
kc

kc − 1

∫ w(y)

w(0)

d
dra1(r)

a2(r)
dr =: A(w).

We assume that A(w) is invertible. Then w = A−1(y) with a3(w, y) = 0 solves our problem.
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(b) kc = 1: Here we define g̃(y, w) = a2(w)y2 + ã(y, w). And we assume that c2w′′ = −a2(w) solves ã(w, y) = 0.
Then

c2

∫ y

0

w′′(s)ds = c2w′(y) =

∫ w(y)

w(0)

−a2(q)dq.

So in this case

y = −
∫ w(y)

w(0)

c2

∫ r(y)

r(0) a2(q)dq
dr =: A(w)

has to be invertible. And w = A−1(y) has to solve ã(y, w) = 0.
(c) kc = 0: Here we define g̃(y, w) = a1(w)y + ã(y, w) and we assume that c2w′ = a1(w) solves ã(y, w) = 0. Then

c2

∫ y

0

w′(s)ds = c2(w(y) − w(0)) =

∫ w(y)

w(0)

a1(q)dq.

This identity gives us the function w, which has to solve ã(w, y) = 0.

Since we are looking for traveling front solutions for the chemical with a “classical shape”, we can look for a
function w(s) that satisfies w′(s) < 0 on [0,∞). Now we see in case (a) that a1(s) has to be a positive function for
all s ∈ R

+ if kc > 1. This shows that in such a case a production term is necessary to guarantee the existence of a
traveling wave solution. Furthermore this implies for kc 
= 0 that a2(w) does not vanish, which is obvious in case (b)
if one looks for nontrivial solutions. This however implies that we need a u2-term in the second equation to construct
examples for traveling wave solutions with this approach. In case (c) we see that a1(s) has to be negative for all
s ∈ R

+ to guarantee the existence of a traveling front solution. Thus a degradation term is the crucial term in this
case. Furthermore we see that it has to be a u-term of order one in contrast to case (a) where we need a u-term of
order 2 to get traveling wave solutions.

8.4. Construction of traveling wave solutions for chemotaxis without reproduction. Of course one
can also raise the question the other way around, namely, which nonlinearity in the Keller-Segel model (6.1) might
favor traveling wave solutions? To be more precise one might ask: Are there functional forms for the chemotactic
sensitivity, the chemical decay and the chemical production that lead to traveling wave solutions for Keller-Segel type
models? Or: Does the interplay between the chemotactic sensitivity, the chemical diffusion, decay and production
might cause traveling waves? To get more insights into this “inverse problem” for traveling waves in chemotaxis we
turn to a constructive approach that has been demonstrated in [65]. As a general assumption in this subsection we
assume that f(v) = 0, k(u, v) = k(u) and h(u, v) = uφ(v). Furthermore we use the notation

Φ(v) :=

v
∫

φ(s) ds

and we will assume here for simplicity that k(u) = 1. Using the traveling wave ansatz one concludes from the first
equation that u(z) = G(v)e−cz = G(v)u(z). Similar to the approach in [121] let us now assume that d

dz v = F (v)b(z)
which implies vzz = F ′(v)F (v)b2(z)+F (v)b′(z). Substituting this in the second equation of the Keller-Segel model we
get after some rearrangements

F ′(v) = − c

kcb(z)
− b′(z)

b2(z)
− g(v, G(v)u(z))

kcF (v)b2(z)
. (8.12)

If b solves b′(z) = − c
kc

b(z) which means b(z) = C̃e−
c

kc
z then we see that

F (v) =

√

−2C̃e2 c
kc

z

kc

∫ v

g(s, G(s)e−cz)ds + const.

Thus g has to be chosen such that both terms of the equation depend only on v. All equations are supposed to hold for
general v. To get further information let us now proceed with our constructive ansatz introduced in [65] by assuming
that

g(v, G(v)e−cz) =
∞
∑

j=−∞
e−cjzGj(v)

∞
∑

i=−∞
ai,jv

i where G(v) =
∞
∑

l=−∞
glv

l.
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Furthermore let

b(z) =

∞
∑

j=0

bje
−cjz and F (v) =

∞
∑

i=−∞
fiv

i.

Then, after substituting these expressions in (8.12) we have to compare the coefficients for the vme−cnz. This results
in

kc

∞
∑

i=−∞
ififm−i+1

∞
∑

l=0

blbn−l = −cfmbn + ckcnfmbn − Am,

where Am is the overall coefficient of vm in
∑∞

i=−∞ ainviGn. Now it is possible to treat different cases as it has been
done in detail in [65]. Here we only illustrate the method for an explicit example. First we consider the following
u-equation

ut = uxx − χ (u (log v)x)x

with Neumann boundary conditions and χ ∈ R. After applying the traveling wave ansatz we get u = vχe−cz resp.
G(v) = vχ in our notation. Now we want to construct suitable equations for v to get a traveling pulse for u and a
traveling wave for v. Let us assume F (v) = f1v. Since b0 = 0 in this case we get:

−kcf1b1c = −cf1b1 − k1 or k1 = vχ
∞
∑

i=−∞
ai1v

i−1 = (kc − 1)b1cf1.

For simplicity we assume that b(z) = e−cz, so b1 = 1 and bj = 0 for j 
= 1. With this we have

k2 = v2χ
∞
∑

i=−∞
ai2v

i−1 = −kcf
2
1 .

So a1−χ,1 = (kc − 1)cf1 and a1−2χ,2 = −kcf
2
1 . Therefore the second equation has the form

vt = kcvxx + (kc − 1)cf1v
1−χu − kcf

2
1 v1−2χu2. (8.13)

The general system has the traveling pulse and wave solution

u(x, t) = e−
χf1

c e−c(x−ct)

e−c(x−ct), v(x, t) = e−
f1
c e−c(x−ct)

, (8.14)

where c is the wave speed.
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Fig. 8.1. u and v given by (8.14) for f1 = 1 and χ = 0.25.

To avoid singularities in the production and degradation terms it is of special interest to look for 0 < χ < 1
2 which

means 1
2 < 1− χ, 1, respectively 0 < 1 − 2χ, 1 for the powers of v in the v-equation. However, qualitatively the shape
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of the solutions remains the same, independent from the choice of χ ∈ R+. For kc = 0 respectively kc = 1 one obtains
pure degradation for v.

It is also possible to construct examples where multiple peak traveling pulse solutions exist by making appropriate
choices for the sensitivity functional. This follows immediately from the following statement from [65]:

Assume there exists a traveling wave solution for the system

ut = (ux − u(log(v))x)x

vt = kcvxx + g(u, v)

}

(8.15)

with homogeneous Neumann boundary data. Then there exists a traveling wave solution for

ut = (ux − u(log(Φ(v))x)x

vt = kcvxx + g
(

vu
Φ(v) , v

)

,

}

(8.16)

since in (8.15) we have u(z) = ve−cz and in (8.16) one obtains u(z) = Φ(v)e−cz.
Let us consider now a concrete example for multiple peaks traveling waves. As one can easily check the system

ut = (ux − u(log(4v2 − 4v3/2 + v))x)x

vt = vxx − 6α2 v2u2

4v2−4v3/2+v
.

}

has the traveling wave solution

u(x − αt) =
(1 − e−α(x−αt))2

(1 + e−α(x−αt))4
e−α(x−αt) and v(x − αt) = (1 + e−α(x−αt))−2.

The second traveling peak in the population is caused by the sensitivity function. Substituting the solution into the

–10

–5

0

5

10

Space x

–4

–2

0

2

4

Time t

0

0.01

0.02

0.03

0.04

0.05

0.06

 

–10

–5

0

5

10

Space x

–4

–2

0

2

4

Time t

0

0.2

0.4

0.6

0.8

1

 

Fig. 8.2. The function u(x− αt) and v(x− αt) given by the formula above for α = 1.

functional form of the sensitivity function it becomes a perturbation of the traveling front for the chemical distribution.
It is also possible to construct more than two traveling peaks by appropriate choices of the sensitivity function.

I want to mention that the constructive approach sketched here also allows different assumptions on k(u) and that
there are also Keller-Segel type systems with k(u) 
≡ 1 that also have traveling wave solutions. For more details see
once more [65].

Under certain additional assumptions the presented results allow to conclude that there are also traveling wave
solutions on multi-dimensional cylindrical domains. For instance the system

ut = ∇(∇u − u∇(log(v)))

vt = 2∆v + 2v + α2u − 2α2 u2

v
,

on Ω = R × [0, π] with no-flux boundary conditions for the first equation and where v satisfies homogeneous Dirichlet
boundary data on ∂Γ has the explicit solution

u(x, y, t) = sin(y)e−α(x−αt)e−e−α(x−αt)

, v(x, y, t) = sin(y)e−e−α(x−αt)

. (8.17)
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Fig. 8.3. The function u(x, y, t) on the left and v(x, y, t) on the right for α = 1 and t = 1 given by the formula (8.17) .

8.5. Transversal stability of traveling wave fronts for chemotaxis with a growth term. It is possible
to observe interesting patterns during the aggregation of certain species. These patterns sometimes consist of some
particle streamings resp. some kind of fingering structures that change as time evolves but the wave-like movement
in direction of the aggregation centers remain. In this subsection we only concentrate on the results form [41] to
demonstrate that an additional growth term can generate pattern during the chemotactical movement of mobile
species and might be important to explain these streaming effects. As we have seen the interplay of the chemotactical
sensitivity of the species and the production and consumption terms of the chemoattractant can generate the formation
of a traveling pulse for non-reproductive species. In the case of reproduction we cannot expect the existence of a
traveling pulse. Therefore we shall look for traveling fronts of both, the species and the chemoattractant.

Funaki, Mimura and Tsujikawa study the system

ut = ∇(ǫ2∇u − ǫku∇χ(v)) + u(1 − u)(u − a),
vt = ∆v − γv + u,

}

(8.18)

on the strip domain Ωl := {(x, y) ∈ R
2 | −∞ < x < ∞, 0 < y < l} with width l > 0, where the boundary conditions

are

(u, v)(t,−∞, y) =

(

1,
1

γ

)

, t > 0, 0 < y < l, (u, v)(t,∞, y) = (0, 0) , t > 0, 0 < y < l,

(

∂u

∂y
,
∂v

∂y

)

(t, x, 0) = (0, 0), t > 0, −∞ < x < ∞,

(

∂u

∂y
,
∂v

∂y

)

(t, x, l) = (0, 0), t > 0, −∞ < x < ∞.

Introducing the new variable z = x− ǫθt they first construct 1-dimensional traveling front solutions for this system in
the following way. If there exists a 1-dimensional traveling front solution then it satisfies the equations

0 = ǫ2uzz − ǫθuz − ǫk (uχ′(v)vz))z + u(1 − u)(u − a),
0 = vzz + ǫθvz − γv + u,

}

(8.19)

with boundary conditions (u, v)(−∞) =
(

1, 1
γ

)

and (u, v)(∞) = (0, 0). They then construct outer and inner approxi-

mations of the solution of this problem, taking the limits ǫ → 0. Setting ǫ = 0, the lowest solution (u0, v0) of (8.19)
satisfies

0 = u(1 − u)(u − a) and 0 = vzz + u − γv.

Then the first equation implies that we may take

u0(z) =

{

0, z > 0
1, z < 0

Substituting this into the second equation we obtain

v0(z) =

{

1
2γ e−

√
γz, z > 0

1
γ − 1

2γ e−
√

γz, z < 0
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which belongs to C1(R). This solution is called an outer solution in R.

However as a discontinuous function u0(z) is not a good approximation of the solution in a neighbourhood of
z = 0. In order to construct an approximate solution in a neighbourhood of z = 0, Funaki et al. introduce the
stretched variable ξ = z/ǫ and rewrite the problem as

0 = ũξξ + (θ − kχ′(ṽ)ṽz)ũξ − ǫk(χ′(ṽ)ṽz)z + u(1 − u)(u − a),
0 = ṽξξ + ǫ2(θṽξ − γṽ + ũ),

}

(8.20)

where (ũ, ṽ)(ξ) = (u, v)(ǫξ). Setting now ǫ = 0 and noting that v0(0) = 1
2γ we see

0 = ũξξ + (θ − kχ′(ṽ)ṽz)ũξ + u(1 − u)(u − a),
0 = ṽξξ,

}

(8.21)

with boundary conditions ũ(−∞) = 1, ũ(∞) = 0, ṽ(±∞) = 1
2γ . Thus we get ṽ(ξ) ≡ 1

2γ which implies

0 = ũξξ +

(

θ +
k

2
√

γ
χ′
(

1

2γ

))

ũξ + u(1 − u)(u − a).

The existence of an inner solution (ũ, ṽ)(z/ǫ) in a neighbourhood of z = 0 is now a consequence from the results in
[33]. Matching the outer and inner solution a traveling front solution of the problem can be constructed in one spatial
dimension. This is summarized in the following Theorem:

Theorem 8.4 (M. Funaki, M. Mimura & T. Tsujikawa). Fix k > 0 arbitrary. There is ǫ0 > 0 such that for any
ǫ ∈ (0, ǫ0) the system (8.19) has a solution (U ǫ, V ǫ)(z) for θ = (θ(ǫ; k) satisfying

lim
ǫ→0

U ǫ(z) = u0(z) uniformly in (−∞,−δ) ∪ (δ,∞), lim
ǫ→0

V ǫ(z) = v0(z) uniformly in R

with any small constant δ > 0 and

lim
ǫ→0

θ(ǫ; k) = θ∗(k) = c − k

2
√

γ
χ′
(

1

2γ

)

.

Moreover lim
ǫ→0

U ǫ(ǫξ) = ũ(ξ), lim
ǫ→0

V ǫ(ǫξ) = 1
2γ uniformly on any compact subset of R with respect to C2(R).

Studying in two spatial dimensions the distribution of the eigenvalues of the eigenvalue problem of the linearized system
around the front solutions with velocity ǫθ(ǫ; k) in the strip domain Ωl Funaki et al. find out that the transversal
stability of the front shows the following behaviour:

Theorem 8.5 (M. Funaki, M. Mimura & T. Tsujikawa).

1. When χ′′
(

1
2γ

)

≤ 0, for any fixed l > 0 and k > 0, there is ǫ0 > 0 such that all eigenvalues are in the left half

of the complex plane if 0 < ǫ < ǫ0. Thus the traveling front solution ids transversally stable.

2. When χ′′
(

1
2γ

)

> 0, for any fixed l > 0 and k > 0, there is ǫ0(l, k) > 0 such that the traveling front solution

is unstable for any 0 < ǫ < ǫ0(l, k).

Thus the tranversal stability of the wave front depends of the chemotactical sensitivity, where transversally stable
is defined in [41] in the following way:

Definition 8.6. A traveling front solution of (8.18) is transversally stable except for translational invariance in
x, if and only if zero is a simple eigenvalue of the eigenvalue problem associated with the linearized system of (8.18)
around the traveling front solution and the remaining spectrum is contained in a closed sector lying in the left half of
the complex plane. The traveling front is unstable if it is not stable.

Further results related to this system can also be found in [13] and [14].
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9. Conclusions and personal comments. There are of course still many open problems in connection with
the various approaches that have been studied for the Keller-Segel model.

This paper dealt solely with the parabolic model proposed by Keller and Segel for the aggregation phase of mobile
species caused by chemotaxis. However there are also different approaches to chemotaxis and hencealso numerous
different models describing chemotaxis. First of all, one must always keep in mind that the model one uses is based
either on a microscopic or a macroscopic approach and always depends on the species studied. Thus transport
and hyperbolic models for chemotaxis have also been proposed. For example transport and hyperbolic models for
chemotactical movement have been studied in [4, 5, 34, 37, 38, 55, 57, 59] and [110]. The connection between
chemotaxis equations as the parabolic limit of velocity jump processes or transport models for chemotaxis has been
studied in [4, 5, 22, 58, 113] and [114]. I refer to [37] for surveyes on different models for chemotactical movement and
to [59] for a survey on the hyperbolic approach to chemotaxis.

Of course there are many publications presenting experimental data on chemotactic effects and the influences of
changes in the motility or the chemotactic sensitivity of the given species (see for example [35, 36]). Models which
take the chemotactical movement of n populations according to k sensitivity agents into account have been proposed
in [3, Beispiel 2.47, page 58] and in [152] by G. Wolansky. Wolansky has studied a generalization of the Keller-Segel
model for n populations in the absence of conflicts. Also the effect of multiple attractant gradients on chemotactical
movement has been studied [140] and numerical solutions for the corresponding models have been calculated [39, 40].
Numerical analysis for the Keller-Segel model has been performed, for example, by Gajewski and Zacharias using a
chemotaxis version of the well-established TOSCA code for solving semiconductor problems and by Nakaguchi and
Yagi studying the full discrete approximation of the Keller-Segel model by Galerkin Runge-Kutta methods [100, 101].
The transport chemotaxis model is dealt with in [21] and [40], for example.

The results available for systems related to the Keller-Segel equations such as the Othmer-Stevens model are so
numerous that I mention only a few [77, 112, 141] and [154]. The well-posedness of the Othmer-Stevens model follows
directly from the results by Rascle [117].

Of course, the functional forms appearing in the original Keller-Segel model can vary from species to species and
some explicit models for the cAMP oscillation have been proposed (see [80] for the so called Martiel and Goldbeter
model, [111] for a survey on the oscillatory cAMP signaling in Dictyostelium discoideum and [120] for the description
of the role of cAMP in the development of Dictyostelium discoideum). The Keller-Segel model has also been used
to describe different problems. For example, in [84] the Keller-Segel equations have been proposed for strip pattern
formation in alligator embryos. Angiogenesis has also been proposed as another application of Keller-Segel type models
(see for example [27] including references). The large number of applications and of possible functional forms results
directly in a large number of models depending on the considered problem. In some particular papers this has also
resulted in the addition of a third equation to the Keller-Segel model (2.4) or the rediscovery of a more complicated
version of the Keller-Segel model. This results from attempts to describe more complicated pattern formations during
the aggregation phase of mobile species such as the attempt to describe spiral waves during the aggregation (see, for
example, [134, 144] and [145] for such extended models).

At the conclusion of this survey I would ask the reader to allow me a personal comment. The references given in
this text are far from complete. I have tried to give the interested reader a brief summary of the latest developments
in the Keller-Segel model. Thus, this article is intended as continuation of Evelyn Fox Keller’s article “Assessing the
Keller-Segel model: How has it fared” of 1980 [74]. It is left to the reader to decide whether I have succeeded.

Acknowledgement: I thank Prof. Dr. Wolfgang Alt for allowing me to include the results from his Habilitation in
this summary of the Keller-Segel system.
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[20] H. Brézis and F. Merle, Uniform estimates and blow-up behaviour for solutions of −∆u = V (x)eu in two dimensions, Comm. P.D.E.

16 (1991), pp. 1223 – 1253.
[21] B. J. Brosilow, R. M. Ford, S. Sarman and P. T. Cummings, Numerical solution of transport equations for bacterial chemotaxis:

Effect of discretization of directional motion, SIAM J. Appl. Math. 56 (1996), pp.1639–1663.
[22] F. A. C. C. Chalub, P. Markowich, B. Perthame and C. Schmeiser, Kinetic models for chemotaxis and their drift diffusion limit.

Preprint 2002.
[23] S.-Y.A. Chang and P. Yang, Conformal deformation of metrics on S2, J. Differential Geometry, 27 (1988), pp. 259–296
[24] S. Childress and J.K. Percus, Nonlinear aspects of chemotaxis, Math. Biosc. 56 (1981), pp. 217 – 237.
[25] S. Childress, Chemotactic collapse in two dimensions, Lecture Notes in Biomathematics, Springer-Verlag, volume 55, 1984, pp. 61 –

66.
[26] M. H. Cohen and A. Robertson, Wave propagation in the early stages of aggregation of cellular slime molds. J. theor. Biol. 31 (1971),

101–118.
[27] L. Corrias, B. Perthame and H. Zaag, A model motivated by angiogenesis, Preprint 2002.
[28] B. Davis, Reinforced random walks, Probab. theory Related Fields 84 (1990), pp. 203 – 229.
[29] F. Dkhil, On the analysis of reaction-diffusion-advection systems arising in chemical and biomathematical models, PhD-thesis,

University of Cergy-Pontoise, France, 2002.
[30] Y. Ebihara, Y. Furusho and T. Nagai, Singular solutions of traveling waves in a chemotactic model., Bull. Kyushu Inst. Tech.

Math. Natur. Sci. 39 (1992) 29–38.
[31] Evans, L. C. 1998 Partial Differential Equations, American Mathematical Society, Graduate Studies in Mathematics 19, Providence,

Rhode Island.
[32] D. L. Feltham and M. A. J. Chaplain, Travelling waves in a model of species migration, Appl. Math. Lett. 13 (2000), pp. 67–73.
[33] P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to traveling front solutions, Arch. Rat. Mech.

Analysis 65 (1977), pp. 335–362.
[34] R. M. Ford and D. A. Lauffenburger, Analysis of chemotactic bacterial distributions in population migration assays using mathemat-

ical model applicable to steep or shallow attractant gradients, Bull. Math. Biol. 53 (1991), pp. 721–749.
[35] R. M. Ford, B. R. Phillips, J. A. Quinn and D. A. Lauffenburger, Measurement of bacterial random motility and chemotaxis

coefficients: I. Stopped-flow diffusion chamber assay, Biotech. and Bioengin. 37 (1991), pp. 647–660.
[36] R. M. Ford and D. A. Lauffenburger, Measurement of bacterial random motility and chemotaxis coefficients: II. Application of

Single-cell-based mathematical model, Biotech. and Bioengin. 37 (1991), pp. 661–672.
[37] R. M. Ford, Mathematical modeling and quantitative characterization of bacterial motility and chemotaxis., Modelin the Metabolic

and Physiology Activities of Microorganisms: Chapter 7, John Wiley & sons, Inc. 1992.
[38] R. M. Ford and P. T. Cummings, On the relationship between cell balance equations for chemotactic cell populations, SIAM J. Appl.

Math. 52 (1992), pp. 1426–1441.
[39] P. D. Frymier, R. M. Ford and P. T. Cummings, Cellular dynamics simulations of bacterial chemotaxis, Chem. Engin. Sci. 48 (1993),

pp. 687–699.
[40] P. D. Frymier, R. M. Ford and P. T. Cummings, Analysis of bacterial migration: I. Numerical solution of balance equation, AIChE

J. 40 (1994), pp. 704–715.
[41] M. Funaki, M. Mimura and T. Tsujikawa, Traveling front solutions arising in a chemotaxis-growth model, RIMS Kokyuroku 1135

(2000), pp. 52–76.
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Biomathematics 38, Springer-Verlag, Berlin, Heidelberg, New York 1980, pp. 379 – 387.
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[120] C. D. Reymond, P. Schaap, M. Véron and J. G. Williams, Dual role of cAMP during Dictyostelium development, Experientia 368

(1995), pp. 1166–1174.
[121] M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system, Hiroshima Math. J. 30 (2000), pp. 257 – 270.
[122] G. Rosen, On the propagation theory for bands of chemotactic bacteria, Math. Biosci. 20 (1974), pp. 185 – 189.
[123] G. Rosen and S. Baloga, On the stability of steady propagating bands of chemotactic bacteria, Math. Biosci. 24 (1975), pp. 273 –

279.
[124] R. Schaaf, Stationary solutions of chemotaxis systems, Trans. Am. Math. Soc. 292 (1985), pp. 531 – 556.
[125] T. L. Scribner, L. A. Segel and E. H. Rogers, A numerical study of the formation and propagation of traveling bands of chemotactic

bacteria, J. Theor. Biol. 46 (1974), pp. 189–219.
[126] T. Senba, Blow-up of radially symmetric solutions to some systems of partial differential equations modelling chemotaxis, Adv.

Math. Sci. Appl. 7 (1997), pp. 79 – 92.
[127] T. Senba and T. Suzuki, Chemotaxis Collapse in a parabolic-elliptic system of mathematical biology, Preprint 1999.
[128] T. Senba, Behavior of solutions to a system related to chemotaxis, Proceedings of the Equadiff 99, (eds. B. Fiedler, K. Gröger, J.
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Appendix A. Notation. Throughout the paper we use the following notations. Let Ω ⊂ R
N (N ≥ 1) be an open

set. We use the following notation for spaces of differentiable functions on Ω. Ck(Ω) := {u : Ω → R | u is k−times

continuous differentiable}, Ck(Ω) : {u ∈ Ck(Ω) | Dαu is continuous for all |α| ≤ k}, C∞(Ω) :=
∞
⋂

k=0

Ck(Ω), and

C∞(Ω) :=
∞
⋂

k=0

Ck(Ω). For the Hölder continuous functions we use the notation

Ck,β(Ω) := {u ∈ Ck(Ω) |
∑

|α|≤k

||Dαu||C(Ω) +
∑

|α|=k

[Dαu]C0,β(Ω) < ∞},

where ||u||C(Ω) ≡ sup
x∈Ω

|u(x)| and [u]C0,β(Ω) ≡ sup
x,y∈Ω,x �=y

{ |u(x) − u(y)|
|x − y|β

}

.

We also use the following function spaces. Lr(Ω) := {u : Ω → R | u is measurable and ||u||Lr(Ω) < ∞}, where

||u||Lr(Ω) :=

⎛

⎝

∫

Ω

|u|rdx

⎞

⎠

1/r

for 1 ≤ r < ∞.

L∞(Ω) := {u : Ω → R | u is measurable and ||u||L∞(Ω) < ∞}, where ||u||L∞(Ω) := ess sup
Ω

|u|.
W k,r(Ω) := {u : Ω → R | u ∈ Lr(Ω) and Dαu exists weakly for all multiindices α with |α| ≤ k and belong to Lr(Ω)},
where the norm in W k,r(Ω) is given by

||u||W k,r(Ω) :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

∑

|α|≤k

∫

Ω

|Dαu|rdx

)1/r

, 1 ≤ r < ∞
∑

|α|≤k

ess sup
Ω

|Dαu|, r = ∞
.



Submitted for Journal publication: The Keller-Segel model in chemotaxis and its consequences 51

We use the notation H1(Ω) for functions belonging to W 1,2(Ω) and H2(Ω) for functions belonging to W 2,2(Ω). We
denote the dual space of H1(Ω) by (H1(Ω))∗. Finally, the following notations are used for time dependent Lr-spaces:
Lr(X ; (0, T )) := {u : [0, T ] → X | u is measurable and ||u||Lr(X ;(0,T )) < ∞},

||u||Lr(X ;(0,T )) :=

⎛

⎝

T
∫

0

||u(t)||rX dt

⎞

⎠

1/r

for 1 ≤ r < ∞ and, ||u||L∞(X ;(0,T )) := ess sup
0≤t≤T

||u||X for r = ∞.

C(X ; [0, T ]) := {u : [0, T ] → X | u is continuous and ||u||C(X ;[0,T ]) < ∞}, where ||u||C(X ;[0,T ]) := max
0≤t≤T

||u(t)||X .

We write Lr(ΩT ) for the function spaces Lr(Lr(Ω); (0, T )) for all 1 ≤ r ≤ ∞.


