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Abstract: The prospect of massive parallelism of optics

enabling fast and low energy cost operations is attracting

interest for novel photonic circuits where 3-dimensional

(3D) implementations have a high potential for scalabil-

ity. Since the technology for data input–output channels is

2-dimensional (2D), there is an unavoidable need to take 2D-

nD transformations into account. Similarly, the 3D-2D and

its reverse transformations are also tackled in a variety of

fields such as optical tomography, additive manufacturing,

and 3D optical memories. Here, we review how these 3D-2D

transformations are tackled using iterative techniques and

neural networks. This high-level comparison across differ-

ent, yet related fields could yield a useful perspective for 3D

optical design.

Keywords: 3D optical memory; additive manufacturing;

inverse design; optical tomography; photonic circuit design.

1 Introduction

Optical information processing is an attractive topic for

scientists and researchers due to the potential fast and

energy-efficient performance guaranteed by the intrinsic

physical properties of optics [1]. With the advancements in

micro/nano fabrication, nowadays implementing photonic

circuitry is becoming more and more a reality. However,
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the field still stays infant and requires breakthroughs. Along

with integrated solutions [2–5], one of the promising ways

of taking advantage from the parallelism of optics is using

3-Dimensional (3D) implementations, which enable the scal-

ability of the systems [6–9]. Nonetheless, the data injec-

tion and read-out systems, such as spatial light modulators

and detectors are at best 2-dimensional (2D); hence, it sub-

sist an imperative necessity for transformations between

3D and 2D for both illuminating and collecting informa-

tion with light. This is also the case for human vision.

We live in a 3D world but we rely on a set of 2D sen-

sors (the retinas in our eyes). Therefore, the human neu-

ral vision system adapted to perform an incredible job;

from only a set of two 2D projections at a slightly different

angle, our brain can reconstruct the 3D scene. Following the

machinery of evolution, one would expect artificial neural

networks to have a similar role in carrying out these trans-

formations. It is therefore worthy to take a step back to

enumerate and understand the problems related to 3D-2D

transformations.

In this paper, we first review optical tomography, which

is one of the most prominent methods for 3D imaging deal-

ing with the reconstruction of volumetric objects from 2D

recordings. The inversion of the scattering problem, at the

core of this technique, is severely hampered by the lim-

ited number of available projections, at the origin of the

so-called “missing cone”, which makes the transformation

back to 3D an ill-posed problem, and multiple scattering

occurringwithin the object. Neural networks are frequently

employed to unscramble and fill in the missing information

using data-driven (statistical) andphysics-based approaches

with different techniques presented in Section 2. Then we

will review volumetric additive manufacturing, where the

problem is reversed by using a tomographic-based method

to fabricate 3D objects in a fast and effective manner. This

part reports on an example of going from 3D (known tar-

get object) to 2D (unknown corresponding projections) and

back again to 3D (fabricated physical object). In the same

manner, as the printing process leverages the transfer of

information from 2D projections to shape a volumetric

object, one can pattern the matter in 3D to store 2D data,

such as collections of pages, matrices, images, and so on.

In Section 4, we review 3D optical memories as another
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example where the 3D information is retrieved from 2D

measurements. In this case, we have 2D input–output

planes and a 3D medium that specifies the different map-

pings between the input–output planes.

Finally, in Section 5, we outline the recent approaches

using neural networks and other iterative optimization

schemes for designing 3D optical circuitry, which unavoid-

ably performs 2D-to-2D mappings using 3D features of

optics. We believe that understanding how other fields

deal with the fundamental challenges arising from 3D-

2D transformations and how neural networks are used

in these fields could provide a valuable perspective for

optical/photonic circuit design and fabrication. Photonics,

in this regard, would be most beneficial for neural net-

work architectures particularly when massive parallelism

is required, which establishes interesting positive feedback

between two fields.

2 Optical tomography

Optical tomography is an example of an imaging method

that reconstructs the 3D refractive index distribution of

the sample using multiple 2D projections. Here, 2D projec-

tions correspond to quantitativelymeasured scatteredfields

acquired by illuminating the sample from different angles

as shown in Figure 1(a). The sample, with 3D refractive

index distribution n(r), is illuminated with a set of plane-

wavesUI
m
= e j⃖⃖⃗km. r⃗, and the complexfields,Ut

m
, aremeasured

for each projection, m. The refractive index of the sample

is locally correlated with the mass density, which makes

its 3D reconstruction interesting for a variety of biological

applications [10, 11].

Conventionally, the 2D projections are measured in an

off-axis holography configuration to capture both amplitude

and phase information of the scattered field. A standard

optical tomography setup is presented in Figure 1(b) where

a coherent and collimated visible source is divided into

a signal and reference beams with a beam-splitter. The

angle of the signal beam is controlled using a pair of galvo-

mirrors, and a 4F system is used tomagnify the illumination

angle. The illuminated sample is then imaged onto a camera

through another 4F system consisting of amicroscope objec-

tive and a tube lens. The off-axis reference beam and the

signal beam are recombined to form the hologram on the

detector plane.We can process the holograms in the Fourier

domain to retrieve the phase and amplitude of the complex

projections.

The optical scattering can be described by the

Helmholtz equation in an inhomogeneous medium [12]:

∇2Us(r)+
(
k0n0

)2
Us(r) = −V(r)U(r) (1)

where Us(r) is the scattered field, k0 is the wave num-

ber in free space, n0 is the refractive index of the back-

ground medium, U(r) = Us(r)+ UI (r) is the total field, and

V(r) =
(
k0n0

)2(
n2(r)∕n2

0
− 1

)
is the scattering potential of

the sample. The integral solution of Us(r) based on Eq. (1)

is nonlinear with respect to the scattering potential, and as

a result, the optical scattering problem cannot be directly

inverted to achieve the 3D scattering potential. Addition-

ally, due to the finite number of projections, and limited-

numerical aperture (NA) of the imaging system, there is

missing information that makes the inverse problem more

difficult. In the following, we summarize ray-optics-based

and single-scattering approximations that linearize the

3D scattering potential reconstruction problem, and then

we review optimization and machine learning techniques

for addressing missing information and multiple-scattering

problems.

2.1 Optical tomography based on direct
inversion

Charrière et al. [13], and Choi, et al. [14] reported the first

experimental implementation of tomographic refractive

index reconstruction for biological cells. Even though opti-

cal diffraction tomography was theoretically proposed and

elaboratedmuch earlier, the refractive index reconstruction

method in [13, 14] is based on the ray-optics approximation.

If we assume weakly diffractive objects, the phase of a 2D

projection in U
(
r′
)
= UI

(
r′
)
e j𝜑(r

′) will be proportional to

the integration of 𝛿n(r), the refractive index contrast of the

sample with respect to the background medium, along the

optical axis [13]:

𝜑
(
x′, y′, z′ = z0

)
=

z0

∫ k0𝛿n
(
r′
)
dz′ (2)

Equation (2) is the line integral of the refractive index

contrast along the projection direction, which is known as

the Radon transform of 𝛿n [15]. This representation clar-

ifies the similarity to computed X-ray tomography for 3D

reconstruction of the absorption using 2D intensity mea-

surements. Having the 2D phase profiles for different illumi-

nation angles, an inverse Radon algorithm based on filtered
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Figure 1: Optical tomography. (a) An overview of the optical tomography problem. A 3D object is illuminated with different plane waves, and 2D

quantitative phase projections are measured for each illumination angle. (b) A standard off-axis holography setup for refractive index tomography.

The illumination angle can be controlled using a pair of galvo mirrors. (c) Iterative optical diffraction tomography (ODT): A forward model (such as

single-scattering [23] or beam propagation method [24] computes the 2D projections for each illumination angle. By comparing this field to the

measurements, a loss function is calculated, which is minimized by improving the reconstruction of the 3D refractive index iteratively. (d) Comparison

of ODT reconstruction results for a hepatocyte cell using the Rytov approximation and iterative ODT with edge-preserving regularization (Adapted

from [23] Copyright OPTICA). The scale bar is 5 μm. (e) Tomographic results of two 10 μm polystyrene beads immersed in oil with n0 = 1.516 based on

inverse Radon transform and learning tomography (Adapted from [24], Copyright OPTICA). (f) 3D reconstruction of a red blood cell using TomoNet.

(Adapted from [28] Copyright SPIE). Figures (e) and (f) show that learning tomography and TomoNet solve underestimation and elongation of the

reconstructions.

back projection can be used to reconstruct the 3D tomo-

grams of refractive index contrast, 𝛿n(r).

For samples with features comparable to the wave-

length, the diffraction of light cannot be neglected. Emil

Wolf proposed optical diffraction tomography (ODT) [12] in

1969 using the Born approximation to linearize the integral

solution of Eq. (1). Wolf showed that using the Born approxi-

mation, the 3D Fourier transform of the scattering potential

can be related to the 2D Fourier transformof each projection

according to the incident wave-vector,

2D

{
Us
m

}(
kx, ky

)
= 2𝜋 j

kz
Ṽ
(
kx − kin

x
, ky − kin

y
, kz − kin

z

)

(3)

where Us
m
is the scattered field for projection m, kx , and ky

are the spatial frequencies, kin
x
, kin

x
, and kin

x
are the wave

vectors of the illumination beam and kz =
√
k2 − k2

x
− k2

y
.

We can use Eq. (3) to fill the 3D Fourier domain

of the scattering potential. Devaney proposed using
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the Rytov approximation for ODT [16] by using

U I(r) log
{
U(r)∕U I(r)

}
instead of Us(r) on the left side

of Eq. (3) which can be justified with the first-order

Taylor expansion. Sung et al. [17] presented the first

experimental results on diffraction tomography using

the Rytov approximation. Later, many groups thoroughly

studied different aspects of ODT such as illumination

beam rotation [18], sample rotation [19], temporally

incoherent ODT [20], wavelength scanning [21], and

polarization-sensitive ODT [22]. In Figure 1(d), a 3D

refractive index reconstruction of hepatocyte cells is

shown using Wolf’s method with the Rytov approximation

[23]. The ill-posed nature of the direct inversion of the

scattering problem causes missing frequencies in the

Fourier domain of the reconstructed scattering potential.

The missing spatial frequencies make the 3D refractive

index reconstruction underestimated and elongated along

the optical axis. To solve this issue, iterative methods for

optical tomography have been investigated.

2.2 Machine learning and iterative methods
for optical tomography

To consider a more accurate forward scattering model

rather than Born or Rytov approximations, and solve the

missing frequencies problem, several iterative optimization

schemes have been proposed for optical tomography. The

main idea of iterative tomography, shown in Figure 1(c) is

finding the 3D refractive index distribution byminimization

of a loss function, which includes the difference between

the field calculated by a forward model and the measured

projections, plus a regularization term based on some prior

information about the sample,

 =
∑

m

‖Umodel
m (V)− Û

projection
m ‖2 +prior(V) (4)

where Umodel
m (V) is the 2D projection calculated for the esti-

mated scattering potential in that iteration using a for-

ward model, Û
projection
m is the measured projection, and

prior(V) is a regularization term based on prior knowledge

of the 3D scattering potential. The iterative optimization

for the reconstruction of the refractive index has been pre-

sented for ray-optics tomography [14]. For ODT, different

regularizers are compared in [23] using a single-scattering

forward model. Their results in Figure 1(d) show signif-

icant improvement in the underestimation and elonga-

tion of the sample, using an edge-preserving regularization

term.

A more accurate forward model for the calculation

of Umodel
m

is used in [24] based on the beam propagation

method. This approach, known as learning tomography,

accounts for the multiple scattering and provides a decent

3D reconstruction of the refractive index, as shown in

Figure 1(e). This idea was further investigated to achieve

3D reconstructions using a few projections [25], or intensity

measurements [26]. Additionally, Tian and Waller demon-

strated that LED illumination could be used for tomographic

reconstruction with a multi-slice forward model to over-

come laser fluctuations and speckle artifacts [27].

Recently, several groups studied machine-learning

techniques for ODT. Lim et al. [28] presented a deep neu-

ral network, TomoNet, which maps the Rytov-based low

axial resolution 3D tomograms to the improved 3D refrac-

tive index tomograms. They have generated a dataset of

red blood cell phantoms with different sizes, refractive

indices, and orientations. Then, they calculated synthetic

projections for 40 illumination angles for each phantom by

discrete-dipole approximation and calculated Rytov-based

reconstruction using these synthetic projections. In such

a manner, a dataset of red blood cells with their corre-

sponding Rytov reconstructions can be achieved to train

a deep neural network with a U-Net structure. This net-

work, which is trained on synthetic data, can provide 3D

tomograms with a reconstruction error two orders of mag-

nitude smaller than Rytov, and it can be also used for

experimental projections. In Figure 1(f), the 3D reconstruc-

tion of the refractive index of a mouse red blood cell

is shown using TomoNet in comparison with the Rytov

approximation. Recently, SILACT, a machine learning tech-

nique for the 3D reconstruction of the refractive index was

presented [29],which is based on adeepneural network that

converts a single frame hologram with angle-multiplexing

illumination to the 3D refractive index tomogram. In this

method, a dataset of input/output pairs is generated as fol-

lows: each sample is illuminated with a single frame of

angle-multiplexed illumination with four angles, and a raw

hologram is measured using off-axis holography. Raw holo-

grams are considered as the input of the network. Then,

the sample is illuminated with 49 projections, each from

a single angle, and a 3D reconstruction of the sample is

calculated using learning tomography based on these pro-

jections. This 3D reconstruction is considered as the output

of the network. The deep neural network is trained on these

input/output pairs. Using the trained deep neural network,

a 3D reconstruction of the sample can be achieved with an

angle-multiplexed single hologram. Another deep learning

method for 3D tomography was recently investigated using

a physics-informed neural network, MaxwellNet, as the

forward model in Eq. (4) [30]. MaxwellNet minimizes a
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physics-informed loss function (such as Maxwell equations)

and it was originally proposed for an inverse design

problem [31]. In contrast to the conventional data-driven

neural networks that require a huge dataset, MaxwellNet

exploits physical laws to suggest a fast solution to the for-

ward and inverse scattering problems.

Iterative solutions of ODT [23–26, 30] provide better

3D reconstructions at the cost of computation time. Direct

ODT approaches such as Wolf’s method [12] are relatively

fast since they require a few operations such as multi-

plication and fast Fourier transform (FFT) per projection

or an additional phase-unwrapping step for each projec-

tion in the case of Rytov approximation. However, recon-

structing the 3D refractive index tomogram with an itera-

tive optimization method requires performing the forward

model for all the projections in each iteration. As a result,

depending on the complexity of the forward model and the

number of iterations, iterative optical tomography methods

are time-consuming. Ref [25] compares Beam Propagation

Method (BPM) and Split-Step Non-Paraxial (SSNP) method

as forward models for the iterative reconstruction where

one iteration (running on a graphics card) takes approxi-

mately 3–13 s for BPM depending on the computation vol-

ume and 50% more time required for the SSNP version.

Note that the required iterations are in the order of a few

hundred. More sophisticated forward models such as Lipp-

mann–Schwinger [32, 33], are also used to showhigh-fidelity

reconstructions when the complexity of the data is high at

the expense of more computational power. Hence, the time

per iterationmaydiffer by anorder ofmagnitudewhen such

models are employed. Moreover, the applied regularization

method is also an important factor in the computation time

per iteration, which can make a difference by an order

of magnitude as shown in Ref. [23]. On the other hand,

deep neural networks such as TomoNet [28] and SILACT [29]

present tomographic 3D reconstructions of a specific class

of samples with a fast inference time, which goes below

a second for the whole process of 3D reconstruction of a

sample.

Iterative approaches using prior knowledge, accurate

forward models such as BPM, and statistical information

accomplished by machine learning frameworks can help to

achieve a better 3D refractive index reconstruction in the

ill-posed optical tomography problem.

3 Volumetric printing

3D printing can be thought of as the inverse of tomogra-

phy in that we know the 3D object and we look for the 2D

illuminating patterns that will yield the desired 3D con-

struct. The simplest illumination pattern is a focused spot.

Then by scanning this focus spot inside a photo-curable

resin, one can fabricate point-by-point (which is a relatively

slow process) a 3D structure [34]. A way to speed up the

process is to cure the resin layer-by-layer with a series of 2D

patterns at different depth [35]. A few years back, a promis-

ing and even much faster approach has been developed to

3D print centimeter-scale objects into high-viscosity fluids

or even solids in a few tens of seconds with high resolution

(<100 μm). The idea, taken up and elaborated simultane-

ously in two laboratories [36, 37] consists of irradiating the

resin with 2D light patterns from multiple angles. The light

exposure produces a volumetric dose of energy sufficient

to solidify, all at once, the material in the desired geome-

try, without following a sequential fabrication process as

layer-by-layer printers do. Hence, we refer to this method

as volumetric additive manufacturing (VAM).

One challenging task is to determine the required light

patterns from the desired light dose distribution. An inter-

esting aspect of this two-dimensional inverse problem is its

close relationship to computed tomography (CT) which aims

at reconstructing a three-dimensional image from its pro-

jections as explained in the previous section. Under some

simplifying assumptions, 3D imaging and 3D printing are

very similar; the problem they represent is simply reversed.

It results that we can successfully apply the same 2D-3D

transform and use analogous algorithms.

When printing in transparent resins, it was shown that

the Radon transform, as used for 3D image reconstructions,

can provide a set of 2D patterns to get high-quality 3D prints.

The patterns computation workflow as described in [36, 37]

consists of, first, converting the target 3Dmodel into a three-

dimensional binary matrix of voxels, where the entries “1”

indicate the presence of matter and “0” its absence at each

particular location in space. Then, for each 2D section of

this matrix, projections (also known as “sinogram”) are

calculated over multiple angles from the Radon transform

using a filtered back-projection algorithm [15]. Additional

processing is performed to ensure correct sampling of the

projection space and the absence of negative values that

cannot be generated with light. It was also proposed to opti-

mize the obtained sinogram to minimize the loss between

the target dose and the one obtained from the projections

[38, 39].

However, this model, based on the Radon transform,

assumes that light patterns propagate straight without

being attenuated or distorted inside the photoresist. This

would be the case when printing in perfectly homogeneous

and fully transparent resins, which does not happen in
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reality. In essence, the photoinitiator that triggers the chain

polymerization absorbs light, leading to an exponential

decrease in its intensity with depth. More dramatically,

light may also be scattered by the resin because of refrac-

tive index inhomogeneities, which is the case for all non-

transparentmaterials. Scattering can strongly affect the spa-

tial propagation of the beam; light deviates from its initial

direction which tends to blur the projected patterns and

prevents the printing of high-resolution features. Novel

methods have recently been proposed to maintain a rela-

tively high resolution for printing while increasing the tur-

bidity/absorptivity of the resin [40, 41]. Based on the inverse

Radon transform, a physics-informed forward model is

built including resin’s specifications such as the amount of

scattering or the degree of absorption and the positivity

constraint.

Another way to improve print fidelity is to get addi-

tional information during the print. Different imaging

systems using bright field [36] or dark field [42] illumi-

nations were proposed to reconstruct the printed object

with the standard tomographic algorithm. Such informa-

tion allows us to stop the print at the right time to avoid

over-polymerization of the part but can also be used as

feedback to improve the light patterns to be sent for the

next prints. In this case, one would adjust the amount

of light with respect to polymerized/unpolymerized parts.

In the same vein, a method for reconstructing in-situ the

3D refractive index from color Schlieren images was also

proposed [43].

Additional tricks were also developed to make VAM

more practical. One is about the lensing distortion from

the cylindrical vial. Usually, either an index-matching bath

around the print volume or a cylindrical lens mitigates

this lensing effect. However, this can be taken into account

when computing the illumination patterns as demon-

strated in [44] by resampling the parallel-beam radon trans-

form into an aberrated geometry using some ray tracing

analysis. It makes the printer more flexible and easier

to use.

The surface quality of the final print is also very impor-

tant. Tomographic VAM should be better than layer-by-layer

technologies regarding that but it suffers from striations,

similar in appearance to tens of microns thick layers. It

was shown in [45] that these striations are caused by a self-

written waveguide effect, driven by the gelation material

nonlinearity. The authors proposed a simple and effective

method of mitigating striations via a uniform optical expo-

sure added to the end of any VAM printing process.

Volumetric tomographic additive manufacturing

has been used in the support-free fabrication of

complex-geometry devices. First demonstrated in acrylates

and elastomers, tomographic VAM enables the fabrication

of functional objects, such as a fluidic ball-cage valve

with free-floating elements [46] or overprinting of 3D

geometries around preexisting solid components [37], with

resolutions below 80 μm [36]. Acrylate chemistry exhibits

a nonlinear/thresholded response to light dose, as seen in

Figure 3.1.c, thanks to oxygen inhibition [47], and thus is

well-adapted for tomographic VAM. Thiol-ene chemistries,

inwhich resins exhibit lower refractive index changes upon

polymerization, can be mediated with an inhibitor, such

as TEMPO (2,2,6,6-Tetramethylpiperidin-1-oxyl) to exhibit a

thresholded behavior. Thiol-ene polymerization has been

used to fabricate pieceswith tunablemechanical properties,

as seen in Figure 2(f) [48], and rapidly cross-linking

cell-compatible gelatin-norbornene hydrogels [49].

The technology has also been used to fabricate

heat-resistant silicon oxycarbide ceramic devices, as in

Figure 2(g) [50]. Here, a siloxanewasmixedwith an acrylate

crosslinker to produce a photosensitive resin that could

then thermally transform into a ceramic in a furnace. Addi-

tionally, Toombs and coworkers have demonstrated that a

polymerizable acrylic backbone can be loaded with silicon

dioxide nanoparticles to produce silica glass devices with

roughness down to 6 nm (Figure 2(h)) [51].

Tomographic VAM has also been used to cross-link cell-

compatible methacrylated hydrogels to produce cell-laden

trabecular bone structures shown in Figure 2(i) [46]; bone

heterocellular structures replicating vascularization [52];

and organoid-laden, gel-based, biofactories capable of liver-

specific ammonia detoxification [40].

4 3D optical memories

Another well-known way for going back from 2D to 3D is

through 3D optical memories. Here, the goal is to define a

3D distribution to store many 2D data pages or mappings

by modifying the optical properties of the media. Unlike

volumetric printing, here the idea is to satisfy a 2D-2D

mapping rather than the geometric fidelity. Establishing

particular 2D-2D mappings is also the goal of photonic cir-

cuits or networks, as we will investigate more in the next

section. Moreover, it is conceivable to expect an optical

memory for fast computation rather than having the mem-

ory in electronics. Before moving on to that, we propose to

first revisit the “classical” techniques to obtain 3D optical

memories.

The motivation behind the benefit of using 3D volumes

to store 2D data is quite intuitive: the extra degree of free-

dom provided by the third dimension entails an increase
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Figure 2: Volumetric additive manufacturing as tomographic back-projection. (a) Radon transform allows calculating the set of 2D tomographic

patterns from the 3D model. (b) The back-projection of these patterns into a rotating vial containing a photosensitive resin triggers its solidification.

(c) Tomographic VAM exploits the nonlinear thresholded response of corresponding photosensitive materials to light-induced polymerization. This

polymerization threshold ensures the fabrication of the target object only, even if the resin outside the object’s target volume inevitably receives some

light after having been illuminated from multiple angles. The liquid unpolymerized resin can be washed away after the print. Tomographic VAM has

been used to (d) produce high-resolution support-free structures (taken from [36], Copyright Springer-Nature); (e) overprint around pre-existing solid

objects (taken from [37], Copyright AAAS); fabricate (f) objects with tunable mechanical properties from thiol-ene resins (taken from [48], Copyright

Wiley), (g) heat-resistant polymer-derived silicon oxycarbide ceramics (rearranged from [50], temperature indicated, Copyright Wiley), (h)

nanoparticle-based silica glass devices (taken from [51], Copyright AAAS); and (i) bioprint cell-laden hydrogels (taken from [46], Copyright Wiley). Scale

bars: (d, f, g) 5 mm, (e) 10 mm, (h) 2 mm, (i) (from top left to bottom right) 2 mm, 1 mm, 500 μm, 250 μm.
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in the storing capacity as compared to 2D layouts. On the

other hand, one has to simultaneously deal with cross-talk

limitations emerging in tomography and additive manufac-

turing, i.e. one must be able to access and record data in

an isolated way. We can separate 3D optical memories into

two main groups concerning the way the data recording

and read-out are handled to address this issue: holographic

access techniques and two-photon access techniques [53]. In

the holographic methods, one piece (analog or discrete) of

data is distributed throughout the whole volume whereas

one bit of data is stored in a localized spot in two-photon

methods. For the sake of completeness, it is worth men-

tioning that there are other proposals such as persistent

spectral hole burning yielding a response in temporal fre-

quency domain [54, 55], but we will limit ourselves to the

spatial domain approaches hereafter. Although we referred

to holographic data storage as a distributed way of storing

data since gratings are recorded in the whole encoding vol-

ume, it must be noticed that this process just consists of

localizing the data in the spatial frequency domain instead

of real space. In Figure 3(a), we show this phenomenon by

using Ewald’s sphere representation. Ewald’s sphere is a

conceptual construction of a sphere whose radius is equal

to the momentum of light. When we place the k-vector

(momentum) of incident light between the center and the

surface of the sphere, the grating vector must connect the

tip of the incident k-vector onto the sphere to satisfy the con-

servation ofmomentum. In Figure 3(a), we show the grating

vector as a well-defined (or localized) vector, which would

satisfy the Bragg condition only for a specific angle with a

given wavelength. The amplitude of the sinusoidal grating

would store an analog value, which can be read out with the

reference beam as shown in Figure 3(a). The conventional

way to obtain such gratings is by optical interference of two

plane waves. The obtained hologram is thus transferred to

the photosensitive recording material as the 3D variation of

the intensity generates a similar variation in some optical

properties such as absorption or refractive index [56].

In the case of a two-photon technique, the interaction

volume is localized using two-photon absorption that scales

with the square of the intensity. On top of that, crossing two

orthogonal beams, as shown in Figure 3(b), to satisfy the

required intensity to initiate two-photon absorption further

narrows the focus volume in comparisonwith a single beam

that has an ellipsoidal point spread function elongated in

the optical axis [57, 58]. The local modification obtained

by two-photon absorption serves as a written bit of data.

During the read-out, the address beam, which could be a

light sheet, excites a specific page in the volume and the

fluorescence signal modulated with respect to the recorded

data is subsequently detected. Selecting a specific volume

for recording and read-out provides parallel access and

prevents inter-layer interference of different data pages at

the same time.We also note that optically induced dielectric

breakdown of glass could serve as a localizedway of record-

ing and reading data in 3D [59].

Figure 3: 3D optical memory implementations. (a) Diffraction from a sinusoidal grating according to Bragg matching condition. On Ewald’s sphere

representation, kR, kS, and kG refer to the wave vectors of the reference, signal, and recorded grating respectively. The reference beam simply

addresses and reads out the data stored in the grating. (b) Simple sketch of recording and read-out for a two-photon technique. Here, the address

beam (analog of the reference beam in the case of holography) is depicted as a light sheet accessing a layer of the volume and the data beam encodes

the information. During the read-out, the address beam selects the target layer to excite a fluorescence signal that would be modulated with respect

to the recorded data (following the description in [57]).
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To record many data pages in the two-photon sys-

tem, one should consider the two-photon absorption cross-

section and the intensities of the address and data beams

to decide on the distance of adjacent spots of data. One

should also consider dynamic focus optics synchronized

with the address beam to increase the signal-to-noise ratio

in the read-out as the emitted photons would undergo some

scattering in the media. For holographic access, we should

understand how Bragg selectivity works. When many grat-

ings are superimposed, based on the incidence angle, only

the Bragg-matched grating would yield strong diffraction

towards a designated area whereas all the rest of the refrac-

tive index modulation would scatter the light mainly in the

direction of the nondiffracted beam. For instance, having

the reference and data beams orthogonal to each other,

would yield clean read-outs as shown in Figure 4(a). An

infinitely large grating would have a well-defined (or ide-

ally localized) grating vector. However, a finite volume grat-

ing would have a so-called grating cloud, which is simply

due to the convolution of its Fourier transform by a 3D

sinc function because of bounded volume [60]. To record

many gratings for multiple pages of data, grating clouds

should be well separated to prevent cross-talk as depicted

in Figure 4(b). The bandwidth of the data in the recorded

page would broaden the recording along Ewald’s sphere.

This can be understood simply by considering the angular

spectrum, meaning that all the individual spatial frequen-

cies in the data page would launch a plane wave with dif-

ferent angles, which would record different gratings with

the corresponding reference beam mapped onto Ewald’s

sphere. Changing the angle (polar in spherical coordinate)

of the reference beam generates another Ewald sphere with

the same radius but shifted (as shown in Figure 4(b)), thus

separating the data pages thanks to Bragg selectivity. This

method is called angular multiplexing [61]. If we change the

wavelength, then of course the radius of Ewald’s sphere will

change, yielding wavelength multiplexing. If the data page

could form a 4π distribution, then the Bragg method would

Figure 4: Different holographic strategies. (a) 90◦ geometry decoupling the non-diffracted beam and modulated diffracted beam. kR, kS, and kG refer

to the wave vectors of the reference, signal, and recorded grating, respectively. (b) Bragg-selectivity in k-space separates the different pages of data by

mapping them on different Ewald’s spheres due to the different carrier frequencies. The vector clouds are designated by the shaded regions where

the size of the cloud inversely depends on the dimensions of the volume hologram, Lx and Lz , as shown. The same argument applies to the y-direction

as well. (c) Schematic for a phase mask stack. The stacked phase masks exhibit volumetric properties when the separation between them is large

enough for Fresnel propagation to take place. The varying phase can be encoded as varying thicknesses, which enables the fabrication with a

binary-index approach.



786 — N. U. Dinc et al.: From 3D to 2D and back again

fill all the k-space. However, having a data page forming

a 4π distribution is practically impossible. Hence, one can

change the azimuthal angle of the reference beam such

that the new position is farther apart by the bandwidth of

the recorded pages to fill the k-space. In this case, the data

pages multiplexed along the azimuthal direction would all

be Bragg-matched (imagine having a fixed Ewald’s sphere

in Figure 4(b) and rotating it along the z-axis) but they

will simply form the reconstructions along different direc-

tions. Having a fixed detector with the numerical aperture

matched with the bandwidth of the signals would prevent

cross-talk. This approach is called peristrophicmultiplexing

[62].

Whenwefill the k-spacewith different gratings that are

modulated by data envelopes,we can also display a different

pattern rather than a reference beam to access the recorded

data. Depending on the spatial and angular distribution of

the displayed pattern, the superimposed modulated grat-

ings would diffract some portion of the incoming beam,

which turns the volume hologram into a correlator with

respect to the recorded data in it [63–65]. Moreover, the

recording phase of the volume hologram could be arranged

in a way that the volume hologram satisfies independent

linear connections between the input and output plane,

whichwould resemble the linear weights of neural network

architectures [66]. Hence, a volume hologram becomes a

natural candidate for a part of photonic circuitry. One bot-

tleneck is the efficiency of individual reconstructions as

they decrease with respect to the square of the number

of recorded data pages with the explained conventional

way of recording [67]. In [68], recording localized holo-

grams in doubly doped LiNbO3:Fe,Mndemonstrated a linear

efficiency relation. This method can be seen as a hybrid

way of recording a 3D memory using holographic and two-

photon access at the same time enabling also selective

erasure [69].

Another approach to increase efficiency is multilay-

ered systems such as multilayer of phase masks. A phase

mask is a 2D variance of phase delay, which gives a shift-

invariant response with respect to the excitation angle. By

stacking multiple planes, one can destroy shift invariance

and introduce multiplexing schemes. With recent advances

in additive manufacturing such as two-photon polymer-

ization [70, 71], it has become possible by expressing the

phase masks in terms of topography variation, as exempli-

fied in Figure 4(c), and fabricating the stack [72]. As we will

delve into the details in the next section, the calculation for

such a stack does not have a direct solution and requires

iterative methods since the relation of phase modulation

with the output field is nonlinear even though the 3D struc-

ture provides a linear transform between input and output

fields.

5 Recent approaches using neural

network learning

In Section 2 we discussed how, given an unknown 3D object,

it is possible to extract its geometrical and electromagnetic

properties by collecting several 2D projections under dif-

ferent excitation conditions. The methods developed with

this diagnostic approach, in which the object under study

is fixed and we have free control over the excitation source

and collection channel, pave the way to the design of pho-

tonic devices where the question is reversed: given a fixed

source or a set of input channels, how should I shape mat-

ter and choose its electromagnetic properties to obtain the

desired output? The answer to this question is at the very

essence of many devices such as optical interconnections,

multiplexers, couplers, optical filters, spatial and time mod-

ulators, optical computers, and so on. We review in the fol-

lowing themain approaches adopted for the design problem

sketched in Figure 5: we assume to have one or multiple

input channels described by the input electric field distri-

bution Ei(r) on a 2D plane, and we have to determine the

electric permittivity distribution 𝜀(r) that gives the target

output Eo(r) at another 2D plane.

For instance, the input may be associated with the

modes of an incoming fiber, which should be mapped to or

combined with the modes of another fiber. Realizing such

an optical interconnect represents an archetypal problem

since exploiting free propagating light instead of electrical

wiring would result in lower energy consumption, faster

communication, and larger parallelizability. The analysis

presented in this section holds not only for data transfer and

processing but also for optical memories presented in the

Figure 5: Optical interconnections design. The goal is the determination

of geometrical and material properties of the central grey volume that

maps input Ei(r) to output Eo(r) electric fields with maximal efficiency

and minimal cross talk.
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previous section. In addition, we restrict the problem here

to electric fields and currents, but one can straightforwardly

extend it to magnetic materials.

The goal of the design problem shown in Figure 5 is to

provide the maximal coupling efficiency between a large

number of input and output channels within the smallest

volume. To make a comparison with biology, the optical

interconnect plays the same role as a synapse in a neu-

ron [66]. In this sense, the 3D structure of optical volume

elements (OVEs) is promising to overcome electronic imple-

mentations as the added degrees of freedom enable max-

imization of the number of optical modes that can be

multiplexed [73, 74]. Here, we stress the term OVE to make

it clear that thementioned optical element has transmission

and reflection properties that strongly depend on the spatial

and spectral shape of the input field because of the volumet-

ric nature of the optical element.

The first fabrication option, as we investigated in the

previous section, is to optically record the volume holo-

gram given by the interference of the input field Ei and

the complex conjugate of the objective field at the output

Eo, see Figure 6. The technique is usually implemented with

photosensitive polymers or photorefractive crystals [75] and

the number of exposures required to couple N input with

N output channels is of the order of N2. The total number

of recorded hologram scales as V∕𝜆3 where V is the crystal

volume and 𝜆 the recording wavelength. While increasing

N, the cross-talk among different channels due to undesired

diffraction orders represents the main bottleneck of the

method [76].

Optically recorded devices can be outperformed by

computer-generated holograms (CGHs) in terms of effi-

ciency. Iterative approaches developed for 2D CGHs can be

extended to volume holograms. In Ref. [77] the authors pro-

pose a method similar to the Gerchberg–Saxton algorithm

where, instead of iteratively going from 2D near to a 2D

far field, they go from the 3D direct scattering potential to

the inverse space and fill the Ewald’s sphere under Born

approximation. As introduced in the previous section, mul-

tiple phase masks can be stacked to have multiplexing or a

correlator that can separate different features as an alter-

native to continuous volumetric approaches. Another way

of thinking about this is distributing the memory in multi-

ple planes, where the diffraction between the planes yields

volumetric optical properties as demonstrated using spatial

lightmodulators (SLMs)where the layers are optimized by a

general version of theGerchberg–Saxton iterative optimiza-

tion algorithm [78].

Figure 6: Different approaches for inverse design of volume optical elements. (a) Optically recorded holograms obtained from the interference of

incident field Ei (black) and the conjugated objective field E
∗
o
(blue). (b) Learning tomography. The input field is propagated through the guess

structure by BPM (black). The predicted output Eo is compared with the target field E
∗
o
and the error is backpropagated to iteratively update the

structure (blue). (c) Adjoint variable method: the gradients of the objective function with respect to design parameters are computed through two

simulations. The forward one (black) and the adjoint in which the source depends on the original fields and objective function and the corresponding

time-reversed simulation (blue). (d) AI-based methods: a DNN maps the relationship between permittivity and output fields (black). The loss is

computed as in (b) and backpropagated through the network (blue).
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The analogy between ODT and OVE design is intriguing

as one can imagine this latter process as the 3D reconstruc-

tion of an unknown object of which we know just the 2D

projections (the desired output fields Eo) for given incident

conditions (the known input fields Ei). Similar to ODT,

the efficiency of iterative algorithms strongly depends

on the physical model used to simulate wave propaga-

tion. As discussed in Section 2, whenever the refractive

index contrast is low and Fresnel reflections are neg-

ligible, the split-step beam propagation method (BPM)

represents a convenient computational tool. Learning

tomography was demonstrated as a design algorithm to

be combined with additive manufacturing [72] so that the

multilayer approach is realized without active devices such

as SLMs. The OVE is discretized as a stratified medium

where every voxel in each layer provides a phase delay

proportional to its refractive index. The output field Eo

computed with BPM is compared with the target Eo for

all excitation conditions and the error is backpropagated

to update the value of the refractive index in each voxel.

In this case, unlike from ODT where any prior knowledge

on the sample is added through a regularizer term, the

designed element is updated at each iteration according

to the fabrication constraints. Two-photon polymerization

is used in a conventional binary way (either polymerized

or not polymerized) that yields a binary index structure,

forcing the design into a multilayer element as shown

in Figure 7(a). Moreover, having BPM as the forward model

enables us to directly optimize the topography rather than

the 2D phase masks. Hence, multiple scattering is also cap-

tured during the optimization, which further increases the

fidelity. In this framework, additive manufacturing through

two-photon polymerization was proven as a critical tech-

nological step forward, which is compliant with in-plane

subwavelength resolutions. By using this platform 3D

waveguide interconnects have been experimentally demon-

strated [79, 80] (see Figure 7(b)).

Being able to backpropagate light using the time-

reversal scheme in Fresnel formulation yields a striking

resemblance with the error backpropagation algorithms

used in neural networks [24]. Lin et al. [81] introduced

diffractive deep neural networks (see Figure 7(c)) by using

many examples from a large dataset and back-propagating

the error using machine learning algorithms and Fresnel

propagation as the forward model. The linear transform

performed by multiple layers combined with the absolute

square nonlinearity of the detector produced very competi-

tive accuracy results. Thismethod is also applied to different

areas from pulse shaping [82] to computational imaging

[83]. Following a similar approach, Zhou et al. [84] demon-

strated the diffractive processing unit that consists of a digi-

talmicromirror device (DMD), an SLM, and a detector. In the

unit, data is injected via DMD and bias terms are introduced

via SLM, where the free space propagation relays themodu-

Figure 7: Different modalities for 3D optical cir-

cuitry. (a) Multilayer computer-generated opti-

cal volume element as an interconnect working

in the optical domain printed by two-photon

polymerization. The scale bar measures 20 μm
(Taken from [72], Copyright De Gruyter). (b)

Waveguide interconnects with complex 3D rout-

ing to perform image-processing filters (Taken

from [80], Copyright Optica). (c) Diffractive deep

neural network for various classification tasks

experimentally demonstrated in the THz regime

(Taken from [81], Copyright AAAS). (d) Volumet-

ric element optimized by adjoint method for

wavelength and polarization sorting experimen-

tally demonstrated in the THz regime (Taken

from [90], Copyright Optica).
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lated field to the detector that reads the intensity. Cascading

this unit by feeding the detected signal back into DMD, the

authors demonstrated a recurrent implementation to per-

form human action recognition. Other interesting applica-

tions where the optical implementations solve algorithmic

problems include phase recovery [85] and increasing the

resolution of displays [86] using diffractive layers.

For complex structures for which BPM fails, more accu-

rate numerical models, such as finite differences and finite

elements, are needed. However, the nonlinear numerical

solvers rely onmatrix inversions that are not differentiable.

In turn, the calculation of objective function gradients with

respect to the design parameters is not straightforward as

for BPM and it would require a numerical simulation for

each derivative of the objective function with respect to a

single parameter, e.g. the refractive index value in a voxel.

The workaround for topology optimization is represented

by the adjoint method [87, 88]. By exploiting Lorentz reci-

procity, the gradient with respect to all the input variables

can be computed through two successive simulations: a

forward one, and an adjoint in which the source term is

proportional to the gradient of the objective function with

respect to the original fields. Once the derivatives have

been computed locally, gradient descent is adopted as in

LT for the search of local minima/maxima. The method,

largely applied in the nanophotonics community [89], was

recently implemented for the optimization of wavelength

and polarization splitting OVEs [90] (see Figure 7(d)). The

most delicate operation of this approach is the derivation

of the adjoint variable formalism. It was recently demon-

strated that this step can be also combined or replaced

by the same auto-differentiation algorithms developed in

machine learning [91].

The similarity of the adjoint variable method and LT

scheme with deep neural networks brings us directly to

the fourth option for the inverse design of OVE shown in

Figure 6. The highly nonlinear relationship between dielec-

tric constant and electric field can be mapped with a dig-

ital neural network. In the early stages this was done by

collecting a large amount of input-output pairs through

numerical simulations, and successively training the net-

work through a direct data-driven approach [92]. Deep

enough networks trained with a massive dataset can in this

case replace physics-based optimizations for the fast com-

putation of gradients through backpropagation. Recently,

different approaches have been proposed to overcome the

burden of data collection. Lim et al. [31] proposed to replace

the data-driven loss with a physics-based metric by numer-

ically evaluating the residual of Maxwell’s equations on the

predicted field from the network. Such indirect training

allows for avoiding numerical simulations. Importantly, it

also provides a quantitative evaluation of the capability

of the network in returning fields that satisfy Maxwell’s

equations, instead of just creating an interpolation between

input and output images. Although the training remains

the most time-expensive process and it requires scanning

a large space of parameters before the network is able to

generalize to unseen distributions, inference time and gra-

dient computation are an order ofmagnitude faster than the

adjoint method or LT.

As an alternative, deep neural networks (DNNs) have

been proposed for the solution of partial differential

equations [93, 94]. In this case, the input is not the per-

mittivity distribution but independent variables, such as

time and spatial coordinates, and backpropagation is used

to rapidly compute the derivatives of the output fields with

respect to these latter ones and construct a physics-based

loss. Chen et al. [95] demonstrated such physics-informed

neural networks for the inverse design of cloaking meta-

materials. In contrast with the previous implementation,

the network is trained for satisfying Maxwell’s equations

and minimizing the difference between output and target

fields for a single permittivity distribution and the train-

ing has to be performed from scratch for every design

task. In both cases, the ability of DNN in mapping deeply

nonlinear functions in high dimensional spaces embodies

a key ingredient for the realization of 3D optical devices

with complex functionalities. Another key concept that

makes employing neural networks in the design process

is the ability to express high dimensional computational

volumes (one can assume the number of voxels as the num-

ber of dimensions in the optimization problem) in smaller

dimensions, or in other words in latent space representa-

tion [31, 96]. This paves the way to optimize large objects

that require a heavy computational cost for even a single-

pass simulation with the finite difference or finite element

methods.

6 Conclusion and outlook

Neural networks are emerging as an effective tool for the

design of photonic circuits. Tomography, on the other hand,

has a longer history and tackled some of the problems

already. Therefore, photonic circuit design has a lot to learn

from tomography. Another interesting relation arises with

tomography when we consider the transmission matrix

approach [97]. One can probe the response of a 3D medium

by using different inputs (illuminations) and construct the

transmission matrix mapping input to output patterns,

enabling to structure illumination for a desired response
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[98]. Once the transmission matrix is obtained, one can use

tomography algorithms to figure out the 3D distribution

since the required projections can be extracted from the

matrix. This equals to say that one can design a transmission

matrix providing the desired mapping and use tomogra-

phy tools to obtain the 3D media. This clarifies the strong

connection of tomography with the 3D photonic circuit

design.

On the other hand, these circuits can be used to

alleviate the heavy digital computations. It was recently

demonstrated, for instance, phase recovery [85] by optically

implemented networks, which can provide some portion

of the required information for optical tomography. Phase

recovery, unwrapping, and combining different streams

of data from different projections yield a computational

burden, which is quite heavy considering that the given

problem is, in addition, ill-posed and nonlinear. Optical net-

works can accelerate the computation by pre-processing

the data, which would not require an additional electrical-

to-optical conversion as the data is already in the optical

domain.

The design of 3D circuits can be often cumbersome and

subjected to strong technological constrains. Here, additive

manufacturing techniques come to the rescue for the fab-

rication of complex 3D shapes. Considering the resolution,

two-photon polymerization appears to be the needed tool

since features comparable to optical wavelengths can be

printed. Moreover, graded-index optical elements are also

demonstrated using two-photon polymerization [99, 100],

which increases the degrees of freedom by introducing

the refractive index variance on top of the geometrical

degrees of freedom. However, the point-scanning nature of

two-photon polymerization yields long fabrication times,

making commercial-grade manufacturing challenging. To

speed up the fabrication combining one-photon and two-

photon techniques is also proposed [101]. From the fabrica-

tion time aspect, volumetric additive manufacturing lays a

very promising route. The Radon transform-based inverse

tomographic approach already provided sub 100 μm reso-

lutions, which is striking considering the centimeter scale

of the printed objects. Employing tomographic algorithms

that incorporate the effects of diffraction might further

increase the resolution while maintaining the fast fabri-

cation scheme of volumetric printing, making it a future-

candidate fast approach for the fabrication of photonic

circuits.

Lastly, we reviewed the recent studies on 3D optics for

functional mappings considering the various design

approaches and algorithms, namely starting from

optical interference for 3D optical memories to adjoint

optimization, learning tomography, data-driven error

backpropagation through a physical forward model, and

physics-inspired deep neural network implementation.

Considering the computational difficulty of the clas-

sical numerical tools, neural networks are becoming an

attractive tool for the 3D optics and photonic circuit design

as they have already become for tomography to solve the

fundamental challenges of 3D-2D transformations. The fact

that improvements in the photonic circuitry would yield

accelerated and power-efficient neural network architec-

tures tends to remove the boundary between these two

disciplines.
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