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and visualization. There is a very clear need for a user-centric,

one-stop solution backed by a reliable data source and coupled

with rich visualizations and an easy-to-use interface that is

accessible to both the public and researchers.

These issues led us to identify 6 metrics that might serve

to define a standard for epidemic surveillance data man-

agement that we call the 6Cs standard. The 6Cs standard

proposes that epidemic surveillance data should be Consistent,

Correct, Current, Comprehensive, Curated, and Computer-

readable. With this standard in mind, we created a COVID-

19 surveillance dashboard which offers data exploration and

visualization features designed to assist researchers, but which

even a normal user, unfamiliar with the technical details, can

understand.

The Biocomplexity Institute & Initiative’s COVID-19

Surveillance Dashboard, originally released on February 3,

2020, can be accessed at https://nssac.bii.virginia.edu/covid-

19/dashboard/. It is a single-page, interactive and responsive

web application that is dynamically updated; it allows end

users to view and explore COVID-19 case counts at both

temporal and spatial resolutions. To the best of our knowledge,

our dashboard is one of very few that presents historical

data in three visualization formats: choropleth map (Fig. 1a),

charts (Fig. 1b), and a data table, all of which are interactive.

Our charts include Cumulative and Incident Epicurves for all

regions, and our unique use of a movie-style time slider makes

it easy to simultaneously explore both temporal and spatial

evolution of the pandemic. In its current form, the dashboard

supports data rendering at the country level for all countries

in the world; at the state and province level for 20 countries;

and county-level statistics for the United States (USA). As of

October 25, 2020, more than 1.13 million users from over 220

countries have used our dashboard, and more than 60 million

requests were processed on the main feature layer hosted on

ArcGIS Online.

II. THE IMPORTANCE OF THE 6CS STANDARD

A. Consistent

Consistency can be viewed from two perspectives - consis-

tency in the format of the data, and consistency in the content

of historical data. One of the major goals of collecting and

managing epidemic data is to support informed health and
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I. INTRODUCTION

The COVID-19 outbreak caused by the novel coronavirus

SARS-CoV-2 has disrupted the lives of people globally. It

has had a huge impact on health, economies, and society in

general, undoubtedly making it the pandemic of the century.

As of October 25, 2020, the cumulative number of confirmed

COVID-19 cases exceeded 43 million worldwide, with al-

most 1.15 million deaths. With the uncertainty surrounding

the pandemic and its impact, there was an urgent need to

collect and visualize pandemic case data to guide informed

and fact-based decisions. The pandemic data has been of

prime importance for policymakers, public health officials, and

academic researchers attempting to interpret and respond to

this crisis, along with every layperson concerned about how

the pandemic will affect their daily life. Many dashboards have

been developed to help the public better understand the current

status, each focused on a different aspect of the pandemic.

One of the most used dashboard was was developed and is

being maintained by the Johns Hopkins University. However,

there is no gold standard set for epidemic data management
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(a) (b) (c)

Fig. 1: Dashboard screenshots. (a) Map panel. Choropleth map of the world, rendered with the estimated active count, but

with the option of switching to other layers or different attributes (b) Information panel. Includes interactive charts, summary

statistics, and a data table. (c) Information Panel - Analytics through Question Answering. Includes results with data and chart.

public policy decisions. This decision-making process often

depends on projections or forecasts of the pandemic spread

produced by epidemic modeling simulations, which, in turn,

depend on surveillance data. Models expect that the data

format will be consistent over time; frequent format changes

would necessitate frequent revisions to model implementa-

tions, causing untimely delays in forecast production. Many of

the online tools depend on open data sources. If the underlying

format of these sources changes, it can delay their updates,

which may, in turn, prevent the policymakers from having the

most current information when they need it.

Another perspective is consistency of the historical data.

Once published, historical data should be updated as little as

possible, except in the case when a previous entry is discovered

to be invalid. To reduce the risk of data contamination, data

should be collected from proven reliable sources; collation and

correction of the data needs to be performed via a consistent

and predictable process; and frequent validation must be a

critical part of this process. In the event that a correction

is made, the downstream impact on forecasts and projections

could be high, so it is necessary to provide a record of data

updates that is accessible to all consumers of the data. This

also leads to our next C, which is Correctness.

B. Correct

Epidemic data is sensitive, and inaccuracies can have a

catastrophic impact on public health. This raises the impor-

tance of the data correctness. Large scale data curation is prone

to error that occurs for a variety of reasons, including incorrect

data entry, improper access to the data, or errors in calculations

and data wrangling. Steps must be taken to reduce data

error to the maximum extent possible. This can be achieved

through proper validation and data checks; for example, the

cumulative case counts should not decrease unless there have

been upstream revisions of historical data by the original

reporting source, or the total count of a region should be equal

to the sum of its subregions, etc. Any uncertainty that cannot

be resolved should be explicitly documented.

C. Current

A pandemic such as COVID-19 evolves quickly. We have all

seen situations where a region with no prevalence of infections

suddenly emerges as a hotspot with a quick case doubling time.

Hence, the frequency of data updates is vital, as stale data does

not capture the current status and is a poor guide for decision-

making in rapidly changing conditions. This emphasizes the

need for timely updates, which, in turn, requires automated

data collection and maintenance of historical snapshots. It also

amplifies the need for storing data in a temporal representation

with clear indication of when data updates have occurred.

D. Comprehensive

A dashboard tracking an epidemic should be comprehensive

in providing detailed visual analysis with charts, geospatial

mapping, and time series visualizations, as well as with

summary statistics. Apart from that, several other metrics can

be derived from the core data of cases and deaths to help

users understand the present situation in a clear manner. For

instance, active cases is an important metric in assessing the

current status of the disease, and the number of infections

normalized by the population demonstrates the density of

the spread. Other data, like laboratory testing, hospitaliza-

tions, mobility, and interventions, have a direct influence on

the pandemic and add meaning to the core data. Having a

comprehensive, complete picture of the pandemic can help

researchers understand which factors could curtail the spread

of the disease.

E. Curated

The epidemic data should be curated from diverse sources

in order to cater to the large and disparate needs of the popu-

lation. First, the data should be available for as many regions

and subregions as possible to get a more global picture of the

disease spread. This not only makes the dashboard complete
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Fig. 2: Relationship between the 6Cs and the 5Vs of Big Data,

and the data pipeline layers used to achieve them.

and serves the majority of the users, but also helps improve

decision-making at the local level. The kind of interventions

required for a nation with multiple hotspots and a nation with

a single adversely affected hotspot are quite different, which

can only be captured if data is available at multiple levels of

spatial resolution.

F. Computer-readable

To cater to downstream tasks like modeling, analysis or

visualization, data should be Computer-readable, meaning it

should be easily accessible in the form of CSV files, databases,

or through an API endpoint. Data provided in a textual format,

such as a report or an article, is good for human consumption,

but requires a lot of preprocessing and manual work to prepare

it for other computational tasks. Similarly, data should also

have standard geospatial mapping and naming conventions in

order to easily identify or differentiate between the regions

and subregions. In addition, hierarchical organization of the

spatial and temporal components in the data also facilitates

data retrieval.

G. The 5Vs of Big Data

Volume, Velocity, Variety, Veracity, and Value are popularly

known as the 5Vs of Big Data. Although the 6Cs of epidemic

data management bear some resemblance to the 5Vs, the two

standards actually complement each other quite a bit (Fig. 2)

Although the size of epidemic data, specifically for an

emerging infectious disease, is not as large as that in a typical

“Big Data” setting, epidemic data still has a lot of spatial

and temporal components. As a pandemic progresses, the size

of the data increases rapidly, and when additional data types

like mobility, tests, and hospitalizations are added to the set,

scalability becomes an important factor. Computer-readability

plays an important role in promoting efficient handling of

the high Volume of multidimensional data, while still sup-

porting flexibility and easy accessibility. The characteristic

Velocity resembles Current, specifically with the temporal

component where the data flows continuously from multiple

sources into the application for real-time updates. Several

optimization techniques, along with a minimal amount of

human intervention, can help to handle the Velocity of data.

Epidemic data has a wide Variety of potential data sources

and formats, ranging from a structured form like CSV, to a

semi-structured form like Rest API endpoints and dashboards,

to, finally, unstructured forms like webpages or reports. This

is ideally what Curated in the 6Cs aims to handle, specifically

for the spatial component. Veracity refers to reconciliation of

inconsistencies and uncertainty in the data. Collected epidemic

data is typically unstructured and messy, so it has to be cleaned

and validated to attain Consistency and Correctness, with the

right amount of data – not more and not less – because

the data has no Value by itself unless it is refined down

to include only the useful information. The Comprehensive

characteristic helps useful information to be conveyed through

rich visualizations and analysis.

III. RELATED WORK

In this section, we present an overview of some well-known

COVID-19 dashboards and efforts from various groups for

epidemic data management and visualization.

When we started our dashboard in late January, Johns Hop-

kins University (JHU) [1] was one of the few organizations that

gathered and shared COVID-19 data through a dashboard. The

system continues to be one of the most influential dashboards

to date and is undoubtedly the most widely used dashboards.

One limitation of their dashboard was that the data format

and sharing platform changed frequently, which has made it

difficult for downstream users to adapt. This drove home the

need for data Consistency as one of the most important goals

to pursue. Another limitation of JHU’s dashboard is the lack

of temporal data and region-level visualizations, along with

the inability to query or search for a specific region. The data

for each category (cases, deaths, recovered etc.) is organized

into separate tabs and panels, which makes it challenging to

assess the full picture for a particular region.

1Point3Acres’ COVID-19 Tracker [2] initially focused on

providing near real-time case information only for North

America. We were one of the early adopters of their data, and

have been using it for USA since early March. 1Point3Acres

has expanded data coverage to more countries over time.

Although 1Point3Acres provides spatial rendering for USA

and Canada, this component is missing for other countries.

The temporal data and visualization is also unavailable at sub-

national levels, i.e. for states, provinces, and counties. Because

of these shortcomings, this dashboard does not meet the 6Cs

standards for Comprehensive and Curated.

Worldometer’s COVID-19 website [3] collects national-

level data from every country and makes it available in a

data table for 3 days. For USA, they provide detailed case

counts down to the county level. They also display charts of

historical data; however, their data presentation is largely text-

based (with the exception of the historical charts), and does

not provide spatial visualizations, like maps, that would allow

users to visualize differences between contiguous regions. For

these reasons, Worldometer falls short of our standard for

Comprehensive.

Public health organizations like the World Health Organi-

zation (WHO), Centers for Disease Control and Prevention
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(CDC), and the European Centre for Disease Prevention

and Control (ECDC) [4]–[6] provide data that is Consistent,

Correct, Current, and Computer-readable, but not completely

Curated because they support data at only a single spatial res-

olution. WHO and ECDC provide the data for all the countries

of the world, but not for states, provinces, or counties, whereas

CDC provides data for USA states and counties, but not for

other countries and subregions.

A number of dashboards have been developed that are

specific to a region or a certain area of study. For example,

health departments of many countries, states and counties have

their own dashboards to track the local pandemic situation.

Wissel et al. [7] used an R Shiny app for surveillance of

USA cities using data from JHU, The New York Times, and

the COVID Tracking Project. Barone et al. [8] developed a

statistical surveillance dashboard based on their analysis of

the ratio between cases and the days since the first case in

the countries to determine the average speed of its epidemic

motion, analogous to concepts in physics. Hohl et al. [9]

built an R Shiny app based on their study of space-time scan

statistics to detect daily clusters at the county level. On the

topic of data curation, there are several efforts that collate data

types other than surveillance data, like BeOutbreakPrepared

[10] which provides individual-level epidemiological data, also

known as line lists.

IV. DATA AND SOURCES

This section describes the data elements our dashboard

depends upon. We use several data sources for collating our

epidemic surveillance dataset. Table I summarizes which data

sources we are currently using, how often we poll those sites,

and the collection methods.

TABLE I: Collection Details of Epidemic Surveillance Data.

Source Frequency
Mode of
collection

USA
1Point3Acres [2],

USAFacts [11]
Daily

API; CSV
file

National
Wikipedia [12] and

WHO [4]
Multiple

times a day
Scraping;
CSV file

Sub-
national

Wikipedia
Multiple

times a day
Scraping

India Covid19India [13]
Multiple

times a day
Github

Canada Gov. of Canada [14]
Multiple

times a day
CSV file

Greece Min. of health [15]
Multiple

times a day
Scraping

USA Tests
COVID Tracking

Project [16]
Daily CSV file

Core Surveillance data: Sub-Region (if any), Region, Con-

firmed Cases, Deaths, Reported Recovered. (Cumulative num-

bers are provided for the three numeric measures).

COVID Testing Data: Sub-Region (if any), Region, Positive

Tests, Negative Tests, Total Tests, Positivity Rate (%), Data

Quality Grade.

Augmented Surveillance Data:

• Active cases : Confirmed - Deaths - Reported Recovered

• ID/FIPS : ISO3 for countries, FIPS for USA counties and

ID for states / provinces (hereby referred to as admin1

regions) by mapping these regions with an ISO lookup

• Coordinates : Latitude and Longitude for Geographic

Information System (GIS) is obtained from ID/FIPS

• Last Update : The UTC time when the data was last

fetched and updated

• Estimated Recovered : Estimate of Recovered case count

calculated based on the time series of confirmed cases

and deaths (more on our algorithm below)

• Est.Active : Confirmed Cases - Deaths - Est.Recovered

• New Cases, New Deaths, New Recovered, New

Est.Recovered, New Est.Active: Increase in counts from

previous day’s cumulative numbers (Incidence Data)

• Per 100K counts : Population normalized numbers for all

of the above relevant data fields.

Demographic data: We use different sources for population

data, including Worldometer for country-level population es-

timates [17], World Population Review for USA state-level

population estimates [18], WorldAtlas for China province-

level populations [19], Wikipedia for other state/province-level

population counts, and Esri Demographics for USA county-

level population estimates.

GIS data: Polygons for the USA counties are provided by

Esri Demographics. Source data for other polygons, e.g., all

countries and state/province-level administrative regions, are

provided by ADCi [20]. We host these polygons as feature

layers on ArcGIS Online [21].

Estimating Recovered Counts: This feature is unique to our

dashboard. A significant number of countries or states do not

report the number of people who have recovered from COVID-

19, and those that do report these numbers are not always

up-to-date. Without knowing the number of recoveries, it is

very difficult to calculate the number of Active cases, which

is arguably a more important metric to track than Confirmed

cases; for example, many local governments use active case

counts to plan their reopening strategies. Furthermore, inaccu-

rate recovery counts will lead to inaccurate active case counts.

This raises the need for a well-defined method for calculating

the number of recovered cases, and, by extension, active cases,

which is consistent across all regions. Such an approach will

minimize differences in reporting, hence allowing for fair

comparison across regions.

To this end, we developed an algorithm for calculating the

number of recovered cases. A joint study conducted by WHO

and China [22] concludes that the median time from onset of

COVID-19 to clinical recovery for patients with mild cases is

approximately 2 weeks, while the median time is 3 to 6 weeks

for patients with more severe or critical disease symptoms. A

cohort study by Wu Z et al. [23] shows that 81% of cases

are mild to moderate, 14% are severe, and 5% are critical.

This study is referenced by the official CDC interim clinical

guidance [24]. Illinois Department of Public Health follows a

similar estimate for their calculation of recovered cases [25].

Based on these studies, we calculate Estimated Recovered as

follows:
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(Est.Rec)T = [ 0.81∗(Conf.)T−14+0.14∗(Conf.)T−28+
0.05 ∗ (Conf.)T−42 ]− (Deaths)T
where T represents the day in the time series for which

Estimated Recovered is calculated. While this is a fairly safe

estimate for the number of recovered cases, it is possible that

actual recovery counts will vary depending on the region or

subregion. In cases where the reported recovery number is

higher than our safe estimate, we set Estimated Recovered

equal to the reported value. If the CDC or WHO guidelines

regarding the recovery estimates are updated, we will adjust

our formulas accordingly.

V. BACK-END ARCHITECTURE

Fig. 3a shows the overall architecture of our dashboard. As

described in Section IV, the data available on our dashboard

is multidimensional. A design decision made at the beginning

was to separate storage of surveillance data from other demo-

graphic and GIS data. In particular, the surveillance data is

stored locally on our web server and is organized in a spatio-

temporal hierarchy, while ArcGIS Online [21] is used to store

and access demographic and GIS data for the regions.

A. ArcGIS Online

ArcGIS Online serves as the GIS server that hosts the

feature layers needed by our dashboard. For easy accessibil-

ity, we are using three feature layers corresponding to each

spatial level, i.e., the world map layer shown by default on

the dashboard, the states and provinces layer, and the USA

counties layer. The feature layers include information such

as unique identifier, name, and population. Our application

fetches data from both the web server and ArcGIS Online,

performs a join across datasets on the fly, and uses the joined

data for the final visualizations. Separating constantly evolving

surveillance data and relatively static GIS data in a GIS

application is an efficient approach, and allows us to support

a large amount of data. There are several other advantages:

(i) by keeping the map services on ArcGIS Online relatively

static, we avoid the need to update feature layers, minimizing

service outages. (ii) The map data only needs to be fetched

once, reducing the data transfer between the application and

end-user to a small amount of data for each new request. This

reduces the load on ArcGIS Online, and makes our application

scalable for support of simultaneous requests.

B. Surveillance Data Pipeline

The surveillance data is collated, processed, and augmented

with a robust data pipeline (See Fig. 3b) which helps to create

an all-in-one comprehensive data hub for all temporal and

spatial resolutions. We organized the entire data pipeline in

a three-layered approach to effectively achieve the 6Cs as

described in the previous sections. They are :

Layer 1: Curation Layer This layer focuses on the Current,

Curated, and, partially, the Computer-readable elements of the

6Cs standard. We deployed an automated approach for pulling

the data from the different data sources every hour and storing

it on our clusters, adding a corresponding timestamp (in

UTC) for each entry. This helps us to maintain the historical

snapshots, and allows users to have access to data from any

time period. This also helps ensure that the displayed data

is always the latest. The scraping of data from unstructured

sources, like webpages and reports, acts as the first step

towards making the data Computer-readable.

Layer 2: Core Layer The Core layer is an integral part of

our workflow where a huge amount of processing, validation

and correction takes place. The diverse sets of raw data stored

on our clusters is first combined into a standard and consistent

format in accordance with the required spatial and temporal

resolutions. This includes a hierarchy with three levels of files

each for global data, state/province data, and USA county

data. In each of these branches, the data is further organized

according to temporal variability, where each file corresponds

to the data for a specific day.

Furthermore, data generated by the Core Layer is mapped

with FIPS/ID in order to standardize and correctly identify

the location. This is specifically essential for the county and

admin1 levels where different regions might have a subregion

with the same name. Data obtained from multiple sources is

very noisy because each data source follows their own data

format standard. We have manually identified and mapped

each region name with its corresponding ISO3 standard, and

also encoded the region names into UTF-8, inspired by the

suggestions presented in Addressing the EpiData Challenges

[26]. This is a challenging step, since most regions have

different languages and encoding, especially from the official

sources as they are intended for the local population; it

involves a significant amount of effort to manually detect when

a new admin1 region is added to our data corpus. With this

step, we have completely achieved Consistency of the data

in terms of format and historical data. With the standardized

Name and ID, the loop of Computer-readability is closed.

The next step is to make sure the data mined from the trusted

sources is indeed correct. We do several sanity checks and

validations of our data, including checks for a wide range of

edge cases and areas where an error might be possible. We then

manually correct the data for the identified alerts and warnings

to the maximum extent possible by verifying the potential

source of the error. A log is maintained for the entries where

resolution was not reachable, thereby achieving our standard

for Correctness. This processed, validated, standardized and

corrected data is then moved into a central database which

serves as our internal modeling and analysis dataset.

Layer 3: Augmented Layer We then augment the data

by adding several other derived metrics that helps present

the overall picture of the pandemic. The augmented data is

reflected in the dashboard, and includes the calculation of

active cases, the daily change for all the metrics, calculating es-

timated recovered and estimated active cases, and population-

based “per 100K” numbers for all of the metrics. All along our

data pipeline, we make sure we properly differentiate between

unknown and zero values. This ends the data pipeline, and the

prepared data is readily available to be loaded into the front-

end for visualization and analysis, thereby completing the loop
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(a) (b)

Fig. 3: (a) Dashboard architecture: The UI consists of a control panel, information panel and map panel. The data component is

a pipeline with three layers: curation layer, core data layer and augmented data layer. (b) Micro services used in the surveillance

data pipeline. The series of steps that take place in the data component’s layers, from the collection of data to its organization,

integration, validation and augmentation in order to facilitate its usage in modeling and the front-end UI.

and achieving Comprehensiveness. The data is populated to

our production dashboard multiple times per day in order to

present visualizations that are as current as possible.

VI. FRONT-END UI DESIGN

The User Interface (UI) is an important component that

complements all the efforts put into the data by making it

accessible to a larger audience. A sophisticated data source

which is not easily accessible to its non-technical users

would limit its potential. True Comprehensiveness can only

be achieved when the vast information present in the data is

well-conveyed. Realizing the importance of the UI, we have

designed it with the goal of providing a one-stop solution that

is easy to use and which has rich visualizations accessible to

a variety of users with diverse preferences. It is a Single Page

Application that is specifically designed to be loosely coupled.

It uses ArcGIS API for JavaScript [27], unlike most other

dashboards which are built using the configurable ArcGIS

Dashboards template. We used the Responsive Web Design

approach to design and develop our dashboard, and amCharts

[28] for data visualization.

To cater to a variety of user needs, we developed a three-

way approach for the spatiotemporal exploration of the data

i.e., through choropleth map, charts, and data table. The map

and charts also provide rich visualizations. The Curated spatial

data, which is available at multiple resolutions, is presented

using a hierarchical approach that follows the principle of

“Overview first, zoom and filter, then details-on-demand”

introduced by Ben Shneiderman [29]. This means that, ini-

tially, the overall picture of the pandemic across the world is

displayed, and from there the user can navigate back and forth

from one spatial level to another via multiple paths. Taking all

this into consideration, the UI is divided into three panels:

Control Panel: The Control Panel (Header) provides tempo-

ral exploration functionality through a movie-style time slider

or a date selector, spatial exploration through a dropdown list

of the countries, and the option to render the choropleth map

with different attributes such as Confirmed, Deaths, Estimated

Recovered and Estimated Active. It also provides links to more

options and toggles to switch between Cases/Testing, Total

counts/Per 100K counts, and World map/County map views.

Information Panel: The Information Panel, as seen in Fig.

1b, provides the charts and summary for the selected region.

The interactive charts include cumulative and incidence num-

bers with an option to turn an attribute on or off, i.e., Con-

firmed, Deaths, Estimated Recovered and Estimated Active.

The chart can be zoomed in/out, and detailed information is

presented in a tooltip window when a user hovers the mouse

pointer over a data point on the plot. The interactive data table,

which has all the fields of the Augmented layer in the data

pipeline, has a SQL-like query tool which allows users to focus

on regions of interest, and a ’Filter’ text box to allow them

to limit results to records with the selected region name. The

region names in the data table are clickable, which will take

the user to the next spatial level if supported, i.e., from the

national level to the state level, and then to the county level.

The advanced analytics, as discussed in Section VII, gives the

users the ability to ask questions related to the pandemic and

get answers through data and charts.

Map Panel: Our dashboard’s landing page shows a world

map at the country level, with the exception that USA and

China are shown at the state level; we also have additional

display layers to support county-level rendering for USA,

and state/province level rendering for a total of 20 countries.

Unlike most other dashboards that use points to represent

the regions, we use actual maps/polygons of the regions. The

Computer-readability in the data has helped to easily do the
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geospatial mapping. Each spatial level is rendered with a

choropleth map using its Estimated Active count by default,

and the map can be zoomed in/out. For a selected region, a

pop-up window is provided to show its data, along with a

navigation option to change the display level of that region.

VII. ANALYTICS

The plethora of information present in the data cannot be

effectively and completely conveyed on a single web page

without cluttering it. Providing users with the ability to quickly

get answers to generally asked questions will further minimize

the need for them to understand the epidemic terminology,

allowing them to spend more time navigating the application.

This is how ultimate Comprehensiveness can be achieved,

and also helps to serve the diverse information needs of

the public. In order to achieve this, we support interactive

queries for analytics, where a user can ask a question in plain

conversational English, which the system attempts to interpret,

then answers directly with a plot and data as appropriate (See

Fig. 1c).

TABLE II: 4W1H Structure of Epidemic Questions

Which What Where When How

Confirmed* India

Deaths count* Virginia March 15

Est.Rec
greater than
/ less than

Queens Today* Cumulative*

Est.Active
top N /

bottom N
United
States

July 10 Incidence

Recovered
highest /
lowest

Lombardy

Active World*

Methodology for Analytics: We have identified that a ques-

tion related to an epidemic will typically be composed of

4W1H (which, what, where, when, how) as shown in Table II.

This provides a basis for processing the data and responding

effectively to user queries. Some examples of the questions

supported by the tool include: “Cumulative deaths count in

India on July 10”, “Cumulative confirmed greater than 100000

in United States today”. Our implementation searches the

words in the question for each of the 4W1H keywords in

the search space. The search space includes 6 possibilities for

‘Which’, 7 for ‘What’, around 3750 regions (210 countries,

350 states, 3200 counties) for ‘Where’, the no. of days since

pandemic start for ‘When’, and 2 for ‘How’. (* denotes the

default value in Table II)

Semantic Textual Similarity: To allow users to ask questions

without restricting them to certain words as shown in Table II,

a state-of-the-art language model is used to compute semantic

similarity of the tokens in the question against the words

within the search space, returning the result for the match

which had the highest similarity score. Whenever a question

fails to get a result directly from the search space, this can

be invoked and the relevant results displayed if the mean

similarity score meets an empirically determined minimum

threshold. If it fails to meet the minimum threshold, it is

considered a failed query and the user is alerted that the

question could not be answered.

The User Query Dataset: We keep track of the user ques-

tions and the status of the results in a database, along with

other details like ‘Date’, ‘Time’ and ‘Result (Pass/Fail)’.

This helps us identify which queries are failing, allows us

to broaden the scope of our methodology, and also guides

improvement to the sentence similarity model. Furthermore,

there is a feedback option where users can submit their

satisfaction with the results of their question which we can

also use to improve the system. This will be a first-of-its-kind

dataset containing real-time epidemic questions from users

located all over the world.

Current Implementation: We support spatial questions for

the current state of the pandemic, i.e., 3W1H with the ex-

ception of ‘When’. We are expanding the supported input

space by manually reviewing the failed queries from the

User Query dataset and incorporating changes where feasible.

This includes support for sets of synonyms, such as: [greater

than, more than, higher than], and [United States, US, USA,

America], etc.

Future Work: We are adding support for the temporal ‘When’

questions, and exploring state-of-the-art sentence similarity

models to incorporate them in future releases. We are also

exploring the expansion of our 4W1H input space to add

support for Tests to the ‘Which’ handling, and for Peak, 7-

day Moving Average, Test positivity rates, etc. to the ‘What’.

VIII. UTILITY OF THE DASHBOARD

Data storytelling: An important application of our dashboard

is in support of data storytelling. Data storytelling is the art

of developing a narrative based on a data set, incorporating

visualizations and analysis tools so viewers can make solid,

well-supported interpretations; it is quite popular in the fields

of data science [30] and data journalism. The analytics of the

dashboard, along with its historical data and interactive visu-

alizations, promote insights that facilitate data storytelling. An

excellent illustration of this concept is a blog post by Tomas

Pueyo who has produced an extremely interesting narrative on

the COVID-19 pandemic [31]. Owing to space limitations, we

omitted illustrative examples of data storytelling, which can be

found in our longer version [32].

Extensive use by various organizations: The application

and the back-end data have been used by a large number

of analysts, researchers, and laypeople. Our group uses the

data to support federal agencies (Department of Defense

(DoD), CDC), our state (Virginia) and local public authorities

(local health districts and our university) as they respond to

the pandemic. The data is also used to drive our predictive

models, which we use to produce counter-factual analysis

and answer policy questions, including resource allocation

and augmentation, and campus reopening and management.

See [33] for reports that the Virginia Department of Health

releases based on our work.

Several other groups use our dashboard and associated data

as well. We list a few to illustrate its broad use: (i) it is listed
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as a part of the NIH MIDAS data catalogue [34], the ESRI

COVID-19 GIS Hub [35] and the 2021 Coalition for Academic

Scientific Computation (CASC) brochure; (ii) it is used by

several groups at DoD; (iii) it is used by local authorities,

including in Bay County [36] and Panama City Beach [37] in

Florida, where our active case counts are used as one of their

thresholds for allowing vacation rental reservations.

Web Traffic: During the initial phase, we had around 40,000

users in total and by mid-April, we reached over 750,000

users. By late October, there were over 1.13 million unique

users. The top 3 countries that made up the largest portion

of users are the United States, India and Canada. The period

of maximum engagement was the first week of April, with a

peak of 80,000 views and 50,000 unique users on a single day.

IX. DISCUSSION AND CONCLUSION

We presented our COVID-19 Surveillance Dashboard in

support of the pandemic planning and response. Our expe-

rience suggests developing a standard based on 6Cs metrics

to improve epidemic data management and optimization.

As with any software engineering project that builds a data

intensive pipeline, we faced a number of challenges; some

stemmed from the real-time nature of the problem, as well

as our goal of releasing our system as quickly as possible.

Important challenges included: (i) getting reliable data, (ii)

data sources updating their terms of use, (iii) lack of standards

(e.g. file formats, naming conventions, update cycles) across

various data sources, (iv) inconsistency in reporting recovered

cases that, in turn, affects the number of active cases, and

(v) challenging software test cycles due to short sprints in a

rapidly evolving environment.

Important lessons learned during development of the dash-

board include: (i) there is a clear need to build such systems

so that we are better prepared for the next pandemic; (ii) the

challenges are not so much in the software technologies, but

in data availability and sharing; (iii) further adoption of the

6Cs standard and formal evaluation of emerging data sources

would facilitate development of similar systems.

Acknowledgements: This work was partially supported by

the National Institutes of Health (NIH) Grant 1R01GM109718,

NSF BIG DATA Grant IIS-1633028, NSF DIBBS Grant ACI-

1443054, DTRA subcontract/ARA S-D00189-15-TO-01-UVA,

NSF Grant No. OAC-1916805, NSF Expeditions in Comput-

ing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-

2028004, NSF RAPID OAC-2027541, US Centers for Disease

Control and Prevention 75D30119C05935, and a collaborative

seed grant from the UVA Global Infectious Disease Institute.

REFERENCES

[1] Ensheng Dong, Hongru Du, and Lauren Gardner. An interactive web-
based dashboard to track covid-19 in real time. The Lancet infectious

diseases, 20(5):533–534, 2020.
[2] Tong Yang et al. Covidnet: To bring the data transparency in era of

covid-19. arXiv preprint arXiv:2005.10948, 2020.
[3] Worldometer: Coronavirus update. https://www.worldometers.info/world-

population/population-by-country/.
[4] WHO Coronavirus disease (COVID-19) dashboard.

https://covid19.who.int/.

[5] CDC COVID data tracker. https://www.cdc.gov/covid-data-tracker/.
[6] ECDC COVID-19 data. https://www.ecdc.europa.eu/en/covid-19/data.
[7] Benjamin Wissel et al. An interactive online dashboard for tracking

covid-19 in u.s. counties, cities, and states in real time. Journal of the

American Medical Informatics Association : JAMIA, 27, 04 2020.
[8] Stefano Barone et al. Building a statistical surveillance dashboard

for covid-19 infection worldwide building a statistical surveillance
dashboard for covid-19 infection worldwide. Quality Engineering, 06
2020.

[9] Alexander Hohl et al. Daily surveillance of covid-19 using the prospec-
tive space-time scan statistic in the united states. Spatial and Spatio-

temporal Epidemiology, 34:100354, 06 2020.
[10] Bo Xu et al. Epidemiological data from the covid-19 outbreak, real-time

case information. Scientific data, 7(1):1–6, 2020.
[11] US Conronavirus cases and deaths.

https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/.
[12] Wikipedia. https://en.wikipedia.org/wiki/COVID-

19 pandemic by country and territory.
[13] COVID-19 India. https://www.covid19india.org/.
[14] Government of Canada. https://www.canada.ca/en/public-

health/services/diseases/2019-novel-coronavirus-infection.html.
[15] Government of Greece. https://covid19.gov.gr/.
[16] The COVID tracking project. https://covidtracking.com/.
[17] Worldometer: Population by country (2020).

https://www.worldometers.info/coronavirus/.
[18] World population review: Us states.

https://worldpopulationreview.com/states.
[19] Worldatlas: Chinese provinces by population.

https://www.worldatlas.com/articles/chinese-provinces-by-
population.html.

[20] Adc worldmap. https://www.adci.com/adc-worldmap/.
[21] ArcGIS Online. https://www.esri.com/en-us/arcgis/products/arcgis-

online/overview.
[22] Report of the WHO-China joint mission on coronavirus

disease 2019 (COVID-19). https://www.who.int/docs/default-
source/coronaviruse/who-china-joint-mission-on-covid-19-final-
report.pdf.

[23] Zunyou Wu and Jennifer M. McGoogan. Characteristics of and Impor-
tant Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak
in China: Summary of a Report of 72314 Cases From the Chinese Center
for Disease Control and Prevention. JAMA, 323(13):1239–1242.

[24] CDC: Interim clinical guidance for management of
patients with confirmed coronavirus disease (COVID-19).
https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-
management-patients.html.

[25] Illinois DPH : COVID-19 Statistics.
https://www.dph.illinois.gov/covid19/covid19-statistics.

[26] Geoffrey Fairchild et al. Epidemiological data challenges: planning for
a more robust future through data standards. Frontiers in Public Health,
6:336, 2018.

[27] ArcGIS API for JavaScript. https://developers.arcgis.com/javascript/3/.
[28] amCharts, JavaScripts & Map. https://www.amcharts.com/.
[29] Ben Shneiderman. The eyes have it: A task by data type taxonomy

for information visualizations. In IN IEEE SYMPOSIUM ON VISUAL

LANGUAGES, pages 336–343, 1996.
[30] Brent Dykes. Data storytelling: The essential data science skill everyone

needs. Forbes, 03 2016.
[31] Coronavirus: Why you must act now.

https://medium.com/@tomaspueyo/coronavirus-act-today-or-people-
will-die-f4d3d9cd99ca.

[32] Akhil Sai Peddireddy et al. From 5vs to 6cs: Operationalizing epidemic
data management with covid-19 surveillance. medRxiv, 2020.

[33] VDH COVID-19 weekly report. https://www.vdh.virginia.gov/content/uploads
/sites/182/2020/07/UVA-COVID-19-Model-Weekly-Report-2020-07-
17.pdf.

[34] MIDAS online portal for COVID-19 modeling research.
https://midasnetwork.us/covid-19/.

[35] ESRI COVID-19 GIS hub. https://midasnetwork.us/covid-19/.
[36] Bay county plan for opening short-term rentals, phase-ii.

https://www.baycountyfl.gov/CivicAlerts.aspx?AID=156.
[37] Panama city beach chamber COVID-19 updates.

https://www.pcbeach.org/news-article/panama-city-beach-chamber-
coronavirus-covid-19-updates/.


