From a Business Component to a Functional
Component using a Multi-View Variability Modelling

Rajaa Saidt23 Agnés Front, Dominique Ried, Mounia Fredg, Salma Mouling

@ LIG — SIGMA Team, BP 72, 38402 Saint Martin d’'Hé@sdex, France
{First name. Name}@imag.fr
@ L@GI, Al Qualsadi, ENSIAS, BP 713, Rabat, Morocco
fredj@ensias.ma
® GSCM_LRIT, Mohammed V-Agdal University, B.P 1014, Ralbdorocco
mouline@fsr.ac.ma

Abstract. The ability of reusable components to be varied appropriate to

different designers and re-users requirements keyaproperty in reusable

component development, especially in Business ConmdBE) development.

The primary objective of this wotkis BCs reuse in different Business
Domains. In order to achieve this goal, we focusttom variability concept,

which is defined as the ability of a software atefto be changed or
customized so as to be reused in multiple contéitsis, we introduce the
concept of Functional Component (FC) that captumedagiities and variations

between BCs that share common behaviours in ordemdmease their

reusability in different business domains. The F@alelled by using a multi-

view variability.

Keywords: Business Component, Functional Component, Reuse, \ayiab

1 Introduction

Component reuse is defined as the process of ingriéng or updating information
systems using existing assets, and the abilitga$able components to be varied and
appropriate to different designers and re-usersiée a key property in reusable
components development.

This process has been supported by research aaidrib from various fields,
including generic data models [1], generic comptngR], and domain model [3].
Most of this work aims at facilitating the reusegeferic aspects of a domain.

However, we presume that is also beneficial theseeof variable development
artefacts. For this, we focus on the concept ofabdity, which is defined as “the
ability of a software artefact to be changed ortauized to be used in multiple
contexts” [4]. Variability was introduced into vatis contexts, particularly in domain
engineering [4] and product lines development [6], and [7]. However, it was

1 This work is supported by the COMPUS Project : B&151, PAI: VOLUBILIS 2006

Proceedings of MoDISE-EUS 20085

expressed a little in reusable component desigrecadally in Business Component

(BC) [8] development.

According to [9] and [10], a BC is a representatminan active concept in a
business domain. Thus, BCs are used to define ptse.g. Patient, Hospital...) in a
standard way or to define processes for the coaospich they represent (e.g. the
Billing/Payment Process, the Medical Encounter Bssc..).

Researchers have proposed different structures@f(dge [8] and [9]). In this
paper, we use the Symphony [11] conceptual modetidped in our research team.
Thus, a BC is a structure based on the CRC techni@llass-Responsibility-
Collaboration) [12]. A BC is modelled as a packagenposed of three parts (cf.
Fig.1):
— The“Interface” part describes whatBC can dot defines the BGerviceswhich

correspond to the operations representing use cassigned to the BC (e.g.

ReserveBed(} a part of the interface of the Hotel BC).

— The“Master” part describes what tH&C is It corresponds to thstructural part
(e.g. ‘Hotel' is a structural part). Yet, the cla¥Bart” (“Room”) supplements the
Master part to which it is connected by a compositielationship. It corresponds
to a partial structuring of the attributes of thedter part, thereby highlighting a
business aspect of the component.

— The“Role” part describes what BC useslt highlights thecollaboration played
with BC suppliers (e.g. RoomReésformalizes the contract between the class
“Room and a supplier (other BC interface, for instatiee Reservation BC), thus,
“RoomRes”class is described as a role).

<<Business>> €rmmmm
Reservation L
'

d
—| :
<<Business=> v
Holel '
'
=zinterfaces> <<pasterss P
Service Hotel Hotel '
+ReserveBed() K}------ -name : char]] H
-adress : char] H
+HdentifyRoom() '
'
'
f ;
1." :
=<Pari>> H

Room

<<Role>>

RoomRes
-amivalDate : Date
-departureDate : Date

-codeRaom : int
-numFloar : int g
typeRoom : charf]
+HsFree()
+createRes()
-bindRes()

Fig. 1. Example of a BC

However, in this paper a special interest is git@ithe reuse activity in several
business domains. Therefore, we propose to représeBC at a generic level and to
express all its variabilities. For this purpose, im&oduce the concept &functional
Component (FC) that captures similarities and variationswaetn BCs that share
common behaviours in order to increase their ralisabn different business
domains. In this paper, our objective is to dessagnFC and express variability in

36 Proceedings of MoDISE-EUS 2008

order to support the development and the reuseacéie development artefacts.
Variability can be applied and occurs at differgi@ws of development (functional,
dynamic and static). However, locating where an \Eies and the way we can
realize its variations are complex tasks. ThushWwC development, the necessity to
trace variability between solution and problem ssads inevitable, and the
approaches dealing with this complexity of varidpiheed to be established clearly.

This work aims to define the main concepts of \@liy for reuse, namely the
requirements for identifying variability, thus anthg the crucial factor for
determining the overall benefit of variability foguse, especially how it can enrich a
reuse space and improve the reusability of the Idped BC. In this paper, to
illustrate how to get an FC from similar BCs, wee usn example which shows
variability between two BCs from the same functiodamain (Reservation), but
from two different business domains: Tourism (Hoféservation) and Health
(Hospital Reservation).

The remainder of this paper is structured as fdloim Section 2, we define the
relations between a BC and an FC. Variability fiyabnd capture concepts are
illustrated in Section 3. In Section 4, we introdwn approach to represent a multi-
view variability in an FC. Related works are prasenin Section 5. Concluding
remarks are given in Section 6.

2 From a Business Component to a Functional Compent

Functional Component supporting variability

T‘ 71NN]
¥ /

N

X
D
BC,
i\

Business Domair; | Business Domair, | Business Domair,

Legend: Fixed Part: Abstraction: V\
variable Part[\ /\\/ Reuse: ~,

Fig. 2. Variability mechanism

v

In this paper, the purpose of our approach is gsegth of FCs that represent abstract
recurrent behaviours (e.g. Resource Allocation,0r#ing...) among several business
domains (e.g. Tourism, Health...), in order to retiam in other business areas (e.g.
Transport). The main idea here is to abstract B@s share these behaviours related
to their own business domains. This consists ofdkatification of what is common

Proceedings of MoDISE-EUS 20087

and what is variable between these BCs. Henceg usaniability mechanism is
needed.

To support the variability concept, we propose thatspecification of an FC has
to distinguish between a fixed part and variabletspécf. Fig.2). The fixed part
represents the component structures which are slusaeach business domain that
requires these structures; they are directly iatiegh in the BC under construction.
The variable parts represent the component stregtfor which reuse requires a
selection process adapted to a particular busohessin.

Variability in FC is then defined as a process whgused to control the common
and variable parts of FC artefacts. Variabilityaleon (exploitation) produces a
collection of particular FC reuse cases. Yet, thstraction (design for reuse) is a
process that identifies reusable artefacts from Bz already exist in several
business domains, and the reuse (design by resise)process that produces reuse
cases of FC artefacts in order to develop BCs. Bottesses are based on the
variability technique.

Yet, a BC can be also reused in several applicatisithin the same business
domain. Thus, BC reuse gives a set of Businesso®byehich are modular structures
specific to a given information system [11]. Busiseobjects can represent entities
(customer, supplier...) or processes (order, invoig@ssociated to an information
system. This type of reuse is not undertaken irnpaper.

Functional Domain Business Domain
Functional Element <

l Business Element

Business Domain

Functional Domain

Functional Component Business Component

0.1 Abstraction of > 1 «

1.*

* < Reuse of

Fig. 3. FC and BC metamodel

The metamodel depicted in Fig.3 highlights thetretabetween a BC and an FC.
The FC represents the central concept of a furatidomain. A functional domain is
composed of functional elements that corresporikhtwledge which is independent
from any business area whereas a BC representsetiteal concept of a business
domain which is composed of business elements tloatespond to business
knowledge. An FC is built from the abstraction blesast one BC, and a BC can be
built by reusing at least one FC or by the abstaaf at least one business objet of
the same business domain. The relation between ML baisiness object is not
represented in our metamodel.

Figure 4 depicts an example of functional domaimsmosed of FCs and business
domains composed of BCs. The “Resource Allocatitari be made with or without
reservation, thus, we represent it with the FClctidgan be specialised by both FC2
and FC3. To illustrate the relation between FCsB@d, the example shows that FC3

38 Proceedings of MoDISE-EUS 2008

can be reused in several business domains, so heacused to design BC1, BC2 or
BC3. In addition BC1, BC2 and BC3 can be abstratdetksign FC3.

Functional Domains Business Domains

BC1: Room Reservatior

FC1: Resourct Allocation

Business Domains 1: Tourism

BC2: Bed Resewvation

FCo: FC3: < Business Domain 2: Health
RA_Without RA_With
Reservation Reservation BC3 : Flight Reservation

Business Domain 3: Transport

Reuse: ——»
Abstraction:. +——

Fig. 4. Example of FCs and BCs

3 Variability finality and capture

There are many concepts involved in variability agement. In the present section,
we introduce several concepts that we considehesinimum necessary to specify
an FC supporting variability. These concepts dati wow points: variability finality
and variability capture.

3.1 Variability finality

Variability finality outlines the scope of solutisrbeing developed according to the

variability concept. Thus, we state that it canapplied according to two views:

variability for customizatiorand variability forreuse

— Variability for customization holds when BC solut® are to be customised by
other developers into user solutions. These deeetopcan configure and
instantiate prespecified BC to express their viditgb

— Variability for reuse consists of making variahiliéxplicit during the design for
reuse process; this means that an FC specificdéfines the variable parts and the
fixed part of this FC in order to increase its ity and applicability in different
business domains.
Yet, variability comes from variable parts of th€8in the domain which can vary

in many ways:

Proceedings of MoDISE-EUS 20089

1. One BC implements a feature in several ways argfothe user a choice among
them.

2. Several BCs from different business domains shereame feature but implement
it in different ways and it is foreseeable that,fiure BCs, the feature will be
implemented in other ways.

In our case, in which we want to express varigbildr reuse, we focus on the
second point. This case shows that variability lmamdentified in several BCs and can
be predictable for future BCs.

3.2 Variability capture

In the initial phase of the FC development, we @afronted to requirements that
allow us to identify where variability is needechuk, variability capture is the most
important phase to discover where BC varies.

In our context, for variability capture, we propdseuse a list of BCs within the
same familyof systemsi.e. systems that share common characteristicsn,Tive
proceed to deal with the commonalities and diffeesnbetween those BCs. Hence,
we use in this paper two similar BCs of the “Rea@ipn” system and we try to
represent them with an abstract BC as an FC. T&ieHC is the “Bed Reservation” in
a “Hospital” business domain and the second BGés“Room Reservation” in the
“Hotel” business domain. Commonalities are the dixparts of the FC, and
differences are the variable parts of the FC, wisioh the parts that make the BCs
distinct from one another. Yet, for more detail®abvariations, we propose that the
specification of each BC must be at different viefive. functional, dynamic and
static). Due to space limitations, we cannot presefull account of the variability
capture phase.

The abstraction activity aims to generate an FCcbynparing similar BCs
according to the three views. In the “Room Reséwmatand the “Bed Reservation”
BCs, for instance, the comparison of their funaioand dynamic views leads to the
generation of abstract artefacts by a simple uses#rvation taxonomy. All we have
to do is to replace “Room” and “Bed” by “Stay Place'Secretary” and
“Receptionist” by “Reservation Responsible”, “Hdétednd “Hospital” by “Stay
Provider”, etc.

However, at the static view, the abstraction atgtild more complex. This situation
shows the presence of variation between both B8 Variation is denoted by the
way the “Stay provider” and the “Stay place” arlated. In fact, in the “Hotel” BC,
the “Room” class is directly related to the “Hotetlass. Nevertheless, in the
“Hospital” BC, the “Bed” class is related to the dbpital” class by an intermediate
class, which is the “Room” class. This statemesstds to the distinction of a
structural variability , which occurs when there are classes relatedvierakeways.
Hence, we denote the differences identified betwaemtwo BCs by the degree of
depth of related classes that vary from a BC tdteroOnce a variation is identified,
it needs to be constrained. Thus, it is eventuddlgigned as variable part; we have
illustrated this point in the context of a precedeaper [13]. In the next section, we
show how to represent this variability across tivee views of the FC.

40 Proceedings of MoDISE-EUS 2008

4 Multi-View Variability Modelling in an FC

As we mentioned in Section 3, the variation idésdifin our BCs is the degree of
depth when a “Stay Place” is related to a “Stawieler”.

Hence, to represent differences between BCs ofstiree family, we use the
concepts oiariation Points(VP) [14] and / oVariants (V) [15]. According to our
context, we define VP and V as follows:

— Variation Point: represents a location on which aiation will occur. It is a
conceptually common feature that can be implememtatifferent ways. Thus, it
locates a specific place in an FC artefact to whiddter decision is attached.

— Variant: represents a specific implementation wédation point. It corresponds to
design alternatives to resolve the variability.

Thus, in this example “Identify StayPlace” is calesied as a Variation Point and
“Identify StayPlace 0 degree” (i.e. a “Room Resgtovd; the class “Room” is
related directly to the “Hotel” class) and “IdemtiStayPlace_1 degree” (i.e. a “Bed
Reservation”; the class “Bed” is related to the 8gdital” class by an intermediate
class: “Room” class) are considered as VarianthisfVP.

In this paper, to represent variability, we proptizsase UML extension carried out
by stereotypes. UML is a good candidate for valitghiepresentation, because there
is wide range of tools supporting it, and the riotais extensible. Therefore, we will
apply this approach on the functional, dynamic static views of our FC.

4.1 Functional variability

At the functional view, our proposed stereotypessupported by use cases in the use

case diagram. Stereotypes that we use in our exaanplgiven as follows:

— « Variation »: to specify if a use case is a VP.

— « Variant »: to specify a variant related to a VP.

— « Alternative »: to specify the relation betweeviRiand its alternative Variants.
Figure 5 depicts a variable specification of thectional view of the FC. “Identify

StayPlace” is a VP while “Identify StayPlace O Desjrand “Identify StayPlace 1

Degree” are its alternatives variants.

Proceedings of MoDISE-EUS 20081

ReserveStayPlace

“v<<include>>
.

~

/

ResResponsable

<<variant>>
IdentifyStayPlace_0Degree

<<variation>>
IdentifyStayPlace

I <<alternative>> 1

<<variant>>
IdentifyStayPlace_1Degree

Fig. 5. Variability in the fun

4.2 Dynamic variability

ctional view of the FC

Expressing variability in the dynamic view is based frames (fragments of
interaction). Thus, we include sub-sequences qoorefing to alternatives. This

technique requires the application of the

functional view must be represented by at leasamé of a sequence diagram in the
dynamic view. Hence, we respectively use the stgpes « Variation » and « Variant

» on the fragments related to a VP and V.

followinde: any Variation Point of the

sd ReserveStayPlace J
: StayProvider : StayPlace : Reservation
ResResponsable } : }
| | |
| | |
I | I
| | |
ReserveStayPlace
y 0 rof I }
IdentifyStayPlace | I
L : :
T | |
| I |
1 demandReservation() |
|
: I
CreateReservation() D‘E]
|
L bindReservation() |
| |
| I
| |
| |
U I I

Fig. 6. Variation in the dynamic view of the FC

Figure 6 depicts a variable specification of thenalyic view in the FC. It

illustrates the frame for the use case “Res

ervgPHaae”, including a reference to the

42 Proceedings of MoDISE-EUS 2008

“Identify StayPlace” fragment. Figure 7 shows hdwe tlynamic parts of the variants
are included in the variation point.

<<variation>>
sd IdentifyStayPlace

: StayProvider : StayPlace : Intermediate StayPlace

T 1
| |

identifyStayPlace() | |
|

|

<<variant>>
sd |dentifyStayPlace_O0Degree

f
|
|
|
|
|
|
|
|
;

loop isFree() I
—
|
|
|
|
|
|
|
|
|

i
<<variant>>
sd |dentifyStayPlace_1Degree

hasFreeStayPlace()

{>

[100p]
D<}

isFree()

— T

Fig. 7. Variants in the dynamic view of the FC

4.3 Static variability

This phase consists of the specification of theticst@ontributions of each
functionality to finalize our FC. Indeed, for eagpecified use case, we give the static
contributions in the solution model.

The structure is distributed in several fragmertécty will be assembled to form a
traditional static view at the reuse activity. Eatéiss impacted by a variation or by a
functionality will be represented in the staticgnaent of this use case. Figure 8
depicts static fragments of the use cases: ResBtagPlace (8.a), ldentify
StayPlace_1 Degree (8.b) and Identify StayPlacee@ré&® (8.c).

Proceedings of MoDISE-EUS 20083

<<Business>> <<Business>>
Reservation T T T <cuses> | 7 Person
A
| e e e e e e mmmmm e o
ﬁ <<yses>> i
'
<<Business>> '
StayProvider :
'
<<Master>> 1
<.<Inlerface>>- StayProvider :
Service StayProvider N '
P -name : char[] '
+ReserveStayPlace() _address : charf] '
'
+HdentifyStayPlace() 1
'
'
'
'
'
<<Part>> L
StayPlace st<<RI0|e>l:
-codeStayPlace : int | doviliedes

~-amivalDate : Date

+isFree() : boolean _departureDate : Date

Reserve StayPlace

8.3
<<Master>> <<Master>>
StayProvider StayProvider
— —— —
1.0 1
<<Part>> =
Intermediate StayPlace
 —————
 —
1.0
StayPlace
———
Identify StayPlace_1Degree Identify StayPlace_0 Degree
<<Variant>> 8.0 <<Variant>> 8.

Fig. 8. Variability at the static view of the FC

Once variability is modelled across the three iot view, we obtain an FC
supporting variability. According to our example,ewalso mention that it is
worthwhile to note that having designed an FC aflamany BCs to be derived in
other business domains such as the “Transport’nbesidomain. For example, we
can reuse our FC for a “Train Place ReservatioisTFC reduces software
development efforts. In this context, we make usa borizontal reuse across a wide
variety of business domains.

Yet, our approach can also be applied for vertieake. In this case, the basic idea
is the reuse of a BC supporting variability that && used by a family of information
systems with similar requirements in the same lssindomain. In this case,
variability can be used with the customization fiitya

44 Proceedings of MoDISE-EUS 2008

5 Related works

Variability was originally introduced in the FODAathod by the feature model [4]. It
consists of a set of nodes, a set of directed edges a set of edge decorations.
Common features are defined as mandatory feathedswill be included in all the
member products in the product lines. Variableurss are configurable features, i.e.
they are not necessarily included in every deripeoduct and can be selectable.
Unfortunately, the applicability of this notatios limited by the fact that it requires
special propose modelling tools.

Therefore, several extended UML methods have begpoped (see [14], [15] and
[16]) in order to represent the variability concephe extension is realised by using
standardised extension mechanisms of UML by usitegestypes, and can be
expressed as a UML profile [17].

In our work, we based on this solution. In factieexling UML for modelling
variability in BC artefacts, throughout differertigses of development (requirements,
analysis, design and implementation) or differegibfs of view (functional, static and
dynamic), has the benefit to guarantee tracealsititpng corresponding artefacts, and
the particularity of our work consists of takingd account the business aspects in
order to represent this variability.

Furthermore, variability, as a separate model waggsed, and was denoted by
Variability Orthogonal Model (VOM) in the produdhé context. The VOM, as it is
described in [7], has two central elements, which ariation point and variant
classes. A variation point represents an expliegireering decision which provides
several alternatives variants with regard to setbassets or artefacts of the system
development. However, we perceive that the VOM pectfic to product lines
approaches and its finality is mainly customisatibnus, it is not enough evaluated to
fit the variability for BC reuse requirements, ahérefore, it needs further empirical
verification.

6 Conclusion

This paper described the potential of variabilitgdalling through BC development.
To design a generic BC, which supports variabiltg, have introduced the concept
of FC which captures similarities and variationgween BCs that share common
behaviours. Subsequently, the FC can be reusediliipia business domains.

Our proposed approach needs further study; it mehaas after designing
functional components supporting variability, iteissential to implement a resolution
process of this variability, as well as the inteigira of these components in the
development process of a components-based infaxmagistem.

Therefore, we presume that only conceptual modg&lfunctional components,
such as UML models, produced during the specificatir design processes, are real
reusable artefacts for the design of componentsdbagormation systems; they are
technologically neutral and evolve according of tienging needs for which they
respond.

Proceedings of MoDISE-EUS 20085

References

1. Mineau, G.W., Godin, R.: Automatic structuring ohdwledge bases by conceptual
clustering, IEEE Transactions (Data and Knowledggeering, 7 (5), pp.824-829, (1995)

2. Castano S., De Antonellis, V.: Thé Reuse Environment for Requirements Engineering,
ACM SIGSOFT Software Engineering Notes, 19 (3),6%65, (1994)

3. Snoeck, M., Poels, G.: Analogical Reuse of Struttana Behavioural Aspects of Event-
Based Object-Oriented Domain Models, Domain EngingeNorkshop, Proceedings of the
11th International Workshop on Database and Expgstems Applications, pp. 802-806,
London (Greenwich), 4-8 Sept. (2000)

4. Kang, K., Cohen, S., Hess, J., Novak, W., PeterSank-eature-Oriented Domain Analysis
(FODA) feasibility study:, Technical report CMU/SEO-TR-21, Software Engineering
Insitute, Carnegie Mellon University, (1990)

5. Gurp, V., Bosch, J., Svahnberg, M.: Managing Valigbin Software Product Lines,
Landelijk Architectuur Congres, Amsterdam, (2000)

6. Bachmann, F., Bass, L.: Managing variability in seftev architecture, ACM SIGSOFT
Software Engineering Notes, Volume 26, n°3, (2001)

7. Pohl, K., Bockle, G., Linden, F.V.D.: Software Puatl Line Engineering: Foundations,
Principles, and Techniques, Springer-Verlag Berlaidglberg, (2005)

8. Barbier, F.: Business Component-Based Software Engmggehe Springer International
Series in Engineering and Computer Science, Vo0}.288 p, (2002)

9. Cummins, F.: OMG Business Object Concept — BOTF —, &\fhdper — EDS- BOM/99-12-
42, (1999)

10Casanave, C.: Business Object Architectures and stimdBata Access Corporation,
Miami USA, (1996)

11Hassine, l., Rieu, D., Bounaas, F., Seghrouchni, Towards a Reusable Business
Components Model, O0IS02, Montpellier, (2002)

12 wirfs-Brock, R., Wilkerson, B., Weiner, L.: Designif@pject-Oriented Software Prentice-
Hall, Englewood Cliffs, New Jersey, (1990)

13Saidi, R., Fredj, M., Mouline, S., Front, A., Rieu, Dowards Managing Variability Across
Business Component Development, Proceedings of tié IHEE International Conference
on Information Reuse and Integration, IRl — 2007 153august, Las Vegas, USA, (2007)

14 Clauss, M.: Generic modeling using UML extensionsvariability, Workshop on Domain
Specific Visual Languages, pages 11-18, (2001)

150liveira, E.A., Gimenes, |., Huzita, E., MaldonaddC.: A Variability Management Process
for Software Product Lines, In Proc. of CASCON 20D&onto, Canada, (2005)

16 Arnaud, N., Front, A., Rieu, D.: Expressing vari#iifor patterns re-use, First International
Conference on Research Challenges in Information &ejeRCIS 2007, Ouarzazate,
Morocco, April 23-26, (2007)

17 Ziadi, T., Hélouét, L., Jézéquel, J.M.: Towards MLUProfile for Software Product Lines,
5th International Workshop, PFE 2003, Siena, Itslyyember 4-6, (2003)

