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Abstract

A family F of sets is said to satisfy the (p, q)-property if among any p sets of F some q have a non-
empty intersection. The celebrated (p, q)-theorem of Alon and Kleitman asserts that any family
of compact convex sets in R

d that satisfies the (p, q)-property for some q ≥ d + 1, can be pierced
by a fixed number (independent on the size of the family) fd(p, q) of points. The minimum such
piercing number is denoted by HDd(p, q). Already in 1957, Hadwiger and Debrunner showed that
whenever q > d−1

d p + 1 the piercing number is HDd(p, q) = p − q + 1; no exact values of HDd(p, q)
were found ever since.

While for an arbitrary family of compact convex sets in R
d, d ≥ 2, a (p, 2)-property does not

imply a bounded piercing number, such bounds were proved for numerous specific families. The
best-studied among them is axis-parallel boxes in R

d, and specifically, axis-parallel rectangles in
the plane. Wegner (1965) and (independently) Dol’nikov (1972) used a (p, 2)-theorem for axis-
parallel rectangles to show that HDrect(p, q) = p − q + 1 holds for all q >

√
2p. These are the

only values of q for which HDrect(p, q) is known exactly.

In this paper we present a general method which allows using a (p, 2)-theorem as a boot-
strapping to obtain a tight (p, q)-theorem, for families with Helly number 2, even without as-
suming that the sets in the family are convex or compact. To demonstrate the strength of this
method, we show that HDd−box(p, q) = p − q + 1 holds for all q > c′ logd−1 p, and in particular,
HDrect(p, q) = p − q + 1 holds for all q ≥ 7 log2 p (compared to q ≥ √

2p, obtained by Wegner and
Dol’nikov more than 40 years ago).

In addition, for several classes of families, we present improved (p, 2)-theorems, some of which
can be used as a bootstrapping to obtain tight (p, q)-theorems. In particular, we show that any
family F of compact convex sets in R

d with Helly number 2 admits a (p, 2)-theorem with piercing
number O(p2d−1), and thus, satisfies HDF (p, q) = p − q + 1 for all q > cp1− 1

2d−1 , for a universal
constant c.
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1 Introduction

1.1 Helly’s theorem and (p,q)-theorems

The classical Helly’s theorem says that if in a family of compact convex sets in R
d every d + 1

members have a non-empty intersection then the whole family has a non-empty intersection.
For a pair of positive integers p ≥ q, we say that a family F of sets satisfies the (p, q)-

property if |F| ≥ p, none of the sets in F is empty, and among any p sets of F there are
some q with a non-empty intersection. A set P is called a transversal (or alternatively,
a piercing set) for F if it has a non-empty intersection with every member of F . In this
language, Helly’s theorem states that any family of compact convex sets in R

d satisfying the
(d + 1, d + 1)-property has a singleton transversal (alternatively, can be pierced by a single
point).

In general, d + 1 is clearly optimal in Helly’s theorem, as any family of n hyperplanes
in a general position in R

d satisfies the (d, d)-property but cannot be pierced by less than
n/d points. However, for numerous specific classes of families, a (d′, d′)-property for some
d′ < d + 1 is already sufficient to imply piercing by a single point. The minimal number d′

for which this holds is called the Helly number of the family. For example, any family of
axis-parallel boxes in R

d has Helly number 2.

In 1957, Hadwiger and Debrunner [13] proved the following generalization of Helly’s
theorem:

◮ Theorem 1 (Hadwiger-Debrunner Theorem [13]). For all p ≥ q ≥ d+1 such that q > d−1
d p+1,

any family of compact convex sets in R
d that satisfies the (p, q)-property can be pierced by

p − q + 1 points.

◮ Remark. The bound in Theorem 1 is tight. Indeed, any family of n sets which consists of
p − q pairwise disjoint sets and n − (p − q) copies of the same set satisfies the (p, q)-property
but cannot be pierced by less than p − q + 1 points.

Hadwiger and Debrunner conjectured that while for general p ≥ q ≥ d + 1, a transversal
of size p − q + 1 is not guaranteed, a (p, q)-property does imply a bounded-size transversal.
This conjecture was proved only 35 years later, in the celebrated (p, q)-theorem of Alon and
Kleitman.

◮ Theorem 2 (Alon-Kleitman (p, q)-Theorem [2]). For any triple of positive integers p ≥ q ≥
d + 1, there exists an integer s = s(p, q, d) such that if F is a family of compact convex sets
in R

d satisfying the (p, q)-property, then there exists a transversal for F of size at most s.

The smallest value s that works for p ≥ q > d is called ‘the Hadwiger-Debrunner number’
and is denoted by HDd(p, q). For various specific classes of families, a stronger (p, q)-theorem
can be obtained. In such cases, we denote the minimal s that works for the family F by
HDF (p, q).

The (p, q)-theorem has a rich history of variations and generalizations. To mention a
few: In 1997, Alon and Kleitman [3] presented a simpler proof of the theorem (that leads
to a somewhat weaker quantitative result). Alon et al. [1] proved in 2002 a ‘topological’
(p, q)-theorem for finite families of sets which are a good cover (i.e., the intersection of every
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subfamily is either empty or contractible), and Bárány et al. [4] obtained in 2014 colorful
and fractional versions of the theorem.

The size of the transversal guaranteed by the (p, q)-theorem is huge, and a large effort
was invested in proving better bounds on HDd(p, q), both in general and in specific cases.
The most recent general result, by the authors and Tardos [16], shows that for any ε > 0,
HDd(p, q) ≤ p − q + 2 holds for all (p, q) such that p > p0(ε) and q > p

d−1

d +ε. Yet, no
exact values of the Hadwiger-Debrunner number are known except for those given in the
Hadwiger-Debrunner theorem. In fact, even the value HD2(4, 3) is not known, the best
bounds being 3 ≤ HD2(4, 3) ≤ 13 (obtained by Kleitman et al. [18] in 2001).

1.2 (p, 2)-theorems and their applications

As mentioned above, while no general (p, q)-theorems exist for q ≤ d, such theorems can be
proved for various specific families. Especially desirable are (p, 2)-theorems, which relate
the packing number, ν(F), of the family F (i.e., the maximum size of a subfamily all of
whose members are pairwise disjoint) to its piercing number, τ(F) (i.e., the minimal size of a
piercing set for the family F).

In the last decades, (p, 2)-theorems were proved for numerous families. In particular, in
1991 Károlyi [15] proved a (p, 2)-theorem for axis-parallel boxes in R

d, guaranteeing piercing
by O(p logd−1 p) points. Kim et al. [17] proved in 2006 that any family of translates of
a fixed convex set in R

d that satisfies the (p, 2)-property can be pierced by 2d−1dd(p − 1)
points; five years later, Dumitrescu and Jiang [8] obtained a similar result for homothets
of a convex set in R

d. In 2012, Chan and Har-Peled proved a (p, 2)-theorem for families of
pseudo-discs in the plane ([5], Theorem 4.6), with a piercing number linear in p. Two years
ago, Govindarajan and Nivasch [11] showed that any family of convex sets in the plane in
which among any p sets there is a pair that intersects on a given convex curve γ, can be
pierced by O(p8) points.

In 2004, Matoušek [20] showed that families of sets with bounded dual VC-dimension
have a bounded fractional Helly number. Recently, Pinchasi [21] has drawn a similar relation
between the union complexity and the fractional Helly number. Each of these results implies
a (p, 2)-theorem for the respective families, using the proof technique of the Alon-Kleitman
(p, q)-theorem.

Besides their intrinsic interest, (p, 2)-theorems serve as a tool for obtaining other results.
One such result is an improved Ramsey Theorem. Consider, for example, a family F of n

axis-parallel rectangles in the plane. The classical Ramsey theorem implies that F contains
a subfamily of size Ω(log n), all whose elements are either pairwise disjoint or pairwise
intersecting. As was observed by Larman et al. [19], the aforementioned (p, 2)-theorem for
axis-parallel rectangles [15] allows obtaining an improved bound of Ω(

√

n/ log n). Indeed,

either F contains a subfamily of size
⌈

√

n/ log n
⌉

all whose elements are pairwise disjoint,

and we are done, or F satisfies the (p, 2)-property with p =
⌈

√

n/ log n
⌉

. In the latter case,

by the (p, 2)-theorem, F can be pierced by O(p log p) = O(
√

n log n) points. The largest
among the subsets of F pierced by a single point contains at least Ω( n√

n log n
) = Ω(

√

n/ log n)

rectangles, and all its elements are pairwise intersecting.

Another result that can be obtained from a (p, 2)-theorem is an improved (p, q)-theorem;
this will be described in detail below.

SoCG 2018
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1.3 (p, 2)-theorems and (p, q)-theorems for axis-parallel rectangles and
boxes

The (p, q)-problem for axis-parallel boxes is almost as old as the general (p, q)-problem, and
was studied almost as thoroughly (see the survey of Eckhoff [9]). It was posed in 1960 by
Hadwiger and Debrunner [14], who proved that any family of axis-parallel rectangles in
the plane that satisfies the (p, q)-property, for p ≥ q ≥ 2, can be pierced by

(

p−q+2
2

)

points.
Unlike the (p, q)-problem for general families of convex sets, in this problem a finite bound
on the piercing number was known from the very beginning, and the research goal has been
to improve the bounds on this size, denoted HDrect(p, q) for rectangles and HDd−box(p, q) for
boxes in R

d.

For rectangles and q = 2, the quadratic upper bound on HDrect(p, 2) was improved to
O(p log p) by Wegner (unpublished), and independently, by Károlyi [15]. The best currently
known upper bound, which follows from a recursive formula presented by Fon Der Flaass
and Kostochka [10], is

HDrect(p, 2) ≤ p⌈log2 p⌉ − 2⌈log
2

p⌉ + 1, (1)

for all p ≥ 2. On the other hand, it is known that the ‘optimal possible’ answer p−q+1 = p−1
fails already for p = 4. Indeed, Wegner [24] showed that HDrect(4, 2) = 5, and by taking
⌈p/3⌉−1 pairwise disjoint copies of his example, one obtains a family of axis-parallel rectangles
that satisfies the (p, 2)-property but cannot be pierced by less than ≈ 5p/3 points.

Wegner [24] conjectured that HDrect(p, 2) is linear in p, and is possibly even bounded by
2p − 3. While Wegner’s conjecture is believed to hold (see [9, 12]), no improvement of the
bound (1) was found so far.

For rectangles and q > 2, Hadwiger and Debrunner showed that the exact bound
HDrect(p, q) = p−q+1 holds for all q ≥ p/2+1. Wegner [24] and (independently) Dol’nikov [7]
presented recursive formulas that allow leveraging a (p, 2)-theorem for axis-parallel rectangles
into a tight (p, q)-theorem. Applying these formulas along with the Hadwiger-Debrunner
quadratic upper bound on HDrect(p, 2), Dol’nikov showed that HDrect(p, q) = p − q + 1 holds
for all 2 ≤ q ≤ p <

(

q+1
2

)

. Applying the formulas along with the improved bound (1) on
HDrect(p, 2), Scheller ([22], see also [9]) obtained by a computer-aided computation upper
bounds on the minimal p such that HDrect(p, q) = p− q +1 holds, for all q ≤ 12. These values
suggest that HDrect(p, q) = p − q + 1 holds already for q = Ω(log p). However, it appears
that the method in which Dol’nikov proved a tight bound in the range p <

(

q+1
2

)

does not
extend to show a tight bound for all q = Ω(log p) (even if (1) is employed), and in fact, no
concrete improvement of Dol’nikov’s result was presented (see the survey [9]).

Dol’nikov [7] claimed that if HDrect(p, 2) is linear in p as conjectured by Wegner [24],
then one can deduce that HDrect(p, q) = p − q + 1 holds for all q ≥ c, for some constant c.
Eckhoff [9] wrote that the proof of this claim presented in [7] is flawed, but it is plausible
that the claim does hold. On the other direction, nothing is known about the minimal q for
which HDrect(p, q) = p − q + 1 may hold; in particular, it is not impossible that the optimal
bound HDrect(p, q) = p − q + 1 holds already for q = 3.

For axis-parallel boxes in R
d, the aforementioned recursive formula of [10] implies the

bound HDd−box(p, 2) ≤ O(p logd−1 p). While it is believed that the correct upper bound
is O(p), the result of [10] was not improved ever since; the only advancement is a recent
result of Chudnovsky et al. [6], who proved an upper bound of O(p log log p) for any family
of axis-parallel boxes in which for each two intersecting boxes, a corner of one is contained in
the other.
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1.4 Our results

From (p, 2)-theorems to (p, q)-theorems

The main result of this paper is a general method for leveraging a (p, 2)-theorem into a tight
(p, q)-theorem, applicable to families with Helly number 2. Interestingly, the method does
not assume that the sets in F are convex or compact.

◮ Theorem 3. For any m ∈ N, there exists c′ = c′(m) such that the following holds. Let
F be a family of sets in R

d such that HDF (2, 2) = 1. Assume that for all 2 ≤ p ∈ N we
have HDF (p, 2) ≤ pf(p), where f : [2, ∞) → [1, ∞) is a differentiable function of p that

satisfies f ′(p) ≥ log
2

e
p and f ′(p)

f(p) ≤ m
p for all p ≥ 2. Denote Tc(p) = Tc(p, f) = min{q : q ≥

2c · f(2p/q)}. Then for any p ≥ q ≥ 2 such that q ≥ Tc′(p), we have HDF (p, q) = p − q + 1.

While the condition on the function f(p) looks a bit “scary”, it actually holds for any
function f whose growth rate (as expressed by its derivative f ′(p) and by the derivative of

its logarithm (log f(p))′ = f ′(p)
f(p) ) is between the growth rates of f(p) = log2 p and f(p) = pm

(where m can be any integer, and c′ in the assertion depends on it), including all cases needed
in the current paper.

The first application of our general method is the following theorem for families of
axis-parallel rectangles in the plane, obtained using (1) as the basic (p, 2)-theorem and some
local refinements.

◮ Theorem 4. HDrect(p, q) = p − q + 1 holds for all q ≥ 7 log2 p.

◮ Remark. Theorem 4 improves significantly on the best previous result of Wegner (1965)
and Dol’nikov (1972), that obtained the exact value HDrect(p, q) = p − q + 1 only for q >

√
2p.

Another corollary is a tight (p, q)-theorem for axis-parallel boxes in R
d:

◮ Theorem 5. HDd−box(p, q) = p − q + 1 holds for all q > c logd−1 p, where c is a universal
constant.

In the proof of Theorem 3 we deploy the following observation of Wegner and Dol’nikov,
which holds for any family F with Helly number 2:

HDF (p, q) ≤ HDF (p − λ, q − 1) + λ − 1, (2)

where λ = ν(F) is the packing number of F (Observation 8 below). We use an inductive
process in which (2) is applied as long as F contains a sufficiently large pairwise-disjoint set.
To treat the case where F does not contain a ‘large’ pairwise-disjoint set (and thus, ν(F) is
small), we make use of a combinatorial argument, based on a variant of a ‘combinatorial
dichotomy’ presented by the authors and Tardos [16], which first leverages the (p, 2)-theorem
into a ‘weak’ (p, q)-theorem, and then uses that (p, q)-theorem to show that if ν(F) is ‘small’
then τ(F) < p − q + 1.

From (2, 2)-theorems to (p, 2)-theorems

It is natural to ask, under which conditions a (2, 2)-theorem implies a (p, 2)-theorem for all
p > 2.

While in general, a (2, 2)-theorem does not imply a (p, 2)-theorem (see an example in the
full version of the paper), we prove such an implication for several kinds of families. Our
first result here concerns families with Helly number 2 (i.e., families F with HDF (2, 2) = 1).

SoCG 2018
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◮ Theorem 6. Let F be a family of compact convex sets in R
d with Helly number 2. Then

HDF (p, 2) ≤ p2d−1/2d−1, and consequently, HDF (p, q) = p − q + 1 holds for all q > cp1− 1

2d−1 ,
where c = c(d) is a constant depending only on the dimension d.

The second result only assumes the existence of a (2, 2)-theorem (where the piercing set
may contain more than one point).

◮ Theorem 7. Let F be a family of compact convex sets in R
d that admits a (2, 2)-theorem.

Then:
1. F admits a (p, 2)-theorem for piercing with a bounded number s = s(p, d) of points.
2. If d = 2, then HDF (p, 2) = O(p8 log2 p).
3. If d = 2 and F has a bounded VC-dimension (see [23]), then HDF (p, 2) = O(p4 log2 p).

Since families with a sub-quadratic union complexity admit a (2, 2)-theorem and have
a bounded VC-dimension, Theorem 7(3) implies that any family F of regions in the plane
with a sub-quadratic union complexity satisfies HDF (p, 2) = O(p4 log2 p). This significantly
improves over the bound HDF (p, 2) = O(p16) that was obtained for such families in [16].

1.5 Organization of the paper

In Section 2 we demonstrate our general method for leveraging a (p, 2)-theorem into a tight
(p, q)-theorem and prove Theorem 4. Our new (p, 2)-theorem for convex sets with Helly
number 2 (i.e., Theorem 6 above) is presented in Section 3. We conclude the paper with a
discussion and open problems in Section 4. For space reasons, the proofs of Theorems 3, 5,
and 7 are presented only in the full version of the paper.

2 From (p, 2)-theorems to tight (p, q)-theorems

In this section we present our main theorem which allows leveraging a (p, 2)-theorem into a
tight (p, q)-theorem, for families F that satisfy HDF (2, 2) = 1. As the proof of the theorem in
its full generality is somewhat complex, we present here the proof in the case of axis-parallel
rectangles in the plane, and provide the full proof in the full version of the paper. Before
presenting the proof of the theorem, we briefly present the Wegner-Dol’nikov argument (parts
of which we use in our proof) in Section 2.1, provide an outline of our method in Section 2.2,
and prove two preparatory lemmas in Section 2.3.

2.1 The Wegner-Dol’nikov method

As mentioned in the introduction, Wegner and (independently) Dol’nikov leveraged the
Hadwiger-Debrunner (p, 2)-theorem for axis-parallel rectangles in the plane, which asserts
that HDrect(p, 2) ≤

(

p
2

)

, into a tight (p, q)-theorem, asserting that HDrect(p, q) ≤ p − q + 1
holds for all p ≥ q ≥ 2 such that p <

(

q+1
2

)

. The heart of the Wegner-Dol’nikov argument is
the following observation.

◮ Observation 8. Let F be a family that satisfies HDF (2, 2) = 1, and put λ = ν(F). Then

HDF (p, q) ≤ HDF (p − λ, q − 1) + λ − 1.

Proof. The slightly weaker bound HDF (p, q) ≤ HDF (p − λ, q − 1) + λ holds trivially, and
does not even require the assumption HDF (2, 2) = 1. Indeed, if S is a pairwise-disjoint
subset of F of size λ, then F \ S satisfies the (p − λ, q − 1)-property, and thus, can be
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pierced by HDF (p − λ, q − 1) points. As S clearly can be pierced by λ points, we obtain
HDF (p, q) ≤ HDF (p − λ, q − 1) + λ.

To get the improvement by 1, let S be a pairwise-disjoint subfamily of F of size λ = ν(F)
and let T be a transversal of F \ S of size HDF (p − λ, q − 1). Take an arbitrary x ∈ T ,
and consider the subfamily X = {A ∈ F \ S : x ∈ A} (i.e., the sets in F \ S pierced by
x). By the maximality of S, each A ∈ X intersects some B ∈ S. Hence, we can write
X = ∪B∈SXB , where XB = {A ∈ X : A∩B 6= ∅}. Observe that for each B, the set XB ∪{B}
is pairwise-intersecting. Indeed, any A, A′ ∈ X intersect in x, and all elements of XB intersect
B. Therefore, by the assumption on F , each XB ∪ {B} can be pierced by a single point.
Since X = ∪B∈SXB , this implies that there exists a transversal T ′ of X ∪ S of size |S| = λ.
Now, the set (T \ {x}) ∪ T ′ is the desired transversal of F with HDF (p − λ, q − 1) + λ − 1
points. ◭

◮ Remark. We note that a generally similar argument of dividing the family F into a ‘good’
subfamily that satisfies a ‘stronger’ property (like the (p−λ, q −1)-property in Observation 8)
and a small ‘bad’ subfamily that does not admit a ‘good’ property (like the independent
set in Observation 8 which clearly cannot be pierced by less than λ points) appears also in
the improved bound on the Hadwiger-Debrunner number for general convex sets presented
in [16]. While in [16], the bound on the piercing number is p − q + 2, Observation 8 leads to
the optimal piercing number p − q + 1, as shown below. The advantage of Observation 8 is
the ‘improvement by 1’ step, which reduces the piercing number by 1; this step cannot be
applied for general families of compact convex sets, since it relies on the fact that axis-parallel
rectangles have Helly number 2.

Using Observation 8, Wegner and Dol’nikov proved the following theorem, which we will
use in our proof below.

◮ Theorem 9 ([7], Theorem 2; [24]). Let F be a family of axis-parallel rectangles in the
plane. Then for any p ≥ q ≥ 2 such that p <

(

q+1
2

)

, we have HDF (p, q) = p − q + 1.

Proof. The proof is by induction. The induction basis is q = 2: for this value, the assertion
is relevant only for p = 2, and we indeed have HDrect(2, 2) = 1 = 2 − 2 + 1 as asserted.

For the inductive step, we consider λ = ν(F). Note that F satisfies the (λ+1, 2)-property.
Thus, if

(

λ+1
2

)

≤ p − q + 1 then we have HDF (p, q) ≤ p − q + 1 by the aforementioned
Hadwiger-Debrunner (p, 2)-theorem for axis-parallel rectangles. On the other hand, if
(

λ+1
2

)

> p − q + 1 then it can be checked that p − λ <
(

q
2

)

, so by the induction hypothesis we
have HDF (p − λ, q − 1) = (p − λ) − (q − 1) + 1. By Observation 8, this implies HDF (p, q) ≤
HDF (p − λ, q − 1) + λ − 1 = p − q + 1, as asserted. ◭

2.2 Outline of our method

Let F be a family of axis-parallel rectangles in the plane. Instead of leveraging the Hadwiger-
Debrunner (p, 2)-theorem for F into a (p, q)-theorem as was done by Wegner and Dol’nikov,
we would like to leverage the stronger bound HDrect(p, 2) ≤ p log2 p which follows from (1).
We want to deduce that HDrect(p, q) = p − q + 1 holds for all q ≥ 7 log p.

Basically, we would like to perform an inductive process similar to the process applied
in the proof of Theorem 9. As above, put λ = ν(F). If λ is ‘sufficiently large’ (namely, if
q − 1 ≥ 7 log2(p − λ)), we apply the recursive formula HDF (p, q) ≤ HDF (p − λ, q − 1) + λ − 1
and use the induction hypothesis to bound HDF (p − λ, q − 1). Otherwise, we would like to
use the improved (p, 2)-theorem to deduce that F can be pierced by at most p − q + 1 points.

SoCG 2018



51:8 From a (p, 2)-Theorem to a Tight (p, q)-Theorem

However, since we want to prove the theorem in the entire range q ≥ 7 log2 p, in order
to apply the induction hypothesis to HDF (p − λ, q − 1), λ must be at least linear in p

(specifically, we need λ ≥ 0.1p, as is shown below). Thus, in the ‘otherwise’ case we have
to show that if λ < 0.1p, then F can be pierced by at most p − q + 1 points. If we merely
use the fact that F satisfies the (λ + 1, 2)-property and apply the improved (p, 2)-theorem,
we only obtain that F can be pierced by O(p log p) points – significantly weaker than the
desired bound p − q + 1.

Instead, we use a more complex procedure, partially based on the following observation,
presented in [16] (and called there a ‘combinatorial dichotomy’):

◮ Observation 10. Let F be a family that satisfies the (p, q)-property. For any p′ ≤ p, q′ ≤ q

such that q′ ≤ p′, either F satisfies the (p′, q′)-property, or there exists S ⊂ F of size
p′ that does not contain an intersecting q′-tuple. In the latter case, F \ S satisfies the
(p − p′, q − q′ + 1)-property.

First, we use Observation 10 to leverage the (p, 2)-theorem by an inductive process into a
‘weak’ (p, q)-theorem that guarantees piercing with p−q+1+O(p) points, for all q = Ω(log p).
We then show that if λ < 0.1p then F can be pierced by at most p−q+1 points, by combining
the weak (p, q)-theorem, another application of Observation 10, and a lemma which exploits
the size of λ.

2.3 The two main lemmas used in the proof

Our first lemma leverages the (p, 2)-theorem HDrect(p, 2) ≤ p log2 p into a weak (p, q)-theorem,
using Observation 10.

◮ Lemma 11. Let F be a family of axis-parallel rectangles in the plane. Then for any c > 0
and for any p ≥ q ≥ 2 such that q ≥ c log2 p, we have

HDF (p, q) ≤ p − q + 1 +
2p

c
.

Proof. First, assume that both p and q are powers of 2. We perform an inductive process
with ℓ = (log2 q) − 1 steps, where we set F0 = F and (p0, q0) = (p, q), and in each step
i, we apply Observation 10 to a family Fi−1 that satisfies the (pi−1, qi−1)-property, with
(p′, q′) = ( pi−1

2 , qi−1

2 ) which we denote by (pi, qi).
Consider Step i. By Observation 10, either Fi−1 satisfies the (pi, qi) = (pi−1

2 , qi−1

2 )-
property, or there exists a ‘bad’ set Si of size pi−1

2 without an intersecting qi−1

2 -tuple, and
the family Fi−1 \ Si satisfies the ( pi−1

2 , qi−1

2 + 1)-property, and in particular, the (pi−1

2 , qi−1

2 )-
property. In either case, we are reduced to a family Fi (either Fi−1 or Fi−1 \Si) that satisfies
the (pi, qi)-property, to which we apply Step i + 1.

At the end of Step ℓ we obtain a family Fℓ that satisfies the (2p/q, 2)-property. (Note
that the ratio between the left term and the right term remains constant along the way.) By

the (p, 2)-theorem, Fℓ can be pierced by 2p
q log2

(

2p
q

)

points. As q ≥ max(c log2 p, 2), this

implies that Fℓ can be pierced by

2p

q
log2

(

2p

q

)

≤ 2p

q
log2 p ≤ 2p

c

points.
In order to pierce F , we also have to pierce the ‘bad’ sets Si. In the worst case, in

each step we have a bad set, and so we have to pierce S = ∪ℓ
i=1Si. The size of S is
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|S| = p
2 + p

4 + . . . + 2 + 1 = p − 1. Since any family that satisfies the (p, q)-property
also satisfies the (p − k, q − k)-property for any k, the family S contains an intersecting
(q − 1)-tuple, which of course can be pierced by a single point. Hence, S can be pierced by
(p−1)− (q −1)+1 = p−q +1 points. Therefore, in total F can be pierced by p−q +1+2p/c

points, as asserted.
Now, we have to deal with the case where p, q are not necessarily powers of 2, and thus,

in some of the steps either pi−1 or qi−1 or both are not divisible by 2. It is clear from the
proof presented above that if we can define (pi, qi) in such a way that in both cases (i.e.,
whether there is a ‘bad’ set or not), we have pi

qi
≤ pi−1

qi−1

, and also the total size of the bad
sets (i.e., |S|) is at most p, the assertion can be deduced as above (as the ratio between the
left term and the right term only decreases). We show that this can be achieved by a proper
choice of (pi, qi) and a slight modification of the steps described above. Let

(p′, q′) =
(⌊pi−1

2

⌋

,
⌈qi−1

2

⌉)

.

If Fi−1 satisfies the (p′, q′)-property, we define Fi = Fi−1 and (pi, qi) = (p′, q′). Otherwise,
there exists a ‘bad’ set Si of size p′ that does not contain an intersecting q′-tuple, and the
family Fi−1 \ Si satisfies the

(pi−1 − p′, qi−1 − q′ + 1) =
(⌈pi−1

2

⌉

,
⌊qi−1

2

⌋

+ 1
)

property. In this case, we define Fi = Fi−1 \ Si and (pi, qi) = (pi−1 − p′, qi−1 − q′ + 1).
It is easy to check that in both cases we have pi

qi
≤ pi−1

qi−1

, and that |S| ≤ p − 1 holds also
with respect to the modified definition of the Si’s. Hence, the proof indeed can be completed,
as above. ◭

Our second lemma is a simple upper bound on the piercing number of a family that
satisfies the (p, 2)-property. We shall use it to show that if ν(F) is ‘small’, then we can save
‘something’ when piercing large subsets of F .

◮ Lemma 12. Any family G of m sets that satisfies the (p, 2)-property can be pierced by
⌊

m+p−1
2

⌋

points.

Proof. We perform the following simple recursive process. If G contains a pair of intersecting
sets, pierce them by a single point and remove both of them from G. Continue in this fashion
until all remaining sets are pairwise disjoint. Then pierce each remaining set by a separate
point.

As G satisfies the (p, 2)-property, the number of sets that remain in the last step is at
most p−1 if m− (p−1) is even and at most p−2 otherwise. In the former case, the resulting
piercing set is of size at most m−(p−1)

2 + (p − 1) = m+p−1
2 . In the latter case, the piercing set

is of size at most m−(p−2)
2 + (p − 2) = m+p−2

2 . Hence, in both cases the piercing set is of size
at most

⌊

m+p−1
2

⌋

, as asserted. ◭

◮ Remark. The assertion of Lemma 12 is tight, as for a family G composed of m − p + 2 lines
in a general position in the plane and p − 2 pairwise-disjoint segments that do not intersect
any of the lines, we have |G| = m, G satisfies the (p, 2)-property, and G clearly cannot be
pierced by less than

⌊

m+p−1
2

⌋

points.

◮ Corollary 13. Let F be a family of sets in R
d, and put λ = ν(F). Then any subset S ⊂ F

can be pierced by at most
⌊

|S|+λ
2

⌋

points.

The corollary follows from the lemma immediately, as any such family F satisfies the
(λ + 1, 2)-property.

SoCG 2018
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2.4 Proof of Theorem 4

Now we are ready to present the proof of our main theorem, in the specific case of axis-parallel
rectangles in the plane. Let us recall its statement.

◮ Theorem 4. Let F be a family of axis-parallel rectangles in the plane. If F satisfies the
(p, q)-property, for p ≥ q ≥ 2 such that q ≥ 7 log2 p, then F can be pierced by p − q + 1 points.

◮ Remark. We note that the parameters in the proof (e.g., the values of (p′, q′) in the inductive
step) were chosen in a sub-optimal way, that is however sufficient to yield the assertion with
the constant 7. (The straightforward choice (p′, q′) = (0.5p, 0.5q) is not sufficient for that).
The constant can be further optimized by a more careful choice of the parameters; however,
it seems that in order to reduce it below 6, a significant change in the proof is needed.

Proof of Theorem 4. The proof is by induction.

Induction basis. One can assume that q ≥ 37, as for any smaller value of q, there are no p’s
such that 7 log2 p ≤ q ≤ p. For q = 37, the theorem is only relevant for (p, q) = (37, 37), and
in this case we clearly have HDF (p, q) = 1 = p − q + 1. Generally speaking, this is a sufficient
basis, since in the inductive step, the value of q is reduced by 1 every time. However, in the
proof of the inductive step we would like to assume that p, q are ‘sufficiently large’; hence, we
use Theorem 9 as the induction basis in order to cover a larger range of small (p, q) values.

We observe that for q ≤ 70, all relevant (p, q) pairs (i.e., all pairs for which 7 log2 p ≤ q ≤ p)
satisfy p ≤

(

q+1
2

)

. Hence, in this range we have HDF (p, q) = p−q+1 by Theorem 9. Therefore,
we may assume that q > 70; we also may assume q <

√
2p (as otherwise, the assertion follows

from Theorem 9), and thus, p > 2450 and so (using again the assumption q <
√

2p), also
p > 35q.

Inductive step. Put λ = ν(F). By Observation 8, we have HDF (p, q) ≤ HDF (p − λ, q −
1) + λ − 1. We want λ to be sufficiently large, such that if (p, q) lies in the range covered by
the theorem (i.e., if q ≥ 7 log2 p), then (p − λ, q − 1) also lies in the range covered by the
theorem (i.e., q − 1 ≥ 7 log2(p − λ)). Note that the condition q ≥ 7 log2 p is equivalent to

2q/7 ≥ p, which implies 2(q−1)/7 = 2q/7

21/7
≥ 0.9p. Hence, if λ ≥ 0.1p then q − 1 ≥ 7 log2(p − λ),

and so we can deduce from the induction hypothesis that

HDF (p, q) ≤ HDF (p − λ, q − 1) + λ − 1 ≤ (p − λ) − (q − 1) + 1 + (λ − 1) = p − q + 1,

as asserted. Therefore, it is sufficient to prove that HDF (p, q) ≤ p−q +1 holds when λ < 0.1p.

Under this assumption on λ, we apply Observation 10 to F , with (p′, q′) = (⌊0.62p⌋, 0.5q).
We have to consider two cases:

Case 1: F satisfies the (p
′
, q

′)-property. By the assumption on (p, q), we have q ≥ 7 log2 p,
and thus, 0.5q ≥ 3.5 log2 p ≥ 3.5 log2⌊0.62p⌋. Hence, by Lemma 11,

HDF (⌊0.62p⌋, 0.5q) ≤ 0.62p − 0.5q + 1 +
2

3.5
· 0.62p < 0.975p − 0.5q + 1 ≤ p − q + 1,

where the last inequality holds because we may assume q ≤ 0.05p, since p > 35q as was
written above. Thus, F can be pierced by at most p − q + 1 points, as asserted.
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Case 2: F does not satisfy the (p
′
, q

′)-property. In this case, there exists a ‘bad’ subfamily
S of size p′ = ⌊0.62p⌋ that does not contain an intersecting 0.5q-tuple, and the family F \ S

satisfies the (⌈0.38p⌉, 0.5q)-property.
To pierce F \ S, we use Lemma 11. Like above, we have 0.5q ≥ 3.5 log2⌈0.38p⌉, whence

by Lemma 11,

HDF (⌈0.38p⌉, 0.5q) ≤ 0.39p − 0.5q + 1 +
2

3.5
· 0.39p < 0.613p − 0.5q + 1,

where the first inequality holds since we may assume p ≥ 100 (as was written above), and
thus, ⌈0.38p⌉ ≤ 0.39p.

To pierce the ‘bad’ subfamily S, we use Corollary 13, which implies that S can be pierced
by

⌊

1

2
(|S| + λ)

⌋

≤ 1

2
(0.62p + 0.1p) = 0.36p

points. Therefore, in total F can be pierced by (0.613p − 0.5q + 1) + 0.36p < 0.975p − 0.5q + 1
points. Since we may assume q ≤ 0.05p (like above), this implies that F can be pierced by
p − q + 1 points. This completes the proof. ◭

3 From (2, 2)-theorems to (p, 2)-theorems

As was mentioned in the introduction, in general, the existence of a (2, 2)-theorem (and even
Helly number 2) does not imply the existence of a (p, 2)-theorem. An example mentioned by
Fon der Flaass and Kostochka [10] (in a slightly different context) is presented in the full
version of the paper.

In this section we prove Theorem 6 which asserts that for families of convex sets with
Helly number 2, a (2, 2)-theorem does imply a (p, 2)-theorem, and consequently, a tight
(p, q)-theorem for a large range of q’s. Due to space constraints, the proof of our other new
(p, 2)-theorem (i.e., Theorem 7) is presented in the full version of the paper.

Let us recall the assertion of the theorem:

◮ Theorem 6. For any family F of compact convex sets in R
d that has Helly number 2, we

have HDF (p, 2) ≤ p2d−1

2d−1 . Consequently, we have HDF (p, q) = p − q + 1 for all q > cp1− 1

2d−1 ,
where c = c(d).

The ‘consequently’ part follows immediately from the (p, 2)-theorem via Theorem 3.
Hence, we only have to prove the (p, 2)-theorem.

Let us present the proof idea first. The proof goes by induction on d. Given a family F of
sets in R

d that satisfies the assumptions of the theorem and has the (p, 2)-property, we take
S to be a maximum (with respect to size) pairwise-disjoint subfamily of F , and consider the
intersections of other sets of F with the elements of S. We observe that by the maximality
of S, each set A ∈ F \ S intersects at least one element of S, and thus, we may partition F
into three subfamilies: S itself, the family U of sets in F \ S that intersect only one element
of S, and the family M ⊂ F \ S of sets that intersect at least two elements of S.

We show (using the maximality of S and the (2, 2)-theorem on F) that U ∪ S can be
pierced by p − 1 points. As for M, we represent it as a union of families: M = ∪C,C′∈SXC,C′ ,
where each XC,C′ consists of the elements of F \ S that intersect both C and C ′. We use a
geometric argument to show that each XC,C′ corresponds to YC,C′ ⊂ R

d−1 that has Helly
number 2 and satisfies the (p, 2)-property. This allows us to bound the piercing number of
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YC,C′ by the induction hypothesis, and consequently, to bound the piercing number of XC,C′ .
Adding up the piercing numbers of all XC,C′ ’s and the piercing number of U ∪ S completes
the inductive step.

Proof of Theorem 6. By induction on d.

Induction basis. For any family F of compact convex sets in R
1, by the Hadwiger-Debrunner

theorem [13] we have HDF (p, 2) = p − 2 + 1 < p = p2·1−1/21−1, and so the assertion holds.

Inductive step. Let F be a family of sets in R
d that satisfies the assumptions of the theorem

and has the (p, 2)-property. Let S be a maximum (with respect to size) pairwise-disjoint
subfamily of F . We may assume |S| = p − 1.

By the maximality of S, each set A ∈ F \S intersects at least one element of S. Moreover,
any two sets A, B ∈ F that intersect the same C ∈ S and do not intersect any other element of
S, are intersecting, as otherwise, the subfamily S ∪ {A, B} \ {C} would be a pairwise-disjoint
subfamily of F that is larger than S, a contradiction. Hence, for each C0 ∈ S, the subfamily

XC0
= {A ∈ F : {C ∈ S : A ∩ C 6= ∅} = {C0}} ∪ {C0}

satisfies the (2, 2)-property, and thus, can be pierced by a single point by the assumption on
F . Therefore, denoting U = {A ∈ F : |{C ∈ S : A ∩ C 6= ∅}| = 1}, all sets in U ∪ S can be
pierced by at most p − 1 points.

Let M ⊂ F be the family of all sets in F that intersect at least two elements of S. For
each C, C ′ ∈ S, let

XC,C′ = {A ∈ F \ S : A ∩ C 6= ∅ ∧ A ∩ C ′ 6= ∅}.

(Note that the elements of XC,C′ may intersect other elements of S.) Let H ⊂ R
d be a

hyperplane that strictly separates C from C ′, and put YC,C′ = {A ∩ H : A ∈ XC,C′}.

◮ Claim 14. YC,C′ ⊂ H ≈ R
d−1 admits HDYC,C′

(2, 2) = 1 and satisfies the (p, 2)-property.

Proof. To prove the claim, we observe that A ∩ H, A′ ∩ H ∈ YC,C′ intersect if and only
if A and A′ intersect. Indeed, assume A ∩ A′ 6= ∅. The family {A, A′, C} satisfies the
(2, 2)-property, and hence, can be pierced by a single point by the assumption on F . Thus,
A ∩ A′ contains a point of C. For the same reason, A ∩ A′ contains a point of C ′. Therefore,
A ∩ A′ contains points on the two sides of the hyperplane H. However, A ∩ A′ is convex, and
so, (A ∩ A′) ∩ H 6= ∅, which means that (A ∩ H) and (A′ ∩ H) intersect. The other direction
is obvious.

It is now clear that as XC,C′ ⊂ F satisfies the (p, 2)-property, YC,C′ satisfies the (p, 2)-
property as well. Moreover, let T = {A1 ∩ H, A2 ∩ H, A3 ∩ H, . . .} ⊂ YC,C′ be pairwise-
intersecting. The corresponding family T̃ = {C, A1, A2, A3, . . .} is pairwise-intersecting, and
thus, can be pierced by a single point by the assumption on F . Thus, (A1∩A2∩A3∩. . .)∩C 6= ∅.
For the same reason, (A1 ∩ A2 ∩ A3 ∩ . . .) ∩ C ′ 6= ∅. Since A1 ∩ A2 ∩ A3 ∩ . . . is convex, this
implies that (A1 ∩ A2 ∩ A3 ∩ . . .) ∩ H 6= ∅, or equivalently, that the family T can be pierced
by a single point. Therefore, YC,C′ satisfies HDYC,C′

(2, 2) = 1, as asserted. ◭

Claim 14 allows us to apply the induction hypothesis to YC,C′ , to deduce that it can be
pierced by less than p2d−3/2d−1 points. Since S contains only

(

p−1
2

)

pairs (C, C ′), and since
any set in M belongs to at least one of the XC,C′ , this implies that M can be pierced by
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less than
(

p−1
2

)

· p2d−3/2d−2 points. As U ∪ S can be pierced by p − 1 points as shown above,
F can be pierced by less than

(

p − 1

2

)

· p2d−3

2d−2
+ (p − 1) <

p2d−1

2d−1

points. This completes the proof. ◭

4 Discussion and open problems

A central problem left for further research is whether Theorem 3 which allows leveraging a
(p, 2)-theorem into a (p, q)-theorem, can be extended to the cases HDF (p, 2) = pf(p) where
f(p) ≪ log p or f(p) being super-polynomial in p. It seems that super-polynomial growth
rates can be handled with a slight modification of the argument (at the expense of replacing
Tc′(p) with some worse dependence on p). For a sub-logarithmic growth rate, it seems that
the current argument does not work, since the inductive step requires the packing number of
F to be extremely large, and so, Lemma 12 allows reducing the piercing number of the ‘bad’
family S only slightly, rendering Lemma 11 insufficient for piercing F with p − q + 1 points
in total.

Extending the method for sub-logarithmic growth rates will have interesting applications.
For instance, it will immediately yield a tight (p, q)-theorem for all q = Ω(log log p) for
families of axis-parallel boxes in which for each two intersecting boxes, a corner of one is
contained in the other, following the work of Chudnovsky et al. [6]. Furthermore, it will
imply that if axis-parallel rectangles admit a (p, 2)-theorem with the size of the piercing set
linear in p (as conjectured by Wegner [24]), then HDrect(p, q) = p − q + 1 holds for all q ≥ c

for a constant c. As mentioned in Section 1.3, this was claimed by Dol’nikov [7], but with a
flawed argument, as remarked by Eckhoff [9].

Another open problem is whether the method can be extended to families F that admit a
(2, 2)-theorem, but satisfy HDF (2, 2) > 1. Such an improvement would allow transformation
into tight (p, q)-theorems of the (p, 2)-theorems presented in Section 1.3, such as the (p, 2)-
theorem for pseudo-discs of Chan and Har-Peled [5].

A main obstacle here is that in this case, Observation 8 does not apply, and instead, we
have the bound HD(p, q) ≤ HD(p − λ, q − 1) + λ. While the bound is only slightly weaker, it
precludes us from using the inductive process of Wegner and Dol’nikov, as in each application
of the inductive step we have an ‘extra’ point.
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