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Abstract

We address the issue of designing effective query lan-
guagesfor OLAP databases. The basis of our investigation
is MD, a new data model for multidimensional databases
that, unlike other multidimensional models, is independent
of any specific implementation and as such provides a clear
separation between practical and conceptual aspects. In
this framework, we present and compare two query lan-
guages, based on different paradigms, for OLAP databases.
The first language is algebraic and provides an effective
way to manipulate multidimensional data in a procedural
fashion. Although this language is clean and powerful, it
is clearly not suited for final users. We therefore propose a
high-level graphical language that allows the user to spec-
ify analytical queriesin a natural and intuitiveway. It turns
out that the two languages have the same expressive power.

1. Introduction

Multidimensional databases are large collections of data,
used for statistical analyses oriented to decision making, in

graphical metaphors. On the other hand, the sophisticated
user that needs to express more complex queries should
be allowed to use a declarative, high-level query language,
such an extension of SQL. Finally, query optimization can
be effectively performed by referring to a procedural, alge-
braic language. Thus, a family of different languages should
by adopted be an OLAP system, and mapping between them
should be defined.

In this paper, we present and investigate different query
languages for OLAP databases. The framework for our in-
vestigation isMD, a logical model for OLAP systems pro-
posed in [3]. This model includes a number of concepts that
generalize the notions of dimensional hierarchies, fact ta-
bles, and measures, commonly used in commercial systems.
In this framework, we propose two query languages, based
on different paradigms, for multidimensional databases. We
start by considering a procedural query language, based on
an algebra, similar in spirit to relational algebra. This lan-
guage provides many insights on the way in which multidi-
mensional data can be manipulated and, for its procedural
nature, can be profitably used to specify query optimization.
However, it is clearly unsuited for a direct use. We then
investigate another query language, based on a graphical
paradigm, that lies at a higher abstraction level with respect
to the algebra. By using several examples, we show that

which factual data is described according to different per- this language yields a declarative and easy-to-use tool to

spectives or “dimensions.” For instance, in a commercial e . . .
: : . guery multidimensional databases, since it allows the user
enterprise, single sales of items (the factual data) can be ef:

tactively analvzed when organized according to dimensionsto manipulate multidimensional data in a natural and intu-
. y y 9 . '9 : itive way. We then provide a mapping between graphical
like category of product, geographical location, and time.

o . o . ueries and algebraic expressions and prove the equivalence
Multidimensional analysis is supported by an emerging d 9 P P d

: .2 of the expressive power of the two languages. The map-
category of software technology, called On-Line Analyti- . ; AR
. : ing can be effectively used to perform optimizations over
cal Processing (OLAP) systems. These environments aI-p 9 y P P

low the user to easily summarize and view data, but Suﬁergraphical queries. It tums out that, in both casssP is
R . N well-suited for specifying OLAP queries, since it allows the

from some limitation in constructing and maintaining com- user to abstract from implementation details

plex analytical models over the enterprise data. Indeed, to The paper is oraanized as follows. TRED aata model

increase their effectiveness, OLAP systems should supportIS brieflp F;esentegl in Section 2 An-al ebra and a araphi-

the users with several query languages, possibly at different y P <. Ahag . grap

abstraction levels. On one hand, the final user should beCal query language fob4D are first introduced informally,

enabled to perform point-and-click operations by means of by means of examples, in Section 3, Then, n Sgctlons 4
and 5, we present, in a more systematic way, their syntax

and semantics and state their equivalence. In Section 6, we

*This work was partially supported K§NR and byMURST.



briefly compare our work with other approaches and finally, year area

in Section 7, we draw some conclusions. el ‘\ T
quarter
{ special-period city category brand numeric
2. The MD data model month /4 T \ /4
\ .
day store item string

The MultiDimensional data modelM{D for short) is
based on two main constructs: dimension and f-table.
mensions are syntactical categories that allow us to spec-

time location product
Addresqstore) : string, Name(item) : string

ify multiple “ways” to look at the information, according to SALEs][Period : day, Product : item, Location : store] —
natural business perspectives under which its analysis can [NSales : numeric, Income : numeric]

be performed. Each dimension is organized in a hierarchy CosTOFITEM[Product : item, Month : month] —
of levels, corresponding to data domains at different gran- [Cost : numeric]

ularity. When a level; precedes a levél, (in symbols,

[ < 13) inthe hierarchy we say thatrollsupto!l,. Alevel
can havedescriptions associated with it. Within a dimen-
sion, values of different levels are related through a family
of roll-up functions. If a roll-up function associates a value
vy of a certain level to a value; of an upper level in the
hierarchy, we also say that rolls up to v,. F-tables are

partial functions fromsymbolic coordinates (defined with are used in the figure: a table and an array. A symbolic co-

Figure 1. Dimensions, descriptions and
f-tables of a sample MD scheme

respect to particular combinations of levels)nbeasures: ordinate over the f-table 8 Es is [day : Jan 5, 98, item :
they are used to represent factual data. eAtry of an f-  gerapble, store : Navona]. The actual instance associates
table f is a coordinate over whicfi is defined. with this entry the valug?2 for the measur&lSales and the

For example, as shown on top of Figure 1, a marketing \5ye543 68 for the measuréncome.
analyst of a chain of toy stores may organize its business
data along dimensiontsme, product, location. Thetime

dimension is organized in a hierarchy of levels involving SALES _
day, month, quarter, year, andspecial-period. The domain Period Product  Location | NSales Income
. . . 68
associated with the levahy contains, among others, values ja” g gg Sgi a_?(b'e Eavona g 2‘3 o
. an o, SIKO avona .
Jan 5, 98, Feb 19, 98, andMar 10, 98, all Qf vyh|ch rollupto Jans. 98 Lego aun City 12 71358
the elemenflQ-98 of the levelquarter. Similarly, theloca- Jan5,98  Risiko Sun Gty 55 43978
tion dimension is based on a hierarchy of levels involving Feb19,98 Scrabble  Navona 32 479.38
. . . 5
store, city, andarea. The levelstore contains, for instance, Feb19,98  Lego Navona 25 299
| Col dN both of th lli t Feb 19, 98 Lego Colosseum 11 142.8°
valuesColosseum andNavona, both of them rolling up to Mar10.98  Risko Navona 5 69,95
Rome (in level city) and Italy (in level area). A descrip- Mar 10,98  Lego Sun City 6 71.94
tion of the levelstore, in thelocation dimension, can be
its address Finally, theproduct dimension contains levels COSTOFITEM

! h . 98 Feb98  Mar-08
item, category, andbrand. According to the corresponding Cod | Jan98 Feb il
Lego 12.99 9.99 9.9

hierarchy, any element of the levigdm rolls up to both a Risko || 1499 1299 1999
brand and a category. Note that there are two fuidi@nic Scrabble || 12.92 1299 1249
dimensions (that is, having just one level) that are used to Trivia 1899 1799
represenhumeric values andtrings.
In this framework, we can define, for instance, the f- ) )
tables SLEs and STOFITEM. The former describes Figure 2. An MD instance
summary data for the sales of the chain, organized along
dimensiongime (atday level), product (atitem level), and
location (at store level). The measures for this f-table are Roll-up functions are a distinctive feature of our model:
NSales (the number of items sold) aricicome (the gross  they describentensionally how values of different levels
income), both having typsumeric. The f-table @STOF- are related. Moreover, as we will demonstrate shortly, they
ITEM is instead used to represents the costs of the variousprovide a powerful tool for querying multidimensional data,
items, assuming that costs may vary from month-to-month. since allow us to specify how data must be aggregated, and
A possible instance for these f-tables is shown in Fig- how f-tables involving data at different levels of granularity
ure 2. Note that two different (graphical) representations can be joined.




3. Querying M D Databases cated the corresponding names.

We now informally present and compare two query lan- 3.1. Basic Queries
guages for OLAP databases in the context of theD
model. The presentation is mainly based on examples that Intuitively, an MD query is a mapping from instances
refer to the sample scheme introduced in the previous sec-over an inputMD scheme to instances over an outpuD
tion. scheme. The input and output schemes are defined over the
The first language is an algebra for th¢ D> model and same dimensions but distinct f-tables. For the sake of sim-
provides an effective way to manipulate f-tables in a pro- plicity, we shall assume that the output scheme of a query
cedural fashion. This language is based on a set of operacontains just a single f-table, calledtput f-table.
tors over f-tables, similar in spirit to the relational algebra As a first example, assume we need to define an f-table
ones. Actually, most of them are just generalizations of rela- ROMESALES (the output f-table) having scheme
tional operators; others are specific of the multidimensional
framework. [Period : day, Product : item, Location : store] —
The second query language has a graphical nature, and it [NSales : numeric]
is suitable for end-users since it provides a simple way for
specifying queries over a multidimensional database. This
language is based on the observation that there is a natura
way to describe aoMD f-table with a graph that we call
f-graph. Consider for instance theages f-table defined in
Figure 1; its scheme can be represented by the f-graph re-
ported in Figure 3. In this representation, the ovals denote

to represent the number of sales of each item in each day,
?nly for the stores in Rome. Itis easy to see that this can be
@obtained from the SLES f- table, having scheme

[Period : day, Product : item, Location : store] —
[NSales : numeric, Income : numeric]

which is therefore the input f-table of the query.
In the algebra, we first need to extend the input f-table
BRAND with a new attribute over the leveity, holding the city in
which each store is located. This operation can be specified
(CATEGDRY Product SPE@A) (QUARTEFD with the speciaroll-up operatorgjfff1 (F), which extends

|TEM PERIOD

Product Time

an f-table F involving an attribute ; over a level;, with a
new attributed ; over a level, = {;, making use of the roll-

Location

( o )‘_(ngﬁiﬂ Sues PS?'sd }—{ wowr) up function fromi; tol,. We can then perform a selection
over the new attribute, and finally project out the unneeded
( AREA ) {Addres§/ attributes and measures. All of this can be specified with

the following algebraic expression.

. . . T [Period, Product, Locatior]— [NSales] (U City:Rome(
Figure 3. A graphical representation of an City:city

f-table scheme QLocaIion:store(SALEs)))

In the graphical language, we can specify the same query
levels of dimensions (which are represented by hypernodeswith a sequence of graphs that denotes a cascade of scheme
of the given graph), the parallelograms denote level descrip-restructurings: the first graph, called tsmirce, describes
tions, and the circles denote measures of f-tables. The centhe input scheme; the last graph, called tasget, de-
tral node is called theEnode and represent the entries of the scribes the output scheme; the intermediate ones (called
f-table. The various nodes of the graph are connected bygraphs) form the query specification and describe the in-
directed arcs that represent functional relationships; for in- tended transformations.
stance, an arc between two levels represents a roll-up func- In the example above, the source is the graph in Fig-
tion, whereas an arc between the fact node and a measurere 3, the target is reported on the bottom of Figure 4, and
node represents the function associating a measure with thehe query specification is composed by one s-graph only,
entries of the f-table. Note that the levels on which the f- shown on the top of Figure 4. In s-graphs, nodes can be
table is defined have a further label (the corresponding at-marked andlabeled. Marks specify the levels and the mea-
tribute name) and are emphasized, but also the other levelsures of the graph that follows in the sequence (in our case
of each dimension have been represented. As we will showof the target). Labels specify selections and renamings: a
shortly, this is useful for specifying roll-up operations. Fi- label preceded by a comparison predicate specifies a selec-
nally, for measures and level descriptions we have just indi- tion over the corresponding node, whereas a label involving
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Figure 4. A simple graphical query

an arrow specifies a renaming. In our example, we have
marked the levelssfore, item, andday) and the measures
(NSales), which are of interest in the output, and we have
specified a selection over the lewdly. The name of the
resulting f-table is RMESALES. Note that it is possible to
specify a selection over a node that is not marked, since we ~ Figure 5. A query involving scalar functions
assume that the needed roll-up is performed automatically

by the system. i i , _are given on a monthly basis). To this end, we first need
From an operational point of view, we forecast the possi- to roll up the attributePeriod of the f-table S\LES to the

bility to specify marks and labels directly over an s-graph of level month (defining a new attribut&lonth), and then join

the sequence forming a query, and the automatic derivationthe resulting f-table with the f-table @&TOFITEM, having
of the “skeleton” of the s-graph that follows. scheme '

3.2. Scalar Functions [Product : item, Month : month] — [Cost : numeric],

over the common attributeRroduct and Month. We can

now compute the desired values by applying the formula
Income — (NSales x Cost) over the result of the join. This

can be done by means of a special operatyr=?(T) that
extends the scheme of the f-table T with a new measure
M obtained by applying the scalar functigrio each entry

of T. The result is finally obtained with a projection over
the needed attributes and measures. In sum, we have the
following expression:

An important feature needed in querying numeric data
is the ability to apply scalar functions. A scalar function
makes use of atomic values as input and output (e.g., all
the standard mathematical operators, such asdx). For
instance, scalar functions can be used to obtain, from our
sample database, an f-table®IT over the scheme

[Period : day, Product : item, Location : store] —
[Gain : numeric]

. . . . . . ’ Gain=Income— (NSales«Cost)
representing the daily profit, for each store and item. Infact, " [Period Product Location]—[Gair] (¢ (

this value can be obtained, for each item, by multiplying CoSTX puo™™OM (5p) ES))).
the number of pieces sold by a store in a day, by the cost Periorkday
of the item in the corresponding month (recall that the costs ~ The same query can be specified in a graphical way as



Product Time

described in Figure 5. The source (which is not shown) con-

sists of a disconnected graph describing the input f-tables:

SALES and @STOFITEM. The query specification con-

sists of the two s-graphs depicted on top of Figure 5. The

first one specifies the join of the input f-tables by means of Location
two arcs that connect the levels over which the join has to
be performed. Also in this case, we assume that the sys- C e )‘7(
tem is able to execute automatically the needed roll-up op-

eration over the f-table &Es. The scheme of the result Area (3 @
of the join forms the skeleton of the second s-graph of the [orsaiessumg]
guery specification. This s-graph introduces a new measure —— —
(denoted by a dashed arc) that is computed from the other
measures by the corresponding formula; again, marks are
used to specify levels and measures of interest. The result
of this transformation is the target of the query, shown on
the bottom of Figure 5.

Location: SALES
SroRre

Location

Location:
AREA

3.3. Aggregate Functions

Aggregate functions are of special interest in OLAP sys-
tems: they take as input a collection of values and return an
atomic value. Typical aggregate functions are those of SQL,

that is,mi n, max, count , sum andavg, which apply to Figure 6. A query involving an aggregate func-

columns of relational tables. tion
An aggregate function can be used, in our running
database, to define the f-tabl&/$MARY SALES over the
scheme the desired levels of the target scheme. Since the granular-
ity of these levels is coarser than the levels of the source (the
[Period : month, Location : area, Product : item] — emphasized ones) this operation also requires the specifica-
[TotSales : numeric] tion of an aggregation over the selected measures. This is

i . done by labeling the nod¥Sales with the aggregate func-
representing summary data of sales, detailed by month;,, sumand with the nam@otSales of the resulting mea-

item, and.area.. This f-table can be obtained with the al- ¢ ;1o The target of the graphical query is shown on the bot-
gebra by first using the roll-up operator to extend the f-table ;. ¢ Figure 6. Note that, in this f-graph, only the levels

SALES with two new attributes holding area and month 4t can be used to specify further aggregations (or selec-
of each sale, and then applying teem aggregate func- tions) are shown.

tion to NSales whil_e grouping by mgnth, area, anq prod- Assume now that we want to compute the f-table
uct. -Jr‘?f aggregation can be specified with a special operay oLy ProFIT to represent the monthly profit, detailed
tor ;bAlj?fAk’)(T), whose result contains just the attributes py item, defined over the scheme

Ay, ..., A, of T and the new measuid, obtained by ap- . )

plying the aggregate function to the measure\; of T, [Period : month, Product : item] — [TotGain : numeric].
grouping over the attributes,, ..., A,. We then have the 14 4o 50, we can use the above defined f-talsleiT, sum-
following expression, in which the outer operagosimply marizing by months over all stores, as follows.

performs a renaming of attributes:
TotGain=sum(Gain) , Month:month P
TotSales=sum(NSales) Ponth—Period ( Product,Month (QPeriod:day (PROFIT)))

p - iod (¥ ( . ,
Area—Location, Month— Period . 7~ Month, Area, Product The same query can be specified in a graphical way as
Area:area Month:month

Ol ocationstore (gperiodzday (SALES)))) described in Figure 7. The source of this query is the target
of the query reported in Figure 5, and its specification needs
The same query can be specified in a graphical way agust one s-graph describing the levels of aggregation, the
described in Figure 6. Again, the source is the f-graph aggregate function, and some renaming.
shown in Figure 3. The query specification consists ofasin-  This example shows that both graphical and algebraic
gle s-graph, reported on top of Figure 6. In this s-graph, the queries can be composed, since the target of a query can be
nodesarea, item, andmonth have been marked to specify used as source of another one.
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3.4. Abstraction Queries

In the context of multidimensional data, it is often useful
. . . Location Time
to transform measures into attributes of f-tables, and vice CC'”: (Lomon; o = E’L‘;‘*)

versa. This allows the user to change dynamically the per- Srore SaLes
spectives under which the analysis is performed. We call l
abstractions such transformations. (aven ) fasaess/ | (o)

Assume for instance that we intend to define an f-table
TOTALSALES with no measures having scheme

Figure 8. An abstraction quer
[Prod : item, Loc : store, Per : year, TS: numeric] — []. g query

This f-table can be obtained fromaBEs by first summa- 4 The Algebraic Query L anguage
rizing on the number of sales with a roll-up operation, and

then applying the abstraction operatog; (T), which “pro-
motes” the measur#/ of the f-table T to an attribute. The
resulting expression is the following:

In this section we present more formally thdD alge-
bra. Similarly to what happens with the relational algebra,
the operators of thé/{D algebra are closed, that is, they

P (OTorsaes( TotSal&SUﬁ(NSaIeS)( apply to f-tables and produce an f-table as result. In this
Year_’Pa'OdYearzséarS Product, Location, Year way, the various operators can be composed to forni-the
Operiod:day (SALES)))) expressions of the language.

It is worth noting that, to obtain closed operators, each
The same query can be specified in a graphical way as.expression must satisfy fanctional dependency from its
described in Figure 8. It is possible to see that the graph- attriputes to its measures. To guarantee this property, suit-

ical specification requires two s-graphs. The first s-graph gple syntactical conditions need to be introduced over some
specifies the aggregation over the desired levels. The secpperator.

ond one defines a new dimension starting from a measure of = expressions are defined recursively as follows.

the intermediate result of the query. The abstraction is spec-

ified by the creation of a new node, defined with respect to F-tables. If F is an f-table having schenjel, ..., 4,,] —

an existing node, that belongs to a new dimension named.[M3, ..., M,,], then F' is an f-expression over the same
Similarly to the creation of new measures, dimension cre- scheme ag”, that is, an f-expression over the attributes
ation is denoted by a dashed arc. Ay, ..., A, and the measure¥, ..., M,,.



The result ofF is, trivially, F itself. ing scalar functions taken from a vocabuldfyof available
functions.

The result contains the same entriedasThe measures
associated with an entryare the same a5, plus the new
measurel/, having valuep(¥).

Cartesian product. If E, E' are f-expressions hav-
ing schemes [4;,...,4,] — [Mi,...,M,] and
[AY, ..., AL] = [M{,..., M!], respectively, over dis-
joint attributes and measures, thBrx £’ is an f-expression
with schema over the attributes,, ..., A,, A},..., A, Renaming. If £ is an f-expression having scheme
and measuredf,, ..., My, M{,..., M/} .. [A1,..., A, —  [My,...,My], A; is an at-

As usual, the result contains an entry for each pair of tribute of £, and A is a new attribute name, then
entries in the two f-expressions, having as measure the jux-p, _ ,(£) is an f-expression over the scheme
taposition of the two corresponding measures. [A1,. . Aicy, Aigr, .o An Al = [Ma, . M.

The result contains an entr/ for each entryy in E,
where~' is obtained fromy by renaming the attribute name
A; into A.

Natural join. If E and E’ are f-expressions over
[A1,~~~,Ak,Ak+1,~~~,An] — [Ml,...,Mm] and
/ / / /
Eé(laiy thﬁf ]fkﬁgvmgﬁ?] %A;C[Ails’ co;n]\rﬁncl)g art?ﬁgﬁtces The result satisfies the functional dependencies at-
(defined over the same levels) and no common measuresnamed accordingly.
then FXE’ is an f-expression with schema over the Seglection. If £ is an f-expression having scheme
attributes Ay, ..., Ag, Agy1, .o, An, Ay, ..o, Ay and [A1,...,A,] = [My,..., M,] and?d is a condition (de-
measures\y, ..., My,, M{, ..., M],,. fined next), theno,(E) is an expression over the same
The result has an entry for each pair of entries in the scheme ag.

two f-expressions with the same values on the common at- A condition over an f-table scheme is a boolean expres-
tributes; the corresponding measures are the juxtapositionsion of the formt6t’, where:t andt’ are attributes, mea-
of the measures of the original entries. sures, or constants; afids a built-in comparison predicate

Roll up. Let E be an f-expression having scheme Suchas=,#,>, etc. ,
(A, An] = [Mi, ..., My], and letA; : [ be an at- The result contains an entry éf and the corresponding

tribute of £, If A’ is an atjribute name aridis a level such ~ Measures, only they satisfy the conditian ,
that! rolls up tol’, theng (E) is an f-expression having In general, the result satisfies the same functional depen-
schemd 4, A, A]A l[M1 L M. dencies agZ. However, if the condition? has the form

: ’ e A; = Aj, whereA; and 4; are attributes, then the result

The semantics of this f-expression is defined as follows. % — ) >
satisfies also the functional dependencigs — A; and

If v is an entry ofF, andy(A;) rolls up too’ in the levell’,

then the result contains an entryyobtained by extending Aj = Ai

with the attributed” in such a way thag’(A") = o'. Simple projection. If E is an f-expression having scheme
Note that the result of this operation satisfies the func- [A1, ..., A, = [My,...,M,], h < nandk < m, and

tional dependencyt; — A’ E satisfies the functional dependendy, ..., A, — A;,

Level description. Let 2 be an f-expression having scheme fOr €achi > h, thenm, 4,150, a (E) is an f-
[A1,..., An] — [Mi,...,My], and let4; : I be an at- expression over the scherpé . .., Ax] — [My, ..., Mg].

tribute of £. If A is an attribute name anilis a level de- The result contains an entry for each entryy of £,
scription of the level, thend * =" ’)(E) is an f-expression  Which is the restriction ofy to the attributesd, ..., Ap;
having scheméA, An, Al = [My, ..., My). the measures associated withare the restriction of the
The semantics of this f-expression is defined as follows, Meéasures associated wito My, ..., Mj. .
If ~ is an entry ofZ, then the result contains an entyy It is worth noting that, because of the functional depen-
obtained by extending with the attribute4 in such away  dencies satisfied by, the result contains the same number
thaty (A) = §(y(As)). of entries asv.
. Note that the result of this operation satisfies the func- Aggregation. Let £ be an f-expression having scheme
tional dependencyl; — A. [ALy.oy Al = [My, ..., My). Letk < n, Ni,..., N; be
Scalar function application. If [ is an f-expression over ~measure ngmes J\?@d’ ol ?\? aggregate function from
[Ay,..., Ap] = [My, ..., Mp], M isameasure name, and F. Theny,’ 91 My ) Ni=ar (M) 7y i an f-expression
¢ is a scalar formula (defined next), thed!=¢ (F) is an f- over the schem{aﬁh, oo Akl = [Ny, N
expression over the same attributeg:oénd over the mea- The semantics is as follows. Letbe a tuple over the
suresM, My, ..., M,,. attributesA, . . ., Ag, and letZ’, be the set of entries i’
A scalar formula over an f-table scheme is an expres- whose restriction tol,, . . ., A; coincides withy. If 7%, is

sion built from attributes, measures, and constants by us-not empty, theny is an entry of the result; the value for



the measureV; associated withy is the result of applying
the aggregate functiog; to the multiset of measure¥/;,
associated with the entries®,, for 1 < j <.

o withina g-dimension over d thereisanarcin g p from
a node n; over a level [; to a node n, over a level
l; = Iy ifand only if {1 immediately precedes I in the
partial order defined over d.

Abstraction. If F is an f-expression with scheme

Ay, Ax] = [My,...,My] and k< m,|pnan f-graph, we also call -nodesall the nodes different
then . a (E) is an  f-expression  over fomthef-node.

[Al,...,An,Ml,...,Mk] — [Mk+1,~~~,Mm]-

The result contains an entry’ for each entryy of
E. The entryy’ is obtained by extending with the at-
tributesi, ..., My, which take their values from the cor-
responding measures. The measures associated+with

Example5.2 The f-node of the f-graph in Figure 3 is the
one named SLES (we have used the convention to name
the f-node with the name of the corresponding f-table). This
f-graph has three g-dimensions (ownoduct, Time, and

are the restriction of the measures associated witio
Mg, ..., My,.

The result satisfies the
Al,...,An — My, ..., Mg.

functional

Definition 4.1 (Algebraic Query) An  MD  algebraic
query@ over an MD scheme S is an f-expression over the
f-tablesof S.

5. The Graphical Query Language

dependency

Location), three a-nodes (hamddbcation, Product, and
Period over Store, Item, and Day, respectively), two m-
nodes (namellSalesandincome), and two d-nodes (hamed
AddressandNameg. The others nodes are r-nodes. ®

We now introduce the notion of graphical query specifi-

cation (s-graph for short) that is built over a set of f-graphs,

as follows.

Definition 5.3 (S-graph) Let S be a non-empty set of f-
graphs. An s-graphG g over S is a labeled graph, such

We now present the syntax and the semantics of thethat:

graphical query language for tid D model. We first show

how it is possible to associate a graph with an f-table, which

we call its f-graph.

Definition 5.1 (F-graph) Let F[A; : ly,..., 4, : ] —
[My 2 ly,..., M, : U] be an f-table scheme over a set
D of dimensions. The f-graphof I is an directed acyclic
graph ¢, such that:

o there is just one node in g with no incoming arc,
called the f-nodeof ¢; all the other nodes are asso-
ciated with some level of D: if a node » is associated
with alevel [ we say that » is overl;

o for each attribute A; of F', 1 < i < n, thereisa node
n; in gp, named A; and over [;, and there is an arc
from the f-node to n;, — these nodes are called the a-
nodesof ¢ p;

o for each measure M; of I, 1 < j < m, thereisa
node n’; in g, named M; and over I, and thereis an
arc fromthef-nodeton "7 —these nodes are called the

m-nodesof g p;

o for each a-noden over alevel [ inadimensiond € D
thereisalsoanodein ¢ for eachlevel I’ # [ of d such
that ! < I’ —these nodes are called r-nodesof g and
forma g-dimension ovet,;

o for each node n over alevel [ having a level descrip-
tiond(l) : I’, thereisanoden’ in gr over I’ and an
arc from n to n’ — these nodes are called d-nodesof
gF;

¢ (5 hasall the nodesand arcs of the f-graphsin S, that
is, thef-graphsin S are digjoint subgraphs of G s;

e (5 can have new m-nodes: for each of themthereisa
new arc froman f-node » to it, labeled with an expres-
sion of theform M « ¢, where M isanameand ¢ is
a scalar formula over the names of the m-nodes of »;

e (G5 can have new arcs between pairs of |-nodes over
the same level, each of which islabeled with a built-in
comparison predicate;

e anl-nodein GGs over alevel [ can be labeled with an
expression of the form #v, where ¢ is a comparison
predicate and v is a constant in the domain of /;

e anl-nodein GG 5 can be labeled with an expression of
theform A <, where A isa new name;

e anm-nodein G g can be labeled with an expression of
the form M « ¢(), where M isanew nameand ¢ is
an aggregate function;

e (5 can have new a-nodes: for each of them there is
a new arc from an f-node » to it, a new g-dimension
for it, and it is labeled with an expression of the form
A < B, where A isa new name and B is a name of
an m-node of n;

e an I-node in G5 can be marked with the limitation
that there is at most one marked I-node for each g-
dimension.



An s-graph specifies a restructuring operation over f- e finally, the presence of marked I-nodes Ghs may
graphs. This operation is captured by two mappidgand describe a projection over the specified attributes and
©. The former is a mapping from s-graphs to f-graphs and measures.
specifies the structure of the result of the restructuring. The ] )
latter is a mapping between f-table instances that specifies/Ve are now ready to define the notion of query.
the underlying data transformation. The two mappings are )
defined be{ovs; because of space limitation, somF()aptetg:]hnicaI,Def'n't'on 5.4 (Graphical Query) An MD  graph-
details are omitted. '&?‘ guery 6(2; '(S; >a ssquen];:e of &grﬁphs th G:

] 3 . ; s,G1,...,GL,Gt), where £ > 0. The s-grap s
an I;ggshbje%ﬂesdggag&\ﬁ;a setof f-graphs:®(Cs) is is called the sourceof G and is composed by a finite set of
f-graphs. The s-graph G, is called the targetof Gg and is

e &(Gg) contains one f-node; composed by one f-graph only. The sequence G4, . .., Gk
i ) is called query specificationEach s-graph G; in the query
o thereis one m-node (G s) for each marked m-node specification is over the f-graph defined by the previous

of s s-graph G,_;. The result of the query is defined as the

o there is one a-node i(G's) for each marked a-nodes ~cOMposition of the mappings ©(G;).

of Gs; . . -
5 Example5.5 Consider the graphical query in Figure 5.

¢ the r-nodes, d-nodes, and g-dimension&{d:s) are The source of this query is composed by the f-graphs cor-

defined from m-nodes and a-nodes as in Definition 5.1; responding to the f-tablesa8es (shown in Figure 3) and
CosTOFITEM. The query specification is composed by two
s-graphs. The mapping defined by the first one corresponds
to the algebraic expressioty:

¢ the m-nodes and a-nodes #((s) have the same
names and levels of the corresponding nodeé& of
except when they are labeled: in this case, a node la-
beledA < v is namedA in ®(G's) and is over a level

T[S Period, S.Product, Location] —[Cost] (
that depends on.

O sProduct=C.Product, C.Period=Month {
Now, letGs be an s-graph over a sstof f-graphs: the Monthmonth

mapping®(('s) takes as input a set of instances over the COST X Opgiodday (SALES))).
schemes described kiy and returns an instance over the .

scheme described B(Gs). This mapping is defined us-  1he second s-graph defines the mappihg
ing the MD algebra: intuitively, each element 6f¢ cor-

responds to the application of an algebraic operator, as fol- " [PeriodProduct,Locatior] —[Gair]
lows.

(¢Gmn:InCOW—(N$|%CO$) (E1))

The composition of these two expressions define the result
e The presence of several f-graphsdhn; describes a  Of the query, whose scheme is described by the target of the

cartesian product over the corresponding f-tables; graphical query shown on the bottom of Figure 5. =

¢ the presence of m-nodesns not occurring inS de- The given definitions suggest that the each graphical
scribes a scalar function application over the corre- query can be expressed by adD algebraic expression.
sponding measures, as specified by their labels; Actually, we can also show that the converse holds. We

. N then have the following resuilt.
¢ the presence of arcs ifig not occurring inS and I-

nodes labeled by comparison predicates describes a serpeorem 5.6 The MD algebraic and graphical languages
lection, possibly followed by a level descriptionand a 46 the same expressive power.
roll-up;

« the presence of |I-nodes i s labeled by expressions 6. Related Work
of the form A « describes a renaming;

The term OLAP has been recently introduced to char-
acterize the category of analytical processing over large,
historical databases (data warehouses) oriented to decision
making. Further discussion on OLAP, multi-dimensional
analysis, and data warehousing can be foundin [5]. A com-
¢ the presence of a-nodesfs not occurring inS de- parison between OLAP concepts and the area of statistical

scribes an abstraction; databases is given in [8].

¢ the presence of I-nodes in m-nodes(in labeled by
expressions of the form/ < g() describes a roll-up
followed by an aggregation (marked nodes specify the
desired level of aggregation);



The multidimensional data model illustrated in this pa- complex queries possibly involving several f-tables. More-
per has been proposed in [2, 3]. In the previous papers weover, the metaphors we have used are more abstract and so
have proposed a design methodology for multidimensional more natural for naive users than the ones used in the above
databases [3], and we have presented a declarative quergystems, which are mainly based on nested folders.
language and studied its expressiveness [2]. The present pa-
per is devoted to the investigation of two further paradigms 7 Conclusion
for querying OLAP databases.

Many authors [1, 4, 7] claim that SQL is unsuited to |n this paper we have investigated a framework for the
data-analysis applications, since some aggregate and groufinanipulation of multidimensional databases. Our proposal
ing queries are difficult to express and optimize. They thus relies on AP, a model for multidimensional data, which
consider the problem of extending SQL with specific ag- provides a clear separation between practical and concep-
gregation and analysis-oriented operators. Gray et al. [7]tual aspects of OLAP systems. We have studied, in this
proposedcube as an operator generalizirgy oup by. context, two query languages, over different paradigms,
Chatziantoniou and Ross [4] extend both SQL and the re- that can be effectively used for querying multidimensional
lational algebra with an operator, which deals with “aggre- databases, demonstrating thietD is well-suited for this
gation variables”, to succinctly express common queries. pyrpose, since it allows the user to disregard implementa-
Agrawal et al. [1] have proposed a framework for study- tion aspects. The first language is based on an algebra and
ing multidimensional databases, consisting of a data modelprovides an effective way to manipulate multidimensional
based on the notion of multidimensional cube, and a pow- data in a procedural fashion. The second query language has
erful algebraic query language. Many of the features con- 5 graphical nature, and it is suitable for end-users since it
sidered in such proposals can be expressed in our languagesrovides a simple tool for specifying queries over an OLAP
using a suitable collection of scalar and aggregate functions.database. We have also shown that the two languages have

Gebhardt et al. [6] propose a tape-based model of multi- indeed the same expressive power.
dimensional data, together with an operational framework
for visualization and querying that makes use of opera- References
tions on tapes (e.g., scrolling and intersection) as graphical
metaphors. This framework yields a way to bglldlwork' [1] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidi-
sheets from operational sources and define their visualiza- mensional databases. 16th |EEE Int. Conf. on Data Engi-
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in general more expressive since allows the user to express



