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Abstract. We outline a general theory of graph polynomials which cov-
ers all the examples we found in the vast literature, in particular, the
chromatic polynomial, various generalizations of the Tutte polynomial,
matching polynomials, interlace polynomials, and the cover polynomial
of digraphs. We introduce two classes of (hyper)graph polynomials de-
finable in second order logic, and outline a research program for their
classification in terms of definability and complexity considerations, and
various notions of reducibilities.

1 Introduction

In this paper I survey a research program of how a general theory of graph
polynomials is being developed. The paper contains no full proofs. Its purpose
is to bring the general picture to the attention of other researchers who work
on related problems, and to serve as a reference point. I report here on work
with various collaborators, some of it previously published and some of it in
progress. The collaborators are mainly M. Bläser, B. Courcelle, B. Zilber and
our respective graduate students. This is an expanded version of the author’s
[56].

During the last ten years I have studied questions of computability of graph
polynomials, summarized in [53, 55, 51, 59, 57, 58, 54, 11]. I found uncharted ter-
ritory with plenty of amazing theorems, surprising results, and the more I got
into it, the more I was perplexed. I feel that we do not have a comprehensive un-
derstanding of graph polynomials, although about particular polynomials, such
as the characteristic polynomial, the chromatic polynomial, the matching poly-
nomials and the Tutte polynomial there is more known than what could be
told in several books. It is noteworthy that many authors speak in their papers
of the graph polynomial, suggesting that theirs is the one and only one worth
studying. It is also noteworthy, that very few authors who study a particular
graph polynomial P , have more than this particular polynomial and possibly
some immediate relatives of P , in mind.

? Partially supported by a Grant of the Fund for Promotion of Research of the
Technion–Israel Institute of Technology



The collection of graph polynomials I have gathered from the literature looks
like a zoo1. There are prominent animals like the elephant, the giraffe, the gorilla,
and there are exotic animals defying classification, like the lamprey (petromyzon
marinus, not really a fish) or platypus (ornithorhynchus anatinus, not really a
water bird, not really a mammal). Some animals look different, but are related,
like the elephant and the rock hyrax (procavia capensis); some look alike, but are
not related, like the hedgehog (erinaceus europus) and the echidna (tachyglossus
aculeatus). Zoology is the science of comparing and classifying animals. Graph-
polynomology would be the art of comparing and classifying graph polynomials.

2 Graph polynomials

Let G be the class of graphs G = (V,E) without loops and multiple edges. Let
R be a ring and X̄ be a (not necessarily finite) set of indeterminates. A graph
polynomial is a function

p : G → R[X̄ ]

such that for isomorphic graphs G1 ' G2 we have p(G1) = p(G2). If we consider
labeled graphs, the notion of isomorphism has to be correspondingly modified.
If p(G) takes only values 0 or 1 in R we speak of graph properties. A graph
polynomial is, properly speaking, a family of polynomials. In practice, all the
graph polynomials in the literature are uniformly defined families of polynomials.
We shall see that two kinds of uniform definitions will play a key rôle: recursive
or dynamic definitions and static definitions.

There are plenty of graph polynomials which have been discussed in the
literature, although no systematic treatment on graph polynomials in general
is available2. To put our results into perspective we discuss briefly four clas-
sical graph polynomials, the chromatic polynomial χ(G, λ), the characteristic
polynomial P (G, λ), the acyclic generating matching polynomials m(G, λ) and
g(G, λ) and the Tutte polynomial T (G,X, Y ). For historic reasons we also dis-
cuss briefly the very first polynomial introduced into graph theory, the edge
difference polynomial. We also add to our discussion two more recent examples,
the two interlace polynomials, and the cover polynomial defined on digraphs.

The edge-difference polynomial. The historically first polynomial in graph
theory was introduced by J.J. Sylvester in 1878, [74] and further studied by J.
Petersen in [68]. It is a multivariate polynomial depending on the ordering of
the vertices V = {v1, v2, . . . , vn} and defined as

PG(X1, X2, . . . , Xn) =
∑

i<j
(vi,vj)∈E

(Xi −Xj)

1 It was T. Zaslavsky who suggested the title “From a zoo to a zoology” for this
research program.

2 I have found over 250 entries in MathSciNet querying “graph polynomial” or “poly-
nomial of a graph” in the review text.
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This polynomial is not a graph invariant, but it was used as a tool in studying
regularity and colorability questions of graphs. In particular, N. Alon and M.
Tarsi [3] observed that it can be used to study list colorings. For a survey, cf. Z.
Tuza [79]. In our context, however, the edge-difference polynomial does not play
a prominent rôle.

The chromatic polynomial . Let χ(G, λ) denote the number of proper vertex
colorings of G with at most λ colors. G. Birkhoff, [9], observed in 1912 that
χ(G, λ) is, for a fixed graph G, a polynomial in λ, which is now called the chro-
matic polynomial of G. The chromatic polynomial is the oldest graph polynomial
to appear in the literature, that is a graph invariant. Since then a substantial
body of knowledge about the chromatic polynomial of graphs and its applica-
tions has been accumulated. The recent book by F.M. Dong, K.M. Koh and
K.L. Teo [28] gives an excellent and extensive survey. One of the surprising facts
is a theorem of R.P. Stanley, [72], which states that χ(G,−1) is the number of
acyclic orientations of G.

The Tutte polynomial. Interesting generalizations of the chromatic polyno-
mial were introduced by H. Whitney in 1932 and W.T. Tutte in 1947. The most
prominent among them is now called the Tutte polynomial T (G,X, Y ) which
is a two variable polynomial from which the chromatic polynomial can be ob-
tained via a simple substitution and multiplication with a pre-factor. The exact
relationship is given by

χ(G,X) = (−1)r(G)Xk(G)T (G; 1 −X, 0)

Here k(K) is the number of connected components of G and r(G) =| V | −k(G).
For a modern exposition the reader is referred to [14, chapter X], [38] or

[84]. Tutte’s own account on how he got involved with his polynomial is very
enjoyable, [78]. For this exposition we do not need a full definition of the Tutte
polynomial. We only note that it is a polynomial in two variables related to
the rank generating function of matroids. But we should note that in the years
after 1980 the Tutte polynomial found important interpretations in statistical
mechanics and quantum field theory, knot theory, and biology, cf. [84] and [71].
F. Jaeger in [44] showed that the Jones polynomial of knot theory on alternating
knots is just an instance of the Tutte polynomial of the knot diagram viewed as
a graph. L. Kauffman in [47] was the first to introduce a generalization of the
Tutte polynomial which gives the Jones polynomial for arbitrary knots. Different
approaches to multivariate versions of the Tutte polynomial are discussed in [15,
71].

Other univariate graph polynomials were introduced after 1955, often first
motivated by problems from chemistry and physics. The two most prominent are
the characteristic and the matching polynomial (which comes in two versions).

The characteristic polynomial of a graph G, denoted by P (G, λ) is the
characteristic polynomial of the adjacency matrixMG of the graph G, P (G, λ) =
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det(λ · 1−MG) and is completely determined by the eigenvalues of MG, which
are all real, as the matrix is symmetric. An excellent survey is [26].

The matching polynomials. The acyclic polynomial of G is the polynomial
m(G, λ) =

∑

k(−1)k · mk(G) · λn−2k, where the coefficients mk(G) count k-
matchings. A chemical point of view of these polynomials is given in [26], [8]
and [77], where algorithmic aspects are also touched. A close relative of the
acyclic polynomial is the matching generating polynomial of a graph G defined
as g(G, λ) =

∑

kmk(G)λk . The two matching polynomials are related by the
equation

m(G, λ) = λng(G, (−λ−2)).

An excellent survey on these two matching polynomials may be found in [39,
Chapter 1] and [52, Chapter 8.5]. We shall refer to both as matching polynomials.
Somewhat surprisingly we have m(G, λ) = P (G, λ) if and only if G is a forest.

The interlace polynomials. Two of the more interesting recent graph poly-
nomials were introduced by R. Arratia, B. Bollobás and G. Sorkin in [5, 6]. They
are called interlace polynomials and there is a univariate and a two-variable ver-
sion. M. Aigner and H. van der Holst [2] studied these polynomials from a matrix
point of view and derived various combinatorial interpretations. B. Courcelle [20]
discusses the interlace polynomial in the framework outlined in this paper.

The cover polynomial of directed graphs. An interesting recent graph poly-
nomial on directed graphs is the cover polynomial introduced by F.R.K. Chung
and R.L. Graham [19], and independently in the context of rook polynomials,
by I. Gessel, [37]. In [19] it is presented as an attempt to create a Tutte-like
polynomial for directed graphs, and is closely related to the chromatic polyno-
mial. There is also related work by R.P. Stanley [73] and T. Chow [18], and very
recently, by P. Pitteloud [69].

A zoo of graph polynomials Without giving all the necessary references, we
list a few of the many graph polynomials we found in the literature. There are
variations of matching polynomials, like the rook polynomials, cf. [70]. There are
polynomials counting the number of (induced) subgraphs of a certain kind. Let
H be a graph property and put indH(G, k) be number of induced subgraphs of
size k having property H in a given graph G. Then we can look at the polynomial

genH(G, λ) =
∑

k

indH(G, k)λk

For H consisting of all the Kn’s (cliques), En’s (isolated points), Cn’s (cycles),
Pn’s (paths) the corresponding polynomials have been studied. Instead of graph
properties one can also use subsets of graphs with desirable properties such as
vertex covers, coverings with subgraphs of special type etc. Some of these have
been studied in a very general context as Farrell polynomials, cf. [34, 57]. There
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are Farrell polynomials [34], clique and independent set polynomials [42], de-
pendence polynomials [35], Martin polynomials [32], Penrose polynomials [1],
Go-polynomials [33], and many more. It is worth searching for all these at
scholar.google.com.

3 Recursive definitions

One of the outstanding features of the more prominent graph polynomials are
recursive definitions with respect to some order independent way of deconstruct-
ing the input graph. The main paradigm stems from the chromatic polynomial
and the Tutte polynomial.

If G = (V,E) is a graph and e ∈ E is an edge with end points u and
v, we denote by G − e the graph obtained from G by deleting the edge, and
leaving all the vertices in place. We denote by G/e the graph obtained from G
by omitting the edge e and identifying the vertices u and v. The vertex obtained
from identifying u and v inherits all the other edges. We first note that for the
chromatic polynomial we have

χ(G) = χ(G− e) − χ(G/e)

where e is an edge and G− e and G/e denotes the deletion respectively contrac-
tion of the edge e. Furthermore, for the disjoint union we have χ(G1 t G2) =
χ(G1) · χ(G2), for the graph consisting of n isolated vertices En, χ(En) = λn.
One easily verifies that χ(G − e − f) = χ(G − f − e), χ(G/e/f) = χ(G/f/e),
χ(G − e/f) = χ(G/f − e) and χ(G/e − f) = χ(G − f/e), which is a kind of
Church-Rosser property or confluence property, cf. [27]. The Church-Rosser prop-
erty guarantees that the recursive definition is indeed well-defined. Hence we get
a recursive definition of χ(G) by choosing any order of the edges, and the result
is independent of the ordering of the edges. Similarly, for the Tutte polynomial
we have

T (G,X, Y ) =











X · T (G/e,X, Y ) if e is a bridge

Y · T (G− e,X, Y ) if e is a loop

T (G/e,X, Y ) + T (G− e,X, Y ) else

together with multiplicativity for disjoint unions and T (En, X, Y ) = 1. Again one
can verify the Church-Rosser property, and, therefore, gets a recursive definition
for the Tutte polynomial. In [15] this recursive definition was used as the starting
point for the definition of the colored Tutte polynomial.

In [5, 6] similar but more complicated recursive definitions are given for the
various interlace polynomials. Here the recursion also involves a pivot operation
Gab on a graph G and two vertices a, b. In [19] such recursive definitions are
given for the cover polynomial of directed graphs. B. Courcelle gave analyzed
recursive definitions in depth for the interlace polynomials in [20]. Even for the
matching polynomial one can give such rules: for the acyclic polynomial we have
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m(En) = λn, multiplicativity for disjoint unions and, for an edge e = (u, v)

m(G, λ) = m(G− e, λ) −m(G− u− v, λ)

Here G−u− v is the graph obtained by deleting the vertices u and v and all the
edges connected to at least one of them. The matching polynomial was studied
from this point of view in [7]. It is a curious fact that the previous literature
does not explore this aspect of the matching polynomial further, and does not
even mention the Church-Rosser property, although it is easily verified.

One advantage of a recursive definition of a graph polynomial is that it
gives an easy but slow way of computing the graph polynomial. As the recur-
sion unwinds a number of subtasks exponential in the size of the graph has
to be computed. But the nature of the recursion usually gives deeper insights.
Furthermore, the various Tutte and interlace polynomials can be proven to be,
in a certain sense, the most general graph polynomials satisfying their specific
recursion scheme. Similar characterizations were very recently shown for gener-
alizations of the cover and the matching polynomials in [23, 7].

It is remarkable fact that all researchers so far have taken such recursive
definitions as their departure point or main focus in studying new graph poly-
nomials. Although some particular recursion schemes based on the behaviour of
the graph polynomial under deletion of vertices or edges, contractions of edges,
pivoting, etc. are well studied, no general theory has emerged so far, and it re-
mains an interesting challenge to develop a satisfactory framework for recursion
schemes for graph invariants. In the forthcoming paper with B. Courcelle and B.
Godlin, [22], an attempt in creating such a framework is presented. It is based on
ideas reminiscent of graph grammars. We shall sketch its main ideas in section 5,
after we have introduced the logical aspects of graph polynomials. However, we
shall see in the sequel that this point of view is too restrictive, even if it usually
gives a very elegant treatment of the polynomials in question.

4 Complexity

Easy and hard cases. Easy to compute here means, as usual, polynomial time
computable. However, hard to compute is best captured with the complexity class
]P, which allows to count the number of successful guesses in a non-deterministic
polynomial time algorithm. This class was introduced by L. Valiant in [82], and
has a rich literature. Typical problems complete for ]P via polynomial time
reductions are: counting the number of satisfying assignments of SAT , the sat-
isfiability of propositional logic; counting the number of perfect matchings of a
graph; and counting the number of k-colorings of a graph for all k ≥ 3. Problems
in ]P are likely to be much harder than problems in NP. S. Toda [76] showed
that every problem in the polynomial hierarchy is polynomial time Turing re-
ducible to complete problems in ]P. The reader may want to consult [67] or
[46].

As in all the examples, the graph is given by its adjacency matrix, the co-
efficients of the graph polynomials are integers. Therefore, what we want to
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compute, given a graph G, are all the coefficients of the graph polynomial in
question. It is natural to ask how difficult it is to compute the various graph
polynomials, i.e. all its integer coefficients, on restricted graph classes. Clearly,
this is a more difficult problem, than just evaluating the graph polynomials on a
specific point. However, if we can evaluate the graph polynomial for a fixed graph
at sufficiently many points on, say a grid, we can use Lagrange interpolation to
compute its coefficients.

The characteristic polynomial is computable in polynomial time using classi-
cal algorithms for the determinant of a matrix. Computing the chromatic poly-
nomial is ]P-hard due to its connection to counting colorings, cf. [82]. This also
makes computing the Tutte polynomial ]P-hard. The same is true for the acyclic
polynomial due to its connection to counting matchings, cf. [82].

J. Oxley and D. Welsh [66] also noted that the Tutte polynomial for series–
parallel graphs, which are graphs of tree-width at most 2, can be computed in
polynomial time. This was extended to arbitrary fixed tree-width k indepen-
dently by A. Andrejak [4] and S. Noble [63], and therefore also holds for the
chromatic polynomial. Actually, they showed that computing the Tutte polyno-
mial is fixed parameter tractable FPT on graph classes of tree-width at most
k. In other words, it is computable in time f(k)nd, where d is independent of
k and n is the size of the input. For an extensive discussion of the complexity
class FPT, cf. [29].

This result was extended to the matching and the acyclic polynomial, the
interlace polynomials, the multivariate Tutte polynomials, and the cover polyno-
mial, in [54], based on [24]. We shall return to these results in Section 5. We note
that we define here the tree-width of a directed graph as the tree-width of its
underlying undirected graph. All these results are well defined and meaningful
in the Turing model of computation.

Hard points for evaluation. In a fundamental paper, Jaeger, Vertigan and Welsh
[45], cf. also [84], studied the complexity of computing the Tutte polynomial
T (G,X, Y ) ∈ C[X,Y ], as a polynomial over the complex numbers. They looked
at the complexity of evaluating T (G,X, Y ), for fixed X = X0, Y = Y0, and
letting the graphs vary. They were able to give a complete classification of the set
of points (X0, Y0) ∈ C2 according to the complexity of evaluating T (G,X0, Y0).
Due to the nature of the problem, complexity had to be measured in a hybrid way,
involving both Turing complexity and algebraic complexity. For non-negative
integer values (X0, Y0) ∈ IN2, evaluating T (G,X0, Y0) is a discrete problem in
the class ]P. The Turing model of computation also applies for the case when

(X0, Y0) are rational points. But ]P contains only functions in ININ. Therefore,
complexity is expressed via algebraic reducibility to a problem in ]P. The paper
[45] does not elaborate precisely the model of computation needed for the most
general version of their result.. The authors seem to use the Turing model, and
use algebraic extensions of the field of rational numbers as their base field. For
the reducibility they use a notion of algebraic reducibility, where arithmetic
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operations in C and access to constants in C are measured in unit cost3. The
framework of Blum, Shub and Smale [12] is well suited for this. They work in an
arbitrary ring (or field) R and use register machines where the registers can store
arbitrary elements of R at unit cost. The machine can perform the arithmetic
operations also at unit cost, has a mechanism of indirect addressing4, and can
test equality of elements of R. The authors of [45] seemingly were not aware of
[13], where this model of computation was first introduced.

We denote by FPR and FEXPR the complexity classes of functions com-
putable in polynomial respectively exponential time in the BSS-model over an
arbitrary ring (or field) R. Usually, R is the field R of real numbers or the field
C of complex numbers. We denote by FPF

C the class of functions computable in
polynomial time using oracles from F . We say a function f is AlgPC-reducible

to a function g if f is in FP
{g}
C

. Graphs can be coded in a standard way, so the
numeric graph invariant T (−, X0, Y0) is in FEXPC. There is no suitable ana-
logue of ]P in the BSS-model which fits our situation. A class ]PC was defined
in [62], which serves a different purpose, as it counts the number of successful

guesses in C, not discrete guesses. On the other hand, the functions f ∈ ININ

which are in ]P of the Turing model are a subclass of the functions in CC, but
they are not computable in the BSS model, because recognizing the integers in
C is not computable in the BSS model5.

Having this in mind, the main result of [45] can be formulated as follows:

Theorem 1 (Jaeger, Vertigan and Welsh). The complexity of computing
the numeric graph invariants T (−, X0, Y0) of the Tutte polynomial is described
as follows: There is a set B ⊆ C2 such that

(i) For all (X0, Y0) ∈ B the numeric graph invariant T (−, X0, Y0) ∈ FPC.

(ii) For all (X0, Y0), (X1, Y1) 6∈ B we have that T (−, X0, Y0) is AlgPC-reducible
to T (−, X1, Y1).

(iii) For some (X0, Y0) ∈ IN2 − B we have that T (−, X0, Y0) ∈ ]P and it is
]P-hard, hence ]P-complete.

(iv) Furthermore, B is a finite union of algebraic sets in C2 of dimension ≤ 1.

In fact, in [45] an explicit description of B is given.

In the case of the univariate chromatic polynomial, the theorem was first
proved in [50] as

3 Actually, in [45], the authors restrict their discussion to fields which are finite dimen-
sional algebraic extensions of the rationals and use some polynomial time encoding
of the arithmetic operations in the Turing model of computation.

4 Indirect addressing poses a problem, because the addresses are natural numbers, but
the contents of the registers are elements of an arbitrary but fixed ring R.

5 P. Bürgisser in [16, 17] also discusses the complexity of certain weighted graph poly-
nomials. The framework he uses is completely algebraic and was first introduced by
L. Valiant in [80, 82].
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Theorem 2 (Linial). For every X0, X1 ∈ C − {0, 1, 2}, evaluating the chro-
matic polynomial χ(−, X0) is AlgPC-reducible to evaluating χ(−, X1). As for
X0 = k, k ∈ IN, k ≥ 3 it is ]P-complete, we get that for every X0 ∈ C−{0, 1, 2},
evaluating the chromatic polynomial χ(−, X0) is ]P-complete.

For various versions of the Tutte polynomial, a similar theorem is true, cf.
Makowsky and Bläser [11]. For univariate polynomials, the situation is not ob-
vious. Using results from Dyer and Greenhill [30], Averbouch and Makowsky [7]
have shown

Theorem 3 (Averbouch, Makowsky). For every X0, X1 ∈ C−{0}, evaluat-
ing the matching polynomial m(−, X0) is AlgPC-reducible to evaluating m(−, X1)
and is ]P-hard.

For the cover polynomial, Bläser and Dell [10] have very recently shown:

Theorem 4 (Bläser, Dell). For every two points (X0, Y0), (X1, Y1) ∈ R2 −B,
evaluating the cover polynomial cov(−, X0, Y0) is AlgPR-reducible to evaluating
cov(−, X1, Y1) and is ]P-hard. The exception set B is given by Y = 1 or X =
Y = 0.

The techniques used to prove Theorem 3 and 4 each differ from the scenarios
given in [45]. [7] is based on ideas from [30], whereas [10] uses a reduction different
from the ones used [45].

It seems to be a non-trivial challenge to prove similar theorems for other
graph polynomials, such as the interlace polynomials. A generalization of Theo-
rems 1-4 is discussed in section 5.

5 Enter logic

Background. Let is define some basics for the reader less familiar with second
order logic. A vocabulary τ is a set of constant, function and relation symbols.
A one-sorted τ -structure is an interpretation of a vocabulary over one fixed set,
the universe. Interpretations of constant symbols are elements of the universe,
interpretations of function symbols are functions, and interpretations of relation
symbols are relations (of the prescribed arity). τ -terms are formed using individ-
ual variables, constant symbols and function symbols from τ . Interpretations of
terms are elements of the universe. In first order logic FOL we have atomic for-
mulas which express equality between terms and assert basic relations between
terms. We are allowed to form boolean combination of formulas and to quantify
existentially and universally over elements of the universe. In second order logic
SOL we are allowed, additionally, to quantify over relations and functions of
some fixed arity (number of arguments). In monadic second order logic MSOL,
quantification over relations is restricted to unary relations, and quantification
over functions is not allowed. An excellent reference for our logical background
is [31].

B. Courcelle in a series of papers has explored the usefulness of monadic
second order logic MSOL for graph algorithms and graph theory in general, cf.
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[21]. Monadic second order logic MSOL(τ) is the restriction of SOL(τ) to unary
relation variables and quantification over these. B. Courcelle in [25] observed that
graph properties definable in Monadic Second Order Logic (MSOL) are fixed
parameter tractable, i.e. in FPT, on graph classes of tree-width at most k, cf.
also [29, 36]. This approach was extended to graph polynomials by the author
in [54]. The fact that the Tutte polynomial is in FPT also follows from [54],
which also covers the acyclic and the matching polynomial and a wide range of
other graph polynomials where summations are restricted to families of subsets
of edges which are definable in MSOL.

SOL-polynomials. To understand better what all the graph polynomials have
in common we have to look closer at the way they are defined. Besides their recur-
sive definition they usually also have an equivalent (up to some transformation)
static definition as some kind of generating function. The matching polynomial
e.g. can be written as

∑

M⊆E

X |M | =
∑

M⊆E

∏

e∈M

X

where M ranges over all subsets of edges which have no vertex in common i.e.
subsets of edges which are matchings. The property of being a matching can be
expressed in first order logic FOL with M a relation variable, or in monadic
second order logic MSOL, where M is unary set variable ranging over subsets
of edges.

Without going into the more delicate details, the SOL-definable polynomials
are in a polynomial ring R[X̄] and are of the form

g(G, X̄) =
∑

A:φ(A)

∏

v:v∈A

t(v)

where A is a unary relation variable, φ(A) is an MSOL-definable property of the
graph, and t(v) is a term in R[X̄] which may depend uniformly on v. One can give
an inductive definition of SOL-polynomials by defining SOL-monomials as being
of the form

∏

v:v∈A t(v) and allowing closure under addition and multiplication
and under summations of the form

∑

A:φ(A) t(A).

We speak of MSOL-polynomials, if we allow binary relation variables (and
relation variables of higher arity) we speak of SOL-polynomials. A detailed
exposition may be found in [54].

In the same paper [54], it is shown that, in combination with the work of P.
Seymour and S. Oum [65], graph polynomials, where summations are restricted
to families of subsets of vertices which are MSOL-definable, are in FPT for
graph classes of clique-width at most k. However, this method does not apply to
the chromatic polynomial, the Tutte polynomial and the matching polynomials.
As discussion of the computational complexity of these polynomials for the class
of graphs of clique-width at most k may be found in [60].

In [61] the class of extended SOL-polynomials is introduced. In the extended
case the basic combinatorial polynomials are also included. More precisely, for
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every φ(v̄) ∈ SOL(τ) we define the cardinality of the set defined by φ:

cardM,v̄(φ(v̄)) =| {ā ∈Mm : 〈M, ā〉 |= φ(ā)}. |

The extended SOL(τ)-polynomials are defined inductively by allowing as ex-
tended SOL- monomials additionally:
For every φ(v̄) ∈ SOL(τ) and for every X ∈ X, the polynomials

XcardM,v̄(φ(v̄), X(cardM,v̄(φ(v̄)),

(

X

cardM,v̄(φ(v̄)

)

are SOL-definable M-monomials.
All the results of [54], stated for MSOL-polynomials, are also valid for ex-

tended for MSOL-polynomials.

Recursion revisited. The logic SOL can also be used to define a framework in
which the existence of a recursive definition of a graph polynomial can be formu-
lated. This program is carried out in [22]. The formalism is a bit heavy in its full
generality. What one needs is a finite set of graph operations T1, T2, . . . , Ts defin-
able in SOL, which allow us to deconstruct a graph G into graphs Ti(G) : i ≤ s
in such a way, that the graph polynomial p(G) is a linear combination (in the
polynomial ring) of the graph polynomials p(Ti(G)). Furthermore, the appli-
cation of these operations must satisfy a confluence (Church-Rosser) property.
Recursive definitions are a kind of dynamic definition of graph polynomials, in
contrast to the static definitions as exemplified by by the SOL-polynomials.

In [22]. we prove

Theorem 5 (Courcelle, Godlin, Makowsky). Assume that a graph polyno-
mial p(G) has a recursive definition with SOL-definable graph transformations
Ti : i ≤ r which satisfy the confluence property. Then p(G) is an SOL-definable
graph polynomial.

It is not clear, whether, when restricting to MSOL-definable graph transforma-
tions, one gets an MSOL-definable polynomial.

Although it is not difficult to define artificially a graph polynomial which is
not SOL-definable, we have verified that all the graph polynomials studied in
the literature are SOL-definable. Actually, they are all CMSOL-definable, i.e.
definable in MSOL enriched with a modular counting quantifier, or, alterna-
tively, definable in fixed point logic FPL over graphs with a linear ordering on
its vertices. For a reference and discussion of these logics cf. [64, 31, 49].

Complexity revisited. Returning to complexity issues, here is a challenging
conjecture:

Conjecture 1 (Difficult Point Conjecture) Let p(G, X̄) be an extended SOL-
definable graph polynomial in r many indeterminates. The complexity of comput-
ing the numeric graph invariants p(−, X̄) of the polynomial p(G, X̄) is described
as follows: There is a set B ⊆ Cr such that

11



(i) For all X̄0 ∈ B T (−, X̄0) ∈ FPC.
(ii) For all (X̄0), (X̄1) 6∈ B T (−, X̄0) is AlgPC-reducible to T (−, X̄1).
(iii) B is a finite union of algebraic sets in Cr of dimension strictly less than r.

We can also formulate the conjecture for fragments of SOL, such as MSOL, or
FPL on ordered graphs.

Theorems 1-4 form the basis of this conjecture. Using suitable notions of
reducibilities between graph polynomials, one can produce infinitely many in-
stances confirming the conjecture. A simple case of such a reducibility is dis-
cussed in [7].

6 Generalized chromatic polynomials

It turns out that extended SOL-definable graph polynomials turn up naturally
also in another approach to graph polynomials developed in [61].

A two-sorted vocabulary is a set of constant, function and relation symbols
where the arguments of the functions and relations are typed, i.e. belong to
one of the two sorts. A two-sorted structure is an interpretation of a two-sorted
vocabulary over two sets (universes) where each universe is the interpretation of
one sort. For a natural number k ∈ IN, we denote by [k] the set {0, 1, . . . , k− 1}.
In the sequel we will use sets of the form [k] as an additional sort. We also use
τ -structures rather than graphs. The reader less familiar with model-theoretic
reasoning may still think of graphs. Only in the proofs in Section 7 the full
generality of τ -structures is needed.

Let M be a τ -structure with universe M , and denote by Mk the two-sorted
structure 〈M, [k]〉 for the modified vocabulary τ1, where all the arguments of
the function and relation symbols of τ are of the first sort. Let φ(R) be a second
order τ1∪{R}-formula, where R is an (m+r)-ary relation symbol and the r last
arguments of R are of the sort of [k]. A relation RM ⊂Mm× [k]r is a generalised
k − φ-coloring if

(i) 〈Mk, R〉 |= φ(R), and
(ii) If 〈Mk, R〉 |= φ(R), and k1 ≥ k, then If 〈Mk1 , R〉 |= φ(R).
(iii) If for every M there is a number NM such that for all k ∈ IN the set of colors

{x ∈ [k] : ∃ȳ ∈ MmR(ȳ, x)}

has size at most NM .

We denote by χφ(R)(M, k) the number of generalised k − φ-coloring R on M.

Theorem 6 (Makowsky, Zilber). For every M the number χφ(R)(M, k) is a
polynomial in k of the form

NM
∑

j=0

cφ(R)(M, j)

(

k

j

)

where cφ(R)(M, j) is the number of generalised k−φ-colorings R with a fixed set
of j colors.

12



Proof: We first observe that any generalised coloring R uses at most NM of
the k colors. For any m ≤ N , let c(j) be the number of colorings, with a fixed
set of j colors, which are generalised vertex colorings and use all j of the colors.
Next we observe that any permutation of the set of colors used is also a coloring.
Therefore, given k colors, the number of vertex colorings that use exactly j of
the k colors is the product of cφ(R)(M, j) and the binomial coefficient

(

k
j

)

. So

χφ(R)(M, k) =
∑

j≤NM

cφ(R)(M, j)

(

k

j

)

The right side here is a polynomial in k, because each of the binomial coefficients
is. We also use that for k ≤ j we have

(

k
j

)

= 0. �

In the light of this theorem we call χφ(R)(M, k) a generalised chromatic polyno-
mial.

We extend the definition to construct also graph polynomials in several
variables. Let M be a τ -structure with universe M , and denote by Mk1,...,kα

the (1 + α)-sorted structure 〈M, [k1], . . . , [kα]〉 for the vocabulary τα. We put
k̄α = (k1, . . . , kα).

Let φ(R) be a first order τα ∪ {R}-formula. Recall that A t B denotes the
disjoint union of the sets A and B. A relation

RM ⊂Mm1 × ([k1] t . . . t [kα])m2

is a generalised k̄α − φ-coloring if

(i) 〈Mk1,...,kα
〉 |= φ(R), and

(ii) there is a number d ∈ IN such that for every y ∈Mm1 the set

{x̄ ∈ ([k1] t . . . t [kα])m2 : S(ȳ, x̄)}

has at most d elements.

We denote by χφ(R)(M, k̄α) the number of generalised k̄α−φ-coloring R on M.

Theorem 7 (Makowsky, Zilber). For every M the number χφ(R)(M, k̄α) is
a polynomial in k̄α of the form

d·|M |m
∑

j=0

cφ(R)(M, j̄α)
∏

1≤β≤α

(

kβ
jβ

)

where cφ(R)(M, j̄α) is the number of generalised k̄α− φ-colorings R with a fixed
sets of jβ colors respectively.

Proof: Similar to the one variable case. �

Let M be a τ -structure and Mk as before. Assume we have a formula
φ(f1, . . . , fM ) with M function variables for generalised colorings which spec-
ifies the functions simultaneously. If we fix the interpretation of the first M − 1
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function variables and denote these by F1, . . . , FM−1 we have a new structure
N = 〈Mk, F1, . . . , FM−1〉 in which we count just one generalised coloring for
each interpretation F1, . . . , FM−1. The general counting is obtained by summing
over all interpretations. Hence, as the sum of polynomials is a polynomial, this
again gives us a polynomial. The same argument works, if we allow relations
on the structure M, which do not involve the sort [k] in Mk, and provided the
range of these relations is bounded in the sense that there is a number d ∈ IN
such that for every y ∈ Mm1 the set {x̄ ∈ ([k1] t . . . t [kα])m2 : S(ȳ, x̄)} has
at most d elements. We call polynomials obtained in this way also generalised
chromatic polynomials.

The following will be useful.

Proposition 1 (Sums and products). The sum and product of two gener-
alised chromatic polynomials χφ(f)(G, λ) and χψ(f)(G, λ) is again a generalised
chromatic polynomial.

Proof: For the sum we take χθ1(G, λ) with

θ1(f) = ((φ(f) ∧ ¬ψ(f)) ∨ (ψ(f) ∧ ¬φ(f)) ∨ (φ(f) ∧ ψ(f))) .

For the product we take χθ2(G, λ) where we use two distinct function symbols
f and f ′ and θ2(f, f

′) = (φ(f) ∧ ψ(f ′)). �

7 All SOL-polynomials are generalised chromatic

polynomials

We now show how many graph polynomials can be viewed as generalised chro-
matic polynomials.

Combinatorial polynomials. The following combinatorial polynomials can
be thought of as generalised chromatic polynomials:

(i) For the polynomial λn we take all maps [n] → [k] for λ = k. So λn = χtrue(f)

where true(f) is ∀v(f(v) = f(v)).

(ii) Similarly, for λ(n) = λ · (λ− 1) · . . . · (λ − n+ 1) we take all injective maps,
which is easily expressed by a first order formula.

(iii) Finally, for
(

λ
n

)

we take the ranges of injective maps. This is a coloring
property of a second order formula φ(P) which says that P ⊆ [k] is the
range of an injective map f : [n] → [k].

Connected components. We denote by k(G) the number of connected com-
ponents of G. The polynomial λk(G) can be written as χφconnected

(G, λ) with
φconnected(f) the formula ((u, v) ∈ E → f(u) = f(v)).
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Hypergraph colorings and mixed hypergraph colorings. A hypergraph
G consists of a set of vertices V (G) and a family E(V ) of subsets of V , called
the hyper edges. To make this into a first order structure we have two sorts of
elements, the elements of V and of E, together with the membership relation,
which satisfies extensionality. A mixed hypergraph G has two kinds of hyper
edges, D(G) and E(G). Mixed hypergraph colorings come in several flavours.
For a recent exhaustive survey, cf. [83]. We discuss here two cases:

Weak mixed hypergraph colorings A weak mixed hypergraph coloring with
k colors is a mapping f : V → [k] such that if u, v ∈ d ∈ D(G) → f(u) = f(v)
and if ∀e ∈ E(G)∃u, v ∈ e ∈ E(G) → f(u) 6= f(v).

Strong mixed hypergraph colorings A strong mixed hypergraph coloring with
k colors is a mapping f : V → [k] such that if u, v ∈ d ∈ D(G) → f(u) = f(v)
and if ∀e ∈ E(G)∀u, v ∈ e ∈ E(G) → f(u) 6= f(v).

We denote by χweak(G, k) and χstrong(G, k) respectively the number of weak
(strong) mixed hypergraph colorings with at most k colors.

Proposition 2 (V.L. Voloshin). χweak(G, k) and χstrong(G, k) are polynomi-
als in k.

Clearly, this is also a corollary to our Theorem 6.

Matching polynomial. Let G = (V,E) be a graph. A subset M ⊆ E is a
matching if no two edges in E have a common vertex. The matching polynomial
of G is given by

g(G, λ) =
∑

j

µ(G, j)λj

where µ(G, j) is the number of of matchings of size j.
We look at the structureGk and at pairs (M,F ) withM ⊂ E and F : E → [k]

such that M is a matching and the domain of F is M , which can be expressed
by a formula match(M,F ). We have

χmatch(M,F )(G, k) =
∑

j

µ(G, j)kj = g(G, k)

Tutte polynomial. We use the Tutte polynomial in the following form:

Z(G, q, v) =
∑

A⊆E

qk(A)v|A|

where k(A) is the number of connected components of the spanning subgraph
(V,A). This form of the Tutte polynomial is discussed in [71]. For this purpose
we look at the 4-sorted structure

Gk,l = 〈V, [k], [l], ℘(E), E〉
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and at the triples (A,F1, F2) with A ∈ ℘(E), F1 : V × ℘(E) → [k] and F2 :
A→ [l] such that for (u, v) ∈ A→ F1(A, u) = F1(A, v). This is expressed in the
formula tutte(A,F1, F2). Now we have

χtutte(A,F1,F2)(G, k, l) =
∑

A⊆E

kconn(A)l|A|

which is the evaluation of Z(G, q, v) for q = k, v = l.
In our definition of generalised chromatic polynomials we have requested that

the generalised coloring be specified by a formula of first order logic FOL(τ).
This is not necessary. The formulas of SOL(τ) are defined like the ones of FOL,
with the addition that we allow countably many variables for n-ary relation
symbols Un,α for α ∈ IN, for each n ∈ IN, and quantification over these. A gener-
alised chromatic polynomial is definable in SOL(τ), respectively in MSOL(τ)
or FPL(τ), if it is of the form χφ(M, λ̄), the counting function of a generalised
coloring specified by φ, with φ ∈ SOL, respectively in MSOL(τ) or FPL(τ).

Here is a generalization of Theorem 7.

Theorem 8. Every counting function of a generalised SOL-definable coloring
is a polynomial, which we call also generalised chromatic polynomial.

Also Proposition 1 remains true with the same proof. Several classes of gen-
eralised chromatic polynomials are of special interest, those which are SOL-
definable, MSOL-definable, and those which are definable in fixed point logic
FPL on ordered graphs. For details about fixed point logic, cf. [31].

For each of these we have a characterization in terms of SOL-definable poly-
nomials.

Theorem 9 (Makowsky and Zilber). Let p(G, X̄) be a graph polynomial.
The following statements are equivalent:

(i) p(G, X̄) is an extended SOL(τ)-polynomial over some τ -structure A.
(ii) p(G, X̄) is a is a counting function of a generalised coloring definable in

SOL(τ) in a suitable expansion of A.

The same is true if we replace SOL by MSOL or FPL.

8 Complexity theory for graph polynomials

The literature on Turing complexity or algebraic complexity does not provide
a natural framework to develop a complexity theory of graph polynomials. In
particular there is no agreed upon notion of efficient reducibility between graph
polynomials. The existing frameworks do allow the formulation of hardness re-
sults by reductions to ]P-hard instances which are easily recognizable as poly-
nomial time computable in an intuitive sense. But in the existing frameworks no
hardest graph polynomial could be identified.

Theorem 9 suggests the SOL-polynomials, and the FPL-polynomials as
reasonable complexity classes to study graph polynomials. These classes have
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enough closure properties, and have different equivalent definitions. Its members
can be computed in exponential time in the unit cost computational model over
the underlying ring R, in the sense of the Blum-Shub-Smale model of compu-
tation, [12]. They also reflect and generalize classical complexity theory. The
SOL-definable graph properties correspond to graph properties in the poly-
nomial hierarchy, and the FPL-definable graph properties of graphs with an
ordering on the vertices correspond to the class P. Furthermore, every function
f : IN → IN which is in ]P is the evaluation of some FPL-definable polyno-
mial. As became obvious in descriptive complexity theory, the MSOL-definable
graph properties do not form a well behaved complexity class. The same is true
for graph polynomials: The MSOL-definable polynomials seem not to be closed
under multiplication.

In our previous work we have verified that all graph polynomials of the
literature are SOL-definable, and most of them MSOL-definable. But I dare to
pronounce the following rather vague conjecture:

Conjecture 2 All naturally occurring graph polynomials are FPL-definable graph
polynomials.

This is definitely true for all the examples listed in this paper.

Having identified candidates for good complexity classes of graph polynomials
is not enough. Although these classes can accommodate our large zoo of graph
polynomials, there is still no general zoology. We offer here an outline of what
such a zoology could look like.

The purpose of the general framework is to initiate a comparative study of
the many graph, digraph and hypergraph polynomials which have appeared in
the literature. For an extensive list of references cf. [54] and [57]. In particular,
we address the following:

Comparability. Given two graph polynomials f(G, x̄) and g(G, x̄), we say
that g is weaker than f , and write g � f , if for any two graphs G1, G2 with
f(G1, x̄) = f(G2, x̄) we also have g(G1, x̄) = g(G2, x̄). If g � f and f � g, we
say the polynomials are graph-equivalent. Comparability of graph polynomials
is undecidable. This follows from the undecidability of the consequence prob-
lem of First Order Logic if restricted to finite graphs, which was proven by M.
Taitslin [75] and sharpened by I. Lavrov [48], cf. [41, Theorem 5.5.1]. We note
that the two matching polynomials m(G, λ) and g(G, λ) are graph equivalent,
but incomparable with respect to the characteristic polynomial P (G, λ), and
also with respect to the chromatic polynomial, and the Tutte polynomial. The
study of this partial order among SOL-polynomials, MSOL-polynomials, FPL-
polynomials, or other restricted classes of graph polynomials is a natural topic of
investigation. In particular, one can ask: is there a strongest SOL-polynomial,
what are its additional structural properties, is it a lattice, etc.

Reducibilities. Reducibilities have now two components:
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(i) Computations in the ring, performed on the polynomial, in the uniform
computational model BSS, or in the non-uniform model of L. Valiant [81, 16,
17]. Algebraic circuits (straight-line programs) or PR-programs are natural
choices, where R is the underlying ring.

(ii) Transductions of the graphs (relational structures), expressible in the logic
L for suitably chosen L, or computable by Turing machine transducers in
the corresponding complexity class C.

For P-polynomials over R, PR and P-transductions, respectively transductions
definable in Fixed Point Logic, are natural choices. For details see [43, 31, 49]. In
this case we speak of P-reducibility between two graph polynomials f, g and write
g �P f . The comparability and reducibility relations between graph polynomials
do not coincide. The chromatic polynomial χ(G, λ) is P-reducible to the Tutte
polynomials, but it is not comparable to the Tutte polynomial. This can be easily
seen from the formula

χ(G,X) = (−1)r(G)Xk(G)T (G; 1 −X, 0)

Recall that k(K) is the number of connected components of G, and r(G) is the
rank defined by r(G) =| V | −k(G). The formula shows that the chromatic
polynomial is computable in polynomial time from the Tutte polynomial, but
the Tutte polynomial remains invariant under the addition of isolated vertices
to the graph G, whereas the chromatic polynomial does not.

It is open whether the matching polynomials m(G, λ) and g(G, λ) are P-
reducible to the Tutte polynomial.

Reduction-complete polynomials. A graph polynomial is reduction complete
in a complexity class C equipped with a notion of reducibility, if every other C-
polynomial is reducible to it. To speak about reduction-complete polynomials
it may be reasonable to fix the number of variables of the polynomials under
consideration. Are there any reduction-complete P-polynomials? Is the Tutte
polynomial reduction-complete? We note that the Tutte polynomial has been
shown to be the most general graph polynomial with respect to certain reduction
rules (contraction and deletion of edges), cf. [14, Chapter X]. But this excludes
the matching polynomial from the discussion.
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68. J. Petersen. Die Theorie der regulären Graphen. Acta Math., 15:193–220, 1891.
69. P. Pitteloud. Chromatic polynomials and the symmetric group. Graphs and Com-

binatorics, 20:131–144, 2004.
70. J. Riordan. An Introduction to Combinatorial Analysis. Wiley, 1958.
71. A. Sokal. The multivariate Tutte polynomial (alias Potts model) for graphs and

matroids. In Survey in Combinatorics, 2005, volume 327 of London Mathematical
Society Lecture Notes, pages 173–226, 2005.

72. R. P. Stanley. Acyclic orientations of graphs. Discrete Mathematics, 5:171–178,
1973.

73. R.P. Stanley. A symmetric function generalization of the chromatic polynomial of
a graph. Advances in Mathematics, 111:166–194, 1995.

74. J.J. Sylvester. On an application of the new atomic theory to the graphical presen-
tation of the invariants and covariants of binary quantics, with three appendices.
American Journal of Mathematics, 1:161–228, 1878.

75. M.A. Taitslin. Effective inseparability of the sets of identically true and finitely
refutable formulae of elementary lattice theory (in Russian). Algebra i Logika,
1:24–38, 1961.

76. S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput.,
21(2):865–877, 1991.
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81. L.G. Valiant. Completeness classes in algebra. In Proceedings of 11th STOC, pages
249–261, 1979.

82. L.G. Valiant. The complexity of enumeration and reliability problems. SIAM
Journal on Computing, 8(3):410–421, 1979.

83. V. I. Voloshin. Coloring Mixed Hypergraphs: Theory, Algorithms and Applications,
volume 17 of Fields Institute Monographs. American Mathematical Society, 2002.

84. D.J.A. Welsh. Complexity: Knots, Colourings and Counting, volume 186 of London
Mathematical Society Lecture Notes Series. Cambridge University Press, 1993.

22


