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Abstract

This paper presents a novel approach for analyzing

human actions in non-scripted, unconstrained video set-

tings based on volumetric, x-y-t, patch classifiers, termed

actemes. Unlike previous action-related work, the discov-

ery of patch classifiers is posed as a strongly-supervised

process. Specifically, keypoint labels (e.g., position) across

spacetime are used in a data-driven training process to dis-

cover patches that are highly clustered in the spacetime key-

point configuration space. To support this process, a new

human action dataset consisting of challenging consumer

videos is introduced, where notably the action label, the

2D position of a set of keypoints and their visibilities are

provided for each video frame. On a novel input video,

each acteme is used in a sliding volume scheme to yield

a set of sparse, non-overlapping detections. These detec-

tions provide the intermediate substrate for segmenting out

the action. For action classification, the proposed represen-

tation shows significant improvement over state-of-the-art

low-level features, while providing spatiotemporal localiza-

tion as additional output. This output sheds further light

into detailed action understanding.

1. Introduction

Human action classification (“What action is present in

the video?”) and detection (“Where and when is a particu-

lar action performed in the video?”) are key tasks for un-

derstanding imagery. Addressing such tasks is rendered dif-

ficult by the wide variation of human appearance in uncon-

strained settings, due for instance to differences in clothing,

body shape, lighting and camera viewpoint. Another chal-

lenge arises from the diversity in observed action dynam-

ics due to performance nuances and varying camera cap-

ture settings, such as frame rate. Furthermore, different ac-

tions may have large common portions and thus can only be

distinguished by transient and subtle differences, e.g., the
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Figure 1. Overview of proposed approach. An input video is en-

coded by the activation of a set of discriminative spatiotemporal

patch classifiers, actemes. Actemes can take on a variety of spa-

tiotemporal extents. The activations of these mid-level primitives

in the input imagery are used to classify videos into different ac-

tion categories and spatiotemporally localize an action.

lower body of a golf-swing and a baseball swing look the

same. A key question for addressing these issues is the se-

lection of the visual primitives for representing actions.

An intuitive representation for human actions is the un-

derlying pose of limbs or joints across time. While im-

pressive progress in pose estimation and tracking has been

made [20], these tasks remain open problems in general

unconstrained settings. Further, it is inconclusive whether

such hard subproblems are necessary for addressing certain

action-related problems, as opposed to the recovery of in-

formation from images in a more direct fashion [19].

Much of the state-of-the-art work in action classification

and detection is based on relating image patterns in a more

direct fashion to actions. A tremendous variety of visual

spatiotemporal descriptors have appeared in the literature.

One manner of organizing these features is in terms of their

spatiotemporal extent/resolution.
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At one extreme of the spectrum are local spatiotem-

poral descriptors [30]. Here, local spatiotemporal image

patches are often encoded by a universal dictionary of “vi-

sual words”, constructed by clustering a large number of

training image patches in an unsupervised manner. Com-

monly, these descriptors are combined to define a global de-

scriptor over the video, termed a “bag of visual words”. In

practice, most local patches capture generic oriented struc-

tures, such as bar and corner-like structures in the spatial

[24] and spatiotemporal [18] domains. Thus, visual words

in isolation generally convey generic information of the lo-

cal spacetime pattern, such as the velocity and the presence

of spatiotemporal discontinuities, rather than distinctive in-

formation of the action, including its spacetime location.

Further, as typically employed, these features are not strictly

grounded on actions but rather capture both the action and

the scene context which may artificially increase perfor-

mance on datasets where the actions are highly correlated

with the scene context [17].

At the other end of the spectrum are spatiotemporal tem-

plates that represent the entire action. A variety of image

measurements have been proposed to populate such tem-

plates, including optical flow and spatiotemporal orienta-

tions [6, 12, 4, 25]. Due to the inflexibility of these repre-

sentations, an inordinate amount of training data is required

to span the visual appearance space of an action.

In between the local and holistic representational ex-

tremes lie mid-level part representations that model mod-

erate portions of the action. Here, parts have been proposed

that capture a neighborhood of spacetime [13, 7, 29, 22], a

spatial keyframe [26] or a temporal segment while consider-

ing the entire spatial extent of the scene [21, 9]. These rep-

resentations attempt to balance the tradeoff between gener-

ality exhibited by small patches, e.g., visual words, and the

specificity by large ones, e.g., holistic templates. The vol-

umetric part/patch definitions proposed in the current work

potentially span the spectrum. A data-driven approach in-

formed by rich training data (i.e., keypoints across space-

time) is used to identify the optimal operating points be-

tween these two extremes.

Most closely related to the current work are poselets [1].

A poselet is an image patch classifier trained with the aid

of annotated keypoint locations. Each classifier is selective

for a particular salient spatial visual pattern corresponding

to a portion of a human pose captured at a particular cam-

era viewpoint. The composition of these parts capture the

essence of an object. Poselets have been shown to be an

effective mid-level representation for a variety of applica-

tions, including action recognition in still imagery [19].

Motivated by the success of poselets and other patch-

based representations in static contexts, this work presents

a set of volumetric patch detectors, termed actemes, that

are each selective for a salient spatiotemporal visual pat-

tern. An acteme can consist of a single frame outlining a

keyframe of the action, a volume outlining the entire ac-

tion or an intermediate patch size, capturing for instance

a portion of a stationary head and a right arm moving up-

ward (see Figure 1 top-right for further examples). In addi-

tion, these patches potentially capture salient self-occlusion

image patterns, e.g., dynamic occlusion. Interestingly, a

similar “spacetime fragment” approach has been proposed

as a theory of visual representation of actions for human

perception [3]. The discovery of actemes in the learning

stage is posed as a strongly supervised process. Specifically,

hand labeled keypoint positions across space and time are

used in a data-driven search process to discover patches that

are highly clustered in the spacetime keypoint configuration

space and yield discriminative, yet representative (i.e., exist

in a large number of instances of the same action), patch

classifiers, cf. [1]. The efficacy of this representation is

demonstrated on action classification and action detection.

Figure 1 provides an overview of the proposed approach.

A key benefit of the proposed representation is that it

captures discriminative action-specific patches and conveys

partial spatiotemporal pose information and by extension

motion. Furthermore, these parts convey semantic informa-

tion and the spatiotemporal location of the action. Unlike,

local feature points, actemes are designed to capture the ac-

tion (appearance and motion) with minimal scene context.

1.1. Contributions

In the light of previous work, the major contributions

of the present paper are as follows. (i) A discriminative

multiscale spatiotemporal patch model is developed, termed

actemes, that serves as an effective mid-level representation

for analyzing human actions in video. Exploiting the spa-

tiotemporal context of actemes facilitates both action clas-

sification and detection. (ii) To realize this patch model,

this work introduces a new annotated human action dataset1

containing 15 actions and consisting of 2326 challenging

consumer videos. The annotations consist of action class

labels, 2D keypoint positions (13 in all) in each video frame

and their corresponding visibilities, and camera viewpoints.

2. Acteme discovery

Human actions are often described in terms of the rela-

tive motion between the body parts, e.g., raise arm in front

of the shoulder. Due to the large performance variation of

an action, the appearance and motion cues exhibit large in-

class variability. Consequently, building a part classifier

directly on the initial imagery places an inordinate burden

on the learning process to generalize across performance

nuances. Given a set of keypoint locations, similar poses

1The dataset and annotations are available at the project page: http:

//www.scs.ryerson.ca/˜kosta/actemes.html.
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Figure 2. Example part clusters for (left-to-right) golf swing, sit up

and baseball pitch, shown as the average of the color image (left)

and optical flow (right) for a single frame. The consistent part

alignments inside each cluster are exemplified by the sharpness

in the color and motion images. This alignment leads to better

classifier detection performance.

across space and time can be aligned which in turn reduces

the variation in appearance and motion. This is exempli-

fied in Figure 2, where the aligned action parts are rela-

tively sharp compared to the blurred background. The in-

troduced alignment step leads to better classifier detection

performance. This approach captures the relative motion to

the underlying pose, which transcends the traditional bags

of words approach that only captures holistic motion.

The steps for realizing the set of actemes are as follows.

The initial step consists of determining a set of patch clus-

ters that are potentially relevant to analyzing a given set of

actions (§2.1). Here, it is assumed that the keypoint lo-

cations and their visibilities are provided with the training

data, see §4. Next, a set of linear classifiers are trained us-

ing the clusters as positive examples (§2.2). The final part

discovery step ranks and selects a subset of actemes that are

both discriminative and representative (§2.3).

2.1. Generate acteme candidates

Given the training videos, a set of random patches are

selected, the seed volumes. (The training set was doubled

by flipping the videos and annotation labels along the spa-

tial horizontal axis.) For each seed volume, the optimal 2D

spatial similarity transform and discrete temporal offset is

estimated that aligns the keypoints spatiotemporally in each

training video with the corresponding visible points within

the seed volume. In addition, this fitting process is com-

puted over a small set of temporal rescalings of the train-

ing video around unity to improve the temporal alignment.

Consequently, each cluster is not only restricted to a given

viewpoint and set of body poses but also a limited range of

action execution speeds. Figure 3 shows an example seed

volume and its three nearest patches in the training set.

Figure 3. An example seed volume is shown in the top-left panel

(as frames) and the three nearest patches in the dataset are shown

in the remaining panels.

The motivation behind restricting the search to a small

range of temporal scales around unity is twofold. First,

large temporal rescalings of a video typically introduce sig-

nificant ghosting artifacts due to the relatively low sampling

of the temporal dimension. Second, low and high speed

patterns contain distinct natural signal statistics that may

be useful for pattern matching, such as image blur in high

speed patterns [11]. Thus, multiple pattern models tuned to

particular speeds allows for exploiting such statistics. (Sim-

ilar observations regarding image gradient statistics in nat-

ural scenes have been exploited in a recent state-of-the-art

human pose estimator [31].)

Each seed volume is selected randomly from a train-

ing video at a uniformly random spatiotemporal position.

Further, the spatiotemporal dimensions of the seed volume

are chosen randomly from a set of four spatial dimensions,

{100 × 100, 100 × 150, 150 × 100, 100 × 200}, and a set

of three temporal extents, {5, 10, 15}. The random seed

volume set is augmented with seed volumes centered at

the temporal discontinuities of joint trajectories, since these

regions of non-constant motion correspond to distinctive

events that may yield discriminative patches. In total, 600
seed volumes are considered per action.

For the visible keypoints within the extents of a seed vol-

ume, P1, the distance is computed to each video sharing

the same action and camera viewpoint, as follows (cf. [1]),

D(P1, P2) = dP (P1, P2)+λ1dv(P1, P2)+λ2dm(P1, P
′
2
),

where dP denotes the Procrustes distance between the spa-

tial dimensions of the visible points in the seed patch, P1,

and the corresponding points in the secondary video patch,

P2, dv measures the consistency of the visibility labels be-

tween patches, dm measures the consistency between veloc-

ities of corresponding points in the patches after the align-

ment has been applied to P2, denoted by P ′
2
, and λ{1,2} are

weighting factors. The visibility similarity, dv , is defined

as one minus the intersection over union of the keypoints

present in both patches. The motion consistency similar-

ity, dm, is defined as the mean square distance between the

velocities of corresponding points in the patches after the

alignment has been applied.
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2.2. Train acteme candidates

Similar to poselets, acteme detection is performed us-

ing a linear SVM classifier. In this work, each acteme is

represented as the concatenation of the normalized and un-

normalized histogram of flow (HoF), computed using dense

flow [2], and the histogram of spatial gradients (HoG) [8];

alternative features are also possible, e.g., [4]. The HoF fea-

tures use the same grid size as HoG, with the flow directions

quantized into five bins using linear interpolation.

The negative examples are randomly selected from im-

ages that have a different action label to the positive ex-

amples. A second round of SVM training using hard false

positives is also performed to improve the detection scores

[1, 8]. Finally, to bring the detection scores to a comparable

range, a logistic is fit over the positive and negative scores

to realize a probability score.

2.3. Ranking and selecting actemes

The initial set of actemes are selected in a random fash-

ion and thus may exhibit a wide range of capacities to dis-

criminate different actions and represent a wide range of

instances of the same action. The objective is to select a

subset of the action-specific classifiers that are both discrim-

inative and representative. This subset selection problem

is combinatorial in the prohibitive large space of candidate

subsets. (Note, a variety of subset selection schemes can be

considered here, e.g., [1, 19].)

For each acteme candidate, its discrimination capacity is

measured by the activation ratio, α, between the in-class and

out-of-class detections among the top 1000 detections. The

key idea is that distinctive actemes should fire more often

on imagery of its own action category. The representative

capacity of the i-th acteme is measured by a binary vector fi
indicating whether a detection occurs for each of the train-

ing instances. Initially, the selected acteme set, M, contains

the acteme with the highest activation ratio, α. We incre-

mentally add the acteme candidates into M by alternating

between the following two steps: (i) sample a training in-

stance inversely proportional to the cumulative hit counts∑
i∈M fi, this instance is typically underrepresented by the

current M and (ii) pick a candidate acteme that covers the

chosen training instance. If there are multiple candidates,

the one with the highest α is selected and added to M. This

process is terminated when |M| reaches the desired maxi-

mum number.

3. Acteme inference

3.1. Acteme detection

Given an input video, each acteme is considered in a

sliding volume manner, i.e., each detector is applied at all

spatiotemporal positions and a set of spatiotemporal scales.

To eliminate redundant part detections, non-maximum sup-

pression is performed on the (thresholded) detector re-

sponses to yield a sparse, non-overlapping set of detections

for each acteme. Each detection di is a detected spacetime

volume: di = (si, bi, Ti), where si denotes the detection

score, bi is the 2D bounding box projection of the 3D vol-

ume (same at every image) and Ti is the life span of the

detection. In practice, the detection scores are efficiently re-

alized by adapting the frequency domain scheme proposed

elsewhere [4].

The actemes for the same action are strongly correlated

in both space and time. Exploiting the spatiotemporal con-

text of mutual activations helps to boost the weak detec-

tions due to partial occlusion and extreme deformation. It

also disambiguates similar actemes belonging to different

actions, e.g., the lower body of a golf-swing vs. a baseball-

swing. This is particularly important for action classifica-

tion since it is desirable that each acteme only responds to

instances containing its action.

Similar to [1], the detection score of each acteme is

modified by looking at the detection information of other

actemes in the neighboring spacetime vicinity. For each de-

tection, a feature of length K is constructured, where the

k-th entry stores the maximum detection score of the k-th

acteme. This feature is concatenated with another 2 × K

dimensions that contain the same feature but restricted to

detections occurring earlier and later in time. This feature

encodes the causalities between different actemes. A linear

SVM is trained using this feature on the training set and the

score is converted into a probability using a logistic.

3.2. Acteme clustering via semantic compatibility

Given the detected actemes, a grouping of consistent

candidates is sought that explains a consistent action hy-

pothesis. One obvious approach is to let each candidate vote

for the spatiotemporal volume of the entire action and se-

lect the best hypothesis in the voting space. This approach

is inadequate because actions can undergo a large global

non-linear temporal deformation. For instance, “clean and

jerk” is composed of two movements, the clean and the jerk.

While the two movements generally exhibit a linear tempo-

ral deformation, i.e., difference in speed, in between these

movements a variable length pause is present.

Instead, this problem is addressed in a distributed fashion

via figure-ground separation. First, the pairwise compat-

ibility between the actemes is measured, where ideally the

acteme detections corresponding to the same action hypoth-

esis should be more compatible. Next, these compatibilities

are used in an agglomerative clustering process to realize

the spatiotemporal bounding volumes.

Given two detections di and dj , their semantic compat-

ibility is computed based on the empirical distribution of

keypoints, see Figure 4 left. Let Pi and Pj be the distribu-
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prediction 
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Figure 4. Semantic compatibility computation between two actemes (left) overlapping in time and (right) not overlapping in time. Left:

acteme di (green) and dj (blue) overlap at a frame t. The consistency is checked by comparing the empirical distribution of the keypoints

of di (green circle) and dj (blue circle). Right: trajectory trp goes through two actemes (green) not overlapping in time. The keypoint

distribution of di at t1 is propagated into the future frame t2 (shaded green) and translated by the alignment δp induced by the trajectory.

tions of all N annotated keypoints in the training set of the

actemes. We define the the semantic compatibility score as:

c(di,dj , t, δ) =
1

N

N∑

n=1

DKLD(P
t−t0i
i,n ,P

t−t0j
j,n + δ), (1)

where DKLD is the symmetric KL-distance, i.e., the sum

of two KL-divergences where the distribution inputs are

flipped, t0i , t
0

j denote the starting frame of two detections

and δ measures the relative displacement where we measure

the KL-divergences.

There are two cases to consider for measuring the com-

patibilities: (i) two detections overlap in time and (ii) two

detections do not overlap in time. For two acteme detections

overlapping in time, the semantic compatibility score is

computed by taking the average over their common frames:

Cs(di,dj) =
1

|Ti ∩ Tj |

∑

t∈Ti∩Tj

c(di,dj , t, 0). (2)

For two acteme detections not overlapping in time, the

underlying actemes could capture different stages in time.

To measure the consistency between them requires (i) pre-

diction of the keypoint configuration in the future and (ii)

alignment to deal with camera movement (image coordinate

change) or human movement. Prediction is accomplished in

a data-driven manner by propagating the ensemble keypoint

distribution of the training instances into the future. For the

alignment, the point trajectory is used as an anchor point.

Each trajectory trp is a series of spacetime points, and tr
t
p

is its position at time t. If trp goes through the volume of di

and dj , we can translate the keypoints using the trajectory

displacement, see Figure 4 right. The point trajectories are

obtained by linking the optical flow fields in time.

Specifically, let t1, t2 be the closest frames between two

detections, such that trt1p ∈ bi and tr
t2
p ∈ bj . We use δp =

tr
t1
p − tr

t2
p to denote the translation of the trajectory. The

induced semantic compatibility score is: Ct(di,dj , trp) =
c(di,dj , t2−t0i , δp)+c(di,dj , t1−t0j , δp). We calculate the

semantic compatibility score, Cs(di,dj), as the average of

Ct over all common trajectories, weighted by their length,

since longer trajectories are less likely to yield erroneous

correspondences.

If two actemes are far apart in time, the prediction tends

to be unreliable and the compatibility is set to zero. As the

acteme detections are dense, the transitivity of compatibility

among them links distant frames.

Given the computed semantic compatibility score, Cs,

clustering is achieved in an agglomerative manner, cf. [1].

The first step selects the detected acteme with the highest

score. When the average linkage score falls below a pa-

rameter τ , a new cluster is formed. The clustering process

is terminated when the detection score, s, falls below the

threshold, ρ.

For each acteme cluster, the constituent actemes predict

the human bounding volume within its life span. Next, the

predicted volume for each cluster is merged to form an ac-

tion detection. For the actemes that are closest to the be-

ginning (end) of the action, a predictor for the start (end)

time is trained for the whole action and is used to refine the

detection at test time.

4. Crowdsourced mocap

In object recognition, much effort has been placed on

the collection of richly annotated image databases in nat-

ural settings. Such metadata have proven extremely use-

ful in supervised training of object models (e.g., [8, 1]). In

contrast, traditional action-related datasets (e.g., KTH [27])

have generally been comprised of staged videos in limited

settings, such as limited camera viewpoint, occlusion and

background clutter. Recently, there have been efforts to col-

lect large datasets from consumer sources to address these

issues [17, 23, 16]. While this is a positive trend, these

datasets, as their predecessors, generally lack training meta-

data, such as bounding boxes and keypoint annotations.

Critical to realizing a set of actemes are the locations

and visibility labels for a set of keypoints throughout the
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action performance. (Note that this metadata is exclusively

used in the learning process.) In this work, VATIC [28],

an open source semi-automated video annotation tool de-

signed for labeling multiple “object” tracks in a video, was

adapted and deployed on Amazon Mechanical Turk (AMT)

to annotate the videos in the introduced dataset. Three in-

dependent annotations were collected for each video and

combined via outlier rejection and averaging. Workers were

tasked with providing the labels for the following 13 key-

points: head, left-right shoulder, left-right elbow, left-right

wrist, left-right hip, left-right knee and left-right ankle.

The videos in the introduced dataset were obtained from

various online video repositories, such as YouTube (www.

youtube.com). The dataset consists of the following 15

action classes: baseball pitch, baseball swing, bench press,

bowling, clean and jerk, golf swing, jump rope, jumping

jacks, pull up, push up, sit up, squat, strum guitar, ten-

nis forehand and tennis serve. Challenging aspects of the

dataset include large variation in intra-class actor appear-

ance, action execution rate, viewpoint, spatiotemporal reso-

lution and complicated natural backdrops. The videos were

temporally segmented manually such that they contained a

single instance of each action.

5. Empirical evaluation

The training/testing data is split 50/50. Clips in the train-

ing (includes spatial horizontal flipping) and testing sets are

selected such that clips from the same video sequence do

not appear in both sets. During training, the configuration

distance is computed with λ1 = λ2 = 0.1. For each action

category, 300 actemes are selected (K = 4500 in total).

During testing, acteme detection is run at eight different

spatial scales, four per octave and three temporal scales, i.e.,

{0.9, 1, 1.1}. Non-maximal suppression is done for acteme

detections surpassing a 50% spatiotemporal overlap ratio.

The agglomerative clustering is stopped when τ falls below

0.2. The detection threshold, ρ, is chosen such that 90%
of the true positives are above the threshold. To facilitate

the optical flow computation (about 1fps), the videos are

resized to a maximum dimension of 480 pixels.

5.1. Action classification

The effectiveness of the proposed model is first shown

for action classification. Several standard local features

combined in a bag of words model are used as baselines.

The protocol from a recent action recognition evaluation of

feature descriptors is followed [30]. Each video is repre-

sented by the histogram of frequencies for each word. In

training and testing, features are assigned to their closest

vocabulary word based on the Euclidean distance. A one-

vs-all SVM classifier is trained for each category. At test

time, the action label corresponding to the detector with the

maximum score is returned as the label. Several kernels

inside bbox outside bbox global

STIP [30]

HoG 62.5% 33.2% 61.3%

HoF 83.9% 54.2% 82.5%

HoG + HoF 84.9% 50.8% 82.9%

Dense [30]

HoG 62.6% 47.4% 54.5%

HoF 83.8% 64.2% 77.4%

HoG + HoF 83.7% 55.9% 73.4%

Cuboid [5] 64.5% 48.2% 67.5%

HoG3D [14] 85.3% 52.3% 84.5%

MIP [15] 76.1% 61.5% 78.0%

Action Bank [25] 90.6% - 83.9%

Actemes 88.0% - 79.4%

Table 1. Comparison of mean average precision across all cate-

gories for various extant image cues. Action Bank is not directly

comparable since it leverages additional training data outside of

the introduced dataset to realize their representational substrate.

are used with the intersection kernel (IK) providing the best

performance overall. All presented results herein are based

on IK.

Comparison is made with the spatial histogram of gradi-

ents (HoG), histogram of optical flow (HoF) and their con-

catenation (HoG+HoF) [30]. These features are computed

both densely and on extracted spacetime interest points. We

also compare with spacetime cuboids [5] on interest points,

dense spacetime histogram of gradients (HoG3D) [14], and

dense local motion interchange pattern [15]. A bag of words

model is run under three different scenarios: (i) inside the

action bounding volume, (ii) outside bounding volume of

action and (iii) the whole video clip. As an additional base-

line, we compare against Action Bank [25] which repre-

sents actions on the basis of holistic spacetime templates.

If the detection window is provided, as considered in the

VOC Action Classification challenge [19], actemes whose

predicted spatiotemporal action bounds overlap sufficiently

with the input action boundary are retained for further pro-

cessing (cf. [19]); the overlap ratio is defined by the inter-

section over union of the input and predicted action volume

boundaries. We use 75% as the overlap ratio threshold.

The introduction of the overlap criteria enforces a degree

of spatiotemporal translation invariance and spatiotemporal

organization among the detected actemes within the analy-

sis volume and suppresses spurious detections. The ensem-

ble of sparse detections provide the intermediate substrate

for further processing.

To classify an action, a fixed-length activation vector rep-

resentation is used [19], where the dimensionality of the

vector corresponds to the number of actemes. The max-

imum response for each acteme is used as the entry in the

corresponding component of the activation vector, i.e., max-

pooling. For each action, a separate linear support vector

machine (SVM) classifier is trained on top of the vector of

acteme responses.

Results are compared in Table 1 and the confusion ma-

trix for the acteme-based classification (given the bound-

ing volume) is given in Figure 5. The proposed approach

22532253
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Figure 5. Confusion matrix for acteme-based classification given

the bounding volume of the action.

achieves a better result than low-level features when the

bounding box is provided, i.e., scene context is limited and

thus performance is not conflated with non-action informa-

tion. Furthermore, the largest gain of the proposed approach

over interest points is found in separating actions performed

in similar scenes (e.g., bench press vs. squat). This is in-

dicative of the proposed representation being sensitive (by

design) to the pose. When the bounding boxes are not pro-

vided, the false positives of the actemes on the background

contaminate the activation signal and thus reduce perfor-

mance. This can be remedied by clustering the top detection

(as done in §5.2).

5.2. Action detection

In addition to classification, the proposed model is evalu-

ated on action detection. Specifically, given an input video,

the goal is to determine where and when one of the 15 ac-

tions is performed. This is captured by a 3D spacetime

bounding volume.

In evaluation, detection is measured using precision-

recall. For each action category, the corresponding actemes

are run on the input video. Detected actemes are clustered

using the semantic compatibility, and non-maximal sup-

pression is performed using a 50% overlap ratio. The score

of each detection si is computed as the sum of the clus-

tered acteme detection scores. During testing, all the de-

tection hypotheses are ranked across the entire dataset and

the precision-recall curve for each category is computed,

see Figure 6. A detection hypothesis that overlaps with the

ground truth with a ratio greater than 50% is treated as a

true positive.

Comparison is made with Hough Forest [10]; the model

is retrained on the introduced dataset using the provided

code. Each sequence is subsampled by the first, middle and

last frame. Then 15 Hough trees are trained, five at a time.

During testing, the top detections from these three frames

are linked based on aspect ratios and trajectories.

The proposed detector achieves an average precision of

0.45, compared to 0.26 achieved by the baseline. This

demonstrates the discrimination power of the proposed rep-

resentation, especially with scene clutter. Figure 6 shows

several example detections.

6. Discussion and summary

In this paper, a novel approach for analyzing human ac-

tions in video was presented. The key concept introduced

is modeling human action as a composition of discrimina-

tive volumetric patches, termed actemes. Each patch, found

through a data-driven discovery process, implicitly cap-

tures the intricate pose, dynamics, self-occlusion and spa-

tial appearance of a subset of body parts in a spatiotemporal

neighborhood. The discovery of these parts relies on strong

supervision, e.g., the position of keypoints across space-

time. While similar levels of supervision are common in the

context of analyzing static imagery (e.g., [1, 31]), such su-

pervision has not previously been fully exploited in the con-

text of human actions in non-scripted, unconstrained video

settings. This approach allows to spatiotemporally localize

an action in cluttered scenes by a bounding volume. Possi-

ble future work includes extending the framework to model-

ing person-object interactions, and segmenting out actions

at the pixel level for a finer-grained analysis.
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