Use the following reference for this paper:
Agent-Oriented Software Engineering (AOSE) IV, P. Giorgini, Jérg Miiller, James Odell, eds,
Melbourne, July 2003, LNCS 2935, pp. 214-230, 2004

From Agents to Organizations: an Organizational
View of Multi-Agent Systems

Jacques Ferber!, Olivier Gutknecht', and Fabien Michel!

I LIRMM - University of Montpellier II, 161 rue Ada,
34592 Cedex 5, Montpellier, France
69042 Heidelberg, Germany
{ferber, olg, fmichel}@lirmm.fr

Abstract. While multi-agent systems seem to provide a good basis for
building complex software systems, this paper points out some of the draw-
backs of classical “agent centered” multi-agent systems. To resolve these
difficulties we claim that organization centered multi-agent system, or
OCMAS for short, may be used. We propose a set of general principles from
which true OCMAS may be designed. One of these principles is not to as-
sume anything about the cognitive capabilities of agents. In order to show
how OCMAS models may be designed, we propose a very concise and mini-
mal OCMAS model called AGR, for Agent/Group/Role. We propose a set of
notations and a methodological framework to help the designer to build
MAS using AGR. We then show that it is possible to design multi-agent
systems using only OCMAS models.

1 Introduction

Since their coming out in the 80’s multi-agent systems have been considered as “so-
cieties of agents”, i.e. as a set of agents that interact together to coordinate their be-
havior and often cooperate to achieve some collective goal. It is clear, from this con-
ception, that the body of multi-agent researches should be concerned by both agents
and societies. However, an important emphasis has been put on the agent side. Multi-
agent systems have particularly been studied at the micro-level, i.e. at the level of the
states of an agent and of the relation between these states and its overall behavior. In
this view, communications are seen as speech acts whose meaning may be described
in terms of the mental states of an agent. The development of communication lan-
guages such as KQML and FIPA ACL follows directly from this frame of mind.

We will use the term “agent centered multi-agent system” or ACMAS for short to
talk about this type of classical multi-agent systems designed in terms of agents’
mental states. As we will see in the following section, ACMAS suffer from some
weaknesses that cannot be solved at the agent level, because they reside deep in the
core of ACMAS foundational principles.

Recently a particular interest has been given to the use of organizational concepts
within MAS where the concepts of ‘organizations’, ‘groups’, ‘communities’, ‘roles’,

Paper presented at AOSE’2003 (Agent Oriented Software Engineering), Melbourne
July 2003, to be published in LNCS, Springer Verlag, 2003.

‘functions’, etc. play an important role [9] [16] [14] [4] [13]. We will call ‘organiza-
tion centered multi-agent systems’ or OCMAS for short, multi-agent systems whose
foundation lie in this kind of organizational concepts.

Thinking in terms of organization design differs from the agent-centered approach
that has been dominant during many years. An organization oriented MAS is not
considered any more in terms of mental states, but only on capabilities and con-
straints, on organizational concepts such as roles (or function, or position), groups (or
communities), tasks (or activities) and interaction protocols (or dialogue structure),
thus on what relates the structure of an organization to the externally observable be-
havior of its agents. However, while OCMAS might solve, as we will see, the main
weaknesses of ACMAS, their characteristics and consequences, have somehow been
left out and have not been presented clearly. We will see in this paper, that it is possi-
ble to design MAS using only organizational concepts. At first, this approach needs a
new state of mind to get away from the agent oriented, now classical, conception.
However, it does not mean that agent mental states must be thrown away; we only
want to stress that it is possible to build organizations as frameworks where agents
with different cognitive abilities may interact.

Section 2 will show that some of the weaknesses of ACMAS appear as conse-
quences of the mere foundational principles, somehow implicit, of ACMAS. Section
3 will introduce the main concepts of OCMAS and a set of fundamental principles
that could be considered as a kind of manifesto for designing MAS from a pure organi-
zational perspective.

In order to show that it is possible to design OCMAS in this framework, we will
present, in section 4, a generic but simple organizational model for building OCMAS,
called AGR for Agent/Group/Role. This presentation will include the basic concepts
and the notation one can use to describe organizations. The remaining sections will
introduce a simple example and a sketch of a methodology based on these organiza-
tional concepts.

2 Drawbacks of ACMAS

1.1 Analysis of some drawbacks of the classical ACMAS approach

It has been shown that the world of software engineering may benefits from the con-
cepts and architectures proposed by the MAS community [9, 16] in order to simplify
the design of complex software systems.

In order to make MAS systems ready for industrial applications, a non-profit asso-
ciation called FIPA, has proposed a set of norms and standards that designers of multi-
agent systems should meet to make their MAS compatible with other systems. An
interesting point about these standards, and the platforms and the platform that have
been built according to them (see Jade and Fipa-OS for instance), is that they are based
on some assumption that lies somewhere in the core of most of early work on MAS.
1. An agent may communicate with any other agent

Paper presented at AOSE’2003 (Agent Oriented Software Engineering), Melbourne
July 2003, to be published in LNCS, Springer Verlag, 2003.

2. An agent provides a set of services, which are available to every other agent in the
system.

3. It is the responsibility of each agent to constrain its accessibility from other
agents.

4. Tt is the responsibility of each agent to define its relation, contracts, etc. with
other agents. Thus, an agent “knows” directly (through its acquaintances) the set
of agents with which it may interact.

5. Each agent contains with its name its way to be accessed from the outside (the
notion of Agent ID well known by all designers of MAS). Therefore, agents are
supposed to be autonomous and no constraint is placed on the way they interact.

In this situation, as Jennings and Wooldridge have been pointed out, ACMAS may
suffer some drawbacks when engineering large systems:

“Another common misconception is that agent-based systems require no real struc-
ture. While this may be true in certain cases, most agent systems require considerably
more system-level engineering than this. Some way of structuring the society is typi-
cally needed to reduce the system’s complexity, to increase the system’s efficiency,
and to more accurately model the problem being tackled.” [10]. This leads to two
major drawbacks, according to Jennings [9]:

* The patterns and the outcomes of the interactions are inherently unpredictable.

* Predicting the behavior of the overall system based on its constituent compo-
nents is extremely difficult (sometimes impossible) because of the high likeli-
hood of emergent (and unwanted) behavior.

Surely, freedom has a price: it is not possible to suppose that agents designed by
different designers could interact altogether without any problems. Some assumptions
have to be made about the primitives of communications (the “performatives” of the
language) and about the architecture of agents (for instance, agents may be assumed to
behave purposively in a cognitive way, using some kind of BDI architecture). How-
ever, agents do not have access to these constraints that are specified as ISO-like stan-
dards, and they do not have the possibility to accept, or refuse, to follow them. This
imposes a strong homogeneity on agents: agents are supposed to use the same lan-
guage and to be built using very similar architectures. The other weaknesses of these
MAS are:

1. Security of applications: The possibility that all agents may communicate
without any external control may lead to security problems. When all agent may
interact freely altogether, it is the responsibility of agents (and therefore of the
application designer) to check the qualification of its interlocutors} and to imple-
ment security controls. Because there is no “general” security management, it is
easy for an agent to act as a pirate and use the system fraudulently. On the con-
trary, too strong security measures could prevent the system to work efficiently
on domains where speed and response is more important than security.

2. Modularity: in classical software engineering, entities that closely work to-
gether are grouped into modules or “packages”. For each module, rules of visibil-

Paper presented at AOSE’2003 (Agent Oriented Software Engineering), Melbourne
July 2003, to be published in LNCS, Springer Verlag, 2003.

ity are defined. Some entities may be seen by other packages (and even by the
whole software) whereas others, so called private entities, are hidden and therefore
not accessible from outside the package. This is not possible with AOMAS
where all agents are accessible from everywhere. It should be important to pro-
pose a way to group together agents that have to work together. However, this
proposal should not stay on static grounds, but propose a way to group together
active agents that work together. Moreover, agents should be able to modify dy-
namically their grouping during their lifetime, according to some general design
rules.

3. Framework/component approach. Modern software engineering has shown
the importance of the framework/component concept. A framework is an abstract
architecture in which components plug-in. It is often necessary to define sub-
frameworks of frameworks. For instance in a GUI framework, some heavy com-
ponents, such as charts, trees or tables (see the JTree or JTable components of
Java), may introduce their own sub-framework. Unfortunately, in ACMAS, there
is only one framework, the platform itself, and it is not possible to describe sub-
framework in which specific interactions could be built.

1.2 Solution

To overcome these difficulties, Jennings proposes a solution in the definition of a
social level characterization of agent based systems, which follows Newell’s levels of
computer systems. However, this paper did not develop the main features of organiza-
tion and their consequences in the process of analysis and design of MAS.

In the following, we will extend and continue these prospects by presenting and
analyzing the main concepts of organization centered multi-agent systems (OCMAS)
and their properties for building MAS. During our discussion, we will focus on a
specific model of OCMAS, called AGR, for Agent/Group/Role, a simple though very
powerful and generic organizational model of multi-agent systems.

3 Organization centered MAS

3.1 Definitions

There are several definitions of what an organization exactly means. Indeed, the
word “organization” is a complex word that has several meanings. In [6], Gasser pro-
posed the definition of organization to which we subscribe:

An organization provides a framework for activity and interaction through the
definition of roles, behavioral expectations and authority relationships (e. g.
control).

This definition is rather general and does not provide any clue on how to design or-
ganizations. In [15] Jennings and Wooldridge propose a more practical definition:

Paper presented at AOSE’2003 (Agent Oriented Software Engineering), Melbourne
July 2003, to be published in LNCS, Springer Verlag, 2003.
We view an organisation as a collection of roles, that stand in certain relation-

ships to one another, and that take part in systematic institutionalised patterns
of interactions with other roles”.

However, this definition lacks a very important feature of organizations: their parti-
tioning, the way boundaries are placed between sub-organizations. Except in very
small organizations, organizations are structured as aggregates of several partitions,
sometimes called groups or communities, contexts, department, services, etc. and each
partition may itself be decomposed into sub-partitions. From these definitions, it is
possible to derive the main features of organizations:

1. An organization is constituted of agents (individuals) that manifest a behavior.

2. The overall organization may be partitioned into partitions that may overlap (we
will call these partition groups from now on)

3. Behaviors of agents are functionally related to the overall organization activity
(concept of role).

4. Agents are engaged into dynamic relationship (also called patterns of activities
[6]) which may be “typed” using a taxonomy of roles, tasks or protocols, thus de-
scribing a kind of supra-individuality.

5. Types of behaviors are related through relationships between roles, tasks and
protocols.

An important element of organizations is the concept of role. A role is a descrip-
tion of an abstract behavior of agents. A role describes the constraints (obligations,
requirements, skills) that an agent will have to satisfy to obtain a role, the benefits
(abilities, authorization, profits) that an agent will receive in playing that role, and the
responsibilities associated to that role. A role is also the placeholder for the descrip-
tion of patterns of interactions in which an agent playing that role will have to per-
form (in this paper, we do not distinguish between role and role assignment as in
[12]).

Organization may be seen at two different levels: at the organizational (or social)
level and at the concrete (or agent) level (from [3]):

We will call organizational structure [11] (or simply structure, if there is no ambi-
guity) what persists when components or individuals enter or leave an organization,
i.e. the relationships that makes an aggregate of elements a whole. Thus, the organiza-
tional structure is what characterizes a class of concrete organizations at the abstract or
organizational level.

Conversely, a concrete organization (or simply organization), which resides at the
agent level, is one possible instantiation of an organizational structure. This is a
realization consisting of entities that effectively take part in a whole, together with all
the links that bring these agents into association at any given moment. It is possible
to relate an organizational structure to a concrete organization, but the same organiza-
tional structure can act as a basis for the definition of several concrete organizations

An organization consists in two aspects: a structural aspect (also called static as-
pect) and a dynamic aspect:

Paper presented at AOSE’2003 (Agent Oriented Software Engineering), Melbourne
July 2003, to be published in LNCS, Springer Verlag, 2003.

The structural aspect of an organization is made of two parts: a partitioning struc-
ture and a role structure. A partitioning structure indicates how agents are assembled
into groups and how groups are related to each other. A role structure is defined, for
each group, by a set of roles and their relationships. This structure defines also the set
of constraints that agents should satisfy to play a specific role and the benefits result-
ing to that role. The dynamic aspect of an organization is related to the institutional-
ized patterns of interactions that are defined within roles. It defines also:

1. the modalities to create, kill, enter groups and play roles;

2. how these modalities are applied and how obligations and permissions are con-
trolled;

3. how partitioning and role structures are related to agents’ behaviors.

3.2 General principles of OCMAS

Previous sections have allowed us to understand the basic concepts of organiza-
tions. It is now time to consider multi-agent systems from an organizational perspec-
tive. The question now is: what are the main principles from which organization
centered multi-agent systems (OCMAS) may be approached for both analysis and
design?

The use of organizations provides a new way for describing the structures and the
interactions that take place in MAS. The organizational level, the way organizations
are described is thus situated in another level than the agent level that is often the only
level considered in ACMAS. This level, which may be called “organizational level”
(or “social level” as in [9]) is responsible for the description of the structural and dy-
namical aspects of organizations. This organizational level is an abstract representa-
tion of the concrete organization, i.e. a specification of the structural and dynamical
aspects of a MAS, which describes the expected relationships and patterns of activity
which should occur at the agent level and therefore the constraints and potentialities
that constitute the horizon in which agents behave.

Principle 1: The organizational level describes the “what” and not the “how”.
The organizational level imposes a structure into the pattern of agents’ activities, but
does not describe how agents behave. In other terms, the organizational level does not
contain any “code” which could be executed by agents, but provides specifications,
using some kind of norms or laws, of the limits and expectations that are placed on
the agents’ behavior.

Principle 2: No agent description and therefore no mental issues at the organiza-
tional level. The organizational level should not say anything about the way agents
would interpret this level. Thus, reactive agents as well as intentional agents may act
in an organization. In other words, ant colonies are as much organizations as human
enterprises. Moreover, seen from a certain distance, or using an intentional stance [2]
it is impossible to say if the ants or the humans are intentional or reactive. Thus, the
organizational level should get rid of any mental issues such as beliefs, desires, inten-
tions, goals, etc. and provide only descriptions of expected behaviors.

Paper presented at AOSE’2003 (Agent Oriented Software Engineering), Melbourne
July 2003, to be published in LNCS, Springer Verlag, 2003.

Principle 3: An organization provides a way for partitioning a system, each par-
tition (or groups) constitutes a context of interaction for agents. Thus, a group is an
organizational unit in which all members are able to interact freely. Agents belonging
to a group may talk to one another, using the same language. Moreover, groups estab-
lish boundaries. Whereas the structure of a group A may be known by all agents be-
longing to A, it is hidden to all agents that do not belong to A. Thus, groups are
opaque to each other and do not assume a general standardization of agent interaction
and architecture.

These principles are not without consequences:

1. An organization may be seen as a kind of dynamic framework where agents are
components. Entering a group/playing a role may be seen as a plug-in process
where a component is integrated into a framework.

2. Designing systems at the organizational level may leave implementation issues,
such as the choice of building the right agent to play a specific role, left opened.

3. It is possible to realize true “Open System” where agent’s architecture is left
unspecified.

4. Ttis possible to build secure systems using groups as “black boxes” because what
happens in a group cannot be seen from agents that do not belong to that group.
It is also possible to define security policies to keep undesirable out of a group.

4 AGR: a basic model of OCMAS

In order to show how these principles may be actualized in a computational model,
we will present the basics and methodology of the Agent/Group/Role model, or AGR
model for short, also known as the Aalaadin model [4] for historical reasons. We show
that this model complies with the OCMAS general principles that we have proposed
in the previous section.

4.1 Definitions

The AGR model is based on three primitive concepts, Agent, Group and Role that
are structurally connected and cannot be defined by other primitives. They satisfy a set
of axioms that unite these concepts.

Agent: an agent is an active, communicating entity playing roles within groups.
An agent may hold multiple roles, and may be member of several groups. An impor-
tant characteristic of the AGR model, in accordance with the principle above, is that
no constraints are placed upon the architecture of an agent or about its mental capabili-
ties. Thus, an agent may be as reactive as an ant, or as clever as a human.

Group: a group is a set of agents sharing some common characteristic. A group is
used as a context for a pattern of activities, and is used for partitioning organizations.
Following principle 3, two agents may communicate if and only if they belong to the

Paper presented at AOSE’2003 (Agent Oriented Software Engineering), Melbourne
July 2003, to be published in LNCS, Springer Verlag, 2003.

same group, but an agent may belong to several groups. This feature will allow the
definition of organizational structures.

Role: the role is the abstract representation of a functional position of an agent in
a group. An agent must play a role in a group, but an agent may play several roles.
Roles are local to groups, and a role must be requested by an agent. A role may be
played by several agents.

4.2 Axioms

We note by x.send(y,m) the action of an agent x sending a message m to an agent
y, by roleln(r,g) the statement that the role is defined in a group g, and by plays(a,r,g)
the statement that the agent a plays the role r in g. We also note by GStruct(g,gs),
the statement that g is a group considered as an instance of the group structure gs, and
member(x,g) the statement that an agent X is a member of a group g. Here are the
axioms of the structural aspect of the AGR model:

a) Every agent is member of a (at least one) group:

Vx:Agent, 3g:Group, member(x,g)

b) Two agents may communicate only if they are members of the same group:

Vx,y:Agent, Ym:Message, x.send(y,m) = 3g:Group, member(x,g) A member(y,g)

c) Every agent plays (at least one) role in a group:

Vx:Agent, VYg:Group = 3 r:Role, plays(x,r,g)

d) An agent is a member of the group in which it plays a role:

Vx:Agent, Vg:Group, Vr:Role
plays(x,r,g) = member(x, g)

e) A role is defined in a group structure:

Vx:Agent, Yg:Group, Vr:Role, plays(x,r,g) = 3gs:GroupStructure »
GStruct(g,GS) A rolein(r,GS)

Roles may be described as in Gaia [15] by attributes such as its cardinality (how many
agents may play that role). It is also possible to describe structural constraints be-
tween roles. A structural constraint describes a relationship between roles that are
defined at the organizational level and are imposed to all agents. In AGR, we propose
two structural constraints: correspondence and dependence. A correspondence constraint
states that agents playing one role will automatically plays another role. For instance,
to express the, quite classical, political correspondence between delegates of smaller
groups (states, departments, regions) which are automatically members of another
group where they act as representative (deputies, ambassador, etc.) we would use the
following statement:

Role(‘delegate’,GS1) — Role('representative’,GS2)

Paper presented at AOSE’2003 (Agent Oriented Software Engineering), Melbourne
July 2003, to be published in LNCS, Springer Verlag, 2003.

where GS1 and GS2 are group structures. This constraint may be defined as follows:

Vx:Agent, Vg:Group, where GroupStructure(g,GS1), 3g’:Group where Group-
Structure(g’,GS2) such that: plays(x,’delegate’,g) =
plays(a, representative’,g’)

If the two roles have the same set of members, we will use the notation <=. For in-
stance, in most human organizations (associations, corporation, syndicates, etc.), all
voters are eligible. In our notation, we would express this constraint as:

role(‘voter’,GS1) <= role(‘eligible’,GS1)
whose definition is as follows:
Vx:Agent, Yg:Group, where GroupStructure(g,GS1), plays(x,’voter’,g) =
plays(x,eligible’,g) A plays(x,’eligible’,g) = plays(x,’voter’,g)

Dependence constraints express dependencies between group membership and role-
playing. For instance, an agent is authorized to be a director of a Laboratory only if it
is also a researcher in the lab. This would be expressed in the following way:

Role(‘director’,’Lab’) requires Role(‘researcher’,’Lab’)
Its semantics could be defined in a 1* order logic as follows:

Vx:Agent, Yg:Group, where GroupStructure(g,’Lab’), plays(x,’director’,g) =
plays(a,’researcher’,g’)

The AGR meta-model is represented figure 1 in UML.

* *
Agent
L.* V| plays
Group
1
described by 1%
11V

*

1.
Group structurfo>————————————"— Role

11 1 1.*
A

A . A
source target INitiatpr | participant
1]1 * *

Interaction

Role Constraint
protocol

/\

Correspondence Dependency

Fig. 1. The UML meta-model of AGR

Several notations may be used to represent organizations. In [13] a notation based on
UML has been proposed to represent groups and roles. This is a very convenient nota-
tion to represent the abstract structures of an organization, but concrete organizations
cannot be represented in this notation. This is why we will use the following another
notation, that we call the cheeseboard diagram, which is very convenient to represent
examples of concrete organizations.

Paper presented at AOSE’2003 (Agent Oriented Software Engineering), Melbourne
July 2003, to be published in LNCS, Springer Verlag, 2003.

4.3 The ‘“cheeseboard” diagram

In the cheeseboard diagram, a group is represented as an oval that looks like a
board. Agents are represented as skittles that stands on the board and sometimes go
through the board when they belong to several groups.

AT

o . ol : -
€ wo T I

S e 4 A

Fig. 2: The "cheeseboard" notation for describing concrete organizations

A role is represented as a hexagon and a line links this hexagon to agents. Figure 2
gives an example of a concrete organization using the cheeseboard diagram. In this
picture, the agent F is a member of both G2 and G3, playing roles R4 and RS in G2,
and R6 in G3.

4.4 Describing organizational structures

The cheeseboard notation, while very adapted for concrete organization, is not
suited to the description of relationships within organization at an abstract level, i.e.
for the definition of organizational structures. Thus, we have introduced a notation for
describing organizational structures.

In order to express organizational diagrams in a more simple and convenient way,
we propose a set of graphical items. In this notation, group structures, i.e. abstract
representation of groups, are represented as rectangles in which roles, represented as
hexagons, are located. Constraints are represented as arrows between roles. We use two
kinds of arrows. Large arrows are used for correspondence and thin arrows are use for
modeling dependencies.

Interaction diagrams, which are represented as rounded rectangles, are used to de-
scribe communication protocols between roles. Without considering the way agents
communicate, it is possible to describe communications at an abstract level, i.e. as
specific constraints between roles. An interaction may takes place between two or
more agents and is described at the organizational level between roles. The role initia-
tor of the interaction is represented by an arrow that points towards the interaction.
Other participating roles are represented as simple lines between interaction and roles.
The figure 3 shows an organizational structure related to the concrete organization of
figure 1. In this diagram, many different cases are represented. There are 3 group struc-
tures, called GS1, GS2 and GS3. The dependency d1 expresses a correspondence be-
tween the role R2 of GS1 and the role R3 of GS2. This allows for the definition of

- 10 -

Paper presented at AOSE’2003 (Agent Oriented Software Engineering), Melbourne
July 2003, to be published in LNCS, Springer Verlag, 2003.

agents that act as representative between two groups. The dependency d2 expresses a
dependency between R4 and RS, which means that all agents playing RS must play
R4. Interactions 12, IS and 16, which are related to only one role, will be performed by
different agents playing the same role. The interaction I3 takes place between agents
playing three roles. Interactions may be figured by different types of diagrams: auto-
mata, Petri nets or sequence organizational diagrams, as we will see below.

dl

ev\

G |
(> ‘

4

=) e

Fig. 3. Organizational structure representation

4.5 Describing organizational activities

To describe the dynamics of organizations, i.e. the temporal relation that is ex-
pressed between organizational events, such as the creation of groups, the entering or
leaving of a group by an agent or the acquisition of a role in relation, we will use a
specific notation, that we call organizational sequence diagram, which is a variant of
the sequence diagram of UML (or AUML) [1].

Groupl Group?2.
Creation of
Rolel | Role2 | Role3 anew group
Messages

\} Entering

- \ a group
YA\

Playing a (}%lp??\

new rofe

N T r}élezt. \zoles.

i

Leaving a role

t

Fig. 4. The organizational sequence diagram

—11 -

Paper presented at AOSE’2003 (Agent Oriented Software Engineering), Melbourne
July 2003, to be published in LNCS, Springer Verlag, 2003.

Whereas in AUML vertical lines correspond to agents, in our diagram, the life of
an agent is made of several segments of the same color (unfortunately, colors are
displayed as gray levels in this paper). Each segment describes the “life” of an agent
playing a specific role in a specific group. Thus, it is possible to represent the fact
that an agent may belong to several groups and play several roles at once. Figure 4
shows a general view of this type of diagram.

4.6 Groups dynamics

Groups may be built at will. A group is created upon request of an agent, from an
already described group structure. A group structure may be ‘blank’, thus allowing
agents to build roles at will and to enter groups without any limits. However, in the
general case, entering a group is a rather complex process, because an agent has to be
authorized to enter a group. Due to axiom b) an agent cannot communicate directly to
agents belonging to the group. Thus, it cannot request a permission to enter a group
to agents belonging only to that group. A solution to this problem lies in the organi-
zation itself, in its possibility to build complex organizational structures. We will
assume that an agent is permitted to enter a group only if it provides the right authori-
zation. This agent could get this authorization in an “examination” like organizational
pattern. An ‘entrance’ group, associated to the group A, acts as an “air lock” between
the group A and its exterior. There is no authorization required for A to get the ‘candi-
date’ role in an entrance group. The ‘gatekeeper’ agent could then check the conformity
of this agent to the specification of the structure and roles of the group A. Figure[d
shows this adhesion process using a cheeseboard diagram. The semantics of this proc-
ess has been described in [5] using a variant of the m-calculus.

i [wvam. lvizer
diez nnp & . o= .

S il Ltk

I T i
‘-Ih'!"-'ﬁ _a--.: i ___.-‘ - 3
A A

Figure 5. The cheeseboard representation of a group adhesion process.

It should be clear that this is only a simple aspect of all the organizational patterns
that could be used to manage the organizational activities of an OCMAS. We just
wanted to show that it is not necessary to relate to mental issues such as beliefs or
goals to express the dynamics of an organization, and that it is possible to manage an
OCMAS using only OCMAS features!

- 12 -

Paper presented at AOSE’2003 (Agent Oriented Software Engineering), Melbourne
July 2003, to be published in LNCS, Springer Verlag, 2003.

Obviously, when it will come to implementation of agents, designers would have
to relate the architecture and the cognitive properties of their agents to the organiza-
tional structure and dynamics of such a system. We only claim that, in OCMAS, this
aspect would be considered in a second phase.

S Methodology

Notations are not sufficient to describe a methodology. In this paper, we will only
briefly suggest the key point of how a methodology could be defined on an OCMAS
model.

The designer should first identify the main groups of the application. A group may
be used for two main purposes:

* To represent a set of similar agents. In this case, a group is merely a
collection of agents that exhibit certain similarities. There are usually few roles
and a role may contain many agents. For instance, in AGR, to have a set of
agents using the same communication language, such as ACL FIPA, one could
design a FIPA group. Then the FIPA agents called the Directory Facilitator (DF)
and the Message Transport Service (MTS) would be represented as agents playing
the DF and MTS roles respectively. All other agents would merely have a simple
‘member’ role.

* To represent a function based system: each role then corresponds to a
function or a subsystem of a whole system. Agents then act as specialists charac-
terized by their skills to achieve functions associated to the roles. For instance in
a computer network, printers have the ability to print and may be associated to
the role of ‘printer’. A soccer robot team would have the roles ‘goalkeeper’,
‘leader’, ‘attacker’, ‘middle’, etc.

Once these groups have been identified, the overall organizational structure is built
using some organizational patterns [7, 11] such as the e-commerce organizational
pattern that is presented in the next section as an example.

The partitioning of agents describes the way an organization is decomposed into its
sub-components, and optionally the way these sub-components are further decomposed
into their own sub-components, and the way these sub-components are aggregated. In
AGR, hierarchies of groups, also called holarchy by Odell and Parunak [13] where a
group is represented by an agent at the next level, may be represented by an organiza-
tional pattern where some ‘delegate’ agents in one group are seen as ‘representative’
agents in another group.

When the organizational structure is built together with organizational dynamic of
group creation and adhesion, it is time to get into the definition of roles in a func-
tional way. Then one could use the Gaia [15] methodology to fill the roles and relate
them to the general structure. Our vision has some connection with object-oriented
design, where the key diagrams are the class diagrams, which represent the static as-
pects of objects, and the sequence diagrams, which gives an insight of the dynamic
aspects of objects. We use the same kind of distinction with the organizational struc-
ture diagrams and the organizational sequence diagrams. However, we often use the

—13 =

Paper presented at AOSE’2003 (Agent Oriented Software Engineering), Melbourne
July 2003, to be published in LNCS, Springer Verlag, 2003.

cheeseboard diagram to get a first idea of the organizational patterns one could use to
build an OCMAS.

6 Examples

In order to explain how the AGR model may be used for analyzing and designing
multi-agent systems, we will study two very-well known examples. The first one is a
simplification of the well-known “travel agency” example that we have abstracted into
a simplified but mode general e-commerce example. Clients try to get products from
an agency considered as a brokering agent for product providers.

ClientGS ProviderGS)

Request for a product CFP-Ask for products
Propose and decide [Revise proposition]I

N\

Contract-signature |

Figure 6. The organizational structure diagram of an e-commerce example.

We envision interaction between three group structures. The group structure of the
clients, let us call it ClientGS, that interact with the broker; the group structure of
the providers, let us call it ProviderGS, that interact with the broker, and the group
structure of contracts, called ContractGS, which is used when a client decides to buy
a product of the provider. The structure diagram is given figure 6.

When an agent enters a client group, the client talks to the broker and asks for a
product. Then the broker (the same agent that plays the two ‘broker’ role in the client
and the provider group) sends a call for proposal to providers. Then the proposals are
presented to the client which decides which proposal to choose (this could lead to more
interactions, asking the providers to revise their proposal). Then a contract group is
created with both the client and the chosen provider, taking the respective role of
‘Buyer’ and ‘Seller’. It is possible to represent this process, using the organizational
sequence diagram (figure 7) which shows both the dynamic of the groups and the
interaction protocol.

The second example is drawn from a situation that all researchers know very well:
the “reviewing process” of papers in a conference. There are three group structures: the
program committee group structure, the submission group structure (for a given con-
ference there is only one group for each of these group structures), and the evaluation
group structure. The program committee has only two roles: a program chair and a PC
member. The submission group contains also two roles: submission receiver, which

_ 14—

Paper presented at AOSE’2003 (Agent Oriented Software Engineering), Melbourne
July 2003, to be published in LNCS, Springer Verlag, 2003.

receives papers, and author. There are several submission groups, and the reviewing
manager must be part of the program committee group. It is clear from this diagram
that agents may belong to different groups: a committee member may be a reviewing
manager of an evaluation group and an author submitting a paper.

:ClientGS ‘ProviderGS

Client | Broker | Broker |Provider

requiest
i C4ll-for-proposal

refusel |

propose |

Reqpest-choice

decide

Accept:

P

:Contract

Buyer Seller

estaplish

sign

Fig. 7. Organizational sequence diagram of the e-commerce example

e |r|-|.|l'_lll.|ll #

PR l-
oz |

i "-"'

r1 s I

ot L
srhrile o
O o ke |-..LLI'::I"."'|.:I
b o R twieiisimtite -

Fig. 8. The organization of a program committee using a cheese-board notation

The figure 8 presents the organizational structure of such an organization. Interac-
tions such as ‘distribute papers to review’ or ‘notification of acceptance’ are protocols
that relate agents through their roles. These protocols could be represented by any kind
of diagram for representing protocols (finite state automata, Petri nets, etc.).

Figure 9, shows an organizational sequence diagram representing some part of the
reviewing process. An author submits a paper to the submission receiver which is
also the program chairman. As such, he/she asks a program committee member to

—15 -

Paper presented at AOSE’2003 (Agent Oriented Software Engineering), Melbourne
July 2003, to be published in LNCS, Springer Verlag, 2003.

review the paper. Then, this member creates a submission group and distributes the
paper to the reviewers. When the reviewer has done its job, the committee member
says that the paper is accepted (or rejected) and the submission receiver then sends an
acceptance message to the author. Doing so, the author is therefore accepted as a
speaker of the conference.

[Program committee j
group structure
[Evaluation]
q ’ group structure
/1

Acquire competence P
N\ o oy
I

‘[Distribute papers to review } manager
Negotiate evaluation] \ /

Distribute papers
- - and get evaluations
—[Notification of acceptance]

LN s N\

Submission group -
structure

Fig. 8. The organizational structure diagram of the reviewing process example.

:SubmissionGroup |:ProgramCommittee

Author | Sub. rec | Pr. chair [Member

it .
Subini Review-paper

:Submission
Group

Rev. Man| Reviewer

GivelpaperP
—>

Strpng-acdept

:Conference
Accept-paper Wepk-accdpt

Speaker |Attendee

Fig. 9. A possible organizational sequence diagram of the reviewing process organization.

7 Conclusion

In the introduction, we have claimed that ACMAS have some drawbacks that
OCMAS may resolve. For this reason, we have proposed a general framework to
understand and design MAS based on organizational concepts such as groups, roles and

—16 —

Paper presented at AOSE’2003 (Agent Oriented Software Engineering), Melbourne
July 2003, to be published in LNCS, Springer Verlag, 2003.

interactions, which may overcome some of the weaknesses of ACMAS. We have
presented the AGR model in this framework, showing how it is possible to design
applications using these concepts that totally adhere to the OCMAS principles that we
have introduced previously (see section 3.2):

1. The AGR architecture does not describe the “how”, and only specifies the “what”
by describing organizational structures made of group structures and roles.

2. We have not used mental issues such as intentions, goals or beliefs to describe
the AGR model. We do not say that we should not use them: only that it is pos-
sible to build complex MAS architecture without using them. It is then the re-
sponsibility of the design process to describe agents able to live and interact in
such architectures.

3. AGR provides a way for partitioning a system through the concept of group.

Thus, the main drawbacks of ACMAS disappear: it is possible to build secure applica-
tions at the group level, by designing gate keeper roles that prevent unauthorized
agents to enter a group, or by describing norms (obligations, permissions, interdic-
tions) that are related to groups and roles (this latter feature will be presented in a
forthcoming paper). Complex programs may be built by using groups as dynamic
frameworks that agents may create, enter and leave at will during their lifetime. In
software engineering terms, agents may now be considered as some kind of dynamic
“components” that live in dynamic frameworks.

Moreover, we claim that AGR is certainly one of the smallest possible organiza-
tional models. The structure or roles, is left open for the moment, but may be ex-
tended by integrating the most recent propositions on the nature of roles (see for in-
stance [12]).

We have presented a set of diagrams (organizational structure, “cheeseboard” dia-
gram, and organizational sequence diagrams) which may represent the different aspects
of OCMAS. We have also sketched how these concepts may be used in a methodol-
ogy based on organizational principles.

Organizational concepts may be used for practical implementations. The MadKit
platform [8] that we have designed is built around the AGR model. Since its first
release, hundreds of users (thousands of downloads) have been able to use these organi-
zational concepts (presented in a less rigorous way than here) to build applications in
various areas.

Many aspects of organizations, such as functional views, deontic aspects (concepts
of norms and institutions) and the use of reflection to build complex MAS platform
have been left over and will be presented in future papers.

References
1. Bauer, B., Miiller, J.P. and Odell, J., Agent UML: A Formalism for Specifying Multi-

agent Interaction. in Agent-Oriented Software Engineering, (2001), Springer, 91-103.
2. Dennett, D.C. The Intentional Stance. M.I.T. Press, Cambridge, Massachusetts, 1987.

—17 -

Paper presented at AOSE’2003 (Agent Oriented Software Engineering), Melbourne
July 2003, to be published in LNCS, Springer Verlag, 2003.

3. Ferber, J. Multi-Agent Systems: an introduction to distributed artificial intelligence.
Addison-Wesley, 1999.

4. Ferber, J. and Gutknecht, O., Aalaadin: a meta-model for the analysis and design of
organizations in multi-agent systems. in Third International Conference on Multi-
Agent Systems, (Paris, 1998), IEEE, 128-135.

5. Ferber, J. and Gutknecht, O., Operational Semantics of a Role-Based Agent Architecture.
in Agent Theories, Architectures and Languages, (Orlando, 2000), Springer-Verlag.

6. Gasser, L. An Overview of DAL in Gasser, L. and Avouris, N.M. eds. Distributed Artifi-
cial Intelligence: Theory and Praxis, Kluwer Academic Publishers, 1992, 9-30.

7. Giorgini, P., Kolp, M. and Mylopoulos, J., Organizational Patterns for Early Require-
ment Analysis. in IEEE Joint Int. Requirements Engineering Conference (RE'02), (Es-
sen (Germany), 2002).

8. Gutknecht, O., Michel, F. and Ferber, J., Integrating Tools and Infrastructure for Generic
Multi-Agent Systems. in Autonomous Agents 2001, (Boston, 2001), ACM Press, 441-
448.

9. Jennings, N.R. On Agent-Based Software Engineering. Artificial Intelligence, 117 (2).
277-296.

10. Jennings, N.R. and Wooldridge, M. Agent-Oriented Software Engineering. in Bradshaw,
J. ed. Handbook of Agent Technology, AAAI/MIT Press, 2000.

11. Mintzberg, H. The Structuring of Organizations. Prentice-Hall, 1979.

12. Odell, J. and Parunak, H.V.D., The Role of Roles in Designing Effective Agent Organiza-
tions. in Software Engineering for Large-Scale Multi-Agent Systems, (2003), Springer.

13. Parunak, H.V.D. and Odell, J., Representing Social Structure in UML. in Agent-Oriented
Software Engineering II, (Montreal Canada, 2002), Springer, 1-16.

14. Rocha Costa, C. and Demazeau, Y., Toward a Formal Model of Multi-Agent Systems
with Dynamic Organizations. in ICMAS'96, (Kyoto, 1996), AAAI Press.

15. Wooldridge, M., Jennings, N.R. and David, K. The Gaia Methodology for Agent-
Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent Sys-
tems, 3 (3). 285-312.

16. Zambonelli, F. and Parunak, H.V.D., From Design to Intentions: Signs of a Revolution.
in AAMAS 2002, (Bologne (Italy), 2002), ACM Press, 455-456.

— 18 —

