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Abstract—Almost all analyses of time complexity of evolu-
tionary algorithms (EAs) have been conducted for(1 + 1) EAs
only. Theoretical results on the average computation time of
population-based EAs are few. However, the vast majority of
applications of EAs use a population size that is greater than one.
The use of population has been regarded as one of the key features
of EAs. It is important to understand in depth what the real utility
of population is in terms of the time complexity of EAs, when
EAs are applied to combinatorial optimization problems. This
paper compares(1 + 1) EAs and( + ) EAs theoretically by
deriving their first hitting time on the same problems. It is shown
that a population can have a drastic impact on an EA’s average
computation time, changing an exponential time to a polynomial
time (in the input size) in some cases. It is also shown that the first
hitting probability can be improved by introducing a population.
However, the results presented in this paper do not imply that
population-based EAs will always be better than(1 + 1) EAs for
all possible problems.

Index Terms—Evolutionary algorithms, first hitting time, popu-
lation, time complexity.

I. INTRODUCTION

E VOLUTIONARY algorithms (EAs) have been used to
solve many combinatorial optimization problems [1]–[4].

Time complexity is a key issue in the analysis of various opti-
mization algorithms [5]. It shows how efficient an algorithm is
for a large problem. However, relatively few results on the time
complexity of EAs on combinatorial optimization problems are
available [6]–[9], which makes theoretical comparison between
EAs and other optimization algorithms difficult. It is necessary
to gain a deeper understanding of the time complexity of EAs
in order to understand whether an EA is expected to scale well
with the input size and when an EA is expected to provide the
most benefits to a given problem.

There has been some work on the analysis of time com-
plexity of EAs for certain simple functions [10], e.g.,
the ONE-MAX function [11]–[14], the linear function [15],
and the unimodal function [16],[17]. Few results were obtained
using EAs with a population size greater than one [8]. Because

EAs do not include recombination and population-based
selection, the results on EAs cannot be generalized
to EAs with population size greater than one. It is important
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to understand the impact a population may have on an EA’s
average computation time. Such an understanding is expected
to shed some light on the real utility of population-based EAs
in combinatorial optimization [1], [2].

In this paper, we compare and EAs theo-
retically on two families of problems. We derive the first hitting
time for and EAs, respectively. Such results
enable us to observe when the time would be polynomial or ex-
ponential in input size. The mathematical techniques used in this
paper follow those in the analytical approach to the passage time
of Markov chains [18]. Unlike drift analysis [8], which estimates
the first hitting time from the drift of a Markov chain, these tech-
niques calculate the first hitting time of a Markov chain directly
from the transition matrix. The advantage over the drift anal-
ysis is that an exact expression of the first hitting time can be
obtained for some EAs. The disadvantage is that such exact ex-
pressions are difficult, if not impossible, to derive from transi-
tion matrices if they are too complex.

The rest of this paper is organized as follows. Section II intro-
duces some notations, definitions, and theorems about the first
hitting time of a Markov chain. Section III contains our main
results. Given typical problems, we derive the first hitting time
of and EAs, respectively, and try to answer the
following questions.

1) Will an EA change the time complexity of a
EA for a given problem, e.g., from exponential to

polynomial time or vice verse?
2) How much will an EA change the mean first

hitting probability of a EA for a given problem?
3) How much will an EA change the mean first

hitting time of a EA for a given problem?

Even partial answers to the above questions will deepen our
understanding of population’s roles in EAs. Finally, Section IV
concludes the paper with a brief summary of the paper and a few
remarks.

II. EVOLUTIONARY ALGORITHMS, MARKOV CHAIN MODELS,
AND FIRST HITTING TIME

A combinatorial optimization problem can be described as
follows [5]. Given a problem instance, i.e., a pair , where

is the set of feasible points andis an objective function
, the problem is to find an such that
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where is called a global optimal solution to the given instance,
or when no confusion can arise, simply an optimal solution. An
optimization problem consists of a setof problem instances.
If is discrete, the problem is known as a combinatorial one.
Although not a requirement, the objective function will (or can
be made to) take on only nonnegative values in many cases.

A. Evolutionary Algorithms and Markov Chain Models

In EAs, a point in is represented by an individual. A pop-
ulation is a collection of individuals. We use to
indicate a population with individuals. The population space
consists of all possible populations withindividuals. Because
a population usually does not depend on the order of its individ-
uals, we take the space , where
is the equivalence: if there exists
the permutation such that .

An EA for solving a combinatorial optimization problem
can be described as follows. Given an initial population,
let in be the population at time(i.e.,
generation). Offspring can then be produced as follows.

Recombination:Individuals in population are recom-
bined, denoted by

yielding an intermediate population .
Mutation: Individuals in population are mutated, de-

noted by

yielding another intermediate population .
Survival Selection:Each individual in the original popula-

tion and mutated population is assigned a survival
probability. individuals will then be selected to survive into
the next generation . This operation can be denoted by

For most EAs, the state of population depends only on
the population . In such a case, the process
can be modeled by a Markov chain [6], [19], [20], whose state
space is the population space, and the transition probability is

If no self-adaptation is used in EAs, the chain will be homoge-
neous. In this paper, we do not consider self-adaptation in EAs.
In other words, all EAs discussed in this paper can be modeled
by homogeneous Markov chains.

B. First Hitting Time and Time Complexity of an EA

Let be the Markov chain associated with
an EA. Its first hitting time is defined as follows.

Definition 1: Let be the set of populations that contain
at least one optimal solution for a given instance of a combi-
natorial optimization problem. Then

is defined as thefirst hitting time.
For simplicity, we use the notation from now on.

Definition 2: Given a combinatorial optimization problem,

is called themean first hitting time, conditional on initial state
. Let be the distribution of initial population , then

is called themean first hitting time.
It is worth noting that measures the average number

of generations rather than the worst one for an EA before pro-
ducing the final solution.

In the analysis of algorithms, we express the time require-
ments of algorithms in terms of the number of elementary steps
[5]: arithmetic operations, comparisons, branching instructions,
and so on, that is required for the execution of the algorithm
on a hypothetical computer. The number of steps required by an
algorithm is not the same for different inputs. We consider a dis-
tribution of initial inputs with given size , and define the com-
plexity of the algorithm for that input size to be the average-case
behavior of the algorithm.

The input of an EA is represented as a string of symbols in
this paper. The size of the input is the length of the string, which
is in our case. The time complexity of an EA is a function of
the input size for the given input, defined as follows.

Definition 3: Let be the input size of an instance of a com-
binatorial optimization problem, and the population size. As-
sume that during one generation of an EA, the numbers of oper-
ations in recombination, mutation, selection, and fitness evalu-
ation are , and , respectively, then the
time complexityof the EA for the given problem instance is

(1)

which is a function of the input size.
If one of , and is an exponential

function of , the time complexity of the EA will be exponential,
even for just one generation of the EA. Such EAs will be of little
practical use and should be avoided in the algorithm design. The
rest of this paper assumes that , and
are all polynomials of .

In many EAs, most of the computation is spent on fitness
evaluation in each generation, so the complexity of an EA can
be simplified as

(2)

and in a more simplified version .

C. Preliminary Theorems for First Hitting Time

We now provide some results on how to compute the first
hitting time. The notations and theorems introduced below
follow those given by Syski [18]. That discussion is for a
general Markov process with a continuous-time parameter. A
Markov chain with a discrete parameter can be regarded as its
special case.
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Let be a homogeneous Markov process
defined on a probability space with a discrete (countable)
state–space and a continuous-time parameter
and a standard stochastic matrix of transition probabilities, for

with a conservative intensity matrix

where the associated intensities are defined by

and

For a Markov chain with a discrete-time parameter, let
.

Let be a set in in which we are interested (i.e., the set of
global optima), and .

The first hitting probability to a state , restricted to a
finite and conditional on initial state, is defined by

Similarly

The mean first hitting time to a state , restricted to a
finite and conditional on initial state, is defined by

Similarly

The following theorem by Syski [18, Th. 1, Ch. II, Sec. 3.1.3]
gives the equations for the first hitting probability.

Theorem 1: The first hitting probability satisfies the fol-
lowing:

(3)

The following theorem establishes the results on[18, Th.
3, Ch. II, Sec. 3.1.3].

Theorem 2: For

,
,

(4)

The mean first hitting times and are given by the
following two theorems, respectively: [18, Th. 10, Ch. II, Sec.
3.1.1 and Th. 8, Ch. II, Sec. 3.1.2].

Theorem 3: For , the conditional means satisfy

(5)

where .
Theorem 4: For , the conditional means sat-

isfy

(6)

For a Markov chain with a discrete-time parameter, (3)–(6)
still hold.

III. FROM AN INDIVIDUAL TO A POPULATION

A. Problems Considered in This Paper

The first family of objective functions is used in our studies
in this paper:

(7)

where is a binary string with length and the
parameter .

This is a simple but typical objective function, with one global
optimal point: . We construct the family of objective
functions based only on the sum effect of, without any in-
teraction among , which will be more difficult for certain EAs
[21].

When , the objective function becomes a deceptive
problem for classical simple EAs [22], i.e.,

(8)

When , the objective function becomes an easy uni-
modal problem for classical simple EAs, i.e.,

(9)

It is clear from the above cases that whenchanges from
to 1, the difficulty of the problem changes from hard to easy for
classical simple EAs.

The second family of objective functions is based on the first
one, but more complex. A distributing term is added to the
first function, i.e., . An example of such
functions is given in (10), shown at the bottom of the next page.

Another example of such functions is to add function (9) with
a distribution term if the sum of bits is odd. That is

if is even
if is odd

(11)

Fig. 1 shows the above objective functions.
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Fig. 1. Objective functions (8), (9), (10), and (11).

In this paper, we use the following function to measure
how far a population is away from the optimal point. For an
individual , define the Hamming distance

(12)

and, for a population , define

(13)

B. Impact of Population on the Time Complexity of EAs

Despite the common wisdom in the evolutionary computa-
tion community that a population ought to benefit evolutionary
search, few theoretical results are available on the existence of
such benefit and how much benefit there is if it exists. There are
some interesting open questions to be answered. For example,
will the time complexity change if we introduce a population
into EAs? Could an exponential-time EA be turned into
a polynomial-time EA by introducing a popu-
lation? Would a polynomial-time EA still be polynomial
in time after the introduction of a population?

We answer these questions by case studies using the problems
given in Section III-A. We keep the mutation operator used in

EAs and EAs the same all the time. However,

population-based selection will be used for EAs, since
EAs do not have population-based selection.

1) Population Can be Beneficial: An Example:First, we ex-
amine a case where an EA for the problem (8) is expo-
nential in time, but its corresponding EA is polynomial
in time. The framework of all EAs used in this paper is the same
as that described in Section II-A. The details of the EA
under consideration are given below.

Mutation I: Given a population (only a single individual in
the case of EA) at generation. For each individual

in the population, choose one bit from the individual
and flip it. The mutated population is denoted as .

Selection I: Assign the survival probability of the better in-
dividual between and to be , and that of
the worse individual to be . Generate the next gener-
ation using these survival probabilities.

The selection procedure given above includes a wide range
of different selection schemes, depending on the choice of. If

, it is the elitist selection.
The corresponding EA uses Mutation I and the

following population-based selection:
Selection II: Retain the best and worst individuals in the

combined population of and and assign other
individuals positive survival probabilities , re-

spectively, based on their fitness. Select the next generation from
and using these survival probabilities.

Recombination is not used in the algorithm.
Proposition 1: Given the objective function (8), we have the

following.

1) For the EA with Mutation I and Selection I, de-
fine and

. If , the mean first hitting
time satisfies the equation shown at the bottom of
the page, where if is a constant greater than 1, then

are exponential functions of.
If , the mean first hitting time starting from

an individual in will be

with probability

2) For the EA with Mutation I and Selection II,
define , and define

if
else.

(10)
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the mean first hitting time
. Then

where are polynomial functions of .
Proof—Part (1): From the given EA, transition

probabilities among can be derived.
When , for any

When , for any

When , for any

Introduce an auxiliary homogeneous Markov chain
whose state space is and transition proba-

bilities are given by

For the Markov chain , let its first hitting time to state
0 be , and the mean first hitting time

. Then it is apparent that
for any .

Let . According to (3), the first
hitting probabilities are given by (14), as shown at the bottom
of the page.

If , we get

If , then ; this means that stateis an absorbing
state and it is impossible for the EA to visit the global optimal
state starting from state. Let for the equation
. We get

According to (5), the mean first hitting time satisfies (15),
shown at the bottom of the page, when .

The above linear equations can be solved as shown in the last
equation at the bottom of the page.

If is a constant greater than 1, then are ex-
ponential functions of .

When , the mean first hitting time satisfies the following
equations:

(16)

(14)

(15)
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Since , we should let . Hence, we obtain

and for any , since , we have
, and .
Since , we get the conclusion of Part (1).
Part (2) Since the given EA always keeps the best

and worst individuals, the transition probabilities amongcan
be derived as follows.

For any and for any population , we have

Introduce an auxiliary homogeneous Markov chain
whose state space is and transition proba-

bility satisfies

and for

otherwise.

For Markov chain , let the first hitting time time to state
0 be , and the mean first hitting time

. It is apparent that
for .

For the Markov chain , let .
According to (3), the first hitting probabilities are given by

(17)

Hence, we get

According to (5), the mean first hitting times satisfy

(18)

from which we can get

where each is a polynomial function of .

Since , we come to the conclusion of Part (2).
The above proposition gives an estimation to the mean first

hitting times of the EAs starting from different states. From
these expressions, we can get the details of the EA’s time com-
plexity. It is easy to see that for the EA,
and . For the EA, the order of

is . If are constants, the order
will be . For other is at least

.
2) Population Can Be Beneficial: Another Example:We in-

vestigate another example: function (11). The EA still
uses Mutation I and Selection I for this function. The
EA uses Mutation I and the following selection.

Selection III: Retain the best individual in the combined pop-
ulation of and . Assign the remaining individ-
uals survival probabilities based
on their fitness from high to low, respectively. Generate the next
generation using such survival probabilities.

It is clear that Selection III includes Selection II.
For convenience, assume thatis an even number in the fol-

lowing proposition. For the case of being odd, the proof is
similar.

Proposition 2: Given the objective function (11), we have
the following.

1) For the EA with Mutation I and Selection I, let
and the mean first

hitting time . Then we
have the equation shown at the bottom of the page, where

if is an odd number in
if is an even number in

and are exponential functions of.
2) For the EA with Mutation I and Selection III,

let . Define the
mean first hitting time ,
and let . Then satisfies
the first equation at the bottom of the next page where
if is a polynomial function of or constant,

are polynomial functions of .
Proof—Part (1): From the description of the above

EA, the transition probabilities of among can be
derived.

When is an odd number in , for any
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When is an even number in , for any

When , for any

Introduce an auxiliary homogeneous Markov chain
whose state space is and transition proba-

bilities are given by

Now let .
For Markov chain , define the first hitting time

and its mean .
It is apparent that for any .

Define the first hitting probability
for Markov chain . From its transition probability matrix
and (3), we have

According to (5), the mean first hitting times satisfy (19),
shown at the bottom of the page, from which we can obtain the
last equation at the bottom of the page.

It is clear from the above equations that are
exponential functions of for .

Part (2) From the description of the above EA,
the transition probabilities of Markov chain
among can be derived as follows.

When is an even number in , for any

and for

When is an odd number in , for any

and for

Introduce an auxiliary homogeneous Markov chain
whose state space is and transition proba-

bilities are given by

otherwise.
for any even in

otherwise.
for any odd in

is an odd number in
is an even number in

is an even number in
is an odd number in

(19)
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For Markov chain , define and as the same as
those in Part (1). We have for any .

Let define the first hitting probability
. According to (3)

According to (5), the mean first hitting time satisfies

for any odd in
for any even in

(20)

from which we get the first equation shown at the bottom of
the page. It is easy to see that , are polyno-
mial functions of if is a polynomial function of or a
constant.

From the above proposition, we can also estimate the time
complexity of the EAs. For example, for the EA,

(assuming ). For the EA,
.

3) Population May Not be Beneficial:In general, if the first
hitting time of a EA is polynomial in the input size, the
first hitting time of the corresponding EA will also be
polynomial, except for some cases where the selection pressure
is very high in the EA.

Consider the objective function (10). A EA uses Mu-
tation I and the following selection.

Selection IV: If is better than , let . If
is worse than , let with probability .

If they are the same, select and uniformly at random
as the next population .

Selection IV is similar to simulated annealing with a fixed
temperature [23]–[25].

The corresponding EA still uses Mutation I and
Selection III.

Proposition 3: Given objective function (10), we have the
following.

1) For the EA using Mutation I and Selection IV,
let , and the mean
first hitting time . Then
we have the second equation shown at the bottom of the
page, where are polynomials in .

2) For the EA using Mutation I and Selection III,
define . Let the
mean first hitting time

. Then satisfies, for
, the last equation shown at the bottom

of the page, where and are exponential
in if is exponential in .

Proof—Part (1): From the description of the above
EA, the transition probabilities of among can be

derived.
When , for any

When , for any

is an odd number in
is an even number in .
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When , for any

Introduce an auxiliary homogeneous Markov chain
whose state space is and transition proba-

bilities are given by

For Markov chain , let the first hitting time to the state
0 be and its mean

. It is clear that , for any .
Let , and define the first hitting probability to be

. From (3), we can get

According to (5), the mean first hitting time satisfies (21),
shown at the bottom of the page, from which we can get the
second equation shown at the bottom of the page. It can be seen
from the above equations that are polynomial
in .

Part (2) From the description of the above EA, the
transition probabilities of among can be
derived.

When , for any

When , for any

When , for any

Introduce an auxiliary homogeneous Markov chain
in the state space whose transition proba-

bilities are given by the last equation at the bottom of the page.

(21)

otherwise.

for any

otherwise,

for

otherwise.



504 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 5, OCTOBER 2002

For Markov chain , define the first hitting time to the state
0 to be and its mean

. It is obvious that for any .
Consider the first hitting probability

and let . From (3), we obtain

According to (5), the mean first hitting time satisfies (22),
shown at the bottom of the page, from which we can derive, for

, the last equation at the bottom of the page.
It is clear from the above equations that if is exponential

in , then and will also be exponential in .
Since , we complete the proof of Part (2).
From the above proposition, we can see that for the

EA, the order of is and is no more than .
For the EA, is greater than

and is greater than .
It is not surprising that, if is exponential in , then when

the population starts from , i.e., the point , the
EA will take an exponential time to find the optimal

point. Furthermore, for all populations starting from , i.e.,
the points such as or , the
EA still takes an exponential time.

C. Impact of Population on the First Hitting Probability

One way to analyze the first hitting probability is to examine
the failure probability as defined as follows.

Definition 4: Given a Markov chain and
its initial distribution , let the first hitting
probability , then define

as themean failure probability.
For a Markov chain associated with an EA, we can use the

mean failure probability to measure the probability of the EA
fails to find an optima. Let be the failure probability of a

EA and be that of an EA for the same
problem. It is expected that because we could
simply run independent EAs simultaneously. The in-
teresting questions are how much smaller could be in com-
parison with and whether an EA would have a

smaller failure probability than that produced byindependent
EAs. We can use thefailure rateto answer the first ques-

tion. The failure rate is defined as

failure rate

The EA considered in this section for objective func-
tion (7) uses Mutation I and Selection I with .

There are two EAs that we will analyze. The first
one, called EA-I, is simply independent EAs
running simultaneously. The second EA, denoted as
EA-II, uses Mutation I and Selection III.

Proposition 4: Given objective function (7), we have the fol-
lowing.

1) For the EA using Mutation I and Selection I with
, let , its first

hitting probabilities are
given by

Assume that the initial individual satisfies the uniform
distribution in the space . Then the failure proba-
bility to find the global optimal solution is

where is the binomial coefficient.
2) For the EA-I, let

. Its first hitting probabilities
are given by

(22)
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Assume each individual in the initial population sat-
isfies the uniform distribution in the space . The
failure probability is

3) For the EA-II, let
. Then its first hitting probabilities

are given by

The failure probability is

regardless of the kind of distributions that an initial indi-
vidual has.

Proof—Part (1): For the EA, the transition prob-
abilities among can be derived as follows.

For any , for

For , for

For any , for

For , for

Introduce an auxiliary homogeneous Markov chain
in the state–space whose transition proba-

bilities are given by

For Markov chain , let and
. It is clear that for

.

Let . According to (3), we have

(23)

Since state is an absorbing state, it is impossible to access
the global optimal solution starting from this state. We should
let for the equation . Then we can get

Since and the distribution of initial individuals is
uniform in the space , we obtain

The above equations show that starting from a population in
, the EA fails to find the global optimal solution.

Part (2)Note that each initial individual is chosen uniformly
at random from . Hence, we have

Part (3) For the EA-II, there exist some positive
values (e.g., let ) and (e.g., let

) such that the transition probabilities among
can be bounded as follows.

When , for

When , for

Introduce an auxiliary homogeneous Markov chain
in the state–space whose transition proba-

bilities are given by

otherwise

for

For Markov chain , let and
. We have for .
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According to (3), the first hitting probabilities for Markov
chain are given by (24), shown at the bottom of the page,
from which we can get

Given an initial distribution , we have

which shows that the EA-II can find the global optimal
solution from any initial population. This is a much improved
result as compared to that in Part (2).

Discussion: Now we discuss the failure rate of the above
EA and EA-I further. We investigate how the

population size changes the failure rate. From Parts (1) and (2)
in Proposition 4, we have

failure rate

When

failure rate

When

failure rate

Fig. 2 shows how the failure rate decreases as the population
size increases when . It is clear from Fig. 2 that little
improvement could be made whenbecame large for the ob-
jective function with . However, a much greater im-
provement could be made aswas increased for the objective
function with .

D. Impact of Population on the First Hitting Time

In this section, we discuss the impact of population on the
average computation time of an EA. We consider the question
whether the mean first hitting time of an EA would
be shorter than that of a EA that uses the same mutation
operator and, if it is, how much shorter.

Let be the mean first hitting time for a EA and
be that for a EA. The speedup of the

EA over the EA can be defined as

speedup

Fig. 2. For the objective function with� = 1=2, whenN decreases, the failure
rate for the(N +N) EA-I to find a global optimal solution in polynomial time
decreases very quickly. However, for the objective function (7) with� = 1=n,
the(N +N) EA-I does not seem to improve much over the(1 + 1) EA, even
for largeN .

If we run each individual on one processor, ignoring the commu-
nication cost, then the speedup in a parallel computing system
is

speedup

In this paper, we are interested in the later definition of speedup
on a hypothetical parallel computer.

Consider the objective function (9). The EA for it uses
Mutation I and Selection I with and the EA uses
Mutation I and the following selection.

Selection V: Select the best individuals in the com-
bined population of and as the next generation .
The best individual is selected twice.

The selection used above is a variant of truncation selection,
as often used in evolution strategies.

Proposition 5: Given the objective function (9), we have the
following.

1) For the above EA, assume the initial population
is distributed uniformly at random in . Then the
mean first hitting time will be

2) For the above EA, also assume each individual
in the initial population is distributed uniformly at random

(24)
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in . Let . Then
the mean first hitting time will be

where , and for

3) The speedup of the EA over the EA is
given by

speedup

Proof—Part (1): Let .
For the EA, we have

since the initial population is distributed uniformly at random.
The mean first hitting time starting from an individual in

is

Hence, the mean first hitting time is

Part (2)For the EA, since individuals in the initial
population are distributed uniformly at random, we have for

and

where .

Fig. 3. SpeedupIE[T ]=IE[T ] of the (N + N) EA using Mutation I and
Selection V over the(1+1)EA using Mutation I and Selection I on the objective
function (9) when the initial population is distributed uniformly at random.

The mean first hitting time for the EA starting from
a population in is

Hence, the mean first hitting time will be

Part (3) It is a direct result of Parts (1) and (2).
Fig. 3 shows such a speedup function ofwhen .
However, the estimation on the speedup, more precisely on

, given above is not very tight. Further work is needed to
derive tighter bounds.

Now we examine another distribution of the initial population
for the above EAs and problem. Assume the initial individual
(both for the EA and EA) takes , i.e.,
the EA starts from the worst state.

The analysis in the above proposition is not suitable for this
case. If we use the above analysis, we would have

and

Hence

speedup

There would be no speedup at all. A more accurate estimation
on is needed. The following proposition represents our
first attempt.

Proposition 6: Given the objective function (9), we have the
following.
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1) For the aforementioned EA, if the initial popula-
tion is , then the mean first hitting time is

2) For the aforementioned EA, if all individuals
in the initial population are , then the mean first
hitting time is

where is given by, for and
as in the first equation shown at the bottom

of the page.
3) The speedup of the EA over the EA is

given by

speedup

Proof: The proof of Part (1) is the same as that for Propo-
sition 5.

Part (2) Let ,
and the number of individual with is , for

, and , and .
According to the given EA, the transition probabil-

ities among can be derived as follows.
When , for and

When for and

otherwise

When , for any

Introduce an auxiliary Markov chain whose state space
is
and transition probabilities are given by for
and

and

else

for and see the last equation at
the bottom of the page.

For Markov chain , define the first hitting time to state 0
to be and its mean

. For Markov chain , define the mean first
hitting time , where

. We have .
Let . According to (3), the first

hitting probabilities of Markov chain , for ,

else
and
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and , are given by (25), shown at the bottom of
the page, from which we can get

According to (5), we know that the mean first hitting time
satisfies, for and (26),
shown at the bottom of the page.

The above equations can be simplified, for and
, as shown in the last equation at the bottom

of the page.
Hence

Part (3)This is a direct consequence of Parts (1) and (2).
Fig. 4 shows such a speedup function ofwhen ,

based on the above estimation.
Consider another more difficult example given by the objec-

tive function (8). The EA uses the following mutation
and Selection I with

Fig. 4. SpeedupIE[T ]=IE[T ] of the (N + N) EA using Mutation I and
Selection V over the(1+1)EA using Mutation I and Selection I on the objective
function (9) when the initial population is taken fromS .

Mutation II: Given population (only a single individual in
the case of EA) at generation, for each individual

(25)

(26)
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, flip each of its bits to its complement with proba-
bility , where . The mutated population is de-
noted as .

The corresponding EA uses Mutation II and Selec-
tion V. For convenience, we only consider the case of the initial
population starting from one point and do not consider the case
of the initial population taking a random distribution here.

Proposition 7: Given the objective function (8), we have the
following.

1) For the EA using Mutation II and Selection I with
, if the initial population satisfies

then the mean first-hitting time of the EA will be

2) For the EA using Mutation II and Selection V, if
all individuals in the initial population are , then
the mean first-hitting time of the EA will be

3) The speedup of the EA over the EA is

speedup

Proof—Part (1): Let .
We have

and

Part (2) Let . Then

and

Part (3) It is a direct consequence of Parts (1) and (2).
Fig. 5 shows such a speedup function ofwhen

and . It is clear that the speedup increases linearly as
increases.

IV. CONCLUSION

Many EAs use more than one individual in the population.
It has also been argued that one of the key characteristics of
EAs is their populations. However, rigorous theoretical results
are few regarding the real benefits of populations in EAs. This
paper provides a number of results that show when a population
may bring benefits to an EA in terms of lower time complexity,
higher first hitting probabilities, and shorter first hitting time.

Fig. 5. SpeedupIE[T ]=IE[T ] of the (N + N) EA using Mutation II and
Selection V over the(1 + 1) EA using Mutation II and Selection I on the
objective function (8).

It is shown that a population-based EA
may take only average polynomial time to solve a problem that
would take a EA average exponential time to solve, given
the same mutation operator in both algorithms. It is also shown
that the introduction of a population into an EA can increase the
first hitting probability. Given a distribution of initial individ-
uals in an EA, e.g., a uniform distribution, we are able to derive
the mean first hitting time of the algorithms. Such analysis en-
ables us to compare the mean first hitting times of the
and EAs under the same initial distribution and show
that a population can shorten the mean first hitting time. Our
results also represent one of the first attempts toward analysing
the average case time complexity of EAs .

There is much work to be done in the theoretical analysis
of population-based EAs. The discussions here are restricted to
some simple objective functions and EAs. This paper considers

EAs with only mutation and selection in order to have
the population-based EAs as close to the EA as possible
so that the impact of a population can be isolated and studied.
Different selection schemes in EAs are studied and
shown to have different impact on EA’s performance (in terms
of complexity). Our future work includes two major directions.
One is to study the impact of recombination and strate-
gies on EA’s computation time. The other is to carry out similar
theoretical analysis for other combinatorial optimization prob-
lems, especially those often discussed in the classical combi-
natorial optimization field, e.g., maximum matching and other
problems [26], [27].
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