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 As secretary general of the United Nations, 
Antonio Guterres said during the 2020 Nelson Man-
dela Annual Lecture, “COVID-19 has been likened to 
an X-ray, revealing fractures in the fragile skeleton 
of the societies we have built.” Without a doubt, the 
COVID-19 pandemic has exposed and exacerbated 
existing global inequalities. Whether at the local, 
national, or international scale, the gap between 
the privileged and the vulnerable is growing wider, 
resulting in a broad increase in inequality across 
all dimensions of society. The disease has strained 
health systems, social support programs, and the 
economy as a whole, drawing an ever-widening 
distinction between those with access to treatment, 
services, and job opportunities and those without. 
Global lockdown restrictions have led to increases 
in childcare and housework responsibilities, and 
most of the burden has fallen on women, further 
increasing existing gender inequality [1], [2]. Indig-
enous populations worldwide find themselves more 
vulnerable to infection, many times with less access 
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to health services or hygiene measures and limited 
updated scientific information about the virus and 
measures that can be taken to mitigate it [3]. Ine-
quality has also pervaded the education sector, with 
only a subset of students able to attend safe in-person 
schooling or access online education when needed.

The pandemic has also increased the differ-
ences between countries, distinguishing between 
those which are able to access tests and diagnostic 
tools, personal protective equipment (PPE), medi-
cal equipment such as ventilators, and (eventually) 
vaccines, and those which cannot. International 
cooperation is critical, and as new diagnostics, 
medicines, and vaccines come through the devel-
opment pipeline, there must be collaboration and 
mechanisms for joint procurement and pooling of 
risk. Support for initiatives such as the COVID-19 
Vaccine Global Access Facility (COVAX) will help 
avoid myopic nationalist vaccine strategies which 
will result in increasing inequality and worsen out-
comes for humanity as a whole. When planning pub-
lic health and economic interventions, governments 
need to take existing inequalities into account, lest 
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they end up further worsening the situation [4]. 
To help address these issues, the United Nations 
Development Programme (UNDP) has proposed a 
comprehensive framework for providing socioec-
onomic support to countries and societies in the 
face of COVID-19 which covers five complementary 
dimensions, including: 1) essential health services; 
2) social protection; 3) microeconomic response 
and recovery programs; 4) macroeconomic fiscal 
and financial stimuli and policies; and 5) communi-
ty-led resilience and response systems, while ensur-
ing social equality and inclusion [5]. They stress that 
all of these dimensions must be taken into account 
when designing and deploying interventions to 
ensure that all necessary aspects of human and soci-
etal well-being are addressed.

AI, COVID-19, and inequality
In a recent article reviewing AI solutions against 

COVID-19 [6], we identified three main scales of 
AI applications: the molecular scale, the clinical 
scale, and the societal scale. We also highlighted the 
importance of assessing the maturity and feasibility 
of proposed interventions at each of these scales 
before deploying AI solutions. At the molecular 
level, much of the current research involves assist-
ing drug discovery and development, and improv-
ing molecular diagnosis. Many of these applications 
remain at the research stage, given the challenges in 
synthesizing and testing compounds, as well as lim-
itations in data and model sharing. Nonetheless, at 
least four candidate vaccines that reported the use 
of machine learning (ML) in their development have 
advanced to the clinical evaluation stage according 
to the World Health Organization (WHO) [7]. At a 
clinical level, AI has mostly been used to assist and 
improve patient-level assessment of COVID-19 via 
analysis of medical imagery and patient records. 
However, the extent to which the analysis from these 
techniques alone can be used for the diagnosis of 
COVID-19 is still debated by the medical commu-
nity [8], and transparency and explainability of the 
proposed diagnoses remain overlooked by most AI 
approaches. Finally, on a societal scale, two crucial 
and complementary lines of research focus on mod-
eling the spread of the pandemic across territories 
and regions, as well as its accompanying “infodemic” 
of misinformation. Despite reservations regarding 
whether models trained on data from one context 
are applicable in another one, data-driven models 

remain paramount in analyzing the spread of the 
virus. Overall, while AI can be an important tool in 
fighting the pandemic, context-sensitive deployment 
is key. Working with stakeholders who have neces-
sary domain knowledge, in addition to developing 
appropriate model and data sharing solutions, is 
critical [9], [10].

Will the AI systems applied in the fight against 
COVID-19 increase or decrease inequality? While the 
AI community is still in the early stages of application 
development, we have identified some persistent 
sources of bias which run the risk of exacerbating 
inequality [9]. We believe, however, that some of 
these biases can be mitigated (and potentially over-
come) if proper assessment is included during the 
application development process. Generally, AI 
applications against COVID-19 have been developed 
in and for countries in the Global North, resulting in 
a lack of information about how the resulting tools 
will impact the evolution of the disease and related 
policies in the Global South [11]. Even within highly 
developed countries, many modeling and data col-
lection efforts overlook or neglect underrepresented 
minorities [12]–[14].

AI systems can be inherently prone to bias which 
can be introduced at several different points in the 
application development pipeline. First, bias can be 
present during problem scoping, that is, by influenc-
ing the way in which the problem to be addressed 
by AI is framed, as well as the extent of the work 
itself. Second, bias can be present in the data used to 
train an AI system, or the way in which the data was 
labeled. Especially in healthcare situations, using 
AI approaches can reproduce and amplify existing 
biases in medical data sets, oftentimes not account-
ing for data from minority groups [15], [16]. Third, 
bias can be present in the choice of the algorithms 
themselves and how its intricate configuration 
parameters are tuned. Finally, bias may influence 
how results are evaluated and interpreted, which in 
turn affects how AI outputs are used. A further chal-
lenge arises when models trained and tested in one 
setting are then applied to another, and results are 
interpreted without acknowledging any necessary 
corrections specific to the new context. While this is 
not an exhaustive list of all potential sources of bias, 
these steps of an AI pipeline are all subject to both 
conscious and unconscious bias, which can rein-
force existing inequalities as well as promote new 
ones if not properly addressed.



73March 2021

Examples
In the sections below, we illustrate examples of 

applications in which biases result (or might result) 
in increased inequality.

Diagnosis
There are many algorithmic approaches for sup-

porting COVID-19 diagnosis from computer tomogra-
phy (CT) and X-ray scans which frame the diagnostic 
problem as a classification task (i.e., identifying 
healthy vs. COVID-19-positive individuals), to train-
ing neural networks to detect masses and patterns in 
lung scans [17]–[19]. This can be particularly prob-
lematic when attempting to make meaningful con-
clusions based solely on medical imagery and, in 
particular, in geographies with a high prevalence of 
other diseases not included in the training data sets 
which might also affect the lungs (such as tuberculo-
sis or HIV/AIDS [20]–[22]), which can be confused 
with COVID-19 and lead to its misdiagnosis. In addi-
tion, much of the existing medical imaging research 
relies on small and poorly balanced data sets that 
mix data from several populations without proper 
traceability. Prior research has shown that when 
training data sets are imbalanced on gender, the 
performance of deep learning models in radiology 
decreases, in particular, in the case of X-ray image 
data sets used to diagnose thoracic diseases [23]. 
Such biases might also reduce the performance of 
AI applications on CT and X-ray imaging of COVID-19 
if not properly taken into account.

Another structural source of bias is that not all 
regions can afford scanner equipment. As a result, 
the data used to train the related AI models will not 
be representative and the approaches proposed may 
not be systematically deployed in disadvantaged 
regions. On the other end of the technology require-
ment spectrum, there are some proposals involving 
mobile-based diagnosis approaches [24] that are 
potentially promising, but warrant further explora-
tion and validation.

Much of the existing work that utilizes AI to ana-
lyze medical imagery does not provide transparency 
or interpretability, delivering a categorical verdict 
based solely on an incoming image. This “black-
box” approach may be acceptable for human-in-the-
loop deployment where potential COVID-19-positive 
images are flagged for expert radiologists, who will 
then carry out further analysis manually. However, 
such approaches can be problematic in contexts 

where medical experts are lacking or do not have 
enough time. Fully automated AI pipelines must be 
assessed in the context of their clinical impact before 
being deployed, which includes carefully consider-
ing and mitigating the risks in addition to assessing 
biases which might result into incorrect and unfair 
functioning.

Utilizing complementary medical data such 
as information regarding a patient’s gender, age, 
and comorbidities, as well as clinical indicators, 
does not only improve the accuracy of image-only 
approaches, but also produces results that are more 
interpretable for clinicians. For instance, a hybrid 
approach that merges algorithmic analysis of both 
CT scans as well as clinical features to predict the 
severity of COVID-19 [25] reported high accuracy 
rates, and the set of clinical features identified as 
relevant by the algorithm were coherent with those 
identified by previous studies. This overlap is prom-
ising for eventual clinical monitoring of COVID-19 
severity, both manually and using Al-infused 
approaches. However, these kinds of hybrid studies 
should also be replicated in other regions and com-
plemented with clinical data from incoming cases 
around the world, achieving better global coverage 
and reproducibility.

Treatment
Research has consistently shown higher rates 

of infection, hospitalization, and death in ethnic 
minorities during the COVID-19 pandemic [12], 
[13], [26], [27]. Nonetheless, our understanding of 
these inequalities remains poor, which hinders the 
development of solutions to combat COVID-19 and 
the disparities it magnifies. Gathering sufficient and 
accurate data on all of the social determinants of 
health, including race and ethnicity, is critical for 
effective research and development of both medi-
cal and public health interventions. However, inad-
equate and biased data collection is prevalent in 
practice. For example, data collection mechanisms 
are often poorly designed, with inconsistent ethnic-
ity and race labeling [28], [29]. In fact, a systematic 
review has found that of 1518 COVID-19-related clin-
ical trials registered on ClinicalTrials.gov, only one 
randomized controlled trial and five observational 
studies collected data on ethnicity [30]. Overall, 
fragmented and incomplete data makes it challeng-
ing for AI to succeed in furthering our understanding 
of COVID-19 and devising appropriate interventions.
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The inequitable selection of participants as well 
as inconsistent presentation of demographic data 
has been a prevalent issue in pharmaceutical tri-
als long before COVID-19 [31]. Prior research has 
shown that demographic differences often translate 
into differences in physical outcomes for individuals 
and communities. For example, immune profiles dif-
fer from person to person as a result of genetic, evo-
lutionary, and environmental factors such as age, 
ethnicity, comorbidities, geographic location, nutri-
tion, and so on [32], [33]. Hence, these dimensions 
should be properly accounted for when designing 
ML-based methodologies. We must be particularly 
cautious to ensure that data limitations do not lead 
us to develop biased algorithms that use readily 
available and seemingly effective but in fact, prob-
lematic proxies, such as using healthcare costs as a 
proxy to assess health needs, which was found to be 
racially biased [34]. These kinds of AI applications 
risk not only making inaccurate predictions, but also 
reinforcing systemic injustices.

Although the private sector is playing a critical role 
in devising interventions against COVID-19, its lack 
of transparency may reinforce biases and inequali-
ties. Most of the vaccine candidates that utilized ML 
in their development came from corporations that 
made little information on their ML approach avail-
able, making it difficult for independent research-
ers to inspect the biases that might come from the 
collection and measurement of data as well as the 
evaluation, aggregation, and deployment processes 
[35]. Research conducted in private sector largely 
relies on data such as knowledge graphs which are 
not publicly accessible, and proprietary algorithms 
hinder the discovery, evaluation, and rectification of 
algorithmic biases [34].

All in all, given that AI is playing an increasingly 
important role in expediting the discovery and devel-
opment of medical solutions, it is particularly impor-
tant to ensure that the data gathered is representative 
of global populations and that appropriate mecha-
nisms to audit algorithms and dissect any possible 
biases are in place. Otherwise, solutions developed 
and tested in ways that are subject to systemic, clin-
ical, and algorithmic biases may have unintended 
consequences in vulnerable populations.

Epidemics
The modeling of epidemics is relevant for under-

standing potential infection trajectories and to 

inform operational planning. Epidemiological mod-
els need careful fine-tuning to regional variables to 
capture age, socioeconomic status, and cultural 
norms. One of the most frequently used approaches 
is susceptible-infected-recovered (SIR) modeling, 
in which models are usually designed based on 
regional statistics capturing age, sex, and poten-
tially other variables if data are available. However, 
these approaches often average over demographic 
and societal structures, meaning that differences in 
behavior between different groups are missed. Fur-
thermore, developing epidemiological models in 
certain settings, and applying them to others with 
different cultural norms, can result in incorrect pre-
dictions. In fact, we have already seen examples of 
models failing to capture and explain differences in 
COVID-19 transmission trends between European 
and African contexts [36], [37]. If models are not 
developed in collaboration with regional experts, 
local populations are at a severe risk of being 
left behind.

Disparities in modeling efforts have also grown 
out of differences in data availability. For exam-
ple, agent-based approaches to modeling disease 
spread, while able to better account for heterogene-
ous transmission dynamics, often require detailed 
data inputs. These can be challenging to acquire 
in under-served and ill-documented settings such 
as informal settlements. Similarly, many modeling 
approaches are designed to assess the potential 
for certain policy interventions, yet many of these 
interventions, such as social distancing or house-
hold quarantine, are impossible in highly crowded 
spaces where individuals need to leave their homes 
for water or aid collection.

In addition, many data sets which have served 
as important indicators for possible disease spread 
and recovery, as well as tools to aid in SARS-CoV-2 
transmission mitigation efforts, are reliant on the 
access to certain technology. For example, Google 
mobility data [38] has provided valuable insights 
into the movement patterns of individuals and has 
been used in several modeling efforts [39], [40]. 
However, this fails to capture portions of society 
which do not have access to the mobile technology 
used in creating such data sets. Newly developed 
tools to fight the pandemic can also be reliant on 
technology which is unavailable to certain members 
of society such as contact tracing applications which 
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may have certain smartphone and operating system 
requirements.

We have recently seen a rise in the use of ML for 
modeling the epidemiological trends of COVID-19 
[41], [42], which might be heavily influenced by 
data limitations and biases [6], [43]. Indeed, while 
many classical modeling approaches can be inter-
rogated mathematically and computationally, we 
are still much less able to interpret the reasoning 
behind the outputs of an AI system. Therefore, 
while AI models may be powerful as prediction 
tools, we need the ability to better explore models 
which have the potential to significantly impact 
people’s lives.

Infodemics
The propagation of mis- and disinformation 

around COVID-19 may act as yet another driver of 
inequality, and online social media platforms repre-
sent a particularly rich environment for the spread of 
infodemics. Research has shown that information is 
disseminated on these platforms in a viral manner, 
reproducing at a rate similar to that of a pandemic 
(i.e., exponentially) [44]. Although the rate at which 
true versus false claims are amplified appears to vary 
across platforms [44], research on Twitter has found 
that social media users may be more likely to share 
false information because it is novel [45]. The reach 
of misinformation may be further extended by the 
automated recommendation algorithms underlying 
many online social media platforms, which seek to 
identify and promote popular or viral posts to maxi-
mize engagement and garner attention [46]. Despite 
the widespread proliferation of misinformation, only 
a fraction of this content is flagged and ultimately 
removed or corrected [47].

Some of the most vulnerable populations in our 
society—such as the elderly, minorities, and other 
populations with low health literacy—may also be 
the most susceptible to the infodemic [48]. On the 
one hand, since much of the false information about 
COVID-19 involves fake cures, rumors about invin-
cibility, and/or ineffective preventive measures, 
misinformation could lead these already-vulner-
able populations to engage in unnecessarily risky 
behavior. On the other hand, these populations 
may be more likely to believe misinformation due 
to a tendency toward “inequality-driven mistrust” in 
which a historical legacy of discrimination and mis-
treatment at the hands of society and the medical 

community makes them more likely to question 
official information and believe in conspiracy the-
ories [49]. In sub-Saharan Africa, researchers have 
argued that this skepticism extends to “distrust of 
philanthropic institutions, distrust of developed 
nations, and even distrust of leaders in their own 
respective countries” [50].

Systematic fact-checking efforts to proactively 
identify and correct false information may fail to 
reach these vulnerable populations because these 
populations may engage with misinformation 
through private or interpersonal channels [51], and 
in local languages or dialects [52]. This makes it 
difficult for fact checkers to identify the relevant 
pieces of false information and to reach these pop-
ulations with corrected information. Many efforts to 
combat the infodemic so far have focused on data 
sources that are easy to mine with AI (e.g., Face-
book, Twitter, and online news media), rather than 
on offline channels such as radio or TV which may 
act as primary sources of information in the devel-
oping world [53]. These efforts also tend to focus 
on widely spoken languages such as English, Span-
ish, Arabic, French, and Portuguese, rather than on 
under-represented regional languages for which 
natural language processing tools may not yet be 
available.

Another repercussion of the infodemic has been 
the targeting and stigmatization of vulnerable groups. 
For example, there has been a reported rise in hate 
crimes [54] and online hate speech [55] against 
Chinese and other Asian minorities. There has also 
been a rise in xenophobic and antimigrant senti-
ment more generally [56], both because there is a 
fear that arriving migrants will transmit the virus, and 
because of the perceived strain that these migrants 
will place on already-overburdened.

Discussion
AI applications have the potential to positively 

contribute to the fight against COVID-19. However, 
AI can also amplify the biases and inequalities that 
have emerged or become more extreme during the 
pandemic. As in any other application of AI, bias 
can be introduced at multiple points throughout the 
modeling pipeline. As COVID-19 furthers inequality 
along every dimension of society, it is important to 
identify and address AI applications which might 
contribute to this trend.
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AI researchers and practitioners should pay 
special attention to bias introduced in the prob-
lem definition and data collection stages. Public 
health algorithms play important roles in deci-
sion-making, from shaping critical care protocols 
to deciding how to distribute vaccines. Women 
and minorities are also often not properly rep-
resented in data sets whose use may result in 
medical treatments and services. In addition, 
nonpharmaceutical interventions are increasingly 
based on measures constructed from digital traces 
(e.g., mobility patterns recorded from cell phone 
usage), although these do not account for those 
individuals without access to mobile networks or 
the internet. Finally, the spread of mis- and disin-
formation can be amplified by AI, which impacts 
more those with less health literacy.

In all of these examples, AI-driven biases and 
their implications for inequality should be assessed 
from the initial project development stages through 
the presentation and use of outputs. Furthermore, AI 
systems should be adapted to local contexts, follow-
ing and accounting for cultural and social norms. It 
is also important to recognize that in some cases, the 
proposed solutions might be fair and efficient with 
respect to a particular problem statement, but may 
increase inequality along other dimensions. Con-
trary to other AI applications where the goal is to 
identify a single model to beat a single metric and 
benchmark, in situations where vulnerable popula-
tions are at risk, a more sensitive approach should 
be taken with a focus on outliers as metrics to assess 
failure as well as success. This analysis may require 
the problem to be approached from different angles. 
For example, outliers in a patient group might repre-
sent diversity and, rather than focusing on average 
performance, the more relevant task for model-
ers might be to understand for whom the model is 
performing worst.

Some key concepts to help reduce bias in AI 
applications include: the transferability of models 
and their adaptation to local contexts; federated 
learning strategies which may make it possible 
to include patient data from multiple cohorts in 
a privacy-preserving way; and the deployment of 
interpretable models which allow users to inter-
rogate the patterns and reasons for model deci-
sions, which is particularly relevant in high-risk 
settings. We hope this article will stimulate some 

reflections in the AI community aiming to sup-
port the COVID-19 response and will encourage 
researchers to assess whether biases in their AI 
applications will amplify inequality from a health, 
economic, and social perspective.� 
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